
 

 

Chapter 2 
Linear Elastic Fracture Mechanics 

2.1 Introduction 

Beginning with the fabrication of stone-age axes, instinct and experience about 
the strength of various materials (as well as appearance, cost, availability and 
even divine properties) served as the basis for the design of many engineering 
structures. The industrial revolution of the 19th century led engineers to use iron 
and steel in place of traditional materials like stone and wood. Unlike stone, iron 
and steel had the advantage of being strong in tension, which meant that engi-
neering structures could be made lighter and at less cost than was previously 
possible. In the years leading up to World War 2, engineers usually ensured that 
the maximum stress within a structure, as calculated using simple beam theory, 
was limited to a certain percentage of the “tensile strength” of the material. Ten-
sile strength for different materials could be conveniently measured in the labo-
ratory and the results for a variety of materials were made available in standard 
reference books. Unfortunately, structural design on this basis resulted in many 
failures because the effect of stress-raising corners and holes on the strength of a 
particular structure was not appreciated by engineers. These failures led to the 
emergence of the field of “fracture mechanics.” Fracture mechanics attempts to 
characterize a material’s resistance to fracture—its “toughness.” 

2.2 Stress Concentrations 

Progress toward a quantitative definition of toughness began with the work of 
Inglis1 in 1913. Inglis showed that the local stresses around a corner or hole in a 
stressed plate could be many times higher than the average applied stress. The 
presence of sharp corners, notches, or cracks serves to concentrate the applied 
stress at these points. Inglis showed, using elasticity theory, that the degree of 
stress magnification at the edge of the hole in a stressed plate depended on the 
radius of curvature of the hole.  

The smaller the radius of curvature, the greater the stress concentration. Inglis 
found that the “stress concentration factor”, , for an elliptical hole is equal to: 
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Fig. 2.2.1 Stress concentration around a hole in a uniformly stressed plate. The contours 
for yy shown here were generated using the finite-element method. The stress at the edge 
of the hole is 3 times the applied uniform stress. 

c21  (2.2a) 

where c is the hole radius and  is the radius of curvature of the tip of the hole.  
For a very narrow elliptical hole, the stress concentration factor may be very 

much greater than one. For a circular hole, Eq. 2.2a gives  = 3 (as shown in 
Fig. 2.2.1). It should be noted that the stress concentration factor does not de-
pend on the absolute size or length of the hole but only on the ratio of the size to 
the radius of curvature. 

2.3 Energy Balance Criterion 

In 19202, A. A. Griffith of the Royal Aircraft Establishment in England became 
interested in the effect of scratches and surface finish on the strength of machine 
parts subjected to alternating loads. Although Inglis’s theory showed that the 
stress increase at the tip of a crack or flaw depended only on the geometrical 
shape of the crack and not its absolute size, this seemed contrary to the well-
known fact that larger cracks are propagated more easily than smaller ones. This 
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anomaly led Griffith to a theoretical analysis of fracture based on the point of 
view of minimum potential energy. Griffith proposed that the reduction in strain 
energy due to the formation of a crack must be equal to or greater than the in-
crease in surface energy required by the new crack faces. According to Griffith, 
there are two conditions necessary for crack growth:  

i. The bonds at the crack tip must be stressed to the point of failure. The 
stress at the crack tip is a function of the stress concentration factor, which 
depends on the ratio of its radius of curvature to its length. 

ii. For an increment of crack extension, the amount of strain energy released 
must be greater than or equal to that required for the surface energy of the 
two new crack faces. 

The second condition may be expressed mathematically as: 

dc
dU

dc
dU s  (2.3a) 

where Us is the strain energy, U  is the surface energy, and dc is the crack length 
increment. Equation 2.3a says that for a crack to extend, the rate of strain energy 
release per unit of crack extension must be at least equal to the rate of surface 
energy requirement. Griffith used Inglis’s stress field calculations for a very 
narrow elliptical crack to show that the strain energy released by introducing a 
double-ended crack of length 2c in an infinite plate of unit width under a uni-
formly applied stress a is [2]:  

E
c

U a
s

22
 Joules (per meter width) (2.3b) 

We can obtain a semiquantitative appreciation of Eq. 2.3b by considering the 
strain energy released over an area of a circle of diameter 2c, as shown in Fig. 
2.3.1. The strain energy is U = (½ 2/E)( c2). The actual strain energy computed 
by rigorous means is exactly twice this value as indicated by Eq. 2.3b.  

As mentioned in Chapter 1, for cases of plane strain, where the thickness of 
the specimen is significant, E should be replaced by E/(1 2). In this chapter, we 
omit the (1 2) factor for brevity, although it should be noted that in most prac-
tical applications it should be included. 

The total surface energy for two surfaces of unit width and length 2c is: 

U 4 c  Joules (per meter width) (2.3c) 

The factor 4 in Eq. 2.3c arises because of there being two crack surfaces of 
length 2c.  is the fracture surface energy of the solid. This is usually larger than 
the surface free energy since the process of fracture involves atoms located a 
small distance into the solid away from the surface. The fracture surface energy 
may additionally involve energy dissipative mechanisms such as microcracking, 
phase transformations, and plastic deformation. 
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Thus, taking the derivative with respect to c in Eq. 2.3b and 2.3c, this gives 
us the strain energy release rate (J/m per unit width) and the surface energy crea-
tion rate (J/m per unit width). The critical condition for crack growth is: 

2
2

E
ca  (2.3d) 

The left-hand side of Eq. 2.3d is the rate of strain energy release per crack tip 
and applies to a double-ended crack in an infinite solid loaded with a uniformly 
applied tensile stress. Equation 2.3d shows that strain energy release rate per 
increment of crack length is a linear function of crack length and that the required 
rate of surface energy per increment of crack length is a constant. Equation 2.3d 
is the Griffith energy balance criterion for crack growth, and the relationships 
between surface energy, strain energy, and crack length are shown in Fig. 2.3.2.  

A crack will not extend until the strain energy release rate becomes equal to 
the surface energy requirement. Beyond this point, more energy becomes avail-
able by the released strain energy than is required by the newly created crack 
surfaces which leads to unstable crack growth and fracture of the specimen.  

 

Fig. 2.3.1 The geometry of a straight, double-ended crack of unit width and total length 
2c under a uniformly applied stress a Stress concentration exists at the crack tip. Strain 
energy is released over an approximately circular area of radius c. Growth of crack cre-
ates new surfaces. 
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Fig. 2.3.2 Energy versus crack length showing strain energy released and surface energy 
required as crack length increases for a uniformly applied stress as shown in Fig. 2.3.1. 
Cracks with length below cc will not extend spontaneously. Maximum in the total crack 
energy denotes an unstable equilibrium condition. 

The equilibrium condition shown in Fig. 2.3.2 is unstable, and fracture of the 
specimen will occur at the equilibrium condition. The presence of instability is 
given by the second derivative of Eq. 2.3b. For d2Us/dc2 < 0, the equilibrium 
condition is unstable. For d2Us/dc2 > 0, the equilibrium condition is stable. Fig-
ure 2.3.3 shows a configuration for which the equilibrium condition is stable. In 
this case, crack growth occurs at the equilibrium condition, but the crack only 
extends into the material at the same rate as the wedge.  

The energy balance criterion indicates whether crack growth is possible, but 
whether it will actually occur depends on the state of stress at the crack tip. A 
crack will not extend until the bonds at the crack tip are loaded to their tensile 
strength, even if there is sufficient strain energy stored to permit crack growth. 
For example, if the crack tip is blunted or rounded, then the crack may not ex-
tend because of an insufficient stress concentration. The energy balance criterion 
is a necessary, but not a sufficient condition for fracture. Fracture only occurs 
when the stress at the crack tip is sufficient to break the bonds there. It is cus-
tomary to assume the presence of an infinitely sharp crack tip to approximate the 
worst-case condition. This does not mean, however, that all solids fail upon the 
immediate application of a load. In practice, stress singularities that arise due to 
an “infinitely sharp” crack tip are avoided by plastic deformation of the material. 
However, if such an infinitely sharp crack tip could be obtained, then the crack 
would not extend unless there was sufficient energy for it to do so. 
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Fig. 2.3.3 (a) Example of stable equilibrium (Obreimoff ’s experiment). (b) Energy versus 
crack length showing stable equilibrium as indicated by the minimum in the total crack 
energy. 

For a given stress, there is a minimum crack length that is not self-
propagating and is therefore “safe.” A crack will not extend if its length is less 
than the critical crack length, which, for a given uniform stress, is: 

c 2
a

2 Ec  (2.3e) 

In the analyses above, Eq. 2.3b implicitly assumes that the material is line-
arly elastic and  in Eq. 2.3d is the fracture surface energy, which is usually 
greater than the intrinsic surface energy due to energy dissipative mechanisms in 
the vicinity of the crack tip. 

The discussion above refers to a decrease in strain potential energy with in-
creasing crack length. This type of loading would occur in a “fixed-grips” appa-
ratus, where the load is applied, and the apparatus clamped into position. It can 
be shown that exactly the same arguments apply for a “dead-weight” loading, 
where the fracture surface energy corresponds to a decrease in potential energy 
of the loading system. The term “mechanical energy release rate,” may be more 
appropriate than “strain energy release rate” but the latter term is more com-
monly used. 
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2.4 Linear Elastic Fracture Mechanics 

2.4.1 Stress intensity factor 

During the Second World War, George R. Irwin3 became interested in the frac-
ture of steel armor plating during penetration by ammunition. His experimental 
work at the U.S. Naval Research Laboratory in Washington, D.C. led, in 19574, 
to a theoretical formulation of fracture that continues to find wide application. 
Irwin showed that the stress field (r, ) in the vicinity of an infinitely sharp 
crack tip could be described mathematically by: 

2
3sin

2
sin1

2
cos

2
1

r
K

yy  (2.4.1a) 

The first term on the right hand side of Eq. 2.4.1a describes the magnitude of 
the stress whereas the terms involving  describe its distribution. K1 is defined 
as*: 

cYK a1  (2.4.1b) 

The coordinate system for Eqs. 2.4.1a and 2.4.1b is shown in Fig. 2.4.1. In 
Eqn. 2.4.1b, a is the externally applied stress, Y is a geometry factor,  and c is 
the crack half-length. K1 is called the “stress intensity factor.” There is an impor-
tant reason for the stress intensity factor to be defined in this way. For a particu-
lar crack system,  and Y are constants so the stress intensity factor tells us that 
the magnitude of the stress at position (r, ) depends only on the external stress 
applied and the square root of the crack length. For example, doubling the exter-
nally applied stress a will double the magnitude of the stress in the vicinity of 
the crack tip at coordinates (r, ) for a given crack size. Increasing the crack 
length by four times will double the stress at (r, ) for the same value of applied 
stress. The stress intensity factor K1, which includes both applied stress and 
crack length, is a combined “scale factor,” which characterizes the magnitude of 
the stress at some coordinates (r, ) near the crack tip. The shape of the stress 
distribution around the crack tip is exactly the same for cracks of all lengths.  

Equation 2.4.1a shows that, for all sizes of cracks, the stresses at the crack 
tip are infinite. Despite this, the Griffith energy balance criterion must be satis-
fied for such a crack to extend in the presence of an applied stress a. The stress 
intensity factor K1 thus provides a numerical “value,” which quantifies the mag-
nitude of the effect of the stress singularity at the crack tip. We shall see later 
that there is a critical value for K1 for different materials which corresponds to 
the energy balance criterion being met. In this way, this critical value of K1 char-
acterizes the fracture strength of different materials. 

 
* Some authors prefer to define K1 without 1/2 in Eq. 2.4.1b. In this case, 1/2 does not appear in 

Eq. 2.4.1a. 

______ 
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In Eq. 2.4.1b, Y is a function whose value depends on the geometry of the 
specimen, and a is the applied stress. For a straight double-ended crack in an 
infinite solid, Y = 1. For a small single-ended surface crack (i.e., a semi-infinite 
solid), Y = 1.125,6. This 12% correction arises due to the additional release in 
strain potential energy (compared with a completely embedded crack) caused by 
the presence of the free surface† as indicated by the shaded portion in Fig. 2.4.1. 
This correction has a diminished effect as the crack extends deeper into the ma-
terial. For embedded penny-shaped cracks, Y = 2/ . For half-penny-shaped sur-
face flaws in a semi-infinite solid, the appropriate value is Y = 0.713. Values of 
Y for common crack geometries and loading conditions can be found in standard 
engineering texts. 

 

Fig. 2.4.1 Semi-infinite plate under a uniformly applied stress with single-ended surface 
crack of half-length c. Dark shaded area indicates additional release in strain energy due 
to the presence of the surface compared to a fully embedded crack in an infinite solid. 

 
† A further correction can be made for the effect of a free surface in front of the crack (i.e., the sur-

face to which the crack is approaching). This correction factor is very close to 1 for cracks with a 
length less than one-tenth the width of the specimen. 
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Equation 2.4.1a arises from Westergaard’s solution7 for the Airy stress func-
tion, which fulfills the equilibrium equations of stresses subject to the boundary 
conditions associated with a sharp crack,  = 0, in an infinite, biaxially loaded 
plate. Equation 2.4.1a applies only to the material in the vicinity of the crack tip. 
A cursory examination of Eq. 2.4.1a shows that yy approaches zero for large 
values of r rather than the applied stress a. To obtain values for stresses further 
from the crack tip, additional terms in the series solution must be included. 
However, near the crack tip, the localized stresses are usually very much greater 
than the applied uniform stress that may exist elsewhere, and the error is thus 
negligible. 

The subscript 1 in K1 is associated with tensile loading, as shown in Fig. 
2.4.2. Stress intensity factors exist for other types of loading, as also shown in 
this figure, but our interest centers mainly on type 1 loading—the most common 
type that leads to brittle failure.  

 

Fig. 2.4.2 Three modes of fracture. (a) Mode I, (b) Mode II, and (c) Mode III. Type I is 
the most common. The figures on the right indicate displacements of atoms on a plane 
normal to the crack near the crack tip. 
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An important property of the stress intensity factors is that they are additive 
for the same type of loading. This means that the stress intensity factor for a 
complicated system of loads may be derived from the addition of the stress in-
tensity factors determined for each load considered individually. It shall be later 
shown how the additive property of K1 permits the stress field in the vicinity of a 
crack can be calculated on the basis of the stress field that existed in the solid 
prior to the introduction of the crack. 

The power of Eq. 2.4.1b cannot be overestimated. It provides information 
about events at the crack tip in terms of easily measured macroscopic variables. 
It implies that the magnitude and distribution of stress in the vicinity of the crack 
tip can be considered separately and that a criterion for failure need only be con-
cerned with the “magnitude” or “intensity” of stress at the crack tip. Although 
the stress at an infinitely sharp crack tip may be “infinite” due to the singularity 
that occurs there, the stress intensity factor is a measure of the “strength” of the 
singularity. 

2.4.2 Crack tip plastic zone 

Equation 2.4.1a implies that at r = 0 (i.e., at the crack tip) yy approaches infin-
ity. However, in practice, the stress at the crack tip is limited to at least the yield 
strength of the material, and hence linear elasticity cannot be assumed within a 
certain distance of the crack tip (see Fig. 2.4.1). This nonlinear region is some-
times called the “crack tip plastic zone8.” Outside the plastic zone, displace-
ments under the externally applied stress mostly follow Hooke’s law, and the 
equations of linear elasticity apply. The elastic material outside the plastic zone 
transmits stress to the material inside the zone, where nonlinear events occur 
that may preclude the stress field from being determined exactly. Equation 
2.4.1a shows that the stress is proportional to 1/r1/2. The strain energy release 
rate is not influenced much by events within the plastic zone if the plastic zone 
is relatively small. It can be shown that an approximate size of the plastic zone is 
given by: 

2

2
1

2 ys
p

K
r  (2.4.2a) 

where ys is the yield strength (or yield stress) of the material.  
The concept of a plastic zone in the vicinity of the crack tip is one favored by 

many engineers and materials scientists and has useful implications for fracture 
in metals. However, the existence of a crack tip plastic zone in brittle solids ap-
pears to be objectionable on physical grounds. The stress singularity predicted 
by Eq. 2.4.1a may be avoided in brittle solids by nonlinear, but elastic, deforma-
tions. In Chapter 1, we saw how linear elasticity applies between two atoms for 
small displacements around the equilibrium position. At the crack tip, the dis-
placements are not small on an atomic scale, and nonlinear behavior is to be 
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expected. In brittle solids, strain energy is absorbed by the nonlinear stretching 
of atomic bonds, not plastic events, such as dislocation movements, that may be 
expected in a ductile metal. Hence, brittle materials do not fall to pieces under 
the application of even the smallest of loads even though an infinitely large 
stress appears to exist at the tip of any surface flaws or cracks within it. The  
energy balance criterion must be satisfied for such flaws to extend. 

2.4.3 Crack resistance 

The assumption that all the strain energy is available for surface energy of new 
crack faces does not apply to ductile solids where other energy dissipative 
mechanisms exist. For example, in crystalline solids, considerable energy is con-
sumed in the movement of dislocations in the crystal lattice and this may happen 
at applied stresses well below the ultimate strength of the material. Dislocation 
movement in a ductile material is an indication of yield or plastic deformation, or 
plastic flow.  

Irwin and Orowan9 modified Griffith’s equation to take into account the non-
reversible energy mechanisms associated with the plastic zone by simply includ-
ing this term in the original Griffith equation: 

dc
dU

dc
dU

dc
dU ps  (2.4.3a) 

The right-hand side of Eq. 2.4.3a is given the symbol R and is called the 
crack resistance. At the point where the Griffith criterion is met, the crack resis-
tance indicates the minimum amount of energy required for crack extension in 
J/m2 (i.e., J/m per unit crack width). This energy is called the “work of fracture” 
(units J/m2) which is a measure of toughness. 

Ductile materials are tougher than brittle materials because they can absorb 
energy in the plastic zone, as what we might call “plastic strain energy,” which 
is no longer available for surface (i.e., crack) creation. By contrast, brittle mate-
rials can only dissipate stored elastic strain energy by surface area creation. The 
work of fracture is difficult to measure experimentally.  

2.4.4 K1C, the critical value of K1 

The stress intensity factor K1 is a “scale factor” which characterizes the magni-
tude of the stress at some coordinates (r, ) near the crack tip. If each of two 
cracks in two different specimens are loaded so that K1 is the same in each 
specimen, then the magnitude of the stresses in the vicinity of each crack is pre-
cisely the same. Now, if the applied stresses are increased, keeping the same 
value of K1 in each specimen, then eventually the energy balance criterion will 
be satisfied and the crack in each will extend. The stresses at the crack tip are 
exactly the same at this point although unknown (theoretically infinite for a  
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perfectly elastic material but limited in practice by inelastic deformations). The 
value of K1 at the point of crack extension is called the critical value: K1C.  

K1C then defines the onset of crack extension. It does not necessarily indicate 
fracture of the specimen—this depends on the crack stability. It is usually regarded 
as a material property and can be used to characterize toughness. In contrast to 
the work of fracture, its determination does not depend on exact knowledge of 
events within the plastic zone. Consistent and reproducible values of K1C can 
only be obtained when specimens are tested in plane strain. In plane stress, the 
critical value of K1 for fracture depends on the thickness of the plate. Hence, K1C 
is often called the “plane strain fracture toughness” and has units MPa m1/2. Low 
values of K1C mean that, for a given stress, a material can only withstand a small 
length of crack before a crack extends.  

The condition K1 = K1C does not necessarily correspond to fracture, or fail-
ure, of the specimen. K1C describes the onset of crack extension. Whether this is 
a stable or unstable condition depends upon the crack system. Catastrophic frac-
ture occurs when the equilibrium condition is unstable. For cracks in brittle ma-
terials initiated by contact stresses, the crack may be initially unstable and then 
become stable due to the sharply diminishing stress field. For example, in Chap-
ter 7, we find that the variation in strain energy release rate (directly related to 
K1), the quantity dG/dc, is initially positive and then becomes negative as the 
crack becomes longer. In terms of stress intensity factor, the crack is stable 
when dK1/dc < 0 and unstable when dK1/dc > 0. The condition K1 = K1C for the 
stable configuration means that the crack is on the point of extension but will not 
extend unless the applied stress is increased. If this happens, a new stable equi-
librium crack length will result. Under these conditions, each increment of crack 
extension is sufficient to account for the attendant release in strain potential en-
ergy. For the unstable configuration, the crack will immediately extend rapidly 
throughout the specimen and lead to failure. Under these conditions, for each 
increment of crack extension there is insufficient surface energy to account for 
the release in strain potential energy. 

2.4.5 Equivalence of G and K 

Let G be defined as being equal to the strain energy release rate per crack tip 
and given by the left-hand side of Eq. 2.3d, that is, for a double-ended crack 
within an infinite solid, the rate of release in strain energy per crack tip is: 

E
cG

2
 (2.4.5a) 

Thus, substituting Eq. 2.4.1b into Eq. 2.4.5a, we have: 

E
K

G
2
1  (2.4.5b) 
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When K1 = K1C, then Gc becomes the critical value of the rate of release in 
strain energy for the material which leads to crack extension and possibly frac-
ture of the specimen. The relationship between K1 and G is significant because it 
means that the K1C condition is a necessary and sufficient criterion for crack 
growth since it embodies both the stress and energy balance criteria. The value 
of K1C describes the stresses (indirectly) at the crack tip as well as the strain  
energy release rate at the onset of crack extension. 

It should be remembered that various corrections to K, and hence G, are re-
quired for cracks in bodies of finite dimensions. Whatever the correction, the 
correspondence between G and K is given in Eq. 2.4.5b. 

A factor of  sometimes appears in Eq. 2.4.5b depending on the particular 
definition of K1 used. Consistent use of  in all these formulae is essential, espe-
cially when comparing equations from different sources. Again, we should rec-
ognize that Eq. 2.4.5b applies to plane stress conditions. In practice, a condition 
of plane strain is more usual, in which case one must include the factor (1 2) in 
the numerator. 

2.5 Determining Stress Intensity Factors 

2.5.1 Measuring stress intensity factors experimentally 

Direct application of Griffith’s energy balance criterion is seldom practical be-
cause of difficulties in determining work of fracture . Furthermore, the Griffith 
criterion is a necessary but not sufficient condition for crack growth. However, 
stress intensity factors are more easily determined and represent a necessary and 
sufficient condition for crack growth, but in determining the stress intensity fac-
tor, Eq. 2.4.1b cannot be used directly because the shape factor Y is not gener-
ally known.  

As mentioned previously, Y = 2/  applies for an embedded penny shaped 
circular crack of radius c in an infinite plate. Expressions such as this for other 
types of cracks and loading geometries are available in standard texts. To find 
the critical value of K1, it is necessary simply to apply an increasing load P to a 
prepared specimen, which has a crack of known length c already introduced, and 
record the load at which the specimen fractures.  

Figure 2.5.1 shows a beam specimen loaded so that the side in which a crack 
has been introduced is placed in tension. Equation 2.5.1 allows the fracture 
toughness to be calculated from the crack length c and load P at which fracture 
of the specimen occurs. Note that in practice the length of the beam specimen is 
made approximately 4 times its height to avoid edge effects. 
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Fig. 2.5.1 Single edge notched beam (SENB) 
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Consistent and reproducible results for fracture toughness can only be ob-
tained under conditions of plane strain. In plane stress, the values of K1 at frac-
ture depend on the thickness of the specimen. For this reason, values of K1C are 
measured in plane strain, hence the term “plane strain fracture toughness.” 

2.5.2 Calculating stress intensity factors from prior stresses 

Under some circumstances, it is possible10 to calculate the stress intensity factor 
for a given crack path using the stress field in the solid before the crack actually 
exists. The procedure makes use of the property of superposition of stress inten-
sity factors. 

Consider an internal crack of length 2c within an infinite solid, loaded by a 
uniform externally applied stress a, as shown in Fig. 2.5.2a. The presence of 
the crack intensifies the stress in the vicinity of the crack tip, and the stress in-
tensity factor K1 is readily determined from Eq. 2.4.1b. Now, imagine a series of 
surface tractions in the direction opposite the stress and applied to the crack 
faces so as to close the crack completely, as shown in Fig. 2.5.2b. At this point, 
the stress distribution within the solid, uniform or otherwise, is precisely equal 
to what would have existed in the absence of the crack because the crack is now 
completely closed. The stress intensity factor thus drops to zero, since there is 
no longer a concentration of stress at the crack tip. Thus, in one case, the pres-
ence of the crack causes the applied stress to be intensified in the vicinity of the 
crack, and in the other, application of the surface tractions causes this intensifi-
cation to be reduced to zero. 
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Fig 2.5.2 (a) Internal crack in a solid loaded with an external stress . (b) Crack closed by 
the application of a distribution of surface tractions F. (c) Internal crack loaded with sur-
face tractions FA and FB.

Consider now the situation illustrated in Fig. 2.5.2c. Wells11 determined the 
stress intensity factor K1 at one of the crack tips A for a symmetric internal crack 
of total length 2c being loaded by forces FA applied on the crack faces at a dis-
tance b from the center. The value for K1 for this condition is: 

1 2

1 1 2
A

A
F c bK

c bc
 (2.5.2a) 

Forces FB also contribute to the stress field at A, and the stress intensity fac-
tor due to those forces is: 

1 2

1 1 2
B

B
F c bK

c bc
 (2.5.2b) 

Due to the additive nature of stress intensity factors, the total stress intensity 
factor at crack tip A shown in Fig. 2.5.2c due to forces FA and FB, where FA = FB

= F, is :
1 2

1 1 1 1 2 2 2

2
A B

F cK K K
c b

 (2.5.2c) 

It is important to note that the Green’s weighting functions here apply to a double-ended crack in 
an infinite solid. For example, Eq. 2.5.2a applies to a force FA applied to a double-ended symmet-
ric crack and not FA applied to a single crack tip alone. 
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Now, if the tractions F are continuous along the length of the crack, then the 
force per unit length may be associated with a stress applied (b) normal to the 
crack. The total stress intensity factor is given by integrating Eq. 2.5.2c with F
replaced by dF = (b)db.

1 2
1 1 2 2 2

0

2 ( )c bK c db
c b

 (2.5.2d) 

However, if the forces F are reversed in sign such that they close the crack 
completely, then the associated stress distribution (b) must be that which ex-
isted prior to the introduction of the crack. The stress intensity factor, as calcu-
lated by Eq. 2.5.2d, for continuous surface tractions applied so as to close the 
crack, is precisely the same as that (except for a reversal in sign) calculated for 
the crack using the macroscopic stress a in the absence of such tractions. For 
example, for the uniform stress case, where (b) = a, Eq. 2.5.2d reduces to   
Eq. 2.4.1b .

As long as the prior stress field within the solid is known, the stress intensity 
factor for any proposed crack path can be determined using Eq. 2.5.2d. The 
strain energy release rate G can be calculated from Eq. 2.4.5b. Of course, one 
cannot always immediately determine whether a crack will follow any particular 
path within the solid. It may be necessary to calculate strain energy release rates 
for a number of proposed paths to determine the maximum value for G. The 
crack extension that results in the maximum value for G is that which an actual 
crack will follow.

In brittle materials, cracks usually initiate from surface flaws. The strain en-
ergy release rate as calculated from the prior stress field (i.e., prior to there being 
any flaws) applies to the complete growth of the subsequent crack. The condi-
tions determining subsequent crack growth depend on the prior stress field. The 
strain energy release rate, G, can be used to describe the crack growth for all 
flaws that exist in the prior stress field but can only be considered applicable for 
the subsequent growth of the flaw that actually first extends. Assuming there is a 
large number of cracks or surface flaws to consider, the one that first extends is 
that giving the highest value for G (as calculated using the prior stress field) for 
an increment of crack growth. Subsequent growth of that flaw depends upon the 
Griffith energy balance criterion (i.e., G  2 ) being met as calculated along the 
crack path still using the prior stress field, even though the actual stress field is 
now different due to the presence of the extending crack. 

To show this, one must make use of the standard integral:
1

1 22 2

1 sin  xdx C
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2.5.3 Determining stress intensity factors 
using the finite-element method 

 
Stress intensity factors may also be calculated using the finite-element method. 
The finite-element method is useful for determining the state of stress within a 
solid where the geometry and loading is such that a simple analytical solution 
for the stress field is not available. The finite-element solution consists of values 
for local stresses and displacements at predetermined node coordinates. A value 
for the local stress yy at a judicious choice of coordinates (r, ) can be used  
to determine the stress intensity factor K1. For example, at  = 0, Eq. 2.4.1a      
becomes: 

21
1 2 rK yy  (2.5.3a) 

where yy is the magnitude of the local stress at r. It should be noted that the 
stress at the node that corresponds to the location of the crack tip (r = 0) cannot 
be used because of the stress singularity there. Stress intensity factors deter-
mined for points away from the crack tip, outside the plastic zone, or more cor-
rectly the “nonlinear” zone, may only be used. However, one cannot use values 
that are too far away from the crack tip since Eq. 2.4.1a applies only for small 
values of r. At large r, yy as given by Eq. 2.4.1a approaches zero, and not as is 
actually the case, a.  

Values of K1 determined from finite-element results and using Eq. 2.5.3a 
should be the same no matter which node is used for the calculation, subject to 
the conditions regarding the choice of r mentioned previously. However, it is not 
always easy to choose which value of r and the associated value of yy to use. In 
a finite-element model, the specimen geometry, density of nodes in the vicinity 
of the crack tip, and the types of elements used are just some of the things that 
affect the accuracy of the resultant stress field. One method of estimation is to 
determine values for K1 at different values of r along a line ahead of the crack 
tip at  = 0. These values for K1 are then fitted to a smooth curve and extrapo-
lated to r = 0, as shown in Fig. 2.5.3.  

Fig. 2.5.3 Estimating K1 from finite-element results. For elements near the crack tip, Eq. 
2.4.1a is valid and K1 can be determined from the stresses at any of the nodes near the 
crack tip. In practice, one needs to determine a range of K1 for a fixed  (e.g., = 0) for a 
range of r and extrapolate back to r = 0. 
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