1

Introduction: Extending the Rasch Model

Matthias von Davier', Jiirgen Rost?, and Claus H. Carstensen?
! Educational Testing Service
2 Leibniz Institute for Science Education, Kiel

1.1 Introduction

The present volume is a collection of chapters on research and development
work on extensions of the Rasch model (RM; Rasch, 1960) that have focused
on relaxing some fundamental constraints of the original RM, while preserv-
ing many of the unique features of the model. More specifically, the volume
presents extensions of the RM in which certain homogeneity assumptions on
the item level and the population level have been relaxed. With these two
types of assumption intact, the original RM decomposes the probability of
item responses in two independent components: an item-specific difficulty pa-
rameter that is constant across all examinees in the population, and one abil-
ity parameter for each examinee that is the same across all items in a given
assessment.

These homogeneity assumptions, however, are the ones not met in many
practical applications of the RM, since either some or all of the items may
function differently in different subpopulations, or the responses of subjects
to these items may depend on more than one latent trait. This turns out to
be an issue, for example, if item types are mixed, if the content of items varies
somewhat, and/or if items are assessed in complex populations of examinees
that come from different backgrounds such as different educational systems.

The volume addresses these issues in two ways, first by presenting chapters
on recent extensions to the RM and second by providing chapters on applica-
tions of these extensions in educational or psychological contexts. The model
extensions presented here have been actively developed and studied by vari-
ous researchers, who have contributed to pioneering theoretical developments
on extending the RM to multiple populations and multidimensional abilities.
These researchers are often long-term advocates of applying these models to
substantial research questions in the social sciences. Many researchers with
backgrounds in other well-established statistical fields likewise took the RM
as a basis for extending “their” models, frequently with a specific substan-
tive question in mind. Several chapters in this volume are contributed by the
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original developers of such model extensions, who took a mathematical model
and made it more flexible to suit applied research questions.

This direction of development—from a theory-driven substantive research
question or a hypothesis to a model extension that reflects this theory—is
guiding the structure of most contributions in this volume. The different
chapters describe this process by referring to exemplary theories or research
questions under investigation, then outline the required features of the model
extension used to investigate these questions, and finally describe the path
taken to extend or choose a model and to plan and carry out the analysis. To
reflect this interplay between substantive theory and model development, the
first part of this volume includes papers presenting work on extending MRMs
and multiple group RMs—relaxing the person homogeneity assumptions—as
well as multivariate RMs that relax the item homogeneity assumption to fit
typical questions arising in applied research. The second part of this volume
consists of chapters that present the models developed in the first part in a
variety of applications in empirical educational research and a number of areas
of psychological research.

1.1.1 The Rasch Model

This section introduces a basic set of assumptions and a general framework
for latent variable models for item response data. The conventions introduced
here can be found in most subsequent chapters, except where the extensions
developed in subsequent chapters are more easily derived using a different
notation.

Assume there are n examinees, F1,..., E,, drawn randomly from a popu-
lation, who respond to a set of I test items. Let a,,; € {0,1,...,m;} denote the
integer-coded response of examinee v to item ¢, that is, the actual behavioral
response is mapped to an element of a set of successive integers starting from
0.

If the responses to item 7 take on only the two values 0 and 1, we speak
of dichotomous data and refer to the dichotomous RM; if the responses can
take on more than two integer values, say x.; € {0,1,2,3,4}, the RM has
to be specified for polytomous ordinal data to model responses of this type
appropriately. In this volume, both the dichotomous RM and the RM for poly-
tomous data will be used frequently, and it will often not be explicitly specified
whether item responses are assumed to be dichotomous or polytomous. We
ensure that this will not lead to ambiguities by using a specific method of
introducing the RM in a mathematical form that can be used for both di-
chotomous and polytomous data while meeting certain common foundational
assumptions of the RM.

Given the above definitions, denote the observed item responses of an
examinee v by @, = (41, .., Zy1), that is, a vector with integer components in
the finite space 2, = HZ'I:1 {0,...,m;} of possible response patterns for these
I test items. The RM is derived by assuming certain unobserved quantities in
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addition to the observed quantities z,1,...,Z,s for each examinee v and each
item ¢, and by specifying certain assumptions about the relation of these,
yet to be specified, unobserved quantities to the probability of observing a
response pattern x € (2.

The dichotomous RM assumes that there is a real-valued parameter 6,
for each examinee, referred to as person parameter, and real-valued (3; for
each item, subsequently referred to as item difficulty. For the probability of a
response &,;, the RM assumes

eXp(xm- (av - ﬁz))

PM(X = -Tm') = P(xm|9vaﬂz> = 1+ eXp(9 — ﬁ)

(1.1)

for all examinees v =1,..., N and all items ¢ =1,...,1.

This equation can easily be extended to polytomous responses by writing
the model as
B €Xp (xviov - ﬂmm)

1 + ZT;I exXp (:1701) - ﬁzr)
with real-valued 3, fori =1,...,I and x = 1,...,m; and 6, real-valued as
above. The model as defined in Equation 1.2 is suitable for observed variables
Tyi €40,...,m;} with an integer m; > 0.

The definition of the RM ensures that the probability of responding with
category x rather than with x — 1 is strictly increasing with increasing person
parameter 6. For the item parameters, strictly decreasing monotonicity holds,
with increasing difficulty threshold 7;,, a response in the upper (z) of two
adjacent categories (z,z — 1) decreases in probability. These monotonicity
properties (MO) are among the defining characteristics of the RM.

For the second defining characteristic, it is convenient to write

P(zyilby, Bi.) (1.2)

a(by,5;.) =—1In (1 + ZL exp(z6, — ﬂm)>
x=1

and to write the RM as
P(X = xvi|ev7 ﬁz) = exp (xviev - ﬁia:iv + a(9v7 51)) . (13)

In addition to the monotonicity in item and person parameters, the RM
assumes local independence (LI), i.e., it is assumed that, for an examinee
with person parameter 6, the responses @ = (x1,...,2s) are independently
distributed given 6. That is,

I
P(z|0) = HP(X = 2|0, 5:)

for all . This, with the above definitions, yields after some elementary trans-
formations
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I
P(x|0) = exp(t,0) exp(a(f, B))exp (Z @,m) (1.4)
=1

with ¢, = Y1, 2y and a(0,,8) = Y., (6, 8;.).

Note that in Equation 1.4, the probability of a response pattern x in the
RM has been written as a product of three terms. Note that one of the terms,
exp(a(#,3)), does not depend on the observed data, and another one is the
same for all response patterns that share the same total score t. This property
will be used in the next section, which talks about conditional inferences in
the RM.

To estimate parameters, maximum likelihood methods can be applied. Ini-
tial approaches to the estimation problem have been based on maximizing a
likelihood function for the observed data matrix (2y;);—; -y jointly for
the 6, and the (;, parameters. To avoid undesirable properties of the joint
estimation (Neyman & Scott, 1948), later approaches applied modified likeli-
hood equations that eliminated the person parameter # and thus allow one to
maximize for the item parameters only. By eliminating the “nuisance” param-
eters 6, which are increasing in number with sample size N, the consistency
of item parameter estimates can be ensured. This is done either by assuming a
distribution for the person parameter # and integrating over this distribution
(marginal maximum likelihood—MML) or by conditioning on some available
observed quantity, a sufficient statistic (Bickel & Doksum, 1977) that allows
one to eliminate the nuisance parameters.

MDML estimation is prevalent in more general IRT models since these often
do not have simple sufficient statistics. However, the specific form of the RM
as given in Equations 1.1 and 1.2 ensures that the total score ¢, is a sufficient
statistic for the person parameter 6, and similarly for the item-category to-
tals. This property of the RM, the sufficiency of total (ST) scores for the
item and person parameters, is the third defining characteristic of RMs. The
impact of this sufficiency is elaborated on in the following subsection on the
conditional (on total score) form used in the conditional maximum likelihood
estimation (CML) of the RM.

1.1.2 Conditional Inferences in the Rasch Model

The sufficiency of the total score (ST) ensures that the RM can be written in a
conditional form, based on the observed distribution of the sufficient statistic.
The conditional form of the RM no longer contains the person parameter
and can be used to draw conditional inferences about model data fit and
to estimate item parameters without assumptions about the distribution of
person parameters in the population by plugging in the observed counts of
the total score.

The derivation of the RM in conditional form is based on Equation 1.4.
For a given 6, the probability of observing a total score ¢ is
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P(t|0) =) P(x|),

x|t

which is the sum over all conditional probabilities of response patterns & with
the same total score t. As it is easily seen in Equation 1.4, all probabilities in
the above sum share the terms exp(t0) and exp(a(6,3)), since these do not
depend on the specific response pattern @, but only on 6 and ¢ (and 3, which
is of lesser concern at this point).

Conditional inference in the RM uses the specific form of P(x|f) from
Equation 1.4, which separates terms that depend on the observed data a
from terms that depend only on the total score ¢ or do not at all depend on
the observed data. Then, after some algebra, we may write

I
P(£B|t,9) _ P($|9) _ exp( Zi:l[ﬂwi) )
b(tl0) Zm'\t exp(— 2 iy Biwt)

The right-hand side of the above expression is independent of § and con-
tains only the response vector « and the item parameters B. Integrating over
the person parameter distribution using P(z[t) = [, P(x[t,0)p(#)df yields

I
P(xlt) = exp(— 2121 ﬂmi) 7 )
0 Zz/|t exp(— Zg:1 Biat) )

which is the probability of a response vector x in the conditional form of the
RM. This is not to be confused with the integration over the ability distribu-
tion commonly used for more general IRT models in conjunction with MML
estimation methods (Bock & Aitkin, 1981). In contrast to MML estimation,
the integration mentioned above to arrive at the expression in Equation 1.5
does not actually take place during estimation; it is utilized as an algebraic
equivalence to get rid of the 6 on the left side of the expression.

In this conditional form of the RM, we have an expression for the prob-
ability of a response pattern mx, given total score t that is independent of
0. This eliminates the need either to estimate the ability 0 for each exami-
nee or to assume a specific form of ability distribution when estimating item
parameters.

The conditional form of the RM is quite useful when item parameters have
to be estimated from observed data. The independence of specific assumptions
about the ability distribution is ensured in the conditional estimation of pa-
rameters. This sets the RM apart from other models for item response data,
since most other models such as the two- and three-parameter item response
theory (IRT) models need additional assumptions about the distribution of
person parameters for estimating item parameters.

Conditional inferences play an important role in the RM (Fischer & Mole-
naar, 1995) and in many of the extensions of the RM presented in this volume.
These extensions preserve the defining characteristics of the RM in a way that
enables one to use the RM (or its extensions) in conditional form.
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1.1.3 Some Notation for Extended Rasch Models

This section introduces notation that allows one to specify the RM in the
presence of multiple populations and for multiple scales simultaneously. Using
this approach, many extensions presented in this volume can be viewed as
models that assume that the RM holds, with the qualifying condition that
it holds with a different set of parameters in different populations or with a
different ability (person) parameter for each of a set of distinguishable subsets
(scales) of test items.

Assume that there is a many-to-one classification g that maps the person
index v to v = g(v) = c € {1,...,C}, so that each examinee v is member of
exactly one of C' populations (classes, groups). In the ordinary RM, C = 1,
and therefore, the population index ¢ is not needed. Also, assume that there
is a real-valued 6, for all v and multiple scales k = 1,..., K, and let 8, =
(0v1,--.,0uK) be the k-dimensional person parameter.

Let @, = (Zy1,...,Tys) be the vector of observed responses for examinee
v e {l,...,N}. As above, the categorical responses x,,; may be dichotomous
or polytomous ordinal responses, i.e., assume x,,; € {0,...,m;}. Note that we
keep most of the notation intact; v denotes the examinee index, and N is the
total number of observations. Since there is more than one set of items, the
index k denotes the scale, and the items ¢ = 1,..., I are mapped onto the k
scales.

One additional constructive element has to be included. Each item may
belong to exactly one component of ability, say the kth component of 8, or
it may be considered an item that taps into one or more of the K-person
parameter components. In the case that the items belong to more than one
ability component k, we speak about within-item multidimensionality. Oth-
erwise, if each item belongs to exactly one ability component, we talk about
between-item multidimensionality (compare also Chapter 4 in this volume).

Within-item multidimensionality refers to the assumption that responses
to each item may require multiple ability components (more than one skill or
ability component is required for each item) while between-item multidimen-
sionality refers to the assumption that each item can be solved using only one
skill, but different subsets of items may require different skills.

For the case of within-item multidimensionality, each item 14 is character-
ized by a vector q; = (gi1,. .., qix) that represents the load of each scale on
the ith item. The collection of these vectors into a matrix () represents the
design of the assessment instrument. The matrix ) determines which items
load on which scales. In the RMs presented here, this design matrix consists
of zeros and ones, predetermined by the researcher. More specifically, the Q-
matrix entries are a hypothesized structure of relationships between required
skills and items, and the matrix entries (loadings) are fixed, not estimated.

Therefore, we may write for the case of within-item multidimensionality

_ exp (x(quov) - ﬁiwc)
1+ 3700 exp (y(a] 0y) — Biye)

Py(x]6y,c = g(v))
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with qfﬂ = Zk qirO%.

For the case of between-item multidimensionality (each item “loads” on
one scale only), we can define the probability of a response x to item ¢ in scale
k by an examinee v with ¢ = g(v) as

_ exp(xavk - 5113(:)

1+ 221:11 exp(yfuk — Biye)
with real-valued ;.. for = = 1,...,m;, and S = 0. The two definitions
above are compatible, since the between-item multidimensionality is a special
case of the within-item multidimensionality. If each item loads on only one
scale, the cross product g7 @ reduces to the one term 6., for which g;x = 1,
since all other g;;s are equal to 0.

Obviously, if ¢ and k were not present, the above equation would resemble
the ordinary RM from the previous section. Many of the extensions treated
in this volume can be expressed in ways that add a population index (like ¢),
or a scale index (like k) to the ordinary RM.

In the equations, the probability of the outcome depends on v only through
0, and through ¢ = g(v), so that we may write

exp (x(qua) - 611:(:)
L+ 300 exp (y(a] 0) — Biye)

by omitting the v in the equation. This holds, since all examinees v, v’ with
identical 8, = 8, and ¢ = g(v) = g(v’) have the same response probabilities
in the model above.

For a response vector @ = (x1,...,x), the probability of this variable is
defined by Equation 1.6 above and the usual assumption of local independence,
that is,

Pi(z]6y, ¢ = g(v))

Pi(z|0,¢c) = (1.6)

I
P(x|0,c) = H Pi(z;10,¢)
i=1

with the same definitions as before, i.e, 8 = (0;,...,0k) and ¢ € {1,...,C},
and P;(x;]0,c) as defined above.

For between-item multidimensionality, the conditional form of the RM is
easily derived in this framework as well, but it will be obviously dependent on
the scale k and the population c. In that case, the conditional RM becomes

eXp(— Ei|k(i):k Biww)
zm;\tk exp(— Zi\k(i):k Briar, )

with &; denoting the projection of the response vector that contains only items
of scale k. The total scale score ¢y, is the corresponding sum over only those
items belonging to the kth scale. The conditional RM for scale k in population
c allows one to estimate item parameters for this scale in this population, using
conditional maximum likelihood estimation methods (Fischer & Molenaar,
1995; von Davier & Rost, 1995).

P(xg|te, c) = (L.7)
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1.1.4 Are These Extensions Still Rasch Models?

Critics of extensions such as the ones presented in this volume may argue
that these models are no longer RMs, since some basic assumptions of the
original model are modified. Even within the group of researchers who use
the original RM, there are arguments as to what is the right way to do so. In
this volume, the majority of extensions of the RM are based on the assumption
that the original RM holds in exhaustive and mutually exclusive subsets of the
item universe and the examinee population. This means that each examinee
belongs to one subpopulation where the RM holds, possibly with a unique set
of item parameters. The same is true for most extensions presented here for
each item; that is, it is assumed that each of the items belongs to one subset
(subscale) for which the original RM holds, but there may be more than
one subscale. A Rasch purist could still analyze these subscales separately,
or analyze subpopulations separately in this case. Such an approach would
retain all the assumptions of the RM by using a more constrained definition
of the target population and/or the item universe. However, if a joint analysis
is desired, an extended model that accommodates differences between items
and subpopulations is required.

The first rule of statistical modeling is that no model ever “really”’ fits the
data. This is true and can be shown empirically by rigorously testing models
in sufficiently large samples. Still, there is hope in the sense that some models
provide useful summaries of data, so that these summaries are predictive
for some outside variable that was assessed concurrently or even some future
outcome. Model extensions are aimed at improving these capabilities; they are
aimed at improving predictions by including a more complex description of
the observed variables (that is, the item responses), the examinees involved, or
both. This more complex description relates to an increased number of model
parameters that often make either items’ response functions or population
distributions more flexible.

Which of these extensions are legitimate? And for whom? This may often
depend on which group (or subpopulation) the researcher who judges these
extensions belongs in (von Davier, 2006). There are, of course, common sta-
tistical issues that pose problems for any model extension, such as a lack of
identifiability, which all professional groups would agree disqualifies a model
from further consideration. Apart from these, the selection of which exten-
sions are permissible, and which catapult the specific model outside of the
group of “extended” RMs stays somewhat subjective.

As mentioned above, most extensions in this volume maintain basic fea-
tures of the RM such as the conditional sufficiency of raw scores (either in
subpopulations, or as subscores based on subsets of items), the conditional
independence assumption, and the monotonicity assumption. Conditional in-
dependence is given up in only one of the chapters, mainly to account for dif-
ferences in point-biserial correlations among items, which would otherwise be
modeled by allowing a discrimination parameter. Monotone increasing charac-
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teristic functions, in both item easiness (negative difficulty) and in the person
parameter, are the basis for all the models presented in this volume.

Maybe more interesting than the question whether the extensions pre-
sented here may still be called (extended) RMs is whether these models add
value to the statistical analysis of item response data. In many cases, adding
parameters to a model and increasing model-data fit is easy to do, but the
added value of doing so has to be well established in order to justify the
added complexity for the given purpose of the analysis. Molenaar (1997) has
expressed this in very understandable terms that may be paraphrased as “IRT
models are great, even if they never fit the data. But does it matter?” The RM
(and its extensions) set the stage for answering Molenaar’s question. However,
the question whether it matters has to be qualified as, “Does it matter for the
specific purpose one has in mind?”

Applications aimed at variance decomposition using background variables
ask a different question, and therefore may require consideration of a different
type of model extension, than applications aimed at deriving a rank order
of students applying to a higher-education facility. The former purpose is ex-
planatory and tests hypotheses about relationships between variables, whereas
the latter classifies students as admitted versus not admitted. One application
is concerned with the best possible representation of variance components,
whereas the other is concerned with the best possible point estimate for each
student in order to provide the most accurate classification, given data and
model. The chapters in this volume derive extensions of the RM with specific
purposes in mind. The reader is kindly asked to view the chapters with that
in mind, in order to see the scope of applicability of the specific extensions
and to explore the different fields in which the simple and elegant form of the
RM has proven useful as the foundational basis for a more complex statistical
model.

1.2 Overview and Structure of This Volume

Most if not all extensions presented in this volume were created after encoun-
tering the need to model data that are more complex than the RM in its
“pure” form can handle. Some extensions address specific questions and were
driven by some specific research context, whereas other extensions address
more general considerations as to which model assumptions may limit the
applicability of the RM to more complex assessment data.

The chapters within this volume introduce specific extensions or applica-
tions and cross reference to other appropriate chapters. References to work
published outside this volume are also provided to encourage further reading
and to provide a broader view of this area of research as consisting of inter-
connected fields. In this view, it is less important whether a statistical tool
such as hierarchical linear models uses the RM for categorical dependent vari-
ables or whether the RM adopts a more complex population structure that
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reminds one of a hierarchical linear model. We hope that it becomes evident
that no matter what prompted a particular development, the merger of the
RM with other statistical methods creates interesting, useful, and rigorously
testable models with applications in a variety of fields. This approach should
provide some guidance for readers and help them to build a cognitive map of
the different extensions of the RM.

This format is applied to the more general chapters as well as to the more
applied chapters, which either contain an overview of relevant applications
or illustrate certain extensions using exemplary studies from various areas of
research.

1.2.1 General Rasch Model Extensions

The first part of this volume covers the ideas guiding these model extensions
and tries to create a framework that helps the reader understand the specific
tools these model extensions provide for researchers. These more conceptual
chapters are an attempt to showcase more generally some ways to think about
deriving model extensions from demands that cannot be fulfilled by a model
that assumes a very strict structure. This part also contains a chapter that
provides some insight into how the expected payoff of extending the RM can
be tested.

The first chapter in this part (Chapter 2) is the most conceptual in the
sense that it lays out what kind of inferences require models that include
strong homogeneity assumptions. Chapter 3 outlines how evidence for the
need for more complex models can be collected and evaluated statistically.
This chapter introduces procedures for testing whether the added complexity
of extended RMs actually helps to describe and understand the data better.
This, in our understanding, is a fundamental requirement of analysis with
complex statistical models, since the added complexity requires more resources
for reporting as well as additional effort for researchers who want to make
sense of the results or who want to use the outcomes in subsequent analysis.
Chapter 4 presents an overview of flexible families of multivariate RMs. These
multivariate RMs are based on the assumption that there is a hypothesis about
the dimensional structure of each observed variable, i.e., each item is related to
one or more of the multiple abilities through a design matrix defined a priori.
This design matrix is often referred to as a Q-matrix in models for student
profiles (Tatsuoka, 1983) and resembles the structural basis for a confirmatory
analysis of a multivariate model. Chapter 5 introduces a very useful way to
specify, estimate, and study extensions of RMs. This chapter shows how RMs
and their extensions can be framed in terms of loglinear models and how these
models can be estimated using software for loglinear models. The final chapter
(Chapter 6) in the first part of this volume describes the family of discrete
mixture distribution RMs (mixed Rasch models, [MRMs]; Rost, 1990; von
Davier & Rost, 1995) and HYBRID RMs. This chapter provides an outline of
the basis for these models as derived from IRT and the RM and as integrated
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with latent class analysis (LCA). This unique way of modeling offers tools
to, among other things, handle differential item functioning (DIF) as well as
to test for multidimensionality in the context of discrete mixture distribution
models.

1.2.2 Model Extensions for Specific Purposes

The second part of the volume covers models that were created in response to
a specific problem or research question. Overlap with the first part is inten-
tional, since some of the extensions treated here, even if originally developed
for a specific research question, grew into a broader class of models with ap-
plications in a variety of fields.

The first chapter in this part (Chapter 7) describes a model that allows
one to study developmental processes using repeated measures. This chapter
introduces the saltus model, an extension of the RM that allows one to study
changes in difficulty of tasks over different developmental stages. Chapter 8 in
this part introduces stochastically ordered MRMs for identifying diagnostic
cutscores. Chapter 9 is dedicated to an extension of the HYBRID model that
allows one to study speededness phenomena in detail. This chapter modifies
mixture distribution RMs introduced in the first part of the volume by im-
posing complex equality constraints on them to model the switch between
systematic and random response at a certain point in the response process.
Chapter 10 is a specialization of the multidimensional approach also already
introduced in the first part of the volume. This chapter covers different types
of potential applications of these multidimensional RMs. The fifth chapter in
Part IT, Chapter 11, relates the RM and the MRM to discrete latent trait mod-
els, namely to located latent-class models, and compares parameter estimates
from these different latent-variable models.

The following chapter (Chapter 12) introduces MRMs for longitudinal
data. Interestingly, several contributions in this volume use loglinear models,
initially described in Chapter 5, as the common language to describe devel-
opments based on multivariate or mixture-distribution Rasch models. These
loglinear models with unobserved grouping variables are a useful tool that
lends itself nicely to treating this kind of missing-data problem. Chapter 13
extends the RM to allow for differences in discriminations across the range of
items by introducing an interaction rather than a slope parameter. In contrast
to the two-parameter logistic model, the interaction model used in Chapter
13 retains some of the conditional inference features of the RM. The final
chapter in Part IT (Chapter 14) is an extension of the RM to complex sam-
ples from hierarchically organized populations that do not lend themselves
easily to drawing simple random samples. This situation is often encountered
in large-scale educational assessments and other survey assessments. Here we
might also assume the development from the other side of the statistical tool-
box, namely that the model basis was a hierarchical linear model that was
extended by a Rasch-type measurement model.
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1.2.3 Applications of Extended Rasch Models

The third part of this volume is dedicated to chapters that provide insight
into exemplary applications of extended RMs in various fields of research.
There is a strong link between these chapters and the previous parts, since
the applied work shows how statistical tools that are based on the RM can
help to pose and answer specific questions on data from complex assessments
and or populations.

The first chapter in this part (Chapter 15) presents a variety of applications
of extended RMs such as mixture distribution RMs in the area of cognitive
psychology. Chapter 16 applies mixture RMs to the task of detecting faking
and response distortions with the aim of identifying candidates who try to
present themselves in a specific way. Chapter 17 talks about applications of
multidimensional RMs in an international educational survey assessment.

Chapter 18 talks about applications of RMs and extensions of RMs to
studying developmental issues. This chapter presents an overview of areas of
application and the limitations of these approaches. Chapter 19 compares an
item response model that uses a parsimonious way to account for guessing by
estimating a constrained three-parameter logistic model with the application
of mixture-distribution RMs to identify and correct for guessing behavior.

Chapter 20 covers extended RMs developed for modeling strategy shifts.
This chapter extends previous work on strategy differences and helps one to
understand how such complex models can be conveniently specified in the
framework of loglinear models. Chapter 21 integrates principles of graphical
models and mixture distribution RMs and presents an application to health
science data. The last chapter in this volume (Chapter 22) presents some
applications of RMs and extensions of RMs to data from sports science and
applied psychology in the motor domains.
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