Chapter 2
Linear Elastic Fracture Mechanics

2.1 Introduction

Beginning with the fabrication of stone-age axes, instinct and experience about
the strength of various materials (as well as appearance, cost, availability and
even divine properties) served as the basis for the design of many engineering
structures. The industrial revolution of the 19th century led engineers to use iron
and steel in place of traditional materials like stone and wood. Unlike stone, iron
and steel had the advantage of being strong in tension, which meant that engi-
neering structures could be made lighter and at less cost than was previously
possible. In the years leading up to World War 2, engineers usually ensured that
the maximum stress within a structure, as calculated using simple beam theory,
was limited to a certain percentage of the “tensile strength” of the material. Ten-
sile strength for different materials could be conveniently measured in the labo-
ratory and the results for a variety of materials were made available in standard
reference books. Unfortunately, structural design on this basis resulted in many
failures because the effect of stress-raising corners and holes on the strength of a
particular structure was not appreciated by engineers. These failures led to the
emergence of the field of “fracture mechanics.” Fracture mechanics attempts to
characterize a material’s resistance to fracture—its “toughness.”

2.2 Stress Concentrations

Progress toward a quantitative definition of toughness began with the work of
Inglis' in 1913. Inglis showed that the local stresses around a corner or hole in a
stressed plate could be many times higher than the average applied stress. The
presence of sharp corners, notches, or cracks serves to concentrate the applied
stress at these points. Inglis showed, using elasticity theory, that the degree of
stress magnification at the edge of the hole in a stressed plate depended on the
radius of curvature of the hole.

The smaller the radius of curvature, the greater the stress concentration. Inglis
found that the “stress concentration factor”, «; for an elliptical hole is equal to:
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Fig. 2.2.1 Stress concentration around a hole in a uniformly stressed plate. The contours
for o, shown here were generated using the finite-element method. The stress at the edge
of the hole is 3 times the applied uniform stress.

K‘=1+2\/E (2.2a)
P

where c is the hole radius and p is the radius of curvature of the tip of the hole.

For a very narrow elliptical hole, the stress concentration factor may be very
much greater than one. For a circular hole, Eq. 2.2a gives x = 3 (as shown in
Fig. 2.2.1). It should be noted that the stress concentration factor does not de-
pend on the absolute size or length of the hole but only on the ratio of the size to
the radius of curvature.

2.3 Energy Balance Criterion

In 1920%, A. A. Griffith of the Royal Aircraft Establishment in England became
interested in the effect of scratches and surface finish on the strength of machine
parts subjected to alternating loads. Although Inglis’s theory showed that the
stress increase at the tip of a crack or flaw depended only on the geometrical
shape of the crack and not its absolute size, this seemed contrary to the well-
known fact that larger cracks are propagated more easily than smaller ones. This
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anomaly led Griffith to a theoretical analysis of fracture based on the point of
view of minimum potential energy. Griffith proposed that the reduction in strain
energy due to the formation of a crack must be equal to or greater than the in-
crease in surface energy required by the new crack faces. According to Griffith,
there are two conditions necessary for crack growth:

i. The bonds at the crack tip must be stressed to the point of failure. The
stress at the crack tip is a function of the stress concentration factor, which
depends on the ratio of its radius of curvature to its length.

ii. For an increment of crack extension, the amount of strain energy released
must be greater than or equal to that required for the surface energy of the
two new crack faces.

The second condition may be expressed mathematically as:

du. du
i (2.30)

where U is the strain energy, U, is the surface energy, and dc is the crack length
increment. Equation 2.3a says that for a crack to extend, the rate of strain energy
release per unit of crack extension must be at least equal to the rate of surface
energy requirement. Griffith used Inglis’s stress field calculations for a very
narrow elliptical crack to show that the strain energy released by introducing a
double-ended crack of length 2¢ in an infinite plate of unit width under a uni-
formly applied stress o, is [2]:
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U, = 2 Joules (per meter width) (2.3b)

s

We can obtain a semiquantitative appreciation of Eq. 2.3b by considering the
strain energy released over an area of a circle of diameter 2¢, as shown in Fig.
2.3.1. The strain energy is U = (%26%/E)(nc?). The actual strain energy computed
by rigorous means is exactly twice this value as indicated by Eq. 2.3b.

As mentioned in Chapter 1, for cases of plane strain, where the thickness of
the specimen is significant, £ should be replaced by E/(1—v?). In this chapter, we
omit the (1—v?) factor for brevity, although it should be noted that in most prac-
tical applications it should be included.

The total surface energy for two surfaces of unit width and length 2¢ is:

U, =4yc Joules (per meter width) (2.3¢)

The factor 4 in Eq. 2.3¢ arises because of there being two crack surfaces of
length 2c. y is the fracture surface energy of the solid. This is usually larger than
the surface free energy since the process of fracture involves atoms located a
small distance into the solid away from the surface. The fracture surface energy
may additionally involve energy dissipative mechanisms such as microcracking,
phase transformations, and plastic deformation.
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Thus, taking the derivative with respect to ¢ in Eq. 2.3b and 2.3c, this gives
us the strain energy release rate (J/m per unit width) and the surface energy crea-
tion rate (J/m per unit width). The critical condition for crack growth is:

2
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E

>2y (2.3d)

The left-hand side of Eq. 2.3d is the rate of strain energy release per crack tip
and applies to a double-ended crack in an infinite solid loaded with a uniformly
applied tensile stress. Equation 2.3d shows that strain energy release rate per
increment of crack length is a linear function of crack length and that the required
rate of surface energy per increment of crack length is a constant. Equation 2.3d
is the Griffith energy balance criterion for crack growth, and the relationships
between surface energy, strain energy, and crack length are shown in Fig. 2.3.2.

A crack will not extend until the strain energy release rate becomes equal to
the surface energy requirement. Beyond this point, more energy becomes avail-
able by the released strain energy than is required by the newly created crack
surfaces which leads to unstable crack growth and fracture of the specimen.

Strain energy
released here
(approximately)

Two new
surfaces

Fig. 2.3.1 The geometry of a straight, double-ended crack of unit width and total length
2¢ under a uniformly applied stress G,. Stress concentration exists at the crack tip. Strain
energy is released over an approximately circular area of radius c. Growth of crack cre-
ates new surfaces.
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Fig. 2.3.2 Energy versus crack length showing strain energy released and surface energy
required as crack length increases for a uniformly applied stress as shown in Fig. 2.3.1.
Cracks with length below ¢, will not extend spontaneously. Maximum in the total crack
energy denotes an unstable equilibrium condition.

The equilibrium condition shown in Fig. 2.3.2 is unstable, and fracture of the
specimen will occur at the equilibrium condition. The presence of instability is
given by the second derivative of Eq. 2.3b. For d*U,/d¢* < 0, the equilibrium
condition is unstable. For d*Uy/dc? > 0, the equilibrium condition is stable. Fig-
ure 2.3.3 shows a configuration for which the equilibrium condition is stable. In
this case, crack growth occurs at the equilibrium condition, but the crack only
extends into the material at the same rate as the wedge.

The energy balance criterion indicates whether crack growth is possible, but
whether it will actually occur depends on the state of stress at the crack tip. A
crack will not extend until the bonds at the crack tip are loaded to their tensile
strength, even if there is sufficient strain energy stored to permit crack growth.
For example, if the crack tip is blunted or rounded, then the crack may not ex-
tend because of an insufficient stress concentration. The energy balance criterion
is a necessary, but not a sufficient condition for fracture. Fracture only occurs
when the stress at the crack tip is sufficient to break the bonds there. It is cus-
tomary to assume the presence of an infinitely sharp crack tip to approximate the
worst-case condition. This does not mean, however, that all solids fail upon the
immediate application of a load. In practice, stress singularities that arise due to
an “infinitely sharp” crack tip are avoided by plastic deformation of the material.
However, if such an infinitely sharp crack tip could be obtained, then the crack
would not extend unless there was sufficient energy for it to do so.
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Fig. 2.3.3 (a) Example of stable equilibrium (Obreimoft’s experiment). (b) Energy versus
crack length showing stable equilibrium as indicated by the minimum in the total crack
energy.

For a given stress, there is a minimum crack length that is not self-
propagating and is therefore “safe.” A crack will not extend if its length is less
than the critical crack length, which, for a given uniform stress, is:
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In the analyses above, Eq. 2.3b implicitly assumes that the material is line-
arly elastic and y in Eq. 2.3d is the fracture surface energy, which is usually
greater than the intrinsic surface energy due to energy dissipative mechanisms in
the vicinity of the crack tip.

The discussion above refers to a decrease in strain potential energy with in-
creasing crack length. This type of loading would occur in a “fixed-grips” appa-
ratus, where the load is applied, and the apparatus clamped into position. It can
be shown that exactly the same arguments apply for a “dead-weight” loading,
where the fracture surface energy corresponds to a decrease in potential energy
of the loading system. The term “mechanical energy release rate,” may be more
appropriate than “strain energy release rate” but the latter term is more com-
monly used.
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2.4 Linear Elastic Fracture Mechanics

2.4.1 Stress intensity factor

During the Second World War, George R. Irwin® became interested in the frac-
ture of steel armor plating during penetration by ammunition. His experimental
work at the U.S. Naval Research Laboratory in Washington, D.C. led, in 19574,
to a theoretical formulation of fracture that continues to find wide application.
Irwin showed that the stress field o(7,0) in the vicinity of an infinitely sharp
crack tip could be described mathematically by:

K
o, =— cosg l—sinﬁsinﬁ (2.4.1a)
2 2 2
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The first term on the right hand side of Eq. 2.4.1a describes the magnitude of

the stress whereas the terms involving 6 describe its distribution. K is defined
*
as’:

K, =0, Y (2.4.1b)

The coordinate system for Eqs. 2.4.1a and 2.4.1b is shown in Fig. 2.4.1. In
Eqn. 2.4.1b, G, is the externally applied stress, Y is a geometry factor, and c is
the crack half-length. K is called the “stress intensity factor.” There is an impor-
tant reason for the stress intensity factor to be defined in this way. For a particu-
lar crack system, 1 and Y are constants so the stress intensity factor tells us that
the magnitude of the stress at position (»,0) depends only on the external stress
applied and the square root of the crack length. For example, doubling the exter-
nally applied stress 6, will double the magnitude of the stress in the vicinity of
the crack tip at coordinates (,0) for a given crack size. Increasing the crack
length by four times will double the stress at (r,0) for the same value of applied
stress. The stress intensity factor K;, which includes both applied stress and
crack length, is a combined “scale factor,” which characterizes the magnitude of
the stress at some coordinates (7,0) near the crack tip. The shape of the stress
distribution around the crack tip is exactly the same for cracks of all lengths.

Equation 2.4.1a shows that, for all sizes of cracks, the stresses at the crack
tip are infinite. Despite this, the Griffith energy balance criterion must be satis-
fied for such a crack to extend in the presence of an applied stress G,. The stress
intensity factor K; thus provides a numerical “value,” which quantifies the mag-
nitude of the effect of the stress singularity at the crack tip. We shall see later
that there is a critical value for K for different materials which corresponds to
the energy balance criterion being met. In this way, this critical value of K, char-
acterizes the fracture strength of different materials.

* Some authors prefer to define K, without ©'? in Eq. 2.4.1b. In this case, n~"? does not appear in
Eq.2.4.1a.
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In Eq. 2.4.1b, Y is a function whose value depends on the geometry of the
specimen, and o, is the applied stress. For a straight double-ended crack in an
infinite solid, ¥ = 1. For a small single-ended surface crack (i.e., a semi-infinite
solid), Y = 1.12*%. This 12% correction arises due to the additional release in
strain potential energy (compared with a completely embedded crack) caused by
the presence of the free surface' as indicated by the shaded portion in Fig. 2.4.1.
This correction has a diminished effect as the crack extends deeper into the ma-
terial. For embedded penny-shaped cracks, ¥ = 2/rn. For half-penny-shaped sur-
face flaws in a semi-infinite solid, the appropriate value is ¥ = 0.713. Values of
Y for common crack geometries and loading conditions can be found in standard
engineering texts.
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Fig. 2.4.1 Semi-infinite plate under a uniformly applied stress with single-ended surface
crack of half-length c. Dark shaded area indicates additional release in strain energy due
to the presence of the surface compared to a fully embedded crack in an infinite solid.

f A further correction can be made for the effect of a free surface in front of the crack (i.e., the sur-
face to which the crack is approaching). This correction factor is very close to 1 for cracks with a

length less than one-tenth the width of the specimen.
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Equation 2.4.1a arises from Westergaard’s solution’ for the Airy stress func-
tion, which fulfills the equilibrium equations of stresses subject to the boundary
conditions associated with a sharp crack, p = 0, in an infinite, biaxially loaded
plate. Equation 2.4.1a applies only to the material in the vicinity of the crack tip.
A cursory examination of Eq. 2.4.1a shows that G,, approaches zero for large
values of r rather than the applied stress ,. To obtain values for stresses further
from the crack tip, additional terms in the series solution must be included.
However, near the crack tip, the localized stresses are usually very much greater
than the applied uniform stress that may exist elsewhere, and the error is thus
negligible.

The subscript 1 in K is associated with tensile loading, as shown in Fig.
2.4.2. Stress intensity factors exist for other types of loading, as also shown in
this figure, but our interest centers mainly on type 1 loading—the most common
type that leads to brittle failure.

(a)

(b)

©

Fig. 2.4.2 Three modes of fracture. (a) Mode I, (b) Mode II, and (c) Mode III. Type I is
the most common. The figures on the right indicate displacements of atoms on a plane
normal to the crack near the crack tip.
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An important property of the stress intensity factors is that they are additive
for the same type of loading. This means that the stress intensity factor for a
complicated system of loads may be derived from the addition of the stress in-
tensity factors determined for each load considered individually. It shall be later
shown how the additive property of K permits the stress field in the vicinity of a
crack can be calculated on the basis of the stress field that existed in the solid
prior to the introduction of the crack.

The power of Eq. 2.4.1b cannot be overestimated. It provides information
about events at the crack tip in terms of easily measured macroscopic variables.
It implies that the magnitude and distribution of stress in the vicinity of the crack
tip can be considered separately and that a criterion for failure need only be con-
cerned with the “magnitude” or “intensity” of stress at the crack tip. Although
the stress at an infinitely sharp crack tip may be “infinite” due to the singularity
that occurs there, the stress intensity factor is a measure of the “strength” of the
singularity.

2.4.2 Crack tip plastic zone

Equation 2.4.1a implies that at » = 0 (i.e., at the crack tip) ,, approaches infin-
ity. However, in practice, the stress at the crack tip is limited to at least the yield
strength of the material, and hence linear elasticity cannot be assumed within a
certain distance of the crack tip (see Fig. 2.4.1). This nonlinear region is some-
times called the “crack tip plastic zone®.” Outside the plastic zone, displace-
ments under the externally applied stress mostly follow Hooke’s law, and the
equations of linear elasticity apply. The elastic material outside the plastic zone
transmits stress to the material inside the zone, where nonlinear events occur
that may preclude the stress field from being determined exactly. Equation
2.4.1a shows that the stress is proportional to 1/7"2. The strain energy release
rate is not influenced much by events within the plastic zone if the plastic zone
is relatively small. 1t can be shown that an approximate size of the plastic zone is
given by:

K}

p =
2ro

> (2.4.2a)
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where o, is the yield strength (or yield stress) of the material.

The concept of a plastic zone in the vicinity of the crack tip is one favored by
many engineers and materials scientists and has useful implications for fracture
in metals. However, the existence of a crack tip plastic zone in brittle solids ap-
pears to be objectionable on physical grounds. The stress singularity predicted
by Eq. 2.4.1a may be avoided in brittle solids by nonlinear, but elastic, deforma-
tions. In Chapter 1, we saw how linear elasticity applies between two atoms for
small displacements around the equilibrium position. At the crack tip, the dis-
placements are not small on an atomic scale, and nonlinear behavior is to be
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expected. In brittle solids, strain energy is absorbed by the nonlinear stretching
of atomic bonds, not plastic events, such as dislocation movements, that may be
expected in a ductile metal. Hence, brittle materials do not fall to pieces under
the application of even the smallest of loads even though an infinitely large
stress appears to exist at the tip of any surface flaws or cracks within it. The
energy balance criterion must be satisfied for such flaws to extend.

2.4.3 Crack resistance

The assumption that all the strain energy is available for surface energy of new
crack faces does not apply to ductile solids where other energy dissipative
mechanisms exist. For example, in crystalline solids, considerable energy is con-
sumed in the movement of dislocations in the crystal lattice and this may happen
at applied stresses well below the ultimate strength of the material. Dislocation
movement in a ductile material is an indication of yield or plastic deformation, or
plastic flow.

Irwin and Orowan’ modified Griffith’s equation to take into account the non-
reversible energy mechanisms associated with the plastic zone by simply includ-
ing this term in the original Griffith equation:

sy (2.4.3a)

The right-hand side of Eq. 2.4.3a is given the symbol R and is called the
crack resistance. At the point where the Griffith criterion is met, the crack resis-
tance indicates the minimum amount of energy required for crack extension in
J/m? (i.e., J/m per unit crack width). This energy is called the “work of fracture”
(units J/m?) which is a measure of toughness.

Ductile materials are tougher than brittle materials because they can absorb
energy in the plastic zone, as what we might call “plastic strain energy,” which
is no longer available for surface (i.e., crack) creation. By contrast, brittle mate-
rials can only dissipate stored elastic strain energy by surface area creation. The
work of fracture is difficult to measure experimentally.

2.4.4 K¢, the critical value of K

The stress intensity factor K is a “scale factor” which characterizes the magni-
tude of the stress at some coordinates (r,0) near the crack tip. If each of two
cracks in two different specimens are loaded so that K; is the same in each
specimen, then the magnitude of the stresses in the vicinity of each crack is pre-
cisely the same. Now, if the applied stresses are increased, keeping the same
value of K; in each specimen, then eventually the energy balance criterion will
be satisfied and the crack in each will extend. The stresses at the crack tip are
exactly the same at this point although unknown (theoretically infinite for a
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perfectly elastic material but limited in practice by inelastic deformations). The
value of K, at the point of crack extension is called the critical value: K.

K¢ then defines the onset of crack extension. It does not necessarily indicate
fracture of the specimen—this depends on the crack stability. It is usually regarded
as a material property and can be used to characterize toughness. In contrast to
the work of fracture, its determination does not depend on exact knowledge of
events within the plastic zone. Consistent and reproducible values of K¢ can
only be obtained when specimens are tested in plane strain. In plane stress, the
critical value of K for fracture depends on the thickness of the plate. Hence, K¢
is often called the “plane strain fracture toughness” and has units MPa m"?. Low
values of K- mean that, for a given stress, a material can only withstand a small
length of crack before a crack extends.

The condition K| = K¢ does not necessarily correspond to fracture, or fail-
ure, of the specimen. K¢ describes the onset of crack extension. Whether this is
a stable or unstable condition depends upon the crack system. Catastrophic frac-
ture occurs when the equilibrium condition is unstable. For cracks in brittle ma-
terials initiated by contact stresses, the crack may be initially unstable and then
become stable due to the sharply diminishing stress field. For example, in Chap-
ter 7, we find that the variation in strain energy release rate (directly related to
K1), the quantity dG/dc, is initially positive and then becomes negative as the
crack becomes longer. In terms of stress intensity factor, the crack is stable
when dK,/dc < 0 and unstable when dK;/dc > 0. The condition K; = K| for the
stable configuration means that the crack is on the point of extension but will not
extend unless the applied stress is increased. If this happens, a new stable equi-
librium crack length will result. Under these conditions, each increment of crack
extension is sufficient to account for the attendant release in strain potential en-
ergy. For the unstable configuration, the crack will immediately extend rapidly
throughout the specimen and lead to failure. Under these conditions, for each
increment of crack extension there is insufficient surface energy to account for
the release in strain potential energy.

2.4.5 Equivalence of G and K

Let G be defined as being equal to the strain energy release rate per crack tip
and given by the left-hand side of Eq. 2.3d, that is, for a double-ended crack
within an infinite solid, the rate of release in strain energy per crack tip is:

71'0'26'

G 2.4.5a
Z ( )
Thus, substituting Eq. 2.4.1b into Eq. 2.4.5a, we have:
K2
G=—L (2.4.5b)

E
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When K, = K|, then G, becomes the critical value of the rate of release in
strain energy for the material which leads to crack extension and possibly frac-
ture of the specimen. The relationship between K; and G is significant because it
means that the K- condition is a necessary and sufficient criterion for crack
growth since it embodies both the stress and energy balance criteria. The value
of K¢ describes the stresses (indirectly) at the crack tip as well as the strain
energy release rate at the onset of crack extension.

It should be remembered that various corrections to K, and hence G, are re-
quired for cracks in bodies of finite dimensions. Whatever the correction, the
correspondence between G and K is given in Eq. 2.4.5b.

A factor of m sometimes appears in Eq. 2.4.5b depending on the particular
definition of K; used. Consistent use of « in all these formulae is essential, espe-
cially when comparing equations from different sources. Again, we should rec-
ognize that Eq. 2.4.5b applies to plane stress conditions. In practice, a condition
of plane strain is more usual, in which case one must include the factor (1-v*) in
the numerator.

2.5 Determining Stress Intensity Factors

2.5.1 Measuring stress intensity factors experimentally

Direct application of Griffith’s energy balance criterion is seldom practical be-
cause of difficulties in determining work of fracture y. Furthermore, the Griffith
criterion is a necessary but not sufficient condition for crack growth. However,
stress intensity factors are more easily determined and represent a necessary and
sufficient condition for crack growth, but in determining the stress intensity fac-
tor, Eq. 2.4.1b cannot be used directly because the shape factor Y is not gener-
ally known.

As mentioned previously, ¥ = 2/n applies for an embedded penny shaped
circular crack of radius ¢ in an infinite plate. Expressions such as this for other
types of cracks and loading geometries are available in standard texts. To find
the critical value of K|, it is necessary simply to apply an increasing load P to a
prepared specimen, which has a crack of known length ¢ already introduced, and
record the load at which the specimen fractures.

Figure 2.5.1 shows a beam specimen loaded so that the side in which a crack
has been introduced is placed in tension. Equation 2.5.1 allows the fracture
toughness to be calculated from the crack length ¢ and load P at which fracture
of the specimen occurs. Note that in practice the length of the beam specimen is
made approximately 4 times its height to avoid edge effects.
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Consistent and reproducible results for fracture toughness can only be ob-
tained under conditions of plane strain. In plane stress, the values of K at frac-
ture depend on the thickness of the specimen. For this reason, values of K¢ are
measured in plane strain, hence the term “plane strain fracture toughness.”

2.5.2 Calculating stress intensity factors from prior stresses

Under some circumstances, it is possible'” to calculate the stress intensity factor
for a given crack path using the stress field in the solid before the crack actually
exists. The procedure makes use of the property of superposition of stress inten-
sity factors.

Consider an internal crack of length 2¢ within an infinite solid, loaded by a
uniform externally applied stress o,, as shown in Fig. 2.5.2a. The presence of
the crack intensifies the stress in the vicinity of the crack tip, and the stress in-
tensity factor K; is readily determined from Eq. 2.4.1b. Now, imagine a series of
surface tractions in the direction opposite the stress and applied to the crack
faces so as to close the crack completely, as shown in Fig. 2.5.2b. At this point,
the stress distribution within the solid, uniform or otherwise, is precisely equal
to what would have existed in the absence of the crack because the crack is now
completely closed. The stress intensity factor thus drops to zero, since there is
no longer a concentration of stress at the crack tip. Thus, in one case, the pres-
ence of the crack causes the applied stress to be intensified in the vicinity of the
crack, and in the other, application of the surface tractions causes this intensifi-
cation to be reduced to zero.
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Fig 2.5.2 (a) Internal crack in a solid loaded with an external stress 6. (b) Crack closed by
the application of a distribution of surface tractions F. (¢) Internal crack loaded with sur-
face tractions F; and F’.

Consider now the situation illustrated in Fig. 2.5.2c. Wells'' determined the
stress intensity factor K, at one of the crack tips A for a symmetric internal crack
of total length 2¢ being loaded by forces F, applied on the crack faces at a dis-
tance b from the center. The value for K for this condition is:

F c+bY?
K, =—4"]-— 2.5.2a
“ (7zc)]/2 [C—bj ( )

Forces F'z also contribute to the stress field at 4, and the stress intensity fac-
tor due to those forces is:

F, (c-b V2
= 2.5.2b
"= [H b} (2:5.2b)

Due to the additive nature of stress intensity factors, the total stress intensity
factor at crack tip 4 shown in Fig. 2.5.2¢ due to forces F; and F, where F,= Fj
=F, ish

2F( ¢ \*
Kl = KIA +KIB :—(mj (252(:)
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Trtis important to note that the Green’s weighting functions here apply to a double-ended crack in
an infinite solid. For example, Eq. 2.5.2a applies to a force F; applied to a double-ended symmet-

ric crack and not F, applied to a single crack tip alone.
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Now, if the tractions F' are continuous along the length of the crack, then the
force per unit length may be associated with a stress applied o(b) normal to the
crack. The total stress intensity factor is given by integrating Eq. 2.5.2¢ with F
replaced by dF = o(b)db.

_ 2 (pn_ob

However, if the forces F are reversed in sign such that they close the crack
completely, then the associated stress distribution o(b) must be that which ex-
isted prior to the introduction of the crack. The stress intensity factor, as calcu-
lated by Eq. 2.5.2d, for continuous surface tractions applied so as to close the
crack, is precisely the same as that (except for a reversal in sign) calculated for
the crack using the macroscopic stress o, in the absence of such tractions. For
example, for the uniform stress case, where o(b) = o,, Eq. 2.5.2d reduces to
Eq. 2.4.1b8.

As long as the prior stress field within the solid is known, the stress intensity
factor for any proposed crack path can be determined using Eq. 2.5.2d. The
strain energy release rate G can be calculated from Eq. 2.4.5b. Of course, one
cannot always immediately determine whether a crack will follow any particular
path within the solid. It may be necessary to calculate strain energy release rates
for a number of proposed paths to determine the maximum value for G. The
crack extension that results in the maximum value for G is that which an actual
crack will follow.

In brittle materials, cracks usually initiate from surface flaws. The strain en-
ergy release rate as calculated from the prior stress field (i.e., prior to there being
any flaws) applies to the complete growth of the subsequent crack. The condi-
tions determining subsequent crack growth depend on the prior stress field. The
strain energy release rate, G, can be used to describe the crack growth for all
flaws that exist in the prior stress field but can only be considered applicable for
the subsequent growth of the flaw that actually first extends. Assuming there is a
large number of cracks or surface flaws to consider, the one that first extends is
that giving the highest value for G (as calculated using the prior stress field) for
an increment of crack growth. Subsequent growth of that flaw depends upon the
Griffith energy balance criterion (i.e., G > 2y) being met as calculated along the
crack path still using the prior stress field, even though the actual stress field is
now different due to the presence of the extending crack.

§ To show this, one must make use of the standard integral:

Ii(az sz ),/2 dx = sin™ §+c
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2.5.3 Determining stress intensity factors
using the finite-element method

Stress intensity factors may also be calculated using the finite-element method.
The finite-element method is useful for determining the state of stress within a
solid where the geometry and loading is such that a simple analytical solution
for the stress field is not available. The finite-element solution consists of values
for local stresses and displacements at predetermined node coordinates. A value
for the local stress o,y at a judicious choice of coordinates (7,0) can be used
to determine the stress intensity factor K;. For example, at 6 = 0, Eq. 2.4.1a
becomes:

K =0, w)"? (2.5.32)

where o,, is the magnitude of the local stress at 7. It should be noted that the
stress at the node that corresponds to the location of the crack tip (» = 0) cannot
be used because of the stress singularity there. Stress intensity factors deter-
mined for points away from the crack tip, outside the plastic zone, or more cor-
rectly the “nonlinear” zone, may only be used. However, one cannot use values
that are too far away from the crack tip since Eq. 2.4.1a applies only for small
values of r. At large 7, o, as given by Eq. 2.4.1a approaches zero, and not as is
actually the case, G,.

Values of K, determined from finite-element results and using Eq. 2.5.3a
should be the same no matter which node is used for the calculation, subject to
the conditions regarding the choice of » mentioned previously. However, it is not
always easy to choose which value of 7 and the associated value of o,, to use. In
a finite-element model, the specimen geometry, density of nodes in the vicinity
of the crack tip, and the types of elements used are just some of the things that
affect the accuracy of the resultant stress field. One method of estimation is to
determine values for K at different values of r along a line ahead of the crack
tip at © = 0. These values for K, are then fitted to a smooth curve and extrapo-
lated to » = 0, as shown in Fig. 2.5.3.

best estimate

Fig. 2.5.3 Estimating K, from finite-element results. For elements near the crack tip, Eq.
2.4.1a is valid and K, can be determined from the stresses at any of the nodes near the
crack tip. In practice, one needs to determine a range of K for a fixed 6 (e.g., 6 =0) fora
range of » and extrapolate back to » = 0.
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