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1.  Introduction

The scanning transmission electron microscope 
(STEM) is a very powerful and highly versatile 
instrument capable of atomic resolution imaging 
and nanoscale analysis. The purpose of this 
chapter is to describe what STEM is, to high-
light some of the types of experiments that can 
be performed using a STEM, to explain the 
principles behind the common modes of opera-
tion, to illustrate the features of typical STEM 
instrumentation, and to discuss some of the lim-
iting factors in its performance.

1.1  The Principle of Operation �
of a STEM

Figure 2–1 shows a schematic of the essential 
elements of an STEM. Most dedicated STEM 
instruments have their electron gun at the 
bottom of the column with the electrons travel-
ing upward, which is how Figure 2–1 has been 
drawn. Figure 2–2 shows a photograph of a 
dedicated STEM instrument.

More commonly available at the time of 
writing are combined conventional transmis-
sion electron microscope (CTEM)/STEM 
instruments. These can be operated in both the 
CTEM mode, where the imaging and magnifi-
cation optics are placed after the sample to 
provide a highly magnified image of the exit 
wave from the sample, or the STEM mode as 
described in Section 8. Combined CTEM/
STEM instruments are derived from conven-
tional transmission electron microscopy (TEM) 

columns and have their gun at the top of the 
column. The pertinent optical elements are 
identical, and for a TEM/STEM Figure 2–1 
should be regarded as being inverted.

In many ways, the STEM is similar to the 
more widely known scanning electron micro-
scope (SEM). An electron gun generates a 
beam of electrons that is focused by a series of 
lenses to form an image of the electron source 
at a specimen. The electron spot, or probe, can 
be scanned over the sample in a raster pattern 
by exciting scanning deflection coils, and scat-
tered electrons are detected and their intensity 
plotted as a function of probe position to form 
an image. In contrast to an SEM, where a bulk 
sample is typically used, the STEM requires a 
thinned, electron transparent specimen. The 
most commonly used STEM detectors are 
therefore placed after the sample, and detect 
transmitted electrons.

Since a thin sample is used (typically less 
than 50 nm thick), the probe spreading within 
the sample is relatively small, and the spatial 
resolution of the STEM is predominantly �
controlled by the size of the probe. The crucial 
image forming optics are therefore those �
before the sample that are forming the probe. 
Indeed the short-focal-length lens that finally 
focuses the beam to form the probe is referred 
to as the objective lens. Other condenser lenses 
are usually placed before the objective to 
control the degree to which the electron source 
is demagnified to form the probe. The electron 
lenses used are comparable to those in a con-
ventional TEM, as are the electron accelerating 
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voltages used (typically 100–300 kV). Probe 
sizes below the interatomic spacings in many 
materials are often possible, which is the �
great strength of STEM. Atomic resolution 
images can be readily formed, and the probe 
can then be stopped over a region of interest 
for spectroscopic analysis at or near atomic 
resolution.

To form a small, intense probe we clearly 
need a correspondingly small, intense electron 
source. Indeed, the development of the cold 
field emission gun by Albert Crewe and co-
workers nearly 40 years ago (Crewe et al., 
1968a) was a necessary step in their subsequent 
construction of a complete STEM instrument 
(Crewe et al., 1968b). The quantity of interest 
for an electron gun is actually the source bright-
ness, which will be discussed in Section 9. Field-
emission guns are almost always used for STEM, 
either a cold field emission gun (CFEG) or a 
Schottky thermally assisted field emission gun. 
In the case of a CFEG, the source size is typi-
cally around 5 nm, so the probe-forming optics 
must be capable of demagnifying its image of 

Figure 2–1.  A schematic of the essential elements of 
a dedicated STEM instrument showing the most 
common detectors.

Figure 2–2.  A photograph of a d edicated STEM 
instrument (VG Microscopes HB501). The gun is 
below the table level, with most of the electron optics 
above the table. At the top of the column can be seen 
a magnetic prism spectrometer for electron energy-
loss spectroscopy.
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the order of 100 times if an atomic sized probe 
is to be achieved. In a Schottky gun the demag-
nification must be even greater.

The size of the image of the source is not the 
only probe size defining factor. Electron lenses 
suffer from inherent aberrations, in particular 
spherical and chromatic aberrations. The aber-
rations of the objective lens generally have 
greatest effect, and limit the width of the beam 
that may pass through the objective lens and 
still contribute to a small probe. Aberrated 
beams will not be focused at the correct probe 
position, and will lead to large diffuse illumina-
tion thereby destroying the spatial resolution. 
To prevent the higher angle aberrated beams 
from illuminating the sample, an objective aper-
ture is used, and is typically a few tens of microns 
in diameter. The existence of an objective aper-
ture in the column has two major implications: 
(1) As with any apertured optical system, there 
will be a diffraction limit to the smallest probe 
that can be formed, and this diffraction limit 
may well be larger than the source image. (2) 
The current in the probe will be limited by the 
amount of current that can pass through the 
aperture, and much current will be lost as it is 
blocked by the aperture.

Because the STEM resembles the more �
commonly found SEM in many ways, several �
of the detectors that can be used are common �
to both instruments, such as the secondary �
electron (SE) detector and the energy-�
dispersive X-ray (EDX) spectrometer. The 
highest spatial resolution in STEM is obtained 
by using the transmitted electrons, however. 
Typical imaging detectors used are the bright-
field (BF) detector and the annular dark-field 
(ADF) detector. Both these detectors sum the 
electron intensity over some region of the far 
field beyond the sample, and the result is dis-
played as a function of probe position to gener-
ate an image. The BF detector usually collects �
over a disc of scattering angles centered on the 
optic axis of the microscope, whereas the ADF 
detector collects over an annulus at higher 
angle where only scattered electrons are 
detected. The ADF imaging mode is important 
and unique to STEM in that it provides inco-
herent images of materials and has a strong �
sensitivity to atomic number allowing different 

elements to show up with different intensities 
in the image.

Two further detectors are often used with the 
STEM probe stationary over a particular spot: 
(1) A Ronchigram camera can detect the inten-
sity is a function of position in the far field, and 
shows a mixture of real-space and reciprocal-
space information. It is mainly used for micro-
scope diagnostics and alignment rather than for 
investigation of the sample. (2) A spectrometer 
can be used to disperse the transmitted electrons 
as a function of energy to form an electron 
energy-loss (EEL) spectrum. The EEL spectrum 
carries information about the composition of the 
material being illuminated by the probe, and 
even can show changes in local electron struc-
ture through, for example, bonding changes.

1.2  Outline of Chapter

The crucial aspect of STEM is the ability to 
focus a small probe at a thin sample, so we start 
by describing the form of the STEM probe and 
how it is computed. To understand how images 
are formed by the BF and ADF detectors, we 
need to know the electron intensity distribution 
in the far field after the probe has been scat-
tered by the sample, which is the intensity that 
would be observed by a Ronchigram camera. 
This allows us to go on and consider BF and 
ADF imaging.

Moving on to the analytical detectors, there 
is a section on the EEL spectrum that empha-
sizes some aspects of the spatial localization of 
the EEL spectrum signal. Other detectors, such 
as EDX and SE, that are also found on SEM 
instruments are briefly discussed.

Having described STEM imaging and analy-
sis we return to some instrumental aspects of 
STEM. We discuss typical column design, and 
then go on to analyze the requirements for the 
electron gun in STEM. Consideration of the 
effect of the finite gun brightness brings us to a 
discussion of the resolution limiting factors in 
STEM where we also consider spherical and 
chromatic aberrations. We finish that section 
with a discussion of spherical aberration correc-
tion in STEM, which is arguably having the 
greatest contribution in the field of STEM and 
is producing a revolution in performance.
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There have been several review articles pre-
viously published on STEM (for example, 
Cowley, 1976; Crewe, 1980; Brown, 1981). More 
recently, instrumental improvements have 
increased the emphasis on atomic resolution 
imaging and analysis. In this chapter we tend to 
focus on the principles and interpretation of 
STEM data when it is operating close to the 
limit of its spatial resolution.

2.  The STEM Probe

The crucial aspect of STEM performance is the 
ability to focus a subnanometer-sized probe at 
the sample, so we start by examining the form 
of that probe. We will initially assume that the 
electron source is infinitesimal, and that the 
beam is perfectly monochromatic. The effects 
of these assumptions not holding are explored 
in more detail in Section 10.

The probe is formed by a strong imaging lens, 
known as the objective lens, that focuses the 
electron beam down to form the crossover that 
is the probe. Typical electron wavelengths in the 
STEM range from 3.7 pm (for 100-keV elec-
trons) to 1.9 pm (for 300-keV electrons), so we 
might expect the probe size to be close to these 
values. Unfortunately, all circularly symmetric 
electron lenses suffer from inherent spherical 
aberration, as first shown by Scherzer (1936), 
and for most TEMs this has typically limited the 
resolution to about 100 times worse that the 
wavelength limit.

The effect of spherical aberration from a geo-
metric optics standpoint is shown in Figure 2–3. 

Spherical aberration causes an overfocusing of 
the higher angle rays of the convergent so that 
they are brought to a premature focus. The 
Gaussian focus plane is defined as the plane at 
which the beams would have been focused had 
they been unaberrated. At the Gaussian plane, 
spherical aberration causes the beams to miss 
their correct point by a distance proportional to 
the cube of the angle of ray. Spherical aberra-
tion is therefore described as being a third-order 
aberration, and the constant of proportionality 
is given the symbol, CS, such that

	 Dx = CSq3	 (2.1)

If the convergence angle of the electron beam 
is limited, then it can be seen in Figure 2–3 that 
the minimum beam waist, or disc of least confu-
sion, is located closer to the lens than the Gauss-
ian plane, and that the best resolution in a 
STEM is therefore achieved by weakening or 
underfocusing the lens relative to its nominal 
setting. Underfocusing the lens compensates to 
some degree for the overfocusing effects of 
spherical aberration.

The above analysis is based upon geometric 
optics, and ignores the wave nature of the elec-
tron. A more quantitative approach is through 
wave optics. Because the lens aberrations affect 
the rays converging to form the probe as a func-
tion of angle, they can be incorporated as a 
phase shift in the front-focal plane (FFP) of the 
objective lens. The FFP and the specimen plane 
are related by a Fourier transform, as per the 
Abbe theory of imaging (Born and Wolf, 1980). 
A point in the front-focal plane corresponds to 
one partial-plane wave within the ensemble of 

Figure 2–3.  A geometric optics view of the effect of spherical aberration. At the Gaussian focus plane the 
aberrated rays are displaced by a distance proportional to the cube of the ray angle, q. The minimum beam 
diameter is at the disc of least confusion, defocused from the Gaussian focus plane by a distance, z.
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plane waves converging to form the probe. The 
deflection of the ray by a certain distance at �
the sample corresponds to a phase gradient in �
the FFP aberration function, and the phase shift 
due to aberration in the FFP is given by

	 c(K) = (pzl|K|2 + 1_2pCSl3|K|4)	 (2.2)

where we have also included the defocus of the 
lens, z, and K is a reciprocal space wavevector 
that is related to the angle of convergence at 
the sample by

	
K = q

λ 	 (2.3)

Thus the point K in the front-focal plane of the 
objective lens corresponds to a partial plane 
wave converging at an angle q at the sample. 
Once the peak-to-peak phase change of the 
rays converging to form the probe is greater 
than p/2, there will be an element of destructive 
interference, which we wish to avoid to form a 
sharp probe. Equation (2.3) is a quartic func-
tion, but we can use negative defocus (underfo-
cus) to minimize the excursion of c beyond a 

peak-to-peak change of p/2 over as wide a range 
of angles as possible (Figure 2–4). Beyond a 
critical angle, a, we use a beam-limiting aper-
ture, known as the objective aperture, to prevent 
the more aberrated rays contributing to the 
probe. This aperture can be represented in the 
FFP by a two-dimensional top-hat function, 
Ha(K). Now we can define a so-called aperture 
function, A(K), that represents the complex 
wavefunction in the FFP,

	 A(K) = Ha(K)exp[ic(K)]	 (2.4)

Finally we can compute the wave function of 
the probe at the sample, or probe function, by 
taking the inverse Fourier transform of (2.4) to 
give

	 P A i dR K K R K( ) = ( ) −( )∫ exp 2π ⋅ 	 (2.5)

To express the ability of the STEM to move the 
probe over the sample, we can include a shift 
term in (2.5) to give

	
P A i

i d

R R K K R

K R K

−( ) = ( ) −( )∫
( )

0 exp

exp

2

2 0

π
π

⋅

⋅ 	 (2.6)

Figure 2–4.  The aberration phase shift, c, in the front-focal, or aperture, plane plotted as a function of con-
vergence angle, q, for an accelerating voltage of 200 kV, CS = 1 mm and defocus z = -35.5 nm. The dotted lines 
indicate the p/4 limits giving a peak-to-peak variation of p/2.
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Moving the probe is therefore equivalent to 
adding a linear ramp to the phase variation 
across the FFP.

The intensity of the probe function is found 
by taking the modulus squared of P(R), as is 
plotted for some typical values in Figure 2–5 
Note that this so-called diffraction limited probe 
has subsidiary maxima sometimes known as 
Airy rings, as would be expected from the use 
of an aperture with a sharp cut-off. These sub-
sidiary maxima can result in weak features 
observed in images (see Section 5.3) that are 
image artifacts and not related to the specimen 
structure.

Let us examine the defocus and aperture size 
that should be used to provide an optimally 
small probe. Different ways of measuring probe 
size lead to various criteria for determining the 
optimal defocus (see, for example, Mory et al., 
1987), but they all lead to similar results. We can 
again use the criterion of constraining the excur-
sions of c so that they are no more than p/4 away 

from zero. For a given objective lens spherical 
aberration, the optimal defocus is then given by

	 z = -0.71l1/2CS
1/2	 (2.7)

allowing an objective aperture with radius

	 a = 1.3l1/4CS
-1/4	 (2.8)

to be used. A useful measure of STEM resolu-
tion is the full-width at half-maximum (FWHM) 
of the probe intensity profile. At optimum 
defocus and with the correct aperture size, the 
probe FWHM is given by

	 d = 0.4l3/4CS
1/4	 (2.9)

Note that the use of increased underfocusing 
can lead to a reduction in the probe FWHM at 
the expense of increased intensity in the subsid-
iary maxima, thereby reducing the useful current 
in the central maximum and leading to image 
artifacts. Along with other ways of quoting reso-
lution, the FWHM must be interpreted care-
fully in terms of the image resolution.

Figure 2–5.  The intensity of a diffraction-limited STEM probe for the illumination conditions given in Figure 
2–4. An objective aperture of radius 9.3 mrad has been used.
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3.  Coherent CBED �
and Ronchigrams

Most STEM detectors are located beyond the 
specimen and detect the electron intensity in 
the far field. To interpret STEM images, it is 
therefore first necessary to understand the 
intensity found in the far field. In combination 
CTEM/STEM instruments, the far-field inten-
sity can be observed on the fluorescent screen 
at the bottom of the column when the instru-
ment is operated in STEM mode with the lower 
column set to diffraction mode. In dedicated 
STEM instruments it is usual to have a camera 
consisting of a scintillator coupled to a CCD 
array in order to observe this intensity.

In conventional electron diffraction, a sample 
is illuminated with a highly parallelized plane 
wave illumination. Electron scattering occurs, 
and the intensity observed in the far field is 
given by the modulus squared of the Fourier 
transform of the wavefunction, ψ(R), at the exit 
surface of the sample,

	

I

i d

K K

R K R R

( ) = ( )
= ∫ ( ) [ ]

Ψ 2

2
2y exp π ⋅ 	 (3.1)

The scattering wavevector in the detector plane, 
K, is related to the scattering angle, q, by

	
K = q

λ 	 (3.2)

A detailed discussion of electron diffraction is 
in general beyond the scope of this text, but the 
reader is referred to the many excellent text-
books on this subject (Hirsch et al., 1977; 
Cowley, 1990, 1992). In STEM, the sample is 
illuminated by a probe that is formed from a 
collapsing convergent spherical wavefront. The 
electron diffraction pattern is therefore broad-
ened by the range of illumination angles in the 
convergent beam. In the case of a crystalline 
sample where one might expect to observe dif-
fracted Bragg spots, in the STEM the spots are 
broadened into discs that may even overlap 
with their neighbors. Such a pattern is known 
as a convergent beam electron diffraction 
(CBED) or microdiffraction pattern because 
the convergent beam leads to a small illumina-
tion spot. See Spence and Zuo (1992) for a 

textbook covering aspects of microdiffraction 
and CBED and Cowley (1978) for a review of 
microdiffraction.

3.1  Ronchigrams of �
Crystalline Materials

If the electron source image at the sample is 
much smaller than the diffraction limited probe, 
then the convergent beam forming the probe 
can be regarded as being coherent. A crystalline 
sample diffracts electrons into discrete Bragg 
beams, and in a STEM these are broadened to 
give discs. The high coherence of the beam 
means that if the discs overlap then interfer-
ence features can be seen, such as the fringes in 
Figure 2–6. Such coherent CBED patterns are 
also known as coherent microdiffraction pat-
terns or even nanodiffraction patterns. Their 
observation in the STEM has been described 
extensively by Cowley (1979, 1981) and Cowley 
and Disko (1980) and reviewed by Spence 
(1992).

To understand the form of these interference 
fringes, let us first consider a thin crystalline 
sample that can be described by a simple trans-
mittance function, f(R). The exit-surface wave-
function will be given by,

Figure 2–6.  A coherent CBED pattern of Si<110>. 
Note the interference fringes in the overlap region 
that show that the probe is defocused from the 
sample.
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	 y = P(R - R0)f(R)	 (3.3)

Because Eq. 3.3 is a product of two functions, 
taking its Fourier transform [inserting into �
Eq. (3.1)] results in a convolution between �
the Fourier transform of P(R) and the �
Fourier transform of f (R). Taking the Fourier 
transform of P(R), from Eq. (2.5) simply gives 
A(K). For a crystalline sample, the Fourier �
transform of f (R) will consist of discrete Dirac 
d-functions, which correspond to the Bragg 
spots, at values of K corresponding to the �
reciprocal lattice points. We can therefore write 
the far field wavefunction, Y(K), as a sum of 
multiple aperture functions centered on the 
Bragg spots,

	

Ψ K K g

K g R

( ) = −( )∑

−( ) 

fg
g

A

iexp 2 0π i 	 (3.4)

where fg is a complex quantity expressing the 
amplitude and phase of the g diffracted beam. 
Equation 3.4 is simply expressing the array of 
discs seen in Figure 2–6.

To examine just the overlap region between 
the g and h diffracted beam, let us expand (3.4) 
using (2.4). Since we are just interested in �
the overlap region we will neglect to include �
the top-hat function, H(K), which denotes the 
physical objective aperture, leaving

Y(K) = fg exp[ic(K - g) + i2p(K - g) · R0

	 + fh exp[ic(K - h)

	 + i2p(K - h) · R0]	 (3.5)

and we find the intensity by taking the modulus 
squared of Eq. (3.5),

	 I(K) = |fg|2 + |fh|2 + 2|fg||fh| 
	 cos[c(K - g) - c(K - h) +
	 2p(h - g) · R0 + –fg - –fh]	 (3.6)

where –fg denotes the phase of the g diffracted 
beam. The cosine term shows that the disc 
overlap region contains interference features, 
and that these features depend on the lens aber-
rations, the position of the probe, and the phase 
difference between the two diffracted beams.

If we assume that the only aberration present 
is defocus, then the terms including c in (3.6) 
become

	 c(K - g) - c(K - h) = 

	   pzlÎ(K - g)2 - (K - h)2˚ =
	   pzlÎ2K · (h - g) + |g|2 + |h|2˚	 (3.7)

Because Eq. (3.7) is linear in K, a uniform set 
of fringes will be observed aligned perpendicu-
lar to the line joining the centers of the corre-
sponding discs, as seen in Figure 2–6. For 
interference involving the central, or bright-
field, disc we can set g = 0. The spacing of fringes 
in the microdiffraction pattern from interfer-
ence between the BF disc and the h diffracted 
beam is (zl|h|)-1, which is exactly what would 
be expected if the interference fringes were a 
shadow of the lattice planes corresponding to 
the h diffracted beam projected using a point 
source a distance z from the sample (Figure 2–
7). When the objective aperture is removed, or 
if a very large aperture is used, then the inten-
sity in the detector plane is referred to as a 
shadow image. If the sample is crystalline, then 
the shadow image consists of many crossed sets 
of fringes distorted by the lens aberrations. 
These crystalline shadow images are often 
referred to as Ronchigrams, deriving from the 
use of similar images in light optics for the mea-
surement of lens aberrations (Ronchi, 1964). It 
is common in STEM for shadow images of both 
crystalline and nonperiodic samples to be 
referred to as Ronchigrams, however.

The term containing R0 in the cosine argu-
ment in Eq. (3.6) shows that these fringes move 
as the probe is moved. Just as we might expect 
for a shadow, we need to move the probe one 
lattice spacing for the fringes all to move one 
fringe spacing in the Ronchigram. The idea of 
the Ronchigram as a shadow image is particu-
larly useful when considering Ronchigrams of 
amorphous samples (see Section 3.2). Other 
aberrations, such as astigmatism or spherical 
aberration, will distort the fringes so that �
they are no longer uniform. These distortions 
may be a useful method of measuring lens �
aberrations, though the analysis of shadow 
images for determining lens aberrations is �
more straightforward with nonperiodic samples 
(Dellby et al., 2001).

The argument of the cosine in Eq. (3.6) also 
contains the phase difference between the g 
and h diffracted beams. By measuring the posi-
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tion of the fringes in all the available disc 
overlap regions, the phase difference between 
pairs of adjacent diffracted beams can be deter-
mined. It is then straightforward to solve for the 
phase of all the diffracted beams, thereby 
solving the phase problem in electron diffrac-
tion. Knowledge of the phase of the diffracted 
beams allows immediate inversion to the real-
space exit-surface wavefunction. The spatial 
resolution of such an inversion is limited only 
by the largest angle diffracted beam that can 
give rise to observable fringes in the microdif-
fraction pattern, which will typically be much 
larger than the largest angle that can be passed 
through the objective lens (i.e., the radius of the 
BF disc in the microdiffraction pattern). The 
method was first suggested by Hoppe (1969a,b, 
1982) who gave it the name ptychography. 
Using this approach, Nellist et al. (1995; Nellist 
and Rodenburg, 1998) were able to form an 
image of the atomic columns in Si<110> in an 
STEM that conventionally would be unable to 
image them. Ptychography has not become a 

common method in STEM, mainly because the 
phasing method described above works only 
for thin samples. In thicker samples, for which 
dynamic diffraction theory is applicable, the 
phase of the diffracted beams can depend on 
the angle of the incident beam. The inherent 
phase of a diffracted beam may therefore vary 
across its disc in a microdiffraction pattern, 
making the simple phasing approach discussed 
above fail. Spence (1998a,b) has discussed in 
principle how a crystalline microdiffraction 
pattern data set can be inverted to the scatter-
ing potential for dynamically scattering samples, 
though as yet there has not been an experimen-
tal demonstration.

3.2  Ronchigrams of �
Noncrystalline Materials

When observing a noncrystalline sample in a 
Ronchigram, it is generally sufficient to assume 
that most of the scattering in the sample is at 
angles much smaller than the illumination con-

Figure 2–7.  If the probe is defocused from the sample plane, the probe crossover can be thought of as a 
point source located distant from the sample. In the geometric optics approximation, the STEM detec-�
tor plane is a shadow image of the sample, with the shadow magnification given by the ratio of the probe-
detector and probe-sample distances. If the sample is crystalline, then the shadow image is referred to as a 
Ronchigram.
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vergence angles, and that we can broadly ignore 
the effects of diffraction. In this case only the 
BF disc is observable to any significance, but it 
contains an image of the sample that resembles 
a conventional bright-field image that would be 
observed in a conventional TEM at the defocus 
used to record the Ronchigram (Cowley, 1979b). 
The magnification of the image is again given 
by assuming that it is a shadow projected by a 
point source a distance z (the lens defocus) 
from the sample. As the defocus is reduced, the 
magnification increases (Figure 2–8) until it 
passes through an infinite magnification condi-
tion when the probe is focused exactly at the 
sample. For a quantitative discussion of how 
Eq. (3.6) reduces to a simple shadow image in 
the case of predominantly low angle scattering, 
see Cowley (1979b) and Lupini (2001).

Aberrations of the objective lens will cause 
the distance from the sample to the crossover 
point of the illuminating beam to vary as a func-
tion of angle within the beam (Figure 2–3), and 
therefore the apparent magnification will vary 
within the Ronchigram. Where crossovers occur 
at the sample plane, infinite magnification 
regions will be seen. For example, positive spher-
ical aberration combined with negative defocus 
can give rise to rings of infinite magnification 
(Figure 2–8). Two infinite magnification rings 
occur, one corresponding to infinite magnifica-
tion in the radial direction and one in the azi-
muthal direction (Cowley, 1986; Lupini, 2001).

Measuring the local magnification within a 
noncrystalline Ronchigram can readily be done 
by moving the probe a known distance and 
measuring the distance features move in the 
Ronchigram. The local magnifications from dif-
ferent places in the Ronchigram can then be 
inverted to values for aberration coefficients. 
This is the method invented by Krivanek et al. 
(Dellby et al., 2001) for autotuning of an STEM 
aberration corrector. Even for a nonaberration- 
corrected machine, the Ronchigram of a non-
periodic sample is typically used to align the 
instrument (Cowley, 1979a). The coma free axis 
is immediately obvious in a Ronchigram, and 
astigmatism and focus can be carefully adjusted 
by observation of the magnification of the 
speckle contrast. Thicker crystalline samples 
also show Kikuchi lines in the shadow image, 

which allows the crystal to be carefully tilted 
and aligned with the microscope coma-free axis 
simply by observation of the Ronchigram.

Finally it is worth noting that an electron 
shadow image for a weakly scattering sample is 
actually an in-line hologram (Lin and Cowley, 
1986) as first proposed by Gabor (1948) for the 
correction of lens aberrations. The extension of 
resolution through the ptychographical recon-
struction described in Section (3.1) can be 
extended to nonperiodic samples (Rodenburg 
and Bates, 1992), and has been demonstrated 
experimentally (Rodenburg et al., 1993).

4.  Bright-Field Imaging �
and Reciprocity

In Section 3 we examined the form of the elec-
tron intensity that would be observed in the 
detector plane of the instrument using an area 
detector, such as a CCD. In STEM imaging we 
detect only a single signal, not a two-dimen-
sional array, and plot it as a function of the 
probe position. An example of such an image is 
an STEM BF image, for which we detect some 
or all of the BF disc in the Ronchigram. Typi-
cally the detector will consist of a small scintil-
lator, from which the light generated is directed 
into a photomultiplier tube. Since the BF detec-
tor will just be summing the intensity over a 
region of the Ronchigram, we can use the Ron-
chigram formulation in Section 3 to analyze the 
contrast in a BF image.

4.1  Lattice Imaging in BF STEM

In Section 3.1 we saw that if the diffracted discs 
in the Ronchigram overlap then coherent inter-
ference can occur, and that the intensity in the 
disc overlap regions will depend on the probe 
position, R0. If the discs do not overlap, then 
there will be no interference and no depen-
dence on probe position. In this latter case, no 
matter where we place a detector in the Ron-
chigram, there will be no change in intensity as 
the probe is moved and therefore no contrast 
in an image.

The theory of STEM lattice imaging has been 
described (Spence and Cowley, 1978). Let us 
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a

b

Figure 2–8.  Ronchigrams of Au nanoparticles on a thin C film recorded at different defocus values (a and 
b). Notice the change in image magnification, and the radial and azimuthal rings of infinite magnification.
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first consider the case of an infinitesimal detec-
tor right on the axis, which corresponds to the 
center of the Ronchigram. From Figure 2–9 it 
is clear that we will see contrast only if the dif-
fracted beams are less than an objective aper-
ture radius from the optic axis. The discs from 
three beams now interfere in the region 
detected. From (3.5), the wavefunction at the 
point detected will be

Y(K = 0, R0) = 1 + fg exp[ic(-g)

	 - i2pg · R0] + f-g

	 exp[ic(g) + i2pg · R0]	 (4.1)

which can also be written as the Fourier trans-
form of the product of the diffraction spots of 
the sample and the phase shift due to the lens 
aberrations,

	

Ψ K 0 R K K g

K g

=( ) = ′( ) + ′ +( )[∫
+ ′ −( )]−

,

exp

0 δ φ δ
φ δ

g

g
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π

′( )[ ]
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K

K R Kexp i d2 0⋅ 	(4.2)

Equations (4.1) and (4.2) are identical to those 
for the wavefunction in the image plane of a 

CTEM when forming an image of a crystalline 
sample. In the simplest model of a CTEM 
(Spence, 1988), the sample is illuminated with 
plane wave illumination. In the back focal plane 
of the objective lens we could observe a diffrac-
tion pattern, and the wavefunction for this plane 
corresponds to the first bracket in the integrand 
of (4.2). The effect of the aberrations of the 
objective lens can then be accommodated in �
the model by multiplying the wavefunction in 
the back focal plane by the usual aberration 
phase shift term, and this can also be seen in 
(4.2). The image plane wavefunction is then 
obtained by taking the Fourier transform of this 
product. Image formation in an STEM can be 
thought of as being equivalent to a CTEM with 
the beam trajectories reversed in direction.

What we have shown here, for the specific 
case of BF imaging of a crystalline sample, is the 
princple of reciprocity in action. When the elec-
trons are purely elastically scattered, and there 
is no energy loss, the propagation of the elec-
trons is time reversible. The implication for 
STEM is that the source plane of an STEM is 
equivalent to the detector plane of a CTEM and 
vice versa (Cowley, 1969; Zeitler and Thomson, 
1970). Condenser lenses are used in an STEM 
to demagnify the source, which corresponds to 
projector lenses being used in a CTEM for mag-
nifying the image. The objective lens of an 
STEM (often used with an objective aperture) 
focuses the beam down to form the probe. In a 
CTEM, the objective lens collects the scattered 
electrons and focuses them to form a magnified 
image. Confusion can arise with combined 
CTEM/STEM instruments, in which the probe-
forming optics are distinct from the image- 
forming optics. For example, the term objective 
aperture is usually used to refer to the aperture 
after the objective lens used in CTEM image 
formation. In STEM mode, the beam conver-
gence is controlled by an aperture that is usually 
referred to as the condenser aperture, although 
by reciprocity this aperture is acting optically as 
an objective aperture. The correspondence by 
reciprocity between CTEM and STEM can be 
extended to include the effects of partial coher-
ence. Finite energy spread of the illumination 
beam in CTEM has an effect on the image 
similar to that in STEM for the equivalent 

Figure 2–9.  A schematic diagram showing that for a 
crystalline sample, a small, axial bright-field (BF) 
STEM detector will record changes in intensity due 
to interference between three beams: the 0 unscat-
tered beam and the +g and -g Bragg reflections.
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imaging mode. The finite size of the BF detector 
in an STEM gives rise to limited spatial coher-
ence in the image (Nellist and Rodenburg, 
1994), and corresponds to having a finite diver-
gence of the illuminating beam in an STEM. In 
STEM, the loss of the spatial coherence can 
easily be understood as the averaging out of 
interference effects in the Ronchigram over the 
area of the BF detector. At the other end of the 
column there is also a correspondence between 
the source size in STEM and the detector pixel 
size in a CTEM. Moving the position of the BF 
STEM detector is equivalent to tilting the illu-
mination in CTEM. In this way dark-field 
images can be recorded. A carefully chosen 
position for a BF detector could also be used to 
detect the interference between just two dif-
fracted discs in the microdiffraction pattern, 
allowing interference between the 0 beam and 
a beam scattered by up to the aperture diameter 
to be detected. In this way higher-spatial resolu-
tion information can be recorded, in an equiva-
lent way to using a tilt sequence in CTEM 
(Kirkland et al., 1995).

Although reciprocity ensures that there is an 
equivalence in the image contrast between 
CTEM and STEM, it does not imply that the 
efficiency of image formation is identical. 
Bright-field imaging in a CTEM is efficient with 
electrons because most of the scattered elec-
trons are collected by the objective lens and 
used in image formation. In STEM, a large 
range of angles illuminates the sample and 
these are scattered further to give an extensive 
Ronchigram. A BF detector detects only a small 
fraction of the electrons in the Ronchigram, 
and is therefore inefficient. Note that this com-
parison applies only for BF imaging. There are 
other imaging modes, such as annular dark-field 
(Section 5), for which STEM is more efficient.

4.2  Phase Contrast Imaging �
in BF STEM

Thin weakly scattering samples are often 
approximated as being weak phase objects (see, 
for example, Cowley, 1992). Weak phase objects 
simply shift the phase of the transmitted wave 
such that the specimen transmittance function 
can be written

	 f(R0) = 1 + isV(R0)	 (4.3)

where s is known as the interaction constant 
and has a value given by

	 s = 2pmel/h2	 (4.4)

where the electron mass, m, and the wavelength, 
l, are relativistically corrected, and V is the pro-
jected potential of the sample. Equation (4.3) is 
simply the expansion of exp[isV(R0)] to first 
order, and therefore requires that the product 
sV(R0) is much smaller than unity. The Fourier 
transform of (4.3) is

	 F(K¢) = d(K¢) + isṼ(K¢)	 (4.5)

and can be substituted for the first bracket in 
the integrand of (4.2)
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Noticing that (4.6) is the Fourier transform of 
a product of functions, it can be written as a 
convolution in R0.

Y(K = 0, R0) = 1 + isV(R0) 

	 FT{cos[c(K¢)] + i sin[c(K¢]}	 (4.7)

Taking the intensity of (4.7) gives the BF image

	 I(R0) = 1 - 2sV(R0) 

	 FT{sin[c(R0]}	 (4.8)

where we have neglected terms greater than 
first order in the potential, and made use of the 
fact that the sine and cosine of c are even and 
therefore their Fourier transforms are real.

Not surprisingly, we have found that imaging 
a weak-phase object using an axial BF detector 
results in a phase contrast transfer function 
(PCTF) (Spence, 1988) identical to that in 
CTEM, as expected from reciprocity. Lens 
aberrations are acting as a phase plate to gener-
ate phase contrast. In the absence of lens aber-
rations, there will be no contrast. We can also 
interpret this result in terms of the Ronchigram 
in an STEM, remembering that axial BF 
imaging requires an area of triple overlap of 
discs (Figure 2–9). In the absence of lens aber-
rations, the interference between the BF disc 
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and a scattered disc will be in antiphase to that 
between the BF disc and the opposite, conju-
gate diffracted disc, and there will be no inten-
sity changes as the probe is moved. Lens 
aberrations will shift the phase of the interfer-
ence fringes to give rise to image contrast. In 
regions of two disc overlap, the intensity will 
always vary as the probe is moved. Moving the 
detector to such two beam conditions will then 
give contrast, just as two-beam tilted illumina-
tion in CTEM will give fringes in the image. In 
such conditions, the diffracted beams may be 
separated by up to the objective aperture diam-
eter, and still the fringes resolved.

4.3  Large Detector Incoherent �
BF STEM

Increasing the size of the BF detector reduces 
the degree of spatial coherence in the image, as 
already discussed in Section 4.1. One explana-
tion for this is the increasing degree to which 
interference features in the Ronchigram are 
being averaged out. Eventually the BF detector 
can be large enough that the image can be 
described as being incoherent. Such a large 
detector will be the complement of an annular 
dark-field detector: the BF detector correspond-
ing to the hole in the ADF detector. Electron 
absorption in samples of thicknesses usually 
used for high-resolution microscopy is small 
compared to the transmittance, which means 
that the large detector BF intensity will be

	 IBF(R0) = 1 - IADF(R0)	 (4.9)

We will defer discussion of incoherent imaging 
to Section 5. It is, however, worth noting that 
because IADF is a small fraction of the incident 
intensity (typically just a few percent), the con-
trast in IBF will be small compared to the total 
intensity. The image noise will scale with the 
total intensity, and therefore it is likely that a 
large detector BF image will have worse signal 
to noise than the complimentary ADF image.

5.  Annular Dark-Field Imaging

Annular dark-field (ADF) imaging is by far the 
most ubiquitous STEM imaging mode [see 
Nellist and Pennycook (2000) for a review of 

ADF STEM]. It provides images that are rela-
tively insensitive to focusing errors, in which 
compositional changes are obvious in the con-
trast, and atomic resolution images that are 
much easier to interpret in terms of atomic 
structure than their high-resolution TEM 
(HRTEM) counterparts. Indeed, the ability of 
an STEM to perform ADF imaging is one of 
the major strengths of STEM and is partly 
responsible for the growth of interest in STEM 
over the past two decades.

The ADF detector is an annulus of scintilla-
tor material coupled to a photomultiplier tube 
in a way similar to the BF detector. It therefore 
measures the total electron signal scattered in 
angle between an inner and an outer radius. 
These radii can both vary over a large range, 
but typically the inner radius would be in the 
range of 30–100 mrad and the outer radius 100–
200 mrad. Often the center of the detector is a 
hole, and electrons below the inner radius can 
pass through the detector for use either to form 
a BF image, or more commonly to be energy 
analyzed to form an electron energy-loss spec-
trum. By combining more than one mode in this 
way, the STEM makes highly efficient use of the 
transmitted electrons.

Annular dark-field imaging was introduced 
in the first STEMs built in Crewe’s laboratory 
(Crewe, 1980). Initially their idea was that the 
high angle elastic scattering from an atom 
would be proportional to the product of the 
number of atoms illuminated and Z3/2, where Z 
is the atomic number of the atoms, and this 
scattering would be detected using the ADF 
detector. Using an energy analyzer on the 
lower-angle scattering they could also separate 
the inelastic scattering, which was expected to 
vary as the product of the number of atoms and 
Z1/2. By forming the ratio of the two signals, it 
was hoped that changes in specimen thickness 
would cancel, leaving a signal purely dependent 
on composition, and given the name Z contrast. 
Such an approach ignores diffraction effects 
within the sample, which we will see later is 
crucial for quantitative analysis. Nonetheless, 
the high-angle elastic scattering incident on an 
ADF detector is highly sensitive to atomic 
number. As the scattering angle increases, the 
scattered intensity from an atom approaches 
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the Z2 dependence that would be expected for 
Rutherford scattering from an unscreened 
Coulomb potential. In practice this limit is not 
reached, and the Z exponent falls to values 
typically around 1.7 (see, for example, Hartel et 
al., 1996) due to the screening effect of the atom 
core electrons. This sensitivity to atomic number 
results in images in which composition changes 
are more strongly visible in the image contrast 
than would be the case for high-resolution 
phase-contrast imaging. It is for this reason that 
using the first STEM operating at 30 kV (Crewe 
et al., 1970), it was possible to image single 
atoms of Th on a carbon support.

Once STEM instruments became commer-
cially available in the 1970s, attention turned to 
using ADF imaging to study heterogeneous 
catalyst materials (Treacy et al., 1978). Often a 
heterogeneous catalyst consists of highly dis-
persed precious metal clusters distributed on a 
lighter inorganic support such as alumina, silica, 
or graphite. A system consisting of light and 
heavy atomic species such as this is an ideal 
subject for study using ADF STEM. Attempts 
were made to quantify the number of atoms in 
the metal clusters using ADF intensities. Howie 
(1979) pointed out that if the inner radius was 
high enough, the thermal diffuse scattering 
(TDS) of the electrons would dominate. Because 
TDS is an incoherent scattering process, it was 
assumed that ensembles of atoms would scatter 
in proportion to the number of atoms present. 
It was shown, however, that diffraction effects 
can still have a large impact on the intensity 
(Donald and Craven, 1979). Specifically, when 
a cluster is aligned so that one of the low order 
crystallographic directions is aligned with the 
beam, a cluster is observed to be considerably 
brighter in the ADF image.

An alternative approach to understanding 
the incoherence of ADF imaging invokes the 
principle of reciprocity. Phase contrast imaging 
in an HREM is an imaging mode that relies on 
a high degree of coherence in order to form 
contrast. The specimen illumination is arranged 
to be as plane wave as possible to maximize the 
coherence. By reciprocity, an ADF detector in 
an STEM corresponds hypothetically to a large, 
annular, incoherent illumination source in a 
CTEM. This type of source is not really viable 

for a CTEM, but illumination of this sort is 
extremely incoherent, and renders the speci-
men effectively self-luminous as the scattering 
from spatially separated parts of the specimen 
are unable to interfere coherently. Images 
formed from such a sample are simpler to inter-
pret as they lack the complicating interference 
features observed in coherent images. A light-
optical analogue is to consider viewing an object 
with illumination from either a laser or an incan-
descent light bulb. Laser beam illumination 
would result in strong interference features such 
as fringes and speckle. Illumination with a light 
bulb gives a view much easier to interpret.

Although ADF STEM imaging is very widely 
used, there are still many discrepancies between 
the theoretical approaches taken, which can be 
very confusing when reviewing the literature. A 
picture of the imaging process that bridges the 
gap between thinking of the incoherence as 
arising from integration over a large detector to 
thinking of it as arising from detecting predomi-
nantly incoherent TDS has yet to emerge. Here 
we will present both approaches, and attempt to 
discuss the limitations and advantages of each.

5.1  Incoherent Imaging

To highlight the difference between coherent 
and incoherent imaging, we start by reexamin-
ing coherent imaging in a CTEM for a thin 
sample. Consider plane wave illumination of a 
thin sample with a transmittance function, 
f(R0). The wavefunction in the back focal plane 
is given by the Fourier transform of the trans-
mittance function, and we can incorporate the 
effect of the objective aperture and lens aber-
rations by multiplying the back focal plane by 
the aperture function to give

	 F(K¢)A(K¢)	 (5.1)

which can be Fourier transformed to the image 
wavefunction, which is then a convolution 
between f(R0) and the Fourier transform of 
A(K¢), which from Section 2 is P(R0). The image 
intensity is then

	 I(R0) = |f(R0)  P(R0)|2	 (5.2)

Although for simplicity we have derived (5.2) 
from the CTEM standpoint, by reciprocity (5.2) 
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applies equally well to BF imaging in STEM 
with a small axial detector.

For the ADF case we follow the argument 
first presented by Loane et al. (1992). Similar 
analyses have been performed by Jesson and 
Pennycook (1993), Nellist and Pennycook 
(1998a), and Hartel et al. (1996). Following the 
STEM configuration, the exit-surface wave-
function is given by the product of the sample 
transmittance and the probe function,

	 f(R) P(R-R0)	 (5.3)

We can find the wavefunction in the Ronchi-
gram plane by Fourier transforming (5.3), which 
results in a convolution between the Fourier 
transform of f and the Fourier transform of P 
[given in Eq. (2.6)]. Taking the intensity in the 
Ronchigram and integrating over an annular 
detector function gives the image intensity
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Taking the Fourier transform of the image allows 
simplification after expanding the modulus 
squared to give two convolution integrals
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Performing the R0 integral first results in a 
Dirac d-function,
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which allows simplification by performing the 
K≤ integral,
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Equation (5.7) is straightforward to interpret in 
terms of interference between diffracted discs 
in the Ronchigram (Figure 2–10). The integral 
over K¢ is a convolution, so that (5.7) could be 
written,
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The first bracket of the convolution is the 
overlap product of two apertures, and this is 
then convolved with a term that encodes the 
interference between scattered waves sepa-
rated by the image spatial frequency Q. For a 
crystalline sample, F(K) will have values only 
for discrete K values corresponding to the dif-
fracted spots. In this case (5.8) is easily inter-
pretable as the sum over many different disc 
overlap features that are within the detector 
function. An alternative, but equivalent, inter-
pretation of (5.8) is that for a spatial frequency, 
Q, to show up in the image, two beams incident 
on the sample separated by Q must be scattered 
by the sample so that they end up in the same 
final wavevector K where they can interfere 
(Figure 2–10). This model of STEM imaging is 
applicable to any imaging mode, even when 
TDS or inelastic scattering is included. It was 
immediately concluded that STEM is unable to 
resolve any spacing smaller than that allowed 
by the diameter of the objective aperture, no 
matter which imaging mode is used.

Figure 2–10 shows that we can expect that the 
aperture overlap region is small compared with 
the physical size of the ADF detector. In terms 
of Eq. (5.7) we can say the domain of the K¢ 
integral (limited to the disc overlap region) is 
small compared with the domain of the K inte-
gral, and we can make the approximation,
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In making this approximation we have assumed 
that the contribution of any overlap regions 
that are partially detected by the ADF detector 
is small compared with the total signal detected. 
The integral containing the aperture functions 
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is actually the autocorrelation of the aperture 
function. The Fourier transform of the probe 
intensity is the autocorrelation of A, thus 
Fourier transforming (5.9) to give the image 
results in

	 I(R0) = |P(R0)|  O(R0)	 (5.10)

where O(R0) is the inverse Fourier transform 
of the integral over K in (5.9).

Equation (5.10) is essentially the definition 
of incoherent imaging. An incoherent image 
can be written as the convolution between �
the intensity of the point-spread function of the 
image (which in STEM is the intensity of the 
probe) and an object function. Compare this 
with the equivalent expression for coherent 
imaging, (5.2), which is the intensity of a convo-
lution between the complex probe function and 
the specimen function. We will see later that 
O(R0) is a function that is sharply peaked at the 
atom sites. The ADF image is therefore a sharply 
peaked object function convolved (or blurred) 
with a simple, real point-spread function that is 
simply the intensity of the STEM probe. Such 
an image is much simpler to interpret than a 
coherent image, in which both phase and ampli-

tude contrast effects can appear. The difference 
between coherent and incoherent imaging was 
discussed at length by Lord Rayleigh in his 
classic paper discussing the resolution limit of 
the microscope (Rayleigh, 1896).

A simple picture of the origins of the inco-
herence can be seen schematically by consider-
ing the imaging of two atoms (Figure 2–11). The 
scattering from the atoms will give rise to inter-
ference features in the detector plane. If the 
detector is small compared with these fringes, 
then the image contrast will depend critically 
on the position of the fringes, and therefore on 
the relative phases of the scattering from the 
two atoms, which means that complex phase 
effects will be seen. A large detector will average 
over the fringes, destroying any sensitivity to 
coherence effects and the relative phases of the 
scattering. By reciprocity, use of the ADF detec-
tor can be compared to illuminating the sample 
with large angle incoherent illumination. In 
optics, the Van Cittert–Zernicke theorem (Born 
and Wolf, 1980) describes how an extended 
source gives rise to a coherent envelope that is 
the Fourier transform of the source intensity 
function. An equivalent coherence envelope 

Figure 2–10.  A schematic diagram showing the detection of interference in disc overlap regions by the ADF 
detector. Imaging of a g lattice spacing involves the interference of pairs of beams in the convergent beam 
that are separated by g. The ADF detector then sums over many overlap interference regions.
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exists for ADF imaging, and is the Fourier 
transform of the detector function, D(K). As 
long as this coherence envelope is significantly 
smaller than the probe function, the image can 
be written in the form of (5.10) as being inco-
herent. This condition is the real-space equiva-
lent of the approximation that allowed us to go 
from (5.7) to (5.9).

The strength at which a particular spatial �
frequency in the object is transferred to the 
image is known, for incoherent imaging, as the 
optical transfer function (OTF). The OTF for 
incoherent imaging, T(Q), is simply the Fourier 
transform of the probe intensity function. In 
general it is a positive, monatonically decaying 
function (see Black and Linfoot (1957) for 
examples under various conditions), which 
compares favorably with the phase contrast 
transfer function for the same lens parameters 
(Figure 2–12).

It can also be seen in Figure 2–12 that the 
interpretable resolution of incoherent imaging 
extends to almost twice that of phase-contrast 
imaging. This was also noted by Rayleigh (1896) 
for light optics. The explanation can be seen by 

comparing the disc overlap detection in Figure 
2–9 and Figure 2–10. For ADF imaging single 
overlap regions can be detected, so the transfer 
continues to twice the aperture radius. The BF 
detector will detect spatial frequencies only to 
the aperture radius.

An important consequence of (5.10) is that 
the phase problem has disappeared. Because 
the resolution of the electron microscope has 
always been limited by instrumental factors, 
primarily the spherical aberration of the objec-
tive lens, it has been desirable to be able �
to deconvolve the transfer function of the 
microscope. A prerequisite to doing this for 
coherent imaging is the need to find the phase 
of the image plane. The modulus-squared in 
(5.2) loses the phase information, and this must 
be restored before any deconvolution can be 
performed. Finding the phase of the image 
plane in the electron microscope was the moti-
vation behind the invention of holography 
(Gabor, 1948). There is no phase problem for 
incoherent imaging, and the intensity of the 
probe may be immediately deconvolved. 
Various methods have been applied to this 

Figure 2–11.  The scattering from a pair of atoms will result in interference features such as the fringes shown 
here. A small detector, such as a BF, will be sensitive to the position of the fringes, and therefore sensitive 
to the relative phase of the scattered waves and phase changes across the illuminating wave. A larger detec-
tor, such as an ADF, will average over many fringes and will therefore be sensitive only to the intensity of 
the scattering and not the phase of the waves.
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deconvolution problem (Nellist and Penny-
cook, 1998a, 2000) including Bayesian methods 
(McGibbon et al., 1994, 1995). As always with 
deconvolution, care must be taken not to intro-
duce artifacts through noise amplification. The 
ultimate goal of such methods, though, must be 
the full quantitative analysis of an ADF image, 
along with a measure of certainty; for example, 
the positions of atomic columns in an image 
along with a measure of confidence in the data. 
Such a goal is yet to be achieved, and the inter-
pretation of most images is still very much 
qualitative.

The object function, O(R0), can also be exam-
ined in real space. By assuming that the maximum 
Q vector is small compared to the geometry of 
the detector, and noting that the detector func-
tion is either unity or zero, we can write the 
Fourier transform of the object function as
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This equation is just the autocorrelation of 
D(K)f(K), and so the object function is

	 O(R0) = |D̃(R0)  F(R0)|2	 (5.12)

Neglecting the outer radius of the detector, 
where we can assume the strength of the scat-
tering has become negligible, D(K) can be 
thought of as a sharp high-pass filter. The object 
function is therefore the modulus-squared of 
the high-pass filtered specimen transmission 
function. Nellist and Pennycook (2000) have 
taken this analysis further by making the weak-
phase object approximation, under which con-
dition the object function becomes
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where kinner is the spatial frequency correspond-
ing to the inner radius of the ADF detector, and 
J1 is a first-order Bessel function of the first kind. 
This is essentially the result derived by Jesson 
and Pennycook (1993). The coherence envelope 
expected from the Van Cittert–Zernicke theorem 
is now seen in (5.13) as the Airy function involv-

Figure 2–12.  A comparison of the incoherent object transfer function (OTF) and the coherent phase-con-
trast transfer function (PCTF) for identical imaging conditions (V = 300 kV, CS = 1 mm, z = -40 nm).
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ing the Bessel function. If the potential is slowly 
varying within this coherence envelope, the 
value of O(R0) is small. For O(R0) to have sig-
nificant value, the potential must vary quickly 
within the coherence envelope. A coherence 
envelope that is broad enough to include more 
than one atom in the sample (arising from a 
small hole in the ADF), however, will show 
unwanted interference effects between the 
atoms. Making the coherence envelope too 
narrow by increasing the inner radius, on the 
other hand, will lead to too small a variation in 
the potential within the envelope, and therefore 
no signal. If there is no hole in the ADF detector, 
then D(K) = 1 everywhere, and its Fourier trans-
form will be a delta-function. Eq. (5.12) then 
becomes the modulus-squared of F, and there 
will be no contrast. To get signal in an ADF 
image, we require a hole in the detector leading 
to a coherence envelope that is narrow enough 
to destroy coherence from neighboring atoms, 
but broad enough to allow enough interference 
in the scattering from a single atom. In practice, 
there are further factors that can influence the 
choice of inner radius, as discussed in later sec-
tions. A typical choice for incoherent imaging is 
that the ADF inner radius should be about three 
times the objective aperture radius.

5.2  ADF Images of Thicker Samples

One of the great strengths of atomic resolution 
ADF images is that they appear to faithfully 
represent the true atomic structure of the sample 
even when the thickness is changing over ranges 
of tens of nanometers. Phase contrast imaging in 
a CTEM is comparatively very sensitive to 
changes in thickness, and displays the well-
known contrast reversals (Spence, 1988). An 
important factor in the simplicity of the images 
is the incoherent nature of ADF images, as we 
have seen in Section 5.1. The thin object approxi-
mation made in Section 5.1, however, is not 
applicable to the thickness of samples that are 
typically used, and we need to include the effects 
of the multiple scattering and propagation of the 
electrons within the sample. There are several 
such dynamic models of electron diffraction (see 
Cowley, 1992). The two most common are the 
Bloch wave approach and the multislice 

approach. At the angles of scatter typically col-
lected by an ADF detector, the majority of the 
electrons are likely to be thermal diffuse scatter-
ing, having also undergone a phonon scattering 
event. A comprehensive model of ADF imaging 
therefore requires both the multiple scattering 
and the thermal scattering to be included. As 
discussed earlier, some approaches assume that 
the ADF signal is dominated by the TDS, and 
this is assumed to be incoherent with respect �
to the scattering between different atoms. �
The demonstration of transverse incoherence 
through the detector geometry and the Van 
Cittert–Zernicke theorem is therefore ignored 
by this approach. For lower inner radii, or 
increased convergence angle (arising from aber-
ration correction, for example) a greater amount 
of coherent scatter is likely to reach the detector, 
and the destruction of coherence through the 
detector geometry will be important for the 
coherent scatter. As yet, a unifying picture has 
yet to emerge, and the literature is somewhat 
confusing. Here we will present the most impor-
tant approaches currently used.

Initially let us neglect the phonon scattering. 
By assuming a completely stationary lattice with 
no absorption, Nellist and Pennycook (1999) 
were able to use Bloch waves to extend the 
approach taken in Section 5.1 to include dynamic 
scattering. It could be seen that the narrow 
detector coherence function acted to filter the 
states that could contribute to the image so that 
the highly bound 1s-type states dominated. 
Because these states are highly nondispersive, 
spreading of the probe wavefunction into neigh-
boring column 1s states is unlikely (Rafferty et 
al., 2001), although spreading into less bound 
states on neighboring columns is possible. 
Although this analysis is useful in understanding 
how an incoherent image can arise under 
dynamic scattering conditions, its neglect of 
absorption and phonon scattering effects means 
that it is not effective as a quantitative method 
of simulating ADF images.

Early analyses of ADF imaging took the 
approach that at high enough scattering angles, 
the TDS arising from phonons would dominate 
the image contrast. In the Einstein approxima-
tion, this scattering is completely uncorrelated 
between atoms, and therefore there could be no 
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coherent interference effects between the scat-
tering from different atoms. In this approach 
the intensity of the wavefunction at each site 
needs to be computed using a dynamic elastic 
scattering model and then the TDS from each 
atom summed (Pennycook and Jesson, 1990). 
When the probe is located over an atomic 
column in the crystal, the most bound, least 
dispersive states (usually 1s- or 2s-like) are pre-
dominantly excited and the electron intensity 
“channels” down the column. When the probe 
is not located over a column, it excites more 
dispersive, less bound states and spreads leading 
to reduced intensity at the atom sites and a 
lower ADF signal. Both the Bloch wave (for 
example, Pennycook, 1989; Amali and Rez, 
1997; Mitsuishi et al., 2001; Findlay et al., 2003) 
and multislice (for example, Dinges et al., 1995; 
Allen et al., 2003) methods have been used for 
simulating the TDS scattering to the ADF 
detector. Typically, a dynamic calculation using 
the standard phenomenological approach to 
absorption is used to compute the electron 
wavefunction in the crystal. The absorption is 
incorporated through an absorptive complex 
potential that can be included in the calculation 
simultaneously with the real potential. This 
method makes the approximation that the 
absorption at a given point in the crystal is pro-
portional to the product of the absorptive 
potential and the intensity of the electron wave-
function at that point. Of course, much of the 
absorption is TDS, which is likely to be detected 
by the ADF detector. It is therefore necessary 
to estimate the fraction of the scattering that is 
likely to arrive at the detector, and this estima-
tion can cause difficulties. Many estimates of 
the scattering to the detector, however, make 
the approximation that the TDS absorption 
computed for electron scattering in the kine-
matic approximation to a given angle will end 
up being at the same angle after phonon scat-
tering. The cross section for the signal arriving 
at the ADF detector can then be approximated 
by integrating this absorption over the detector 
(Pennycook, 1989; Mitsuishi et al., 2001),
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where s = q/2l and the f(s) is the electron scat-
tering factor for the atom in question. Other 
estimates have also been made, some including 
TDS in a more sophisticated way (Allen et al., 
2003). Caution must be exercised, though. 
Because this approach is two step—first elec-
trons are absorbed, then a fraction is reintro-
duced to compute the ADF signal—a wrong 
estimation in the nature of the scattering can 
lead to more electrons being reintroduced than 
were absorbed, thus violating conservation 
laws.

Making the approximation that all the elec-
trons incident on the detector are TDS neglects 
any elastic scattering that might be present at 
the detection angles, which might become sig-
nificant for lower inner radii. In most cases, 
including the elastic component is straightfor-
ward because it is always computed in order to 
find the electron intensity within the crystal, but 
this is not always done in the literature.

Note that the approach outlined above for 
incoherent TDS scatterers is a fundamentally 
different approach to understanding ADF 
imaging, and does not invoke the principles of 
reciprocity or the Van Zittert–Zernicke theorem. 
It does not rely on the large geometry of the 
detector, but just on the fact that it detects only 
at high angles at which the TDS dominates.

The use of TDS cross sections as outlined 
above also neglects the further elastic scatter-
ing of the electrons after they have been scat-
tered by a phonon. The familiar Kikuchi lines 
visible in the TDS are manifestations of this 
elastic scattering. Such scattering occurs only 
for electrons traveling near Bragg angles, and 
the major effect is to redistribute the TDS in an 
angle. It may be reasonably assumed that an 
ADF detector is so large that the TDS is not 
redistributed off the detector, and that the elec-
trons are still detected. In general, therefore, 
the effect of elastic scattering after phonon 
scattering is usually neglected.

A type of multislice formulation that does 
include phonon scattering and postphonon 
elastic scattering has been developed specifi-
cally for the simulation of ADF images, and is 
known as the frozen phonon method (Kirkland 
et al., 1987; Loane et al., 1991, 1992). An electron 
accelerated to a typical energy of 100 keV is 
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traveling at about half the speed of light. It 
therefore transits a sample of thickness, say, 
10 nm in 3 ¥ 10-17 s, which is much smaller than 
the typical period of a lattice vibration (~10-13 s). 
Each electron that transits the sample will see a 
lattice in which the thermal vibrations are frozen 
in some configuration, with each electron seeing 
a different configuration. Multiple multislice 
calculations can be performed for different 
thermal displacements of the atoms, and the 
resultant intensity in the detector plane is 
summed over the different configurations. The 
frozen phonon multislice method is therefore 
not limited to calculations for STEM; it can be 
used for many different electron scattering 
experiments. In STEM, it will give the intensity 
at any point in the detector plane for a given 
illuminating probe position. The calculations 
faithfully reproduce the TDS, Kikuchi lines, and 
higher-order Laue zone (HOLZ) reflections 
(Loane et al., 1991). To compute the ADF image, 
the intensity in the detector plane must be 
summed over the detector geometry, and this 
calculation repeated for all the probe positions 
in the image. The frozen phonon method can be 
argued to be the most complete method for the 
computation of ADF images and has been used 
to compute contrast changes due to composi-
tion and thickness changes (Hillyard et al., 1993; 
Hillyard and Silcox, 1993). Its major disadvan-
tage is that it is computational expensive. For 
most multislice simulations of STEM, one cal-
culation is performed for each probe position. 
In a frozen phonon calculation, several mul-
tislice calculations are required for each probe 
position in order to average effectively over the 
thermal lattice displacements.

Most of the approaches discussed so far have 
assumed an Einstein phonon dispersion in which 
the vibrations of neighboring atoms are assumed 
to be uncorrelated, and thus the TDS scattering 
from neighboring atoms incoherent. Jesson and 
Pennycook (1995) have considered the case for 
a more realistic phonon dispersion, and showed 
that a coherence envelope parallel to the beam 
direction can be defined. The intensity of a 
column can therefore be highly dependent on 
the destruction of the longitudinal coherence by 
the phonon lattice displacements. Consider two 
atoms, A and B, aligned with the beam direction, 
and let us assume that the scattering intensity to 

the ADF detector goes as the square of the 
atomic number (as for Rutherford scattering 
from an unscreened Coulomb potential). If the 
longitudinal coherence has been completely 
destroyed, the intensity from each atom will be 
independent and the image intensity will be ZA

2 

+ ZB
2. Conversely, if there is perfect longitudinal 

coherence the image intensity will be (ZA + ZB)2. 
A partial degree of coherence with a finite coher-
ence envelope will result in scattering some-
where between these two extremes. Frozen 
phonon calculations by Muller et al. (2001) 
suggest that for a real phonon dispersion, the 
ADF image is not significantly changed from the 
Einstein approximation.

Lattice displacements due to strain in a crystal 
can be regarded as an ensemble of static phonons, 
and therefore strain can have a large effect on 
an ADF image (Perovic et al., 1993), giving rise 
to so-called strain contrast. The degree of strain 
contrast that shows up in an image is dependent 
on the inner radius of the ADF detector. As the 
inner radius is increased, the effect of strain is 
reduced and the contrast from compositional 
changes increases. Changing the inner radius of 
the detector and comparing the two images can 
often be used to distinguish between strain and 
composition changes. A further similar applica-
tion is the observation of thermal anomalies in 
quasicrystal lattices (Abe et al., 2003).

It is often found in the literature that the 
veracity of a particular method is justified by 
comparing a calculation with an experimental 
image of a perfect crystal lattice. An image of a 
crystal contains little information: it can be 
expressed by a handful of Fourier components 
and is not a good test of a model. Much more 
interesting is the interpretation of defects, such 
as impurity or dopant atoms in a lattice, and 
particularly their contribution to image when 
they are at different depths in the sample. Of 
particular interest is the effect of probe dechan-
neling. In the Bloch wave formulation, the exci-
tation of the various Bloch states is given by 
matching the wavefunctions at the entrance 
surface of a crystal. When a small probe is located 
over an atomic column, it is likely that the most 
excited state will be the tightly bound 1s-type 
state. This state has high transverse momentum, 
and is peaked at the atom site leading to strong 
absorption. Whichever model of ADF image 
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formation is used, it may be expected that this 
will lead to high intensity on the ADF detector 
and that there will be a peak in the image at the 
column site. The 1s states are highly nondisper-
sive, which means that the electrons will be 
trapped in the potential well and will propagate 
mostly along the column. This channeling effect 
is well known from many particle scattering 
experiments, and is important in reducing thick-
ness effects in ADF imaging. The 1s state will not 
be the only state excited, however, and the other 
states will be more dispersive, leading to inten-
sity spreading in the crystal (Fertig and Rose, 
1981; Rossouw et al., 2003). Spreading of the 
probe in the crystal is similar to what would 
happen in a vacuum. The relatively high probe 
convergence angle means that the focus depth of 
field is low, and beyond that the probe will 
spread. Calculations suggest that this dechan-
neling can lead to artifacts in the image whereby 
the effect of a heavy impurity atom substitu-
tional in a column can be seen in the intensity of 
neighboring columns. The degree to which this 
occurs, however, is dependent on the model of 
ADF imaging used, and the literature is still far 
from agreement on this issue.

5.3  Examples of Structure 
Determination Using ADF Images

Despite the complications in understanding 
ADF image formation, it is clear that atomic 
resolution ADF images do provide direct 

images of structures. An atomic resolution 
image that is correctly focused will have peaks 
in intensity located at the atomic columns in the 
crystal from which the atomic structure can be 
simply determined. The use of ADF imaging for 
structure determination is now widespread 
(Pennycook, 2002).

The subsidiary maxima of the probe intensity 
(see Section 2) will give rise to a weak artifac-
tual maxima in the image (Figure 2–13) [see 
also Yamazaki et al. (2001)], but these will be 
small compared with the primary peaks, and 
often below the noise level. The ADF image is 
somewhat “fail-safe” in that incorrect focusing 
leads to very low contrast, and it is obvious to 
an operator when the image is correctly focused, 
unlike phase contrast CTEM for which focus 
changes do not reduce the contrast so quickly, 
and just lead to contrast reversals.

There are now many examples in the litera-
ture of structure determination by atomic reso-
lution ADF STEM. An excellent recent example 
is the three-dimensional structural determina-
tion of a NiS2/Si(001) interface (Falke et al., 
2004) (Figure 2–14). The ability to immediately 
interpret intensity peaks in the image as atomic 
columns allowed this structure to be deter-
mined, and to correct an earlier erroneous 
structure determination from HREM data.

A disadvantage of scanned images such as an 
ADF image compared to a conventional TEM 
image that can be recorded in one shot is that 
instabilities such as specimen drift manifest 

Figure 2–13.  An ADF image of GaAs<110> taken using a VG Microscopes HB603U instrument (300 kV, 
CS = 1 mm). The 1.4-Å spacing between the “dumbbell” pairs of atomic columns is well resolved. An intensity 
profile shows the polarity of the lattice with the As columns giving greater intensity. The weak subsidiary 
maxima of the probe can be seen between the columns.
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themselves as apparent lattice distortions. There 
have been various attempts to correct for this 
by using the known structure of the surround-
ing matrix to correct for the image distortions 
before analyzing the lattice defect of interest 
(see, for example, Nakanishi et al., 2002).

5.4  Examples of Compositionally 
Sensitive Imaging

The ability of ADF STEM to provide images 
with high composition sensitivity enabled the 
very first STEM, operating at 30 kV, to image 
individual atoms of Th on a carbon support 
(Crewe et al., 1970). In such a system, the heavy 
supported atoms are obvious in the image, and 
little is required in the way of image interpreta-
tion. A useful application of this kind of imaging 
is in the study of ultradispersed supported het-
erogeneous catalysts (Nellist and Pennycook, 
1996). Figure 2–15 shows individual Pt atoms on 
the surface of a grain of a powered g-alumina 
support. Dimers and trimers of Pt may be seen, 
and their interatomic distances measured. The 
simultaneously recorded BF image shows 
fringes from the alumina lattice, from which its 
orientation can be determined. By relating the 
BF and ADF images, information on the con-
figuration of the Pt relative to the alumina 
support may be determined. The exact loca-
tions of the Pt atoms were later confirmed from 
calculations (Sohlberg et al., 2004).

When imaging larger nanoparticles, it is 
found that the intensity of the particles in the 

image increases dramatically when one of the 
particle’s low-order crystallographic axes is 
aligned with the beam. In such a situation, 
quantitative analysis of the image intensity 
becomes more difficult.

A more complex situation occurs for atoms 
substitutional in a lattice, such as dopant atoms. 
Modern machines have shown themselves to be 
capable of detecting both Bi (Lupini and Pen-
nycook, 2003) and even Sb dopants (Voyles et 
al., 2002) in an Si lattice (Figure 2–16). In Voyles 
et al. (2004) it was noted that the probe chan-
neling then dechanneling effects can change the 
intensity contribution of the dopant atom 
depending on its depth in the crystal. Indeed 
there is some overlap in the range of possible 
intensities for either one or two dopant atoms 
in a single column. Another similar example is 
the observation of As segregation at a grain 
boundary in Si (Chisholm et al., 1998).

Naturally, ADF STEM is powerful when 
applied to multilayer structures in which com-
position sensitivity is desirable. There have 

Figure 2–14.  An ADF image of an NiS2/Si(001) 
interface with the structure determined from the 
image overlaid. [Reprinted with permission from 
Falke et al. (2004). Copyright (2004) by the American 
Physical Society.]

Figure 2–15.  An ADF image of individual atoms of 
Pt on a g-Al2O3 support material. The BF image col-
lected simultaneously showed fringes that allowed 
the orientation of the g-Al2O3 to be determined. Sub-
sequent theory calculations (see text) confirmed the 
likely locations of the Pt atoms.
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been several examples of the application to 
AlGaAs quantum well structures (see, for 
example, Anderson et al., 1997). Simulations 
have been used to enable the image intensity to 
be interpreted in terms of the fractional content 
of Al, where it has been assumed that the Al is 
uniformly distributed throughout the sample.

6.  Electron Energy �
Loss Spectroscopy

So far we have considered the imaging modes 
of STEM, which predominantly detect elastic 
or quasielastic scattering of the incident elec-
trons. An equally important aspect of STEM, 
however, is that it is an extremely powerful ana-
lytical instrument. Signals arising from inelastic 
scattering processes within the sample contain 
much information about the chemistry and 
electronic structure of the sample. The small, 
bright illuminating probe combined with the 
use of a thin sample means that the interaction 
volume is small and that analytical information 
can be gained from a spatially highly localized 
region of the sample.

Electron energy-loss spectroscopy (EELS) 
involves dispersing in energy the transmitted 
electrons through the sample and forming a 
spectrum of the number of electrons inelasti-
cally scattered by a given energy loss versus the 
energy loss itself. Typically, inelastic scattering 
events with energy losses up to around 2 keV 
are intense enough to be useful experimentally.

The energy resolution of EELS spectra can 
be dictated by both the aberrations of the spec-
trometer and the energy spread of the incident 
electron beam. By using a small enough entrance 
aperture to the spectrometer the effect of spec-
trometer aberrations will be minimized, albeit 
with loss of signal. In such a case, the incident 
beam spread will dominate, and energy resolu-
tions of 0.3 eV with a CFEG source of about 
1 eV with a Schottky source are possible. Inelas-
tic scattering tends be low angled compared to 
elastic scattering, with the characteristic scatter-
ing angle for EELS being (for example, Brydson, 
2001)

	
θE = ∆E

E2 0 	 (6.1)

For 100-keV incident electrons, qE has a value 
of 1 mrad for a 200 eV energy loss ranging up 

Figure 2–16.  An ADF image (left) of Si<110> with visible Sb dopant atoms. On the right, the lattice image 
has been removed by Fourier filtering leaving the intensity changes due to the dopant atoms visible. [From 
Voyles et al. (2002), reprinted with permission of Nature Publishing Group.]

HSS_sample.indd   25 10/3/05   3:58:42 PM



26� P.D. Nellist

L1

to 10 mrad for a 2 keV energy loss. The EELS 
spectrometer should therefore have a collec-
tion aperture that accepts the forward scattered 
electrons, and should be arranged axially about 
the optic axis. Such a detector arrangement still 
allows the use of an ADF detector simultane-
ously with an EELS spectrometer (see Figure 
2–1), and this is one of the important strengths 
of STEM: an ADF image of a region of the 
sample can be taken, and spectra can be taken 
from sites of interest without any change in the 
detector configuration of the microscope.

There are reviews and books on the EELS 
technique in both TEM and STEM (see Egerton, 
1996; Brydson, 2001; Botton, this volume). In 
the context of this chapter on STEM, we will 
mostly focus on aspects of the spatial localiza-
tion of EELS.

6.1  The EELS Spectrometer

A number of spectrometer designs have 
emerged over the years, but the most commonly 
found today, especially with STEM instruments, 
is the magnetic sector prism, such as the Gatan 
Enfina system. An important reason for their 
popularity is that they are not designed to be 
in-column, but can be added as a peripheral to 
an existing column. Here we will limit our dis-
cussion to the magnetic sector prism.

A typical prism consists of a region of homo-
geneous magnetic field perpendicular to the 
electron beam (see, for example, Egerton, 1996). 
In the field region, the electron trajectories 
follow arcs of circles (Figure 2–1) whose radii 
depend on the energy of the electrons. Slower 
electrons are deflected into smaller radii circles. 
The electrons are therefore dispersed in energy. 
An additional property of the prism is that it has 
a focusing action, and will therefore focus the 
beam to form a line spectrum in the so-called 
dispersion plane. In this plane, the electrons are 
typically dispersed by around 2 mm/eV. Some 
spectrometers are fitted with a mechanical slit 
at this plane that can be used to select part of 
the spectrum. A scintillator–photomultiplier 
combination allows detection of the intensity of 
the selected part of the spectrum. Using this 
arrangement, a spectrum can be recorded by 
varying the strength of the magnetic field, thus 

sweeping the spectrum over the slit and record-
ing the spectrum serially. Alternatively, the mag-
netic field can be held constant, selecting just a 
single energy window, and the probe scanned to 
form an energy-filtered image.

If there is no slit, or the slit is maximally 
widened, the spectrum may be recorded in par-
allel, a technique known as parallel EELS 
(PEELS). The dispersion plane then needs to 
be magnified in order that the detector chan-
nels allow suitable sampling of the spectrum. 
This is normally achieved by a series of quad-
rupoles (normally four) that allows both the 
dispersion and the width of the spectrum to be 
controlled at the detector. Detection is usually 
performed either by a parallel photodiode 
array, or more commonly now using a scintilla-
tor–CCD combination.

Like all electron-optical elements, magnetic 
prisms suffer from aberrations, and these aber-
rations can limit the energy resolution of the 
spectrometer. In general, a prism is designed 
such that the second-order aberrations are cor-
rected for a given object distance before the 
prism. Prisms are often labeled with their 
nominal object distances, which is typically 
around 70 cm. Small adjustments can be made 
using sextupoles near the prism and by adjust-
ing the mechanical tilt of the prism. It is impor-
tant, though, that care is taken to arrange that 
the sample plane is optically coupled to the 
prism at the correct working distance to ensure 
correction of the second-order spectrometer 
aberrations. More recently, spectrometers with 
higher order correction (Brink et al., 2003) have 
been developed. Alternatively, it has been 
shown to be possible to correct spectrometer 
aberrations with a specially designed coupling 
module that can be fitted immediately prior to 
the spectrometer (see Section 8.1).

Aberrations worsen the ability of the prism 
to focus the spectrum as the width of the beam 
entering the prism increases. Collector aper-
tures are therefore used at the entrance of the 
prism to limit the beam width, but they also 
limit the number of electrons entering the prism 
and therefore the efficiency of the spectrum 
detection. The trade-off between signal strength 
and energy resolution can be adjusted to the 
particular experiment being performed by 
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changing the collector aperture size. Aperture 
sizes in the range of 0.5–5 mm are typically 
provided.

6.2  Inelastic Scattering of Electrons

The different types of inelastic scattering event 
that can lead to an EELS signal have been dis-
cussed many times in the literature (for example, 
Egerton, 1996; Brydson, 2001; Botton, this 
volume), so we will restrict ourselves to a brief 
description here. A schematic diagram of a 
typical EEL spectrum is shown in Figure 2–17.

The samples typically used for high-resolu-
tion STEM are usually thinner than the mean 
free path for inelastic scattering (around 100 nm 
at 100 keV), so the dominant feature in the 
spectrum is the zero-loss (ZL) peak. When 
using a spectrometer for high energy resolution, 
the width of the ZL is usually limited by the 
energy width of the incident beam. Because 
STEM instruments require a field-emission 
gun, this spread is usually small. In a Schottky 
gun this spread is around 1 eV, whereas a CFEG 

can achieve 0.3 eV or better. The lowest energy 
losses in the sample will arise from the creation 
and destruction of phonons, which have ener-
gies in the range of 10–100 meV. This range is 
smaller than the width of the ZL, so such losses 
will not be resolvable.

The low-loss region extends from 0 to 50 eV 
and corresponds to excitations of electrons in 
the outermost atomic orbitals. These orbitals 
can often extend over several atomic sites, and 
so are delocalized. Both collective and single 
electron excitations are possible. Collective 
excitations result in the formation of a plasmon 
or resonant oscillation of the electron gas. 
Plasmon excitations have the largest cross 
section of all the inelastic excitations, so the 
plasmon peak dominates an EEL spectrum, 
and can complicate the interpretation of other 
inelastic signals due to multiple scattering 
effects. Single electron excitations from states 
in the valence band to empty states in the con-
duction band can also give rise to low-loss fea-
tures allowing measurements similar to those in 
optical spectroscopy, such as band-gap mea-

Figure 2–17.  A schematic EEL spectrum.
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surements. Further information, for example, 
distinguishing a direct gap from an indirect gap 
is available (Rafferty and Brown, 1998). 
Detailed interpretation of low-loss features 
involves careful removal of the ZL, however. 
More commonly, the low-loss region is used as 
a measure of specimen thickness by comparing 
the inelastically scattered intensity with the 
intensity in the ZL. The frequency of inelastic 
scattering events follows a Poisson distribution, 
and it can be shown that the sample thickness 
can be estimated from

	 t = L ln(IT/IZL)	 (6.2)

where IT and IZL are the intensities in the spec-
trum and zero loss, respectively, and Λ is the 
inelastic mean-free path, which has been tabu-
lated for some common materials (Egerton, 
1996).

From 50 eV up to several thousand eV of 
energy loss, the inelastic excitations involve 
electrons in the localized core orbitals on atom 
sites. Superimposed on a monatonically decreas-
ing background in this high-loss region are a 
series of steps or core-loss edges arising from 
excitations from the core orbitals to just above 
the Fermi level of the material. The energy loss 
at which the edge occurs is given by the binding 
energy of the core orbital, which is characteris-
tic of the atomic species. Measurement of the 
edge energies therefore allows chemical identi-
fication of the material under study. The inten-
sity under the edge is proportional to the 
number of atoms present of that particular 
species, so that quantitative chemical analysis 
can be performed. In a solid sample the bonding 
in the sample can lead to a significant modifica-
tion to the density of unoccupied states near the 
Fermi level, which manifests itself as a fine 
structure (energy loss near-edge structure, 
ELNES) in the EEL spectrum in the first 30–
40 eV beyond the edge threshold. Although the 
interpretation of the ELNES can be somewhat 
complicated, it does contain a wealth of infor-
mation about the local bonding and structure 
associated with a particular atomic species. For 
example, Batson (2000) has used STEM EELS 
to observe gap states in Si L-edges that are 
associated with defects observed by ADF. 
Beyond the near edge region can be seen 

weaker, extended oscillations (extended energy 
loss far-edge structure, EXELFS) superimposed 
on the decaying background. Being further 
from the edge onset, these excitations corre-
spond to the ejection of a higher kinetic energy 
electron from the core shell. This higher energy 
electron generally suffers single scattering from 
neighboring atoms leading to the observed 
oscillations and thereby information on the 
local structural configuration of the atoms such 
as nearest-neighbor distances.

Clearly EELS has much in common with X-
ray absorption studies, with the advantage for 
EELS being that spectra can be recorded from 
highly spatially localized regions of the sample. 
The X-ray counterpart of ELNES is XANES 
(X-ray absorption near-edge structure), and 
EXELFS corresponds to EXAFS (extended X-
ray absorption fine structure). There are many 
examples in the literature (for a recent example 
see Ziegler et al., 2004) in which STEM has 
been used to record spectra at a defect and the 
core-loss fine structure used to understand the 
bonding at the defect.

6.3  The Spatial Localization of EELS 
Signals and Inelastic Imaging

The strength of EELS in an STEM is that the 
spectra can be recorded with a high spatial res-
olution, so the question of the spatial resolution 
of an EELS signal is an important one. The lit-
erature contains several papers demonstrating 
atomic resolution EELS (Batson, 1993; Brown-
ing et al., 1993) and even showing sensitivity to 
a single impurity atom (Varela et al., 2004). The 
lower the energy loss, however, the more the 
EELS excitation will be delocalized, and an 
important question is for what excitations is 
atomic resolution possible.

In addition to the inherent size of the excita-
tion, we must also consider the beam spreading 
as the probe propagates through the sample. A 
simple approximation for the beam spreading 
is given by (Reed, 1982),

	 b = 0.198(r/A)1/2 (Z/E0)t3/2	 (6.3)

where b is in nanometers, r is the density �
(g cm-3), A is the atomic weight, Z is the atomic 
number, E0 is the incident beam energy in keV, 
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and t is the thickness. At the highest spatial 
resolutions, especially for a zone-axis oriented 
sample, a detailed analysis of diffraction and 
channeling effects (Allen et al., 2003) is required 
to model the propagation of the probe through 
the sample. The calculations are similar to those 
outlined in Section 5.

Having computed the wavefunction of the 
illuminating beam within the sample, we now 
need to consider the spatial extent of the inelas-
tic excitation. This subject has been covered 
extensively in the literature. Initial studies first 
considered an isolated atom using a semiclassi-
cal model (Ritchie and Howie, 1988). A more 
detailed study requires a wave optical approach. 
For a given energy-loss excitation, there will be 
multiple final states for the excited core elec-
tron. The excitations to these various states will 
be mutually incoherent, leading to a degree of 
incoherence in the overall inelastic scattering, 
unlike elastic scattering, which can be regarded 
as coherent. Inelastic scattering can therefore 
not be described by a simple multiplicative 
scattering function, rather we must use a mixed 
dynamic form factor (MDFF), as described by 
Kohl and Rose (1985). The formulation used 
for ADF imaging in Section 5.1 can be adapted 
for inelastic imaging. Combining the notation 
of Kohl and Rose (1985) with (5.7) allows us to 
replace the product of transmission functions 
with the MDFF,
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where some prefactors have been neglected for 
clarity and D now refers to the spectrometer 
entrance aperture. The inelastic scattering 
vector, k, can be written as the sum of the trans-
verse scattering vector coupling the incoming 
wave to the outgoing wave, and the change in 
wavevector due to the energy loss,

	
k
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where ez is a unit vector parallel to the beam 
central axis.

Equations (6.3) and (6.4) show that for a 
given spatial frequency Q in the image, the 
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inelastic image can be thought of arising from 
the sum over pairs of incoming plane waves in 
the convergent beam separated by Q. Each pair 
is combined through the MDFF into a final 
wavevector that is collected by the detector. 
This is analogous to the model for ADF imaging 
(see Figure 2–10), except that the product of 
elastic scattering functions has been replaced 
with the more general MDFF allowing intrinsic 
incoherence of the scattering process.

In Section 5.1 we found that under certain 
conditions, (5.7) could be split into the product 
of two integrals. This allowed the image to be 
written as the convolution of the probe inten-
sity and an object function, a type of imaging 
known as incoherent imaging. Let us examine 
whether (6.3) can be similarly separated. In a 
similar fashion to the ADF incoherent imaging 
derivation, if the spectrometer entrance aper-
ture is much larger than the probe convergence 
angle, then the domain of the integral over K is 
much larger than that over K¢, and the latter 
can be performed first. The integral can be then 
separated thus,
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where the K¢ term in k is now neglected. Since 
this is a product in reciprocal space, it can be 
written as a convolution in real space,

	 Iinel(R0) µ |P(R0)|  O(R0)	 (6.7)

where the object function O(R) is the Fourier 
transform of the integral over K in (6.5). For 
spectrometer geometries, Dspect(K), that collect 
only high angles of scatter, it has been shown 
that this can lead to narrower objects for inelas-
tic imaging (Muller and Silcox, 1995; Rafferty 
and Pennycook, 1999). Such an effect has not 
been demonstrated because at such a high angle 
the scattering is likely to be dominated by com-
bination elastic–inelastic scattering events, and 
any apparent localization is likely to be due to 
the elastic contrast.

For inelastic imaging, however, there is 
another condition for which the integrals can 
be separated. If the MDFF, S, is slowly varying 
in k, then the integral in K¢ over the disc over-
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laps will have a negligible effect on S, and the 
integrals can be separated. Physically, this is 
equivalent to asserting that the inelastic scatter-
ing real-space extent is much smaller than the 
probe, and therefore the phase variation over 
the probe sampled by the inelastic scattering 
event is negligible and the image can be written 
as a convolution with the probe intensity.

We have described the transition from coher-
ent to incoherent imaging for inelastic scattering 
events in STEM. Note that these terms simply 
refer to whether the probe can be separated in 
the manner described above, and does not refer 
to the scattering process itself. Incoherent 
imaging can arise with coherent elastic scatter-
ing, as described in Section 5.1. The inelastic 
scattering process is not coherent, hence the 
need for the MDFF. However, certain conditions 
still need to be satisfied for the imaging process 
to be described as incoherent, as described above. 
An interesting effect occurs for small collector 
apertures. Because dipole excitations will domi-
nate (Egerton, 1996), a probe located exactly 
over an atom will not be able to excite transverse 
excitations because it will not apply a transverse 
dipole. A slight displacement of the probe is 
required for such an excitation. Consequently a 
dip in the inelastic image is shown to be possible, 
leading to a donut type of image, demonstrated 
by Kohl and Rose (1985) and more recently by 
Cosgriff et al. (2005). This can be thought of as 
arising from an asymmetric inelastic object func-
tion. With a larger collector aperture, the transi-
tion to incoherent imaging allows the width of 
the probe to interact incoherently with the atom, 
removing the dip on the axis.

The width of an inelastic excitation as 
observed by STEM is therefore a complicated 
function of the probe, the energy, and the initial 
wavefunction of the core electron and the spec-
trometer collector aperture geometry. Various 
calculations have been published exploring this 
parameter-space. See, for example, Rafferty 
and Pennycook (1999) and Cosgriff et al. (2005) 
for some recent examples.

6.4  Spectrum Imaging in the STEM

Historically, the majority of EELS studies in the 
STEM have been performed in spot mode, in 

which the probe is stopped over the region of 
interest in the sample and a spectrum is col-
lected. Of course, the STEM is a scanning 
instrument, and it is possible to collect a spec-
trum from every pixel of a scanned image, to 
form a spectrum image. The image may be a 
one-dimensional line scan, or a two-dimen-
sional image. In the latter case, the data set will 
be a three-dimensional data cube: two of the 
dimensions being real-space imaging dimen-
sions and one being the energy loss in the 
spectra (Figure 2–18).

The spectrum-image data cube naturally con-
tains a wealth of information. Individual spectra 
can be viewed from any real-space location, or 
energy-filtered images formed by extracting 
slices at a given energy loss (Figure 2–18). 
Selecting energy losses corresponding to the 
characteristic core edges of the atomic species 
present in the sample allows elemental mapping, 
which, given the inelastic cross sections of the 
core-loss events, can be calibrated in terms of 
composition. Using this approach, individual 
atoms of Gd have been observed inside a carbon 
nanotube structure (Suenaga et al., 2000) 
(Figure 2–19). A more sophisticated approach 
is to use multivariate statistical (MSI) methods 
(Bonnet et al., 1999) to analyze the composi-
tional maps. With this approach, the existence 
of phases of certain stoichiometry can be iden-
tified, and maps of the phase locations within 
the sample can be created. Even the fine struc-
ture of core-loss edges can be used to form 
maps in which only the bonding, not the com-
position, within the sample has changed. An 
example of this is the mapping of the sp2 and 
sp3 bonding states of carbon at the interface of 
chemical vapor deposition diamond grown on 
a silicon substrate (Muller et al., 1993) (Figure 
2–20). The sp2 signal shows the presence of an 
amorphous carbon layer at the interface.

A similar three-dimensional data cube may 
also be recorded by conventional TEM fitted 
with an imaging filter. In this case, the image is 
recorded in parallel while varying the energy 
loss being filtered for. Both methods have 
advantages and disadvantages, and the choice 
can depend on the desired sampling in either 
the energy or image dimensions. The STEM 
does have one important advantage, however. 
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Figure 2–18.  A schematic diagram showing how collecting a spectrum at every probe position leads to a 
data cube from which can be extracted individual spectra or images filtered for a specific energy.

Figure 2–19.  A spectrum image filtered for Gd (A) and C (B). Individual atoms of Gd inside a carbon 
nanotube can be observed. [Reprinted from Suenaga et al. (2000), with copyright permission from AAAS.]
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In a CTEM, all of the imaging optics occur after 
the sample, and these optics suffer significant 
chromatic aberration. Adjusting the system to 
change the energy loss being recorded can be 
done by changing the energy of the incident 
electrons, thus keeping the energy of the desired 
inelastically scattered electrons constant within 
the imaging system. However, to obtain a useful 
signal-to-noise ratio in energy-filtered trans-
mission electron microscopy (EFTEM), it is 
necessary to use a selecting energy window that 
is several electronvolts in width, and even this 
energy spread in the imaging system is enough 
to worsen the spatial resolution significantly. In 
STEM, all of the image-forming optics are 
before the specimen, and the spatial resolution 
is not compromised.

Inelastic scattering processes, especially 
single electron excitations, have a scattering 
cross section that can be an order of magnitude 
smaller than for elastic scattering. To obtain suf-
ficient signal, EELS acquisition times may be of 
the order of 1 s. Collection of a spectrum image 
with a large number of pixels can therefore be 
very slow, with the associated problems of both 
sample drift, and drift of the energy zero point 
due to power supplies warming up. In practice, 
spectrum image acquisition software often 
compensates for these drifts. Sample drift can 
be monitored using cross-correlations on a 
sharp feature in the image. Monitoring the posi-
tion of the zero-loss peak allows the energy 
drift to be corrected. The advent of aberration 
correction will have a major impact in this 
regard. Perhaps one of the most important con-
sequences of aberration correction is that it will 
increase the current in a given sized probe by 
more than an order of magnitude (see Section 
10.3). Fast elemental mapping through spec-
trum imaging will then become a much more 
routine application of EELS. However, to 
achieve this improvement in performance, there 
will have to be corresponding improvements in 
the associated hardware. In general, commer-
cially available systems can achieve around 200 
spectra per second. Some laboratories with 
custom instrumentation have reported reach-
ing 1000 spectra per second (Tencé, personal 
communication). Further improvement will be 

5 nm 

Diamond 

C 1s p*

C 1s *s

Figure 2–20.  By filtering for specific peaks in the 
fine structure of the carbon K-edge, maps of p and s 
bonded carbon can be formed. The presence of an 
amorphous sp2 bonded carbon layer at the interface 
of a chemical vapor deposition (CVD)-grown 
diamond on an Si substrate can be seen. The diamond 
signal is derived by a weighted subtraction of the p 
bonding image from the s bonding image. [Reprinted 
from Muller et al. (1993), with permission of Nature 
Publishing Group.]
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necessary to fully make use of spectrum imaging 
in an aberration corrected STEM.

7.  X-Ray Analysis and Other 
Detected Signals in the STEM

It is obvious that the STEM bears many resem-
blances to the SEM: a focused probe is formed 
at a specimen and scanned in a raster while 
signals are detected as a function of probe posi-
tion. So far we have discussed BF imaging, ADF 
imaging, and EELS. All of these methods are 
unique to the STEM because they involve 
detection of the fast transmitted electron 
through a thin sample; bulk samples are typi-
cally used in an SEM. There are of course, a 
multitude of other signals that can be detected 
in STEM, and many of these are also found in 
SEM machines.

7.1  Energy Dispersive X-Ray Analysis

When a core electron in the sample is excited 
by the fast electron traversing the sample, the 
excited system will subsequently decay with the 
core hole being refilled. This decay will release 
energy in the form of an X-ray photon or an 
Auger electron. The energy of the particle 
released will be characteristic of the core elec-
tron energy levels in the system, and allows 
compositional analysis to be performed.

The analysis of the emitted X-ray photons is 
known as energy-dispersive X-ray (EDX) anal-
ysis, or sometimes energy-dispersive spectros-
copy (EDS) or X-ray EDS (XEDS). It is a 
ubiquitous technique for SEM instruments and 
electron-probe microanalyzers. The technique 
of EDX microanalysis in CTEM and STEM has 
been extensively covered (Williams and Carter, 
1996), and we will review here only the specific 
features of EDX in an STEM.

The key difference between performing EDX 
analysis in the STEM as opposed to the SEM is 
the improvement in spatial resolution (see 
Figure 2–21). The increased accelerating voltage 
and the thinner sample used in STEM lead to an 
interaction volume that is some 108 times smaller 
than for an SEM. Beam broadening effects will 

still be significant for EDX in STEM, and Eq. 
(6.2) provides a useful approximation in this 
case. For a given fraction of the element of �
interest, however, the total X-ray signal will be 
correspondingly smaller. For a discussion of 
detection limits for EDX in STEM see Wata-
nabe and Williams (1999). A further limitation 
for high-resolution STEM instruments is the 
geometry of the objective lens pole pieces 
between which the sample is placed. For high 
resolution the pole piece gap must be small, and 
this limits both the solid angle subtended by the 
EDX detector and the maximum take-off angle. 
This imposes a further reduction on the X-ray 
signal strength. A high probe current of around 
1 nA is typically required for EDX analysis, and 
this means that the probe size must be increased 
to greater than 1 nm (see Section 10), thus losing 
atomic resolution sensitivity. A further concern 
is the mounting of a large liquid nitrogen dewar 
on the column for the necessary cooling of the 
detector. It is often suspected that the boiling of 
the liquid nitrogen and the unbalancing of the 
column can lead to mechanical instabilities. A 
positive benefit of EDX in STEM, however, is 
that windowless EDX detectors may commonly 

SEM STEM 

100 nm 1 nm 

excitation volume 
~ 1 mm3

excitation volume 
~ 10 nm3

10 nm 

Figure 2–21.  A schematic diagram comparing the 
beam interaction volumes for an SEM and an STEM. 
The higher accelerating voltage and thinner samples 
in STEM lead to much higher spatial resolution for 
analysis, with an associated loss in signal.
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be used. The vacuum around the sample in 
STEM is typically higher than for other electron 
microscopes to reduce sample contamination 
during imaging and to reduce the gas load on 
the ultrahigh vacuum of the gun. A consequence 
is that contamination or icing of a windowless 
detector is less common.

For the reasons described above, EDX analy-
sis capabilities are sometimes omitted from 
ultrahigh resolution dedicated STEM instru-
ments, but are common on combination CTEM/
STEM instruments. A notable exception has 
been the development of a 300-kV STEM 
instrument with the ultimate aim of single-atom 
EDX detection (Lyman et al., 1994).

It is worth making a comparison between 
EDX and EELS for STEM analysis. The collec-
tion efficiency of EELS can reach 50%, com-
pared to around 1% for EDX, because the 
X-rays are emitted isotropically. EELS is also 
more sensitive for light element analysis (Z < 
11), and for many transition metals and rare-
earth elements that show strong spectral fea-
tures in EELS. The energy resolution in EELS 
is typically better than 1 eV, compared to 100–
150 eV for EDX. The spectral range of EDX, 
however, is higher with excitations up to 20 keV 
detectable, compared with around 2 keV for 
EELS. Detection of a much wider range of ele-
ments is therefore possible.

7.2  Secondary Electrons, Auger 
Electrons, and Cathodoluminescence

Other methods commonly found on an SEM 
have also been seen on STEM instruments. The 
usual imaging detector in an SEM is the sec-
ondary electron (SE) detector, and these are 
also found on some STEM instruments. The fast 
electron incident upon the sample can excite 
electrons so that they are ejected from the 
sample. These relatively slow moving electrons 
can escape only if they are generated relatively 
close to the surface of the material, and can 
therefore generate topographical maps of the 
sample. Once again, because the interaction 
volume is smaller, the use of SE in STEM can 
generate high-resolution topographical images 
of the sample surface. An intriguing experiment 
involving secondary electrons has been the 

observation of coincidence between secondary 
electron emission and primary beam energy-
loss events (Mullejans et al., 1993).

Auger electrons are ejected as an alternative 
to X-ray photon emission in the decay of a 
core-electron excitation, and spectra can be 
formed and analyzed just as for X-ray photons. 
The main difference, however, is that whereas 
X-ray photons can escape relatively easily from 
a sample, Auger electrons can escape only when 
they are created close to the sample surface. It 
is therefore a surface technique, and is sensitive 
to the state of the sample surface. Ultrahigh 
vacuum conditions are therefore required, and 
Auger in STEM is not commonly found.

Electron-hole pairs generated in the sample 
by the fast electron can decay by way of photon 
emission. For many semiconducting samples, 
these photons will be in or near the visible spec-
trum and will appear as light, known as cath-
odoluminescence. Although rarely used in 
STEM, there has been the occasional investiga-
tion (see, for example, Pennycook et al., 1980).

8.  Electron Optics and �
Column Design

Having explored some of the theory and appli-
cations of the various imaging and analytical 
modes in STEM, it is a good time to return to 
the details of the instrument itself. The dedi-
cated STEM instrument provides a nice model 
to show the degrees of freedom in the STEM 
optics, and then we go on to look at the �
added complexity of a hybrid CTEM/STEM 
instrument.

8.1  The Dedicated STEM Instrument

We will start by looking at the presample or 
probe-forming optics of a dedicated STEM, 
though it should be emphasized that most of 
the comments in this section also apply to 
TEM/STEM instruments. In addition to the 
objective lens, there are usually two condenser 
lenses (Figure 2–1). The condenser lenses can 
be used to provide additional demagnification 
of the source, and thereby control the trade-off 
between probe size and probe current (see 
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Section 10.1). In principle, only one condenser 
lens is required because movement of the cross-
over between the condenser and objective lens 
(OL) either further or nearer to the OL can be 
compensated by relatively small adjustments to 
the OL excitation to maintain the sample focus. 
The inclusion of two condenser lenses allows 
the demagnification to be adjusted while main-
taining a crossover at the plane of the selected 
area diffraction aperture. The OL is then set 
such that the selected area diffraction (SAD) 
aperture plane is optically conjugate to that of 
the sample.

In a conventional TEM instrument, the SAD 
aperture is placed after the OL, and the OL is 
set to make it optically conjugate to the sample 
plane. The SAD aperture then selects a region 
of the sample, and the post-OL lenses are used 
to focus and magnify the diffraction pattern in 
the back-focal plane of the OL to the viewing 
screen. By reciprocity, an equivalent SAD mode 
can be established in a dedicated STEM (Figure 
2–22). With the condenser lenses set to place a 

crossover at the SAD, an image can be formed 
with the SAD selecting a region of interest in 
the sample. The condenser lenses are then 
adjusted to place a crossover at the front focal 
plane of the OL, and the scan coils are set to 
scan the crossover over the front focal plane. 
The OL then generates a parallel pencil beam 
that is rocked in angle at the sample plane. In 
the detector plane is therefore seen a conven-
tional diffraction pattern that is swept across 
the detector by the scan. By using a small BF 
detector, a scanned diffraction pattern will be 
formed. If a Ronchigram camera is available in 
the detector plane, then the diffraction pattern 
can be viewed directly and scanning is unneces-
sary. In practice, SAD mode in an STEM is 
more commonly used for measuring the angular 
range of BF and ADF detectors rather than 
diffraction studies of samples. It is also often 
used for tilting a crystalline sample to a zone 
axis if a Ronchigram camera is not available.

To avoid having to mutually align the two 
condenser lenses, many users employ only one 

condenser lens 

scan coils

selected area 
diffraction aperture 

objective 
aperture 

objective lens 

sample 

imaging mode diffraction mode 

Figure 2–22.  The change from imaging to diffraction mode is shown in this schematic of part of an STEM 
column. By refocusing the condenser lens on the objective lens FFP rather than the SAD aperture plane, 
the objective lens generates a parallel beam at the sample rather than a focused probe. The SAD aperture 
is now the beam-limiting aperture, and defines the illumination region on the sample.
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condenser at a time. Both are set to focus a 
crossover at the SAD aperture plane, but the 
different distance between the lenses and the 
SAD plane means that the overall demagnifica-
tion of the source will differ. Often the two 
discrete probe current settings then available 
are suitable for the majority of experiments. 
Alternatively, many users, especially those with 
a Ronchigram camera, need an SAD mode very 
infrequently. In this case, there is no require-
ment for a crossover in the SAD plane, and one 
condenser lens can be adjusted freely.

In more modern STEM instruments, a further 
gun lens is provided in the gun acceleration 
area. The purpose of this lens is to focus a cross-
over in the vicinity of the differential pumping 
aperture that is necessary between the ultra-
high vacuum gun region and the rest of the 
column. The result is that a higher total current 
is available for very high current modes. For 
lower current, higher resolution modes, a gun 
lens is not found to be necessary.

Let us now turn our attention to the objective 
lens and the postspecimen optics. The main 
purpose of the OL is to focus the beam to form 
a small spot. Just like a conventional TEM, the 
OL of an STEM is designed to minimize the 
spherical and chromatic aberration, while 
leaving a large enough gap for sample rotation 
and providing a sufficient solid angle for X-ray 
detection.

An important parameter in STEM is the 
postsample compression. The field of the objec-
tive lens that acts on the electron after they exit 
the sample also has a focusing effect on the 
electrons. The result is that the scattering angles 
are compressed and the virtual crossover posi-
tion moves down. Most of the VG dedicated 
STEM instruments have top-entry OLs, which 
are consequently asymmetric in shape. The bore 
on the probe forming (lower) side of the OL is 
smaller then on the upper side, and therefore 
the field is more concentrated on the lower side. 
The typical postsample compression for these 
asymmetric lenses, typically a factor of around 
3, is comparatively low. The entrance to the 
EELS spectrometer will often be up to 60 cm 
or more after the sample, to allow room for 
deflection coils and other detectors. A 2-mm-
diameter EELS entrance aperture then sub-

tends a geometric entrance semiangle of 
1.7 mrad. Including the factor of 3 compression 
from the OL gives a typical collection semian-
gle of 5 mrad. The probe convergence angle of 
an uncorrected STEM will be around 9 mrad, 
so the total collection efficiency of the EELS 
system will be poor, being below 25% after 
accounting for further angular scattering from 
the inelastic scattering process. After the cor-
rection of spherical aberration, the probe con-
vergence semiangle will rise to 20 mrad or more, 
and the coupling of this beam into the EELS 
system will become even more inefficient.

A postspecimen lens would in principle allow 
improved coupling into the EELS by providing 
further compression after the beam has left the 
objective lens. However, there needs to be 
enough space for deflection coils and lens wind-
ings between the lenses, so it is hard to position 
a postspecimen lens closer than about 100 mm 
after the OL. By the time the beam has propa-
gated to this lens, it will be of the order of 1 mm 
in diameter. This is a large diameter beam to be 
handled by an electron lens, in the lower column 
typical widths are 50 mm or less, and large aber-
rations will be introduced that will obviate the 
benefit of the extra compression. In many dedi-
cated STEMs, therefore, postspecimen lenses 
are rarely used. A more common work around 
solution is to mount the sample as low in the 
OL as possible and to excite the OL as hard as 
possible to provide the maximum compression 
possible, though it is difficult to do this and to 
maintain the tilt capabilities.

A novel solution demonstrated by the Nion 
Co. is to use a four-quadrupole four-octupole 
system to couple the postspecimen beam to the 
spectrometer and provide increased compres-
sion. The four-quadrupole system has enough 
degrees of freedom to provide compression 
while also ensuring that the virtual crossover �
as seen by the spectrometer is at the correct 
object distance. As with any postspecimen lens 
system in a top entry STEM, the beam is so 
wide at the lens system that large third-order 
aberrations are introduced. The presence of the 
octupoles allows for correction of these aberra-
tions and additionally the third-order aberra-
tions of the spectrometer, which in turn allows 
a larger physical spectrometer entrance aper-
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ture to be used. Collection semiangles up to 
20 mrad have been demonstrated with this 
system (Nellist et al., 2003).

8.2  CTEM/STEM Instruments

At the time of writing, dedicated STEM columns 
are available from JEOL and Hitachi. Nion Co. 
has a prototype aberration-corrected dedicated 
STEM column under test, and this will soon be 
added to the array of available machines. 
However, many researchers prefer to use a 
hybrid CTEM/STEM instrument, which is sup-
plied from all the main manufacturers. As their 
name suggests, CTEM/STEM instruments offer 
the capabilities of both modes in the same 
column.

A CTEM/STEM is essentially a CTEM 
column with very little modification apart from 
the addition of STEM detectors. When field-
emission guns (FEGs) were introduced onto 
CTEM columns, it was found that the beam 
could be focused onto the sample with spot 
sizes down to 0.2 nm or better (for example, 
James and Browning, 1999). The addition of a 
suitable scanning system and detectors thus 

created an STEM. The key is that modern 
CTEM instruments with a side-entry stage tend 
to make use of the condenser-objective lens 
(Figure 2–23). In the condenser-objective lens, 
the field is symmetric about the sample plane, 
and therefore the lens is just as strong in focus-
ing the beam to a probe presample as it is in 
focusing the postsample scattered electrons as 
it would do in conventional TEM mode. The 
condenser lenses and gun lens play the same 
roles as those in the dedicated STEM. The main 
difference in terminology is that what would be 
referred to as the objective aperture in a dedi-
cated STEM is referred to as the condenser 
aperture in a TEM/STEM. The reason for this 
is that the aperture in question is usually in or 
near the condenser lens closest to the OL, and 
this is the condenser aperture when the column 
is used in CTEM mode.

An important feature of the TEM/STEM 
when operating in the STEM mode is that there 
are a comparatively large number of postspeci-
men lenses available. The condenser-objective 
lens ensures that the beam is narrow when 
entering these lenses, and so coupling with high 
compression to an EELS spectrometer does 

pole piece 
sample 

electron beam 

Figure 2–23.  A condenser-objective lens provides symmetrical focusing on either side of the central plane. 
It can therefore be used to provide postsample imaging, as in a CTEM, or to focus a probe at the sample, 
as in an STEM, or even to provide both simultaneously if direct imaging of the STEM probe is required.
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not incur the large aberrations discussed earlier. 
Further pitfalls associated with high compres-
sion should be borne in mind, however. The 
chromatic aberration of the coupling to the 
EELS will increase as the compression is 
increased, leading to edges being out of focus 
at different energies. Also, the scan of the probe 
will be magnified in the dispersion plane of the 
prism, so careful descan needs to be done post-
sample. A final feature of the extensive post-
sample optics is that a high magnification image 
of the probe can be formed in the image plane. 
This is not as useful for diagnosing aberrations 
in the probe as one might expect because the 
aberrations might well be arising from aberra-
tions in the TEM imaging system. Nonetheless, 
potential applications for such a confocal 
arrangement have been discussed (see, for 
example, Möbus and Nufer, 2003).

9.  Electron Sources

9.1  The Need for Sufficient Brightness

Naively one might expect that the size of the 
electron source is not critical to the operation 
of an STEM because we have condenser lenses 
available in the column to increase the demag-

nification of the source at will, and thereby still 
be able to form an image of the source that is 
below the diffraction limit. We will see, however, 
that increasing the demagnification decreases 
the current available in the probe, and the per-
formance of an STEM relies on focusing a sig-
nificant current into a small spot. In fact, the 
crucial parameter of interest is that of bright-
ness (see, for example, Born and Wolf, 1980). 
The brightness is defined at the source as

	
B I

A
= Ω 	 (9.1)

where I is the total current emitted, A is the 
area of the source over which the electrons are 
emitted, and W is the solid angle into which the 
electrons are emitted. Brightness is a useful 
quantity because at any plane conjugate to the 
image source (which means any plane where 
there is a beam crossover), brightness is con-
served. This statement holds as long as we con-
sider only geometric optics, which means that 
we neglect the effects of diffraction. Figure 2–24 
shows schematically how the conservation of 
brightness operates. As the demagnification of 
an electron source is increased, reducing the 
area A of the image, the solid angle W increases 
in proportion. Introduction of a beam-limiting 
aperture forces W to be constant, and therefore 

condenser 
lens 

objective 
aperture objective 

lens 

Figure 2–24.  A schematic diagram showing how beam current is lost as the source demagnification increased. 
Reducing the focal length of the condenser lens further demagnifies the image of the source, but the solid 
angle of the beam correspondingly increases (dashed lines). At a fixed aperture, such as an objective aperture, 
more current is lost when the beam solid angle increases.
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the total beam current, I, decreases in propor-
tion to the decrease in the area of the source 
image.

Conservation of brightness is extremely pow-
erful when applied to the STEM. At the probe, 
the solid angle of illumination is defined by the 
angle subtended by the objective aperture, a. 
The maximum value of a is dictated primarily 
by the spherical aberration of the microscope, 
and can therefore be regarded as a constant. 
Given the brightness of the source, we can 
immediately infer the beam current given the 
desired size of the source image, or vice versa. 
Knowledge of the source size is important in 
determining the resolution of the instrument 
for a given source size. We can now ask what 
the necessary source brightness for a viable 
STEM instrument is. In an order-of-magnitude 
estimation, we can assume that we need about 
25 pA focused into a probe diameter, dsrc, of 
0.1 nm. In an uncorrected machine, the spheri-
cal aberration of the objective lens limits a to 
about 10 mrad. The corresponding brightness 
can then be computed from

	

B
I

d
=





 ( )π παsrc

2
2

4 	 (9.2)

which gives B ~ 109 A cm-2 sr-1, expressed in its 
conventional units.

Having determined the order of brightness 
required for an STEM we should now compare 
this number with commonly available electron 
sources. A tungsten filament thermionic emitter 
operating at 100 kV has a brightness B of around 
106 A cm-2 sr-1, and even an LaB6 thermionic 
emitter improves this by only a factor of 10 or 
so. The only electron sources currently devel-
oped that can reach the desired brightness are 
field-emission sources.

9.2  The Cold Field-Emission Gun

In developing an STEM in their laboratory, a 
prerequisite for Crewe and co-workers was to 
develop a field emission gun (Crewe et al., 
1968a). The gun they developed was a CFEG, 
shown schematically in Figure 2–25. The prin-
ciple is shown in Figure 2–26. A tip is formed 
by electrochemically etching a short length of 
single crystal tungsten wire (a typical crystallo-
graphic orientation is [310]) to form a point 
with a typical radius of 50–100 nm. When a 
voltage is applied to the extraction anode, an 
intense electron field is applied to the sharp tip. 
The potential in the vacuum immediately 
outside the tip therefore has a large gradient, 
resulting in a potential barrier small enough for 
conduction electrons to tunnel out of the tung-
sten into the vacuum. An extraction potential 
of around 3 kV is usually required. A second 

field emission tip 

first anode 

second anode 

~ 3 kV 

100 kV 

Figure 2–25.  A schematic diagram of a 100-kV cold field-emission gun. The proximity of the first anode 
combined with the sharpness of the tip leads to an intense electric field at the tip, thus extracting the elec-
trons. The first anode is sometime referred to as the extraction anode. The second anode provides the further 
acceleration up to the full beam energy.
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anode, or multiple anodes, is then provided to 
accelerate the electrons to the desired total 
accelerating voltage.

Although the total current emitted by a CFEG 
(typically 5 mA) is small compared to other elec-
tron sources (a W hairpin filament can reach 
100 mA), the brightness of a 100-kV CFEG can 
reach 2 ¥ 109 A cm-2 sr-1. The explanation lies in 
the small area of emission (~ 5 nm) and the small 
solid angle cone into which the electrons are 
emitted (semiangle of 4°). Electrons are likely to 
tunnel into the vacuum only over the small area 
in which the extraction field is high enough or 
where a surface with a suitably low workfunc-
tion is presented, leading to a small emission 
area. Only electrons near the Fermi level in the 
tip are likely to tunnel, and only those whose 
Fermi velocity is directed perpendicular to the 
surface, leading to a small emission cone. In 
addition, the energy spread of the beam from a 
CFEG is much lower than for other sources, and 
can be less than 0.3 eV FWHM.

A consequence of the large electrostatic field 
required for cold field emission is that ultrahigh 
vacuum conditions are required. Any gas mol-
ecules in the gun that become positively ionized 
by the electron beam will be accelerated and 
focused directly on the sharp tip. Sputtering of 
the tip by these ions will rapidly degrade and 
blunt the tip until its radius of curvature is too 
large to generate the high fields required for 
emission. Pressures in the low 10-11 Torr are 
usually maintained in a CFEG. Achieving this 

kind of pressure requires that the gun be 
bakable to greater than 200°C, which imposes 
constraints on the materials and methods of 
gun construction. Nonetheless, the tip will 
slowly become contaminated during operation 
leading to a decay in the beam current. Regular 
“flashing” is required, whereby a current is 
passed through the tip support wire to heat the 
tip and to desorb the contamination. This is 
typically necessary once every few hours.

9.3  The Schottky FEG

Cold FEGs have until now been found com-
mercially only in dedicated STEM instruments 
of VG Microscopes (no longer manufactured) 
and in some instruments manufactured by 
Hitachi, although the manufacturers’ ranges 
are always changing. More common is the ther-
mally assisted Schottky field-emission source, 
introduced by Swanson and co-workers 
(Swanson and Crouser, 1967).

The principle of operation of the Schottky 
source is similar to the CFEG, with two major 
differences: the workfunction of the tungsten 
tip is lowered by the addition of a zirconia layer, 
and the tip is heated to around 1700 K. Lower-
ing the workfunction reduces the potential 
barrier through which electrons have to tunnel 
to reach the vacuum. Heating the tip promotes 
the energy at which the electrons are incident 
on the potential barrier, increasing their prob-
ability of tunneling. Heating the tip is also nec-

E

f

F

slope due to 
electric field 

tunnelling 

free electron 
propagating in
vacuum 

Figure 2–26.  A schematic diagram showing the principle of cold field-emission. The vacuum energy level is 
pulled down into a steep gradient by the application of a strong electric field, producing a triangular energy 
barrier of height given by the work function, f. Electrons close to the Fermi energy, EF, can tunnel through 
the barrier to become free electrons propagating in the vacuum.
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essary to maintain the zirconia layer on the tip. 
A reservoir of zirconium metal is provided in 
the form of a donut on the shank of the tip. The 
heating of the tip allows zirconium metal to 
surface migrate under the influence of the elec-
trostatic field toward the sharpened end, oxidiz-
ing as it does so as to form a zirconia layer.

Compared to the CFEG, the Schottky source 
has some advantages and disadvantages. Among 
the advantages are the fact that the vacuum 
requirements for the tip are much less strict 
since the zirconia layer is reformed as soon as 
it is sputtered away. The Schottky source also 
has a much greater emission current (around 
100 mA) than the CFEG. This makes is a useful 
source for combination CTEM/STEM instru-
ments with sufficient current for parallel illumi-
nation for CTEM work. Disadvantages include 
a lower brightness (around 2 ¥ 108 A cm-2 sr-1) 
and a large emission area, which requires 
greater demagnification for forming atomic 
sized probes. For applications involving high-
energy resolution spectroscopy, a more serious 
drawback is the energy spread of the Schottky 
source at about 1 eV.

10.  Resolution Limits and 
Aberration Correction

Having reviewed the STEM instrument and its 
applications, we finish by reviewing the factors 
that limit the resolution of the machine. In prac-
tice there can be many reasons for a loss in reso-
lution, for example, microscope instabilities or 
problems with the sample. Here we will review 
the most fundamental resolution-limiting 
factors: the finite source brightness, spherical 
aberration, and chromatic aberration. Round 
electron lenses suffer from inherent spherical 
and chromatic aberrations (Scherzer, 1936), and 
these aberrations dominate the ultimate resolu-
tion of STEM. For a field-emission gun, in par-
ticular a cold FEG, the energy width of the beam 
is small, and the effect of CC is usually smaller 
than for CS. The effect of spherical aberration on 
the resolution and the need for an objective 
aperture to limit the higher-angle more aber-
rated beams have been discussed in Section 2, so 
here we focus on the effect of the finite bright-

ness and chromatic aberration. Finally we 
describe the benefits that arise from spherical 
aberration correction in STEM, and show further 
applications of aberration correction.

10.1  The Effect of the Finite �
Source Size

In Section 1 it was mentioned that the probe 
size in an STEM can be either source size or 
diffraction limited. In both regimes, the perfor-
mance of the STEM is limited by the aberra-
tions of the lenses. The aberrations of the OL 
usually dominate, but in certain modes, such as 
particularly high current modes, the aberrations 
of the condenser lenses and even the gun optics 
might start to have an effect. The lens aberra-
tions limit the maximum size of the beam that 
may pass through the OL to be focused into the 
probe. A physical aperture prevents higher 
angle, more aberrated rays from contributing.

The size of the diffraction-limited probe was 
described in Section 2. When the probe is dif-
fraction limited, the aperture defines the size of 
the probe. The resolution of the STEM can be 
defined in many different ways, and will be dif-
ferent for different modes of imaging. For inco-
herent imaging we are concerned with the 
probe intensity, and the Rayleigh resolution cri-
terion may be used given by Eq. (2.9), and 
repeated here,

	 ddiff = 0.4l3/4CS
1/4	 (10.1)

In the diffraction-limited regime, there is no 
dependence of the probe size on the probe 
current.

Once the image of the demagnified source is 
larger than the diffraction limit, though, the 
probe will be source size limited. Now the probe 
size may be traded against the probe current 
through the source brightness, by rearranging 
Eq. (9.2) to give

	
d

I
Bsrc = 4

2 2π α 	 (10.2)

Note that the probe current is limited by the 
size of the objective aperture, a, and is there-
fore still limited by the lens aberrations.

The effect of the finite source size will depend 
on the data being acquired. It can be thought 
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of as an incoherent sum (i.e., a sum in intensity) 
of many diffraction-limited probes displaced 
over the source image at the sample. To explain 
the effect of the finite source size on an experi-
ment, the measurement made for a diffraction-
limited probe arising from an infinitesimal 
source should be summed in intensity with the 
probe shifted over the source distribution.

The effect on a Ronchigram is to blur the 
fringes in the disc overlap regions. Remember 
that the fringes in a disc overlap region corre-
spond to a sample spacing whose spatial fre-
quency is given by the difference of the g-vectors 
of the overlapping discs. Once the source size 
as imaged at the sample is larger than the rele-
vant spacing, the fringes will disappear. This is 
a very different effect to increasing the probe 
size through a coherent aberration, such as by 
defocusing the probe. Defocusing the probe 
will lead to changes in the fringe geometry in 
the Ronchigram, but not in their visibility. The 
finite source size, however, will reduce the visi-
bility of the fringes. The Ronchigram is there-
fore an excellent method for measuring the 
source size of a microscope.

The effect of the finite source size on a BF 
image is a simple blurring of the image inten-
sity, as would be expected from reciprocity. 
Once again the image should be computed for 
a diffraction limited probe arising from an 
infinitesimal source, and then the image inten-
sity blurred over the profile of the source as 
imaged at the sample. Because BF is a coherent 
imaging mode, the effect of a finite source size 
is different to simply increasing the probe size.

The effect of the finite source size on incoher-
ent imaging, such as ADF, is simplest. Because 
the image is already incoherent, the effect of 
the finite source size can be thought of as simply 
increasing the probe size in the experiment. 
Assuming that both the probe profile and the 
source image profile are approximately gauss-
ian in form, the combined probe size can be 
approximated by adding in quadrature,

	 d2
probe = d2

diff + d2
src	 (10.3)

This allows us now to generate a plot of the 
probe size for incoherent imaging versus the 
probe current (Figure 2–27).

10.2  Chromatic Aberration

It is not surprising that electrons of higher ener-
gies will be less strongly deflected by a magnetic 
field than those of lower energy. The result of 
this is that the energy spread of the beam will 
manifest itself as a spread of focal lengths when 
focused by a lens. In fact, the intrinsic energy 
spread, instabilities in the high-voltage supply, 
and instabilities in the lens supply currents will 
all give rise to a defocus spread through the 
formula

	
∆ ∆ ∆ ∆

z C
E

V
I

I
V

V
= + +



c

0 0 0

2
	 (10.4)

where DE is the intrinsic energy spread of the 
beam, DV is the variation in accelerating voltage 
supply, DV0, and I is the fluctuation in the lens 
current supply, I0. In a modern instrument, the 
first term should dominate, even with the low 
energy spread of a CFEG. A typical defocus 
spread for a 100-kV CFEG instrument will be 
around 5 nm.

Chromatic aberration is an incoherent aber-
ration, and behaves in a way somewhat similar 
to the finite source size as described above. The 
effect of the aberration again depends on the 
data being acquired. The effect of the defocus 
spread can be thought of as an incoherent sum 
(i.e., a sum in intensity) of many experiments 
performed at a range of defocus values inte-
grated over the defocus spread.

The effect of chromatic aberration on a �
Ronchigram has been described in detail by 
Nellist and Rodenburg (1994). Briefly, the �
perpendicular bisector of the line joining the 
center of two overlapping discs is achromatic, 
which means that the intensity does not depend 
on the defocus value. This is because defocus 
causes a symmetric phase shift in the incoming 
beam, and beams equidistant from the center 
of a disc will therefore suffer the same phase 
shift resulting in no change to the interference 
pattern. Away from the achromatic lines, the 
visibility of the interference fringes will start to 
reduce.

The effect of CC on phase contrast imaging 
has been extensively described in the literature 
(see, for example, Wade, 1992; Spence, 1988). 
Here we simply note that in the weak-phase 
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regime, CC gives rise to a damping envelope in 
reciprocal space,

	 ECc(Q) = expÎ-1–
2p

2l2(Dz)2|Q|4˚	 (10.5)

where Q is the spatial frequency in the image. 
Clearly Eq. (10.5) shows that the Q4 depen-
dence in the exponential means that CC imposes 
a sharp truncation on the maximum spatial fre-
quency of the image transfer.

In contrast, the effect of CC on incoherent 
imaging is much less severe. Once again, the 
effect for incoherent imaging can simply be 
incorporated by changing the probe intensity 
profile, Ichr(R), through the expression

	 I f z P z dzchr R R( ) = ( ) ( )∫ ,
2

	 (10.6)

where f(z) is the distribution function of the 
defocus values.

Nellist and Pennycook (1998b) have derived 
the effect of CC on the optical transfer function 
(OTF). Rather than imposing a multiplicative 
envelope function, the chromatic spread leads 

to an upper limit on the OTF that goes as 1/|Q|. 
A plot of the effects of CC on the incoherent 
optical transfer function is shown in Figure 2–
28. An interesting feature of the effect of CC on 
the incoherent transfer function is that the 
highest spatial frequencies transferred are little 
affected, explaining the ability of incoherent 
imaging to reach high spatial resolutions despite 
any effects of CC, as shown in Nellist and �
Pennycook (1998).

An intuitive explanation of this phenomenon 
can be found in both real and reciprocal space 
approaches. In reciprocal space, STEM inco-
herent imaging can be considered as arising 
from separate partial plane wave components 
in the convergent beam that are scattered into 
the same final wavevector and thereby interfere 
(see Section 5). The highest spatial frequencies 
arise from plane wave components on the con-
vergent beam that are separated maximally, 
which, since the aperture is round, is when they 
are close to being diametrically opposite. The 
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Figure 2–27.  A plot of probe size for incoherent imaging versus beam current for both a CS-afflicted and 
CS-corrected machine. The parameters used are 100 kV CFEG with CS = 1.3 mm. Note the diffraction-limited 
regime where the probe size is independent of current, changing over to a source-size-limited regime at large 
currents.
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interference between such beams is often 
described as being achromatic because the 
phase shift due to changes in defocus will be 
identical for both beams, with no resulting 
effect on the interference. Coherent phase con-
trast imaging, however, relies on interference 
between a strong axial beam and scattered 
beams near the aperture edge, resulting in a 
high sensitivity to chromatic defocus spread.

The real-space explanation is perhaps simpler. 
Coherent imaging, as formulated by (5.2), is 
sensitive to the phase of the probe wavefunc-
tion, and the phase will change rapidly as a 
function of defocus. Summing the image inten-
sities over the chromatic defocus spread will 
then wash out the high resolution contrast. 
Incoherent imaging is sensitive only to the 
intensity of the probe, which is a much more 
slowly varying function of defocus. Summing 
probe intensities over a range of defocus values 
(see Figure 2–29) shows the effect. The central 
peak of the probe intensity remains narrow, but 
intensity is lost to a skirt that extends some 
distance. Analytical studies will be particularly 

affected by the skirt, but for a CFEG gun, the 
effect of CC will show up only at the highest 
resolutions, and typically is only seen after the 
correction of CS. Krivanek (private communica-
tion) has given a simple formula for the fraction 
of the probe intensity that is shifted away from 
the probe maximum,

	 fs = (1 - w)2	 (10.7)

where

	 w = 2d2
gE0/(DECCl) or

	 w = 1, whichever is smaller,	 (10.8)

and dg is the resolution in the absence of chro-
matic aberration. At a resolution dg = 0.8 Å, 
energy spread DE = 0.5 eV, coefficient of �
chromatic aberration Cc = 1.5 mm, and primary 
energy E0 = 100 keV, the above gives fs = 30% 
as the fraction of the electron flux shifted out 
of the probe maximum into the probe tail. This 
shows that with the low energy spread of a cold 
field emission gun, the present-day 100 kV per-
formance is not strongly limited by chromatic 
aberration.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
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Figure 2–28.  A plot of the incoherent optical transfer functions (OTFs) for various defocus spread FWHM 
values. The microscope parameters are 100 kV with CS corrected but C5 = 0.1 m. Note how the effect is to 
limit the maximum OTF by a value proportional to the reciprocal of spatial frequency. Such a limit mostly 
affects the midrange frequencies and not the highest spatial frequencies.
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10.3  Aberration Correction

We have spent a lot of time discussing the 
effects of lens aberrations on STEM perfor-
mance. Except for some specific circumstances, 
round electron lenses always suffer positive 

spherical and chromatic aberrations. This essen-
tial fact was first proved by Scherzer in 1936 
(Scherzer, 1936), and until recently lens aberra-
tions were the resolution-limiting factor. Scher-
zer also pointed out that nonround lenses could 
be arranged to provide negative aberrations 
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Figure 2–29.  Probe profile plots with (A) and without (B) a chromatic defocus spread of 7.5 nm FWHM. 
The microscope parameters are 100 kV with CS corrected but C5 = 0.1 m. Note that the width of the main 
peak of the probe is not greatly affected, but intensity is lost from the central maximum into diffuse tails 
around the probe.
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(Scherzer, 1947), thereby providing correction 
of the round lens aberrations. He also proposed 
a corrector design, but it is only within the last 
decade that aberration correctors have started 
to improve microscope resolution over those of 
uncorrected machines [see, for example, Zach 
and Haider (1995) for SEM, Haider et al. 
(1998b) for TEM, and Batson et al. (2002) and 
Nellist et al. (2004) for STEM]. The key has 
been the control of parasitic aberrations. Aber-
ration correctors consist of multiple layers of 
nonround lenses. Unless the lenses are machined 
perfectly and aligned to each other and the 
round lenses they are correcting perfectly, non-
round parasitic aberrations, such as coma and 
three-fold astigmatism, will arise and negate the 
beneficial effects of correction. Recent aberra-
tion correctors have been machined to extremely 
high tolerances, and additional windings and 
multipoles have been provided to enable cor-
rection of the parasitic aberrations. Perhaps 
even more crucial has been the development of 
computers and algorithms that can measure 
and diagnose aberrations fast enough to feed 
back to the multipole power supplies to correct 
the parasitic aberrations. A particularly power-
ful way of measuring the lens aberrations is 
through the local apparent magnification of the 
Ronchigram of a nonperiodic object (Dellby �
et al., 2001) (see Section 3.2).

The key benefits of spherical aberration cor-
rection in STEM are illustrated by Figure 2–27. 
Correction of spherical aberration allows a 
larger objective aperture to be used because it 
is no longer necessary to exclude beams that 
previously would have been highly aberrated. 
A larger objective aperture has two results: 
First, the diffraction-limited probe size is smaller 
so the spatial resolution of the microscope is 
increased. Second, in the regime in which the 
electron source size is dominant, the larger 
objective aperture allows a greater current in 
the same size probe. Figure 2–27 shows both 
effects clearly. For low currents the diffraction-
limited probe decreases in size by almost a 
factor of two. In the source size-limited regime, 
for a given probe size, spherical aberration cor-
rection increases the current available by more 
than an order of magnitude. The increased 
current available in a CS corrected STEM is 

very important for fast elemental mapping or 
even mapping of subtle changes in fine struc-
ture using spectrum imaging (Nellist et al., 
2003) (see Section 6).

So far, the impact of spherical aberration cor-
rection on resolution has probably been greater 
in STEM than in CTEM. Part of the reason lies 
in the robustness of STEM incoherent imaging 
to CC. Correction of CC is more difficult than 
for CS, and at the time of writing a commercial 
CC corrector for high-resolution TEM instru-
ments is not available. We saw in Section 10.2 
that compared to HRTEM, the resolution of 
STEM incoherent imaging is not severely 
limited by CC. Furthermore, the dedicated 
STEM instruments that have given the highest 
resolutions have all used cold field emission 
guns with a low intrinsic energy spread. A 
second reason for the superior CS-corrected 
performance of STEM instruments lies in the 
fact that they are scanning instruments. In an 
STEM, the scan coils are usually placed close 
to the objective lens and certainly there are no 
optical elements between the scan coils and the 
objective lens. This means that in most of the 
electron optics, in particular the corrector, the 
beam is fixed and its position does not depend 
on the position of the probe in the image, unlike 
the case for CTEM. In STEM therefore, only 
the so-called axial aberrations need to be mea-
sured and corrected, a much reduced number 
compared to CTEM for which off-axial aberra-
tions must also be monitored.

Commercially available CS correctors are 
currently available from Nion Co. in the United 
States and CEOS GmbH in Germany. The 
existing Nion corrector is a quadrupole–octu-
pole design, and is retrofitted into existing VG 
Microscopes dedicated STEM instruments. 
Because the field strength in an octupole varies 
as the cube of the radial distance, it is clear that 
an octupole should provide a third-order deflec-
tion to the beam. However, the four-fold rota-
tional symmetry of the octupole means that a 
single octupole acting on a round beam will 
simply introduce third-order four-fold astigma-
tism. A series of four quadrupoles is therefore 
used to focus line crossovers in two octupoles, 
while allowing a round beam to be acted on by 
the third (central) octupole (see figures in 
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Krivanek et al., 1999). The line crossovers in the 
outer two octupoles give rise to third-order cor-
rection in two perpendicular directions, which 
provides the necessary negative spherical aber-
ration, but also leaves some residual four-fold 
astigmatism that is corrected by the third central 
round-beam octupole. This design is loosely 
based on Scherzer’s original design that used 
cylindrical lenses (Scherzer, 1947). Although 
this design corrects the third-order CS, it actu-
ally worsens the fifth-order aberrations. None-
theless, it has been extremely successful and 
productive scientifically. A more recent correc-
tor design from Nion (Krivanek et al., 2003) 
allows correction of the fifth-order aberrations 
also. Again it is based on third-order correction 
by three octupoles, but with a greater number 
of quadrupole layers, which can provide control 
of the fifth-order aberrations. This more com-
plicated corrector is being incorporated into an 
entirely new STEM column designed to opti-
mize performance with aberration correction.

An alternative corrector design that is suit-
able for both HRTEM and STEM use has been 
developed by CEOS (Haider et al., 1998a). It is 
based on a design by Shao (1988) and further 
developed by Rose (1990). It includes two sex-
tupole lenses with four additional round lens 
coupling lenses. The primary aberration of a 
sextupole is three-fold astigmatism, but if the 
sextupole is extended in length it can also gen-
erate negative, round spherical aberration. If 
two sextupoles are used and suitably coupled 
by round lenses, the three-fold astigmatism 
from each of them can cancel, resulting in pure, 
negative spherical aberration. The optical cou-
pling between the sextupole layers and the 
objective lens means that the off-axial aberra-
tions are also canceled, which allows the use of 
this kind of corrector for HRTEM imaging in 
addition to STEM imaging.

Aberration correction in STEM has already 
produced high impact results. The improvement 
in resolution has been dramatic with a resolu-
tion as high as 0.6 Å being demonstrated (Figure 
2–30) (Nellist et al., 2004). The ability to image 
at atomic resolution along different orienta-
tions has allowed a full, three-dimensional 
reconstruction of a heterointerface to be deter-
mined (Falke et al., 2004). Spectroscopy of 

single atoms of impurities in a doped crystalline 
matrix has been demonstrated (Varela et al., 
2004). Clearly, aberration correction in STEM 
is now well established and will become more 
commonplace.

11.  Conclusions

In this chapter we have tried to describe the 
range of techniques available in an STEM, the 
principles behind those techniques, and some 
examples of applications. Naturally there are 
many similarities between the CTEM and the 
STEM, and some of the imaging modes are 
equivalent. Certain techniques in STEM, 
however, are unique, and have particular 
strengths. In particular, STEM is being used for 
ADF and electron energy-loss spectroscopy. 
The ADF imaging mode is important because 
it is an incoherent imaging mode and shows 
atomic number (Z) contrast. The incoherent 
nature of ADF imaging makes the images 

78 pm 

Figure 2–30.  An ADF STEM image of Si<112> 
recorded using a 300-kV VG Microscopes HB603U 
STEM fitted with a Nion aberration corrector. The 
78 pm spacing of the atomic columns in this projec-
tion is well resolved, as can be seen in the intensity 
profile plot from the region indicated.
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simpler to interpret in terms of the atomic 
structure under observation, and we have 
described how it has been used to determine 
atomic structures at interfaces, even correcting 
earlier structural analyses by HRTEM. The 
CTEM cannot efficiently provide an incoherent 
imaging mode. The spatial resolution of STEM 
can also be applied to composition analysis 
through EELS, and atomic resolution and 
single-atom sensitivity are both now being 
demonstrated. Not only can EELS provide 
compositional information, but analysis of the 
fine structure of spectra can reveal information 
on the bonding between materials.

The capabilities listed above, combined with 
the availability of combination CTEM/STEM 
instruments, has dramatically increased the 
popularity of STEM. For many years, the only 
high-resolution STEM instruments available 
were dedicated STEM instruments with a 
CFEG. These machines were designed as high-
end research machines and they tended to be 
operated by experts who could devote time to 
their operation and maintenance. Modern 
CTEM/STEM instruments are much more user 
friendly, and the Schottky gun system usually 
found on such machines is easier to operate.

We have also discussed some of the technical 
details of the electron optics and resolution- 
limiting factors, which raises the question of 
where the development of STEM instrumenta-
tion is likely to go in the future. Clearly spheri-
cal aberration correction is already having a 
major impact on STEM performance, and the 
fraction of STEM instruments fitted with �
correctors is bound to increase. The benefits �
of aberration correction are not only the 
increased spatial resolution, but also the dra-
matically improved beam current and also the 
possibility of creating more room around the 
sample for in situ experiments. The increased 
beam current already allows fast mapping �
of spectrum images with sufficient signal to 
noise for fitting of fine-structure changes. Much 
faster elemental mapping should become pos-
sible, with acquisition rates perhaps reaching 
1000 spectra/s, which would allow a 256 by 256 
pixel spectrum image to be recorded in less 
than 1 min. To achieve this goal, however, 
requires further development of the spectra 

acquisition instrumentation, such as the CCD 
camera and probe scan controller. With aberra-
tion correction now available it is often found 
that the STEM performance is being limited �
by other aspects of the instrumentation. It is 
now an excellent time for a reevaluation of the 
design of electron-optical columns to be used 
for aberration-corrected STEM. Already a 
number of manufacturers are launching new 
columns and the STEM community is eagerly 
awaiting new data demonstrating their �
performance. New columns also allow the �
inclusion of in situ experiments, and we are 
likely to see columns fitted with scanning probe 
systems, nanomanipulators, or environmental 
cells. Environmental cells, for example, would 
add to the STEM’s existing strengths in the 
imaging of dispersed catalysts by allowing 
samples to be viewed while being dosed with 
active gases.

The other important technical development 
currently being introduced into STEM instru-
ments is monochromation. There are two moti-
vations for this development. Obviously a more 
monochromated beam will lead to improved 
energy resolution in EELS. Defect states in 
band gaps would become visible in the low-loss 
spectrum and core-loss fine structure would 
show greater detail. Furthermore, Schottky 
guns have a greater energy spread in the beam 
(about 1 eV) compared to a CFEG (about 
0.3 eV), so there is a strong motivation to fit 
Schottky systems with a monochromator to 
improve their energy resolution. With a spheri-
cal aberration-corrected machine, the spatial 
resolution is then limited by chromatic aberra-
tion, which will be worse for a Schottky gun, 
hence a spatial resolution benefit from mono-
chromation. An important consequence of 
monochromation, however, is that it reduces 
the brightness of the electron gun. So far it has 
not been possible to produce atomic-resolution 
probes while monochromating the beam. Start-
ing with a gun that is brighter and has an intrin-
sically narrower energy spread, such as a CFEG, 
obviously has strong benefits for STEM. Time 
will tell whether the CFEG will become more 
popular again. Nevertheless, it is clear that 
STEM itself has a very strong future in the 
imaging and analysis of materials.

HSS_sample.indd   48 10/3/05   3:59:07 PM



2. Scanning Transmission Electron Microscopy� 49

L1

References

Abe, E., et al. (2003). “Direct observation of a local 
thermal vibration anomoly in a quasicrystal.” 
Nature 421 347.

Allen, L. J., et al. (2003a). “Atomic-resolution elec-
tron energy loss spectroscopy imaging in aberra-
tion corrected scanning transmission electron 
microscopy.” Phys. Rev. Lett. 91 105503.

Allen, L. J., et al. (2003b). “Lattice-resolution con-
trast from a focused coherent electron probe. Part 
I.” Ultramicroscopy 96 47.

Amali, A. and Rez, P. (1997). “Theory of lattice reso-
lution in high-angle annular dark-field images.” 
Microsc. Microanal. 3 28.

Anderson, S. C., et al. (1997). “An approach to quan-
titative compositional profiling at near-atomic 
resolution using high-angle annular dark field 
imaging.” Ultramicroscopy 69 83.

Batson, P. E. (1993). “Simultaneous STEM imaging 
and electron energy-loss spectroscopy with atomic-
column sensitivity.” Nature 366 727.

Batson, P. E. (2000). “Structural and electron charac-
terisation of a dissociated 60 degrees dislocation 
in GeSi.” Phys. Rev. B 61 16633.

Batson, P. E., et al. (2002). “Sub-ångstrom resolution 
using aberration corrected electron optics.” Nature 
418 617.

Black, G. and Linfoot, E. H. (1957). “Spherical aber-
ration and the information limit of optical images.” 
Proc. R. Soc. Lond. A 239 522.

Bonnet, N., et al. (1999). “Extracting information 
from sequences of spatially resolved EELS spectra 
using multivariate statistical analysis.” Ultrami-
croscopy 77 97.

Born, M. and Wolf, E. (1980). “Principles of Optics” 
(Oxford, Pergamon Press).

Brink, H. A., et al. (2003). “A sub-50 meV spectrom-
eter and energy-filter for use in combination with 
200 kV monochromated (S)TEMs.” Ultramicro
scopy 96 367.

Brown, L. M. (1981). “Scanning transmission elec-
tron microscopy: microanalysis for the micro
electronic age.” J. Phys. F 11 1.

Browning, N. D., et al. (1993). “Atomic-resolution 
chemical analysis using a scanning transmission 
electron microscope.” Nature 366 143.

Brydson, R. (2001). “Electron Energy Loss Spectro
scopy” (Oxford, BIOS).

Chisholm, M. F., et al. (1998). “Atomic configuration 
and energetics of arsenic impurities in a silicon 
grain boundary.” Phys. Rev. Lett. 81 132.

Cosgriff, E. C., et al. (2005). “The spatial resolution 
of imaging using core-loss spectroscopy in the 

scanning transmission electron microscope.” Ultra-
microscopy 102 317.

Cowley, J. M. (1969). “Image contrast in a transmis-
sion scanning electron microscope.” Appl. Phys. 
Lett. 15 58.

Cowley, J. M. (1976). “Scanning transmission electron 
microscopy of thin specimens.” Ultramicroscopy 2 
3.

Cowley, J. M. (1978). “Electron microdiffraction.” 
Adv. Electron. Electron Phys. 46 1.

Cowley, J. M. (1979a). “Adjustment of an STEM 
instrument by use of shadow images.” Ultramicro
scopy 4 413.

Cowley, J. M. (1979b). “Coherent interference in con-
vergent-beam electron diffraction & shadow 
imaging.” Ultramicroscopy 4 435.

Cowley, J. M. (1981). “Coherent interference effects 
in SIEM and CBED.” Ultramicroscopy 7 19.

Cowley, J. M. (1986). “Electron-diffraction phenom-
ena observed with a high-resolution STEM instru-
ment.” J. Electron Microsc. Tech. 3 25.

Cowley, J. M. (1990). “Diffraction Physics” �
(Amsterdam, North-Holland).

Cowley, J. M. (1992). “Electron Diffraction Tech-
niques” (Oxford, Oxford University Press).

Cowley, J. M. and Disko, M. M. (1980). “Fresnel dif-
fraction in a coherent convergent electron beam.” 
Ultramicroscopy 5 469.

Crewe, A. V. (1980). “The physics of the high-�
resolution STEM.” Rep. Prog. Phys. 43 621.

Crewe, A. V., et al. (1968a). “Electron gun using a 
field emission source.” Rev. Sci. Instr. 39 576.

Crewe, A. V., et al. (1968b). “A high-resolution scan-
ning transmission electron microscope.” J. Appl. 
Phys. 39 5861.

Crewe, A. V., et al. (1970). “Visibility of single atoms.” 
Science 168 1338.

Dellby, N., et al. (2001). “Progress in aberration-�
corrected scanning transmission electron micro
scopy.” J. Electron Microsc. 50 177.

Dinges, C., et al. (1995). “Simulation of TEM images 
considering phonon and electron excitations.” 
Ultramicroscopy 60 49.

Donald, A. M. and Craven, A. J. (1979). “A study of 
grain boundary segregation in Cu-Bi alloys using 
STEM.” Phil. Mag. A39 1.

Egerton, R. F. (1996). “Electron Energy-Loss Spec-
troscopy in the Electron Microscope” (New York, 
Plenum Press).

Falke, U., et al. (2004). “Atomic structure of a (2x1) 
reconstructed NiSi2/Si(001) interface.” Phys. Rev. 
Lett. 92 116103.

Fertig, J. and Rose, H. (1981). “Resolution and con-
trast of crystalline objects in high-resolution scan-

HSS_sample.indd   49 10/3/05   3:59:08 PM



50� P.D. Nellist

L1

ning transmission electron microscopy.” Optik 59 
407.

Findlay, S. D., et al. (2003). “Lattice-resolution con-
trast from a focused coherent electron probe. Part 
II.” Ultramicroscopy 96 65.

Gabor, D. (1948). “A new microscope principle.” 
Nature 161 777.

Haider, M., et al. (1998a). “A spherical-aberration-
corrected 200kV transmission electron micro-
scope.” Ultramicroscopy 75 53.

Haider, M., et al. (1998b). “Electron microscopy 
image enhanced.” Nature 392 768.

Hartel, P., et al. (1996). “Conditions and reasons for 
incoherent imaging in STEM.” Ultramicroscopy 63 
93.

Hillyard, S. and Silcox, J. (1993). “Thickness effects 
in ADF STEM zone axis images.” Ultramicroscopy 
52 325.

Hillyard, S., et al. (1993). “Annular dark-field imaging: 
resolution and thickness effects.” Ultramicroscopy 
49 14.

Hirsch, P., et al. (1977). “Electron Microscopy of Thin 
Crystals” (Malabar, Krieger).

Hoppe, W. (1969a). “Beugung im Inhomogenen 
Primärstrahlwellenfeld. I. Prinzip einer Phasen-
messung von Elektronenbeugungsinterferenzen.” 
Acta Crystallogr. A 25 495.

Hoppe, W. (1969b). “Beugung im Inhomogenen 
Primärstrahlwellenfeld. III. Amplituden- und 
Phasenbestimmung bei unperiodischen Objek-
ten.” Acta Crystallogr. A 25 508.

Hoppe, W. (1982). “Trace structure analysis, ptycho
graphy, phase tomography.” Ultramicroscopy 10 187.

Howie, A. (1979). “Image contrast and localised 
signal selection techniques.” J. Microsc. 117 11.

James, E. M. and Browning, N. D. (1999). “Practical 
aspects of atomic resolution imaging and analysis 
in STEM.” Ultramicroscopy 78 125.

Jesson, D. E. and Pennycook, S. J. (1993). “Incoherent 
imaging of thin specimens using coherently scat-
tered electrons.” Proc. R. Soc. Lond. A 441 261.

Jesson, D. E. and Pennycook, S. J. (1995). “Incoherent 
imaging of crystals using thermally scattered elec-
trons.” Proc. R. Soc. Lond. A 449 273.

Kirkland, A. I., et al. (1995). “Superresolution by 
aperture synthesis—tilt series reconstruction in 
CTEM.” Ultramicroscopy 57 355.

Kirkland, E. J., et al. (1987). “Simulation of annular 
dark field STEM images using a modified mul-
tislice method.” Ultramicroscopy 23 77.

Kohl, H. and Rose, H. (1985). “Theory of image for-
mation by inelastically scattered electrons in the 
electron microscope.” Adv. Electron. Electron 
Phys. 65 173.

Krivanek, O. L., et al. (1999). “Towards sub-Å elec-
tron beams.” Ultramicroscopy 78 1.

Krivanek, O. L., et al. (2003). “Towards sub-0.5 Å 
electron beams.” Ultramicroscopy 96 229.

Lin, J. A. and Cowley, J. M. (1986). “Reconstruction 
from in-line electron holograms by digital process-
ing.” Ultramicroscopy 19 179.

Loane, R. F., et al. (1991). “Thermal vibrations in 
convergent-beam electron diffraction.” Acta Crys-
tallogr. A 47 267.

Loane, R. F., et al. (1992). “Incoherent imaging of 
zone axis crystals with ADF STEM.” Ultramicro
scopy 40 121.

Lupini, A. R. (2001). Ph.D. Thesis. Cavendish Labo-
ratory, The University of Cambridge.

Lupini, A. R. and Pennycook, S. J. (2003). “Localisa-
tion in elastic and inelastic scattering.” Ultrami-
croscopy 96 313.

Lyman, C. E., et al. (1994). “High performance X-ray 
detection in a new analytical electron microscope.” 
J. Microsc. 176 85.

McGibbon, A. J., et al. (1995). “Direct observation of 
dislocation core structures in CdTe/GaAs(001).” 
Science 269 519.

McGibbon, M. M., et al. (1994). “Direct determina-
tion of grain boundary atomic structures in 
SrTiO3.” Science 266 102.

Mitsuishi, K., et al. (2001). “New scheme for calcula-
tion of annular dark-field STEM image including 
both elastically diffracted and TDS wave.” J. Elec-
tron Microsc. 50 157.

Möbus, G. and Nufer, S. (2003). “Nanobeam propaga-
tion and imaging in a FEGTEM/STEM.” Ultrami-
croscopy 96 285.

Mory, C., et al. (1987). “Optimum defocus for STEM 
imaging and microanalysis.” Ultramicroscopy 21 
171.

Mullejans, H., et al. (1993). “Secondary-electron 
coincidence detection and time-of-flight spectros-
copy.” Ultramicroscopy 52 360.

Muller, D. A. and Silcox, J. (1995). “Delocalisation in 
inelastic imaging.” Ultramicroscopy 59 195.

Muller, D. A., et al. (1993). “Mapping sp2 and sp3 
states of carbon at sub-nanometre spatial resolu-
tion.” Nature 366 725.

Muller, D. A., et al. (2001). “Simulation of thermal 
diffuse scattering including a detailed phonon dis-
persion curve.” Ultramicroscopy 86 371.

Nakanishi, N., et al. (2002). “Retrieval process of 
high-resolution HAADF-STEM images.” J. Elec-
tron Microsc. 51 383.

Nellist, P. D. and Pennycook, S. J. (1996). “Direct 
imaging of the atomic configuration of ultradis-
persed catalysts.” Science 274 413.

HSS_sample.indd   50 10/3/05   3:59:09 PM



2. Scanning Transmission Electron Microscopy� 51

L1

Nellist, P. D. and Pennycook, S. J. (1998a). “Accurate 
structure determination from image reconstruc-
tion in ADF STEM.” J. Microsc. 190 159.

Nellist, P. D. and Pennycook, S. J. (1998b). “Subang-
strom resolution by underfocussed incoherent 
transmission electron microscopy.” Phys. Rev. Lett. 
81 4156.

Nellist, P. D. and Pennycook, S. J. (1999). “Incoherent 
imaging using dynamically scattered coherent 
electrons.” Ultramicroscopy 78 111.

Nellist, P. D. and Pennycook, S. J. (2000). “The prin-
ciples and interpretation of annular dark-field Z-
contrast imaging.” Adv. Imaging Electron Phys. 
113 148.

Nellist, P. D. and Rodenburg, J. M. (1994). “Beyond 
the conventional information limit: the relevant 
coherence function.” Ultramicroscopy 54 61.

Nellist, P. D. and Rodenburg, J. M. (1998). “Electron 
ptychography I: experimental demonstration 
beyond the conventional resolution limits.” Acta 
Crystallogr. A 54 49.

Nellist, P. D., et al. (1995). “Resolution beyond the 
‘information limit’ in transmission electron micro
scopy.” Nature 374 630.

Nellist, P. D., et al. (2003). “Towards sub-0.5 angstrom 
beams through aberration corrected STEM.” �
Proceedings of EMAG2003, Oxford (IOP Conf. 
Ser. 179).

Nellist, P. D., et al. (2004). “Direct sub-angstrom 
imaging of a crystal lattice.” Science 305 1741.

Pennycook, S. J. (1989). “Z-contrast STEM for mate-
rials science.” Ultramicroscopy 30 58.

Pennycook, S. J. (2002). “Structure determination 
through Z-contrast microscopy.” Adv. Imaging 
Electron Phys. 123 173.

Pennycook, S. J., et al. (1980). “Observation of cath-
odoluminescence at single dislocations by STEM.” 
Phil. Mag. A 41 589.

Pennycook, S. J. and Jesson, D. E. (1990). “High-�
resolution incoherent imaging of crystals.” Phys. 
Rev. Lett. 64 938.

Perovic, D. D., et al. (1993). “Imaging elastic strain in 
high-angle annular dark-field scanning transmis-
sion electron microscopy.” Ultramicroscopy 52 
353.

Rafferty, B. and Brown, L. M. (1998). “Direct and 
indirect transitions in the region of the band gap 
using EELS.” Phys. Rev. B 58 10326.

Rafferty, B. and Pennycook, S. J. (1999). “Towards 
column-by-colum spectroscopy.” Ultramicroscopy 
78 141.

Rafferty, B., et al. (2001). “On the origin of transverse 
incoherence in Z-contrast STEM.” J. Electron 
Microsc. 50 227.

Rayleigh, Lord (1896). “On the theory of optical 
images with special reference to the microscope.” 
Phil. Mag. (5) 42 167.

Reed, S. J. B. (1982). “The single-scattering model 
and spatial-resolution in X-ray analysis of thin 
foils.” Ultramicroscopy 7 405.

Ritchie, R. H. and Howie, A. (1988). “Inelastic scat-
tering probabilities in scanning transmission elec-
tron microscopy.” Phil. Mag. A 58 753.

Rodenburg, J. M. and Bates, R. H. T. (1992). “The 
theory of super-resolution electron microscopy via 
Wigner-distribution deconvolution.” Phil. Trans. R. 
Soc. Lond. A 339 521.

Rodenburg, J. M., et al. (1993). “Experimental tests 
on double-resolution coherent imaging vian 
STEM.” Ultramicroscopy 48 303.

Ronchi, V. (1964). “40 years of history of grating 
interferometer.” Appl. Opt. 3 437.

Rose, H. (1990). “Outline of a spherically corrected 
semiaplanatic medium-voltage transmission elec-
tron microscope.” Optik 85 19.

Rossouw, C. J., et al. (2003). “Channelling effects in 
atomic resolution STEM.” Ultramicroscopy 96 
299.

Scherzer, O. (1936). “Über einige Fehler von Elek-
tronenlinsen.” Zeit. Phys. 101 593.

Scherzer, O. (1947). “Spharische und Chromatische 
Korrektur von Elektronen-Linsen.” Optik 2 114.

Shao, Z. (1988). “On the fifth order aberration in a 
sextupole corrected probe forming system.” Rev. 
Sci. Instr. 59 2429.

Sohlberg, K., et al. (2004). “Origin of anomolous Pt-
Pt distances in the Pt/alumina catalytic system.” 
ChemPhysChem 5 1893.

Spence, J. C. H. (1988). “Experimental High-�
Resolution Electron Microscopy” (New York, 
Oxford University Press).

Spence, J. C. H. (1992). “Convergent-beam nanodif-
fraction, in-line holography and coherent shadow 
imaging.” Optik 92 57.

Spence, J. C. H. (1998a). “Crystal structure determi-
nation by direct inversion of dynamical microdif-
fraction patterns.” J. Microsc. 190 214.

Spence, J. C. H. (1998b). “Direct inversion of dynami-
cal electron diffraction patterns to structure 
factors.” Acta Crystallogr. A 54 7.

Spence, J. C. H. and Cowley, J. M. (1978). “Lattice 
imaging in STEM.” Optik 50 129.

Spence, J. C. H. and Zuo, J. M. (1992). “Electron 
Microdiffraction” (New York, Plenum Press).

Suenaga, K., et al. (2000). “Element-selective single 
atom imaging.” Science 290 2280.

Swanson, L. W. and Crouser, L. C. (1967). “Total 
energy distribution of field-emitted electrons and 

HSS_sample.indd   51 10/3/05   3:59:10 PM



52� P.D. Nellist

L1

single-plane work functions for tungsten.” Phys. 
Rev. 163 622.

Treacy, M. M. J., et al. (1978). “Z contrast imaging of 
platinum and palladium catalysts.” Phil. Mag. A 38 
569.

Varela, M., et al. (2004). “Spectroscopic imaging of 
single atoms within a bulk solid.” Phys. Rev. Lett. 
92 095502.

Voyles, P. M., et al. (2002). “Atomic-scale imaging of 
individual dopant atoms and clusters in highly n-
type bulk Si.” Nature 416 826.

Voyles, P. M., et al. (2004). “Depth-dependent imaging 
of individual dopant atoms in silicon.” Microsc. 
Microanal. 10 291.

Wade, R. H. (1992). “A brief look at imaging and 
contrast theory.” Ultramicroscopy 46 145.

Watanabe, M. and Williams, D. B. (1999). “Atomic-
level detection by X-ray microanalysis in the ana-

lytical electron microscope.” Ultramicroscopy 78 
89.

Williams, D. B. and Carter, C. B. (1996). “Transmis-
sion Electron Microscopy” (New York, Plenum 
Press).

Yamazaki, T., et al. (2001). “Artificial bright �
spots in atomic-resolution high-angle annular 
dark-field STEM images.” J. Electron Microsc.  
50 517.

Zach, J. and Haider, M. (1995). “Correction of spheri-
cal and chromatic aberration in a low-voltage SE.” 
Optik 98 112.

Zeitler, E. and Thomson, M. G. R. (1970). �
“Scanning transmission electron microscopy.” 
Optik 31 258.

Ziegler, A., et al. (2004). “Interface structure and 
atomic bonding characteristics in silicon nitride 
ceramics.” Science 306 1768.

HSS_sample.indd   52 10/3/05   3:59:10 PM



http://www.springer.com/978-0-387-25296-4


