
Chapter 2

BASIC PRINCIPLES

2.1 Introduction
Nonlinear programming is based on a collection of definitions, theorems,

and principles that must be clearly understood if the available nonlinear pro-
gramming methods are to be used effectively.

This chapter begins with the definition of the gradient vector, the Hessian
matrix, and the various types of extrema (maxima and minima). The conditions
that must hold at the solution point are then discussed and techniques for the
characterization of the extrema are described. Subsequently, the classes of con-
vex and concave functions are introduced. These provide a natural formulation
for the theory of global convergence.

Throughout the chapter, we focus our attention on the nonlinear optimization
problem

minimize f = f(x)
subject to: x ∈ R

where f(x) is a real-valued function and R ⊂ En is the feasible region.

2.2 Gradient Information
In many optimization methods, gradient information pertaining to the ob-

jective function is required. This information consists of the first and second
derivatives of f(x) with respect to the n variables.

If f(x) ∈ C1, that is, if f(x) has continuous first-order partial derivatives,
the gradient of f(x) is defined as

g(x) =
[ ∂f

∂x1

∂f
∂x2

· · · ∂f
∂xn

]T
= ∇f(x) (2.1)



28

where
∇ = [ ∂

∂x1

∂
∂x2

· · · ∂
∂xn

]T (2.2)

If f(x) ∈ C2, that is, if f(x) has continuous second-order partial derivatives,
the Hessian1 of f(x) is defined as

H(x) = ∇gT = ∇{∇T f(x)} (2.3)

Hence Eqs. (2.1) – (2.3) give

H(x) =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂2f
∂x2

1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2

2
· · · ∂2f

∂x2∂xn

...
...

...
∂2f

∂xn∂x1

∂2f
∂xn∂x2

· · · ∂2f
∂x2

n

⎤
⎥⎥⎥⎥⎥⎥⎦

For a function f(x) ∈ C2

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi

since differentiation is a linear operation and hence H(x) is an n × n square
symmetric matrix.

The gradient and Hessian at a point x = xk are represented by g(xk) and
H(xk) or by the simplified notation gk and Hk, respectively. Sometimes, when
confusion is not likely to arise, g(x) and H(x) are simplified to g and H.

The gradient and Hessian tend to simplify the optimization process con-
siderably. Nevertheless, in certain applications it may be uneconomic, time-
consuming, or impossible to deduce and compute the partial derivatives of
f(x). For these applications, methods are preferred that do not require gradient
information.

Gradient methods, namely, methods based on gradient information may use
only g(x) or both g(x) and H(x). In the latter case, the inversion of matrix
H(x) may be required which tends to introduce numerical inaccuracies and is
time-consuming. Such methods are often avoided.

2.3 The Taylor Series
Some of the nonlinear programming procedures and methods utilize linear

or quadratic approximations for the objective function and the equality and
inequality constraints, namely, f(x), ai(x), and cj(x) in Eq. (1.4). Such

1For the sake of simplicity, the gradient vector and Hessian matrix will be referred to as the gradient and
Hessian, respectively, henceforth.
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approximations can be obtained by using the Taylor series. If f(x) is a function
of two variables x1 and x2 such that f(x) ∈ CP where P → ∞, that is, f(x)
has continuous partial derivatives of all orders, then the value of function f(x)
at point [x1 + δ1, x2 + δ2] is given by the Taylor series as

f(x1 + δ1, x2 + δ2) = f(x1, x2) +
∂f

∂x1
δ1 +

∂f

∂x2
δ2

+
1
2

(
∂2f

∂x2
1

δ2
1 +

2∂2f

∂x1∂x2
δ1δ2 +

∂2f

∂x2
2

δ2
2

)

+O(‖δ‖3) (2.4a)

where
δ = [δ1 δ2]T

O(‖δ‖3) is the remainder, and ‖δ‖ is the Euclidean norm of δ given by

‖δ‖ =
√

δT δ

The notation φ(x) = O(x) denotes that φ(x) approaches zero at least as fast
as x as x approaches zero, that is, there exists a constant K ≥ 0 such that∣∣∣∣φ(x)

x

∣∣∣∣ ≤ K as x → 0

The remainder term in Eq. (2.4a) can also be expressed as o(‖δ‖2) where the
notation φ(x) = o(x) denotes that φ(x) approaches zero faster than x as x
approaches zero, that is, ∣∣∣∣φ(x)

x

∣∣∣∣ → 0 as x → 0

If f(x) is a function of n variables, then the Taylor series of f(x) at point
[x1 + δ1, x2 + δ2, . . .] is given by

f(x1 + δ1, x2 + δ2, . . . ) = f(x1, x2, . . . ) +
n∑

i=1

∂f

∂xi
δi

+
1
2

n∑
i=1

n∑
j=1

δi
∂2f

∂xi∂xj
δj

+o(‖δ‖2) (2.4b)

Alternatively, on using matrix notation

f(x + δ) = f(x) + g(x)T δ + 1
2δTH(x)δ + o(‖δ‖2) (2.4c)
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where g(x) is the gradient, and H(x) is the Hessian at point x.
As ‖δ‖ → 0, second- and higher-order terms can be neglected and a linear

approximation can be obtained for f(x + δ) as

f(x + δ) ≈ f(x) + g(x)T δ (2.4d)

Similarly, a quadratic approximation for f(x + δ) can be obtained as

f(x + δ) ≈ f(x) + g(x)T δ + 1
2δTH(x)δ (2.4e)

Another form of the Taylor series, which includes an expression for the
remainder term, is

f(x + δ) = f(x)

+
∑

1≤k1+k2+···+kn≤P

∂k1+k2+···+knf(x)
∂xk1

1 ∂xk2
2 · · · ∂xkn

n

n∏
i=1

δki
i

ki!

+
∑

k1+k2+···+kn=P+1

∂P+1f(x + αδ)
∂xk1

1 ∂xk2
2 · · · ∂xkn

n

n∏
i=1

δki
i

ki!
(2.4f)

where 0 ≤ α ≤ 1 and

∑
1≤k1+k2+···+kn≤P

∂k1+k2+···+knf(x)
∂xk1

1 ∂xk2
2 · · · ∂xkn

n

n∏
i=1

δki
i

ki!

is the sum of terms taken over all possible combinations of k1, k2, . . . , kn that
add up to a number in the range 1 to P . (See Chap. 4 of Protter and Morrey [1]
for proof.) This representation of the Taylor series is completely general and,
therefore, it can be used to obtain cubic and higher-order approximations for
f(x + δ). Furthermore, it can be used to obtain linear, quadratic, cubic, and
higher-order exact closed-form expressions for f(x + δ). If f(x) ∈ C1 and
P = 0, Eq. (2.4f) gives

f(x + δ) = f(x) + g(x + αδ)T δ (2.4g)

and if f(x) ∈ C2 and P = 1, then

f(x + δ) = f(x) + g(x)T δ + 1
2δTH(x + αδ)δ (2.4h)

where 0 ≤ α ≤ 1. Eq. (2.4g) is usually referred to as the mean-value theorem
for differentiation.

Yet another form of the Taylor series can be obtained by regrouping the terms
in Eq. (2.4f) as

f(x + δ) = f(x) + g(x)T δ + 1
2δTH(x)δ + 1

3!D
3f(x)

+ · · · +
1

(r − 1)!
Dr−1f(x) + · · · (2.4i)
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where

Drf(x) =
n∑

i1=1

n∑
i2=1

· · ·
n∑

ir=1

{
δi1δi2 · · · δir

∂rf(x)
∂xi1∂xi2 · · · ∂xir

}

2.4 Types of Extrema
The extrema of a function are its minima and maxima. Points at which a

function has minima (maxima) are said to be minimizers (maximizers). Several
types of minimizers (maximizers) can be distinguished, namely, local or global
and weak or strong.

Definition 2.1 A point x∗ ∈ R, where R is the feasible region, is said to be a
weak local minimizer of f(x) if there exists a distance ε > 0 such that

f(x) ≥ f(x∗) (2.5)

if
x ∈ R and ‖x − x∗‖ < ε

Definition 2.2 A point x∗ ∈ R is said to be a weak global minimizer of f(x) if

f(x) ≥ f(x∗) (2.6)

for all x ∈ R.

If Def. 2.2 is satisfied at x∗, then Def. 2.1 is also satisfied at x∗, and so a
global minimizer is also a local minimizer.

Definition 2.3
If Eq. (2.5) in Def. 2.1 or Eq. (2.6) in Def. 2.2 is replaced by

f(x) > f(x∗) (2.7)

x∗ is said to be a strong local (or global) minimizer.

The minimum at a weak local, weak global, etc. minimizer is called a weak
local, weak global, etc. minimum.

A strong global minimum in E2 is depicted in Fig. 2.1.

Weak or strong and local or global maximizers can similarly be defined by
reversing the inequalities in Eqs. (2.5) – (2.7).
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Figure 2.1. A strong global minimizer.

Example 2.1 The function of Fig. 2.2 has a feasible region defined by the set

R = {x : x1 ≤ x ≤ x2}

Classify its minimizers.

Solution The function has a weak local minimum at point B, strong local minima
at points A, C, and D, and a strong global minimum at point C.

In the general optimization problem, we are in principle seeking the global
minimum (or maximum) of f(x). In practice, an optimization problem may
have two or more local minima. Since optimization algorithms in general are
iterative procedures which start with an initial estimate of the solution and
converge to a single solution, one or more local minima may be missed. If
the global minimum is missed, a suboptimal solution will be achieved, which
may or may not be acceptable. This problem can to some extent be overcome
by performing the optimization several times using a different initial estimate
for the solution in each case in the hope that several distinct local minima will
be located. If this approach is successful, the best minimizer, namely, the one
yielding the lowest value for the objective function can be selected. Although
such a solution could be acceptable from a practical point of view, usually
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Figure 2.2. Types of minima. (Example 2.1)

there is no guarantee that the global minimum will be achieved. Therefore, for
the sake of convenience, the term ‘minimize f(x)’ in the general optimization
problem will be interpreted as ‘find a local minimum of f(x)’.

In a specific class of problems where function f(x) and set R satisfy certain
convexity properties, any local minimum of f(x) is also a global minimum
of f(x). In this class of problems an optimal solution can be assured. These
problems will be examined in Sec. 2.7.

2.5 Necessary and Sufficient Conditions for
Local Minima and Maxima

The gradient g(x) and the Hessian H(x) must satisfy certain conditions at a
local minimizer x∗, (see [2, Chap. 6]). Two sets of conditions will be discussed,
as follows:

1. Conditions which are satisfied at a local minimizer x∗. These are the
necessary conditions.

2. Conditions which guarantee that x∗ is a local minimizer. These are the
sufficient conditions.

The necessary and sufficient conditions can be described in terms of a number
of theorems. A concept that is used extensively in these theorems is the concept
of a feasible direction.

Definition 2.4 Let δ = αd be a change in x where α is a positive constant and
d is a direction vector. If R is the feasible region and a constant α̂ > 0 exists
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such that
x + αd ∈ R

for all α in the range 0 ≤ α ≤ α̂, then d is said to be a feasible direction at
point x.

In effect, if a point x remains in R after it is moved a finite distance in a
direction d, then d is a feasible direction vector at x.

Example 2.2 The feasible region in an optimization problem is given by

R = {x : x1 ≥ 2, x2 ≥ 0}

as depicted in Fig. 2.3. Which of the vectors d1 = [−2 2]T , d2 = [0 2]T , d3 =
[2 0]T are feasible directions at points x1 = [4 1]T , x2 = [2 3]T , and x3 =
[1 4]T ?

x 1

x 2

*

*

-2 0 2 4

4

x1

x 3 x 2*

d3

d1
d2

2

Figure 2.3. Graphical construction for Example 2.2.

Solution Since
x1 + αd1 ∈ R

for all α in the range 0 ≤ α ≤ α̂ for α̂ = 1, d1 is a feasible direction at point
x1; for any range 0 ≤ α ≤ α̂

x1 + αd2 ∈ R and x1 + αd3 ∈ R

Hence d2 and d3 are feasible directions at x1.
Since no constant α̂ > 0 can be found such that

x2 + αd1 ∈ R for 0 ≤ α ≤ α̂
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d1 is not a feasible direction at x2. On the other hand, a positive constant α̂
exists such that

x2 + αd2 ∈ R and x2 + αd3 ∈ R

for 0 ≤ α ≤ α̂, and so d2 and d3 are feasible directions at x2.
Since x3 is not in R, no α̂ > 0 exists such that

x3 + αd ∈ R for 0 ≤ α ≤ α̂

for any d. Hence d1,d2, and d3 are not feasible directions at x3.

2.5.1 First-order necessary conditions
The objective function must satisfy two sets of conditions in order to have

a minimum, namely, first- and second-order conditions. The first-order condi-
tions are in terms of the first derivatives, i.e., the gradient.

Theorem 2.1 First-order necessary conditions for a minimum

(a) If f(x) ∈ C1 and x∗ is a local minimizer, then

g(x∗)Td ≥ 0

for every feasible direction d at x∗.

(b) If x∗ is located in the interior of R then

g(x∗) = 0

Proof (a) If d is a feasible direction at x∗, then from Def. 2.4

x = x∗ + αd ∈ R for 0 ≤ α ≤ α̂

From the Taylor series

f(x) = f(x∗) + αg(x∗)Td + o(α‖d‖)

If
g(x∗)Td < 0

then as α → 0
αg(x∗)Td + o(α‖d‖) < 0

and so
f(x) < f(x∗)
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This contradicts the assumption that x∗ is a minimizer. Therefore, a necessary
condition for x∗ to be a minimizer is

g(x∗)Td ≥ 0

(b) If x∗ is in the interior of R, vectors exist in all directions which are
feasible. Thus from part (a), a direction d = d1 yields

g(x∗)Td1 ≥ 0

Similarly, for a direction d = −d1

−g(x∗)Td1 ≥ 0

Therefore, in this case, a necessary condition for x∗ to be a local minimizer is

g(x∗) = 0

2.5.2 Second-order necessary conditions
The second-order necessary conditions involve the first as well as the second

derivatives or, equivalently, the gradient and the Hessian.

Definition 2.5
(a) Let d be an arbitrary direction vector at point x. The quadratic form

dTH(x)d is said to be positive definite, positive semidefinite, negative
semidefinite, negative definite if dTH(x)d > 0, ≥ 0, ≤ 0, < 0, re-
spectively, for all d �= 0 at x. If dT H(x)d can assume positive as well
as negative values, it is said to be indefinite.

(b) If dTH(x)d is positive definite, positive semidefinite, etc., then matrix
H(x) is said to be positive definite, positive semidefinite, etc.

Theorem 2.2 Second-order necessary conditions for a minimum
(a) If f(x) ∈ C2 and x∗ is a local minimizer, then for every feasible direction

d at x∗
(i) g(x∗)Td ≥ 0
(ii) If g(x∗)Td = 0, then dTH(x∗)d ≥ 0

(b) If x∗ is a local minimizer in the interior of R, then
(i) g(x∗) = 0
(ii) dTH(x)∗d ≥ 0 for all d �= 0

Proof Conditions (i) in parts (a) and (b) are the same as in Theorem 2.1(a)
and (b).
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Condition (ii) of part (a) can be proved by letting x = x∗ + αd, where d is a
feasible direction. The Taylor series gives

f(x) = f(x∗) + αg(x∗)Td + 1
2α2dT H(x∗)d + o(α2‖d‖2)

Now if condition (i) is satisfied with the equal sign, then

f(x) = f(x∗) + 1
2α2dTH(x∗)d + o(α2‖d‖2)

If
dTH(x∗)d < 0

then as α → 0
1
2α2dTH(x∗)d + o(α2‖d‖2) < 0

and so
f(x) < f(x∗)

This contradicts the assumption thatx∗ is a minimizer. Therefore, ifg(x∗)Td =
0, then

dTH(x∗)d ≥ 0

If x∗ is a local minimizer in the interior of R, then all vectors d are feasible
directions and, therefore, condition (ii) of part (b) holds. This condition is
equivalent to stating that H(x∗) is positive semidefinite, according to Def. 2.5.

Example 2.3 Point x∗ = [12 0]T is a local minimizer of the problem

minimize f(x1, x2) = x2
1 − x1 + x2 + x1x2

subject to : x1 ≥ 0, x2 ≥ 0

Show that the necessary conditions for x∗ to be a local minimizer are satisfied.

Solution The partial derivatives of f(x1, x2) are

∂f

∂x1
= 2x1 − 1 + x2,

∂f

∂x2
= 1 + x1

Hence if d = [d1 d2]T is a feasible direction, we obtain

g(x)Td = (2x1 − 1 + x2)d1 + (1 + x1)d2

At x = x∗
g(x∗)Td = 3

2d2

and since d2 ≥ 0 for d to be a feasible direction, we have

g(x∗)Td ≥ 0
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Therefore, the first-order necessary conditions for a minimum are satisfied.
Now

g(x∗)Td = 0

if d2 = 0. The Hessian is

H(x∗) =
[
2 1
1 0

]

and so
dT H(x∗)d = 2d2

1 + 2d1d2

For d2 = 0, we obtain
dTH(x∗)d = 2d2

1 ≥ 0

for every feasible value of d1. Therefore, the second-order necessary conditions
for a minimum are satisfied.

Example 2.4 Points p1 = [0 0]T and p2 = [6 9]T are probable minimizers for
the problem

minimize f(x1, x2) = x3
1 − x2

1x2 + 2x2
2

subject to : x1 ≥ 0, x2 ≥ 0

Check whether the necessary conditions of Theorems 2.1 and 2.2 are satisfied.

Solution The partial derivatives of f(x1, x2) are

∂f

∂x1
= 3x2

1 − 2x1x2,
∂f

∂x2
= −x2

1 + 4x2

Hence if d = [d1 d2]T , we obtain

g(x)Td = (3x2
1 − 2x1x2)d1 + (−x2

1 + 4x2)d2

At points p1 and p2

g(x)Td = 0

i.e., the first-order necessary conditions are satisfied. The Hessian is

H(x) =
[
6x1 − 2x2 −2x1

−2x1 4

]

and if x = p1, then

H(p1) =
[
0 0
0 4

]
and so

dTH(p1)d = 4d2
2 ≥ 0
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Hence the second-order necessary conditions are satisfied at x = p1, and p1

can be a local minimizer.
If x = p2, then

H(p2) =
[

18 −12
−12 4

]
and

dTH(p2)d = 18d2
1 − 24d1d2 + 4d2

2

Since dTH(p2)d is indefinite, the second-order necessary conditions are vio-
lated, that is, p2 cannot be a local minimizer.

Analogous conditions hold for the case of a local maximizer as stated in the
following theorem:

Theorem 2.3 Second-order necessary conditions for a maximum
(a) If f(x) ∈ C2, and x∗ is a local maximizer, then for every feasible

direction d at x∗
(i) g(x∗)Td ≤ 0
(ii) If g(x∗)T d = 0, then dTH(x∗)d ≤ 0

(b) If x∗ is a local maximizer in the interior of R then
(i) g(x∗) = 0
(ii) dTH(x∗)d ≤ 0 for all d �= 0

Condition (ii) of part (b) is equivalent to stating that H(x∗) is negative semidef-
inite.

The conditions considered are necessary but not sufficient for a point to be
a local extremum point, that is, a point may satisfy these conditions without
being a local extremum point. We now focus our attention on a set of stronger
conditions that are sufficient for a point to be a local extremum. We consider
conditions that are applicable in the case where x∗ is located in the interior of
the feasible region. Sufficient conditions that are applicable to the case where
x∗ is located on a boundary of the feasible region are somewhat more difficult
to deduce and will be considered in Chap. 10.

Theorem 2.4 Second-order sufficient conditions for a minimum If f(x) ∈ C2

and x∗ is located in the interior of R, then the conditions
(a) g(x∗) = 0
(b) H(x∗) is positive definite

are sufficient for x∗ to be a strong local minimizer.

Proof For any direction d, the Taylor series yields

f(x∗ + d) = f(x∗) + g(x∗)Td + 1
2d

T H(x∗)d + o(‖d‖2)
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and if condition (a) is satisfied, we have

f(x∗ + d) = f(x∗) + 1
2d

TH(x∗)d + o(‖d‖2)

Now if condition (b) is satisfied, then

1
2d

TH(x∗)d + o(‖d‖2) > 0 as ‖d‖ → 0

Therefore,
f(x∗ + d) > f(x∗)

that is, x∗ is a strong local minimizer.

Analogous conditions hold for a maximizer as stated in Theorem 2.5 below.

Theorem 2.5 Second-order sufficient conditions for a maximum If f(x∗) ∈
C2 and x∗ is located in the interior of R, then the conditions

(a) g(x) = 0
(b) H(x∗) is negative definite

are sufficient for x∗ to be a strong local maximizer.

2.6 Classification of Stationary Points
If the extremum points of the type considered so far, namely, minimizers and

maximizers, are located in the interior of the feasible region, they are called
stationary points since g(x) = 0 at these points. Another type of stationary
point of interest is the saddle point.

Definition 2.6 A point x̄ ∈ R, where R is the feasible region, is said to be a
saddle point if

(a) g(x̄) = 0
(b) point x̄ is neither a maximizer nor a minimizer.

A saddle point in E2 is illustrated in Fig. 2.4.
At a point x = x̄ + αd ∈ R in the neighborhood of a saddle point x̄, the

Taylor series gives

f(x) = f(x̄) + 1
2α2dTH(x̄)d + o(α2‖d‖2)

since g(x̄) = 0. From the definition of a saddle point, directions d1 and d2

must exist such that

f(x̄ + αd1) < f(x̄) and f(x̄ + αd2) > f(x̄)

Since x̄ is neither a minimizer nor a maximizer, then as α → 0 we have
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Figure 2.4. A saddle point in E2.

dT
1 H(x̄)d1 < 0 and dT

2 H(x̄)d2 > 0

Therefore, matrix H(x̄) must be indefinite.
Stationary points can be located and classified as follows:

1. Find the points xi at which g(xi) = 0.
2. Obtain the Hessian H(xi).
3. Determine the character of H(xi) for each point xi.

If H(xi) is positive (or negative) definite, xi is a minimizer (or maximizer);
if H(xi) is indefinite, xi is a saddle point. If H(xi) is positive (or negative)
semidefinite, xi can be a minimizer (or maximizer); in the special case where
H(xi) = 0, xi can be a minimizer or maximizer since the necessary conditions
are satisfied in both cases. Evidently, if H(xi) is semidefinite, insufficient
information is available for the complete characterization of a stationary point
and further work is, therefore, necessary in such a case. A possible approach
would be to deduce the third partial derivatives of f(x) and then calculate the
fourth term in the Taylor series, namely, term D3f(x)/3! in Eq. (2.4i). If the
fourth term is zero, then the fifth term needs to be calculated and so on. An
alternative and more practical approach would be to compute f(xi + ej) and
f(xi − ej) for j = 1, 2, . . . , n where ej is a vector with elements

ejk =
{

0 for k �= j
ε for k = j
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for some small positive value of ε and then check whether the definition of a
minimizer or maximizer is satisfied.

Example 2.5 Find and classify the stationary points of

f(x) = (x1 − 2)3 + (x2 − 3)3

Solution The first-order partial derivatives of f(x) are

∂f

∂x1
= 3(x1 − 2)2

∂f

∂x2
= 3(x2 − 3)2

If g = 0, then

3(x1 − 2)2 = 0 and 3(x2 − 3)2 = 0

and so there is a stationary point at

x = x1 = [2 3]T

The Hessian is given by

H =
[
6(x1 − 2) 0

0 6(x2 − 3)

]
and at x = x1

H = 0

Since H is semidefinite, more work is necessary in order to determine the
type of stationary point.

The third derivatives are all zero except for ∂3f/∂x3
1 and ∂3f/∂x3

2 which
are both equal to 6. For point x1 + δ, the fourth term in the Taylor series is
given by

1
3!

(
δ3
1

∂3f

∂x3
1

+ δ3
2

∂3f

∂x3
2

)
= δ3

1 + δ3
2

and is positive for δ1, δ2 > 0 and negative for δ1, δ2 < 0. Hence

f(x1 + δ) > f(x1) for δ1, δ2 > 0

and
f(x1 + δ) < f(x1) for δ1, δ2 < 0

that is, x1 is neither a minimizer nor a maximizer. Therefore, x1 is a saddle
point.
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From the preceding discussion, it follows that the problem of classifying the
stationary points of function f(x) reduces to the problem of characterizing the
Hessian. This problem can be solved by using the following theorems.

Theorem 2.6 Characterization of symmetric matrices A real symmetric n×n
matrix H is positive definite, positive semidefinite, etc., if for every nonsingular
matrix B of the same order, the n × n matrix Ĥ given by

Ĥ = BTHB

is positive definite, positive semidefinite, etc.

Proof If H is positive definite, positive semidefinite etc., then for all d �= 0

dT Ĥd = dT (BTHB)d
= (dTBT )H(Bd)
= (Bd)TH(Bd)

Since B is nonsingular, Bd = d̂ is a nonzero vector and thus

dT Ĥd = d̂T Hd̂ > 0, ≥ 0, etc.

for all d �= 0. Therefore,
Ĥ = BTHB

is positive definite, positive semidefinite, etc.

Theorem 2.7 Characterization of symmetric matrices via diagonalization
(a) If the n × n matrix B is nonsingular and

Ĥ = BTHB

is a diagonal matrix with diagonal elements ĥ1, ĥ2, . . . , ĥn then H
is positive definite, positive semidefinite, negative semidefinite, negative
definite, if ĥi > 0, ≥ 0, ≤ 0, < 0 for i = 1, 2, . . . , n. Otherwise, if
some ĥi are positive and some are negative, H is indefinite.

(b) The converse of part (a) is also true, that is, if H is positive definite,
positive semidefinite, etc., then ĥi > 0, ≥ 0, etc., and if H is indefinite,
then some ĥi are positive and some are negative.

Proof (a) For all d �= 0

dĤd = d2
1ĥ1 + d2

2ĥ2 + · · · + d2
nĥn
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Therefore, if ĥi > 0, ≥ 0, etc. for i = 1, 2, . . . , n, then

dT Ĥd > 0, ≥ 0, etc.

that is, Ĥ is positive definite, positive semidefinite etc. If some ĥi are positive
and some are negative, a vector d can be found which will yield a positive or
negative dT Ĥd and then Ĥ is indefinite. Now since Ĥ = BTHB, it follows
from Theorem 2.6 that if ĥi > 0, ≥ 0, etc. for i = 1, 2, . . . , n, then H is
positive definite, positive semidefinite, etc.

(b) Suppose that H is positive definite, positive semidefinite, etc. Since
Ĥ = BTHB, it follows from Theorem 2.6 that Ĥ is positive definite, positive
semidefinite, etc. If d is a vector with element dk given by

dk =
{

0 for k �= i
1 for k = i

then
dT Ĥd = ĥi > 0, ≥ 0, etc. for i = 1, 2, . . . , n

If H is indefinite, then from Theorem 2.6 it follows that Ĥ is indefinite, and,
therefore, some ĥi must be positive and some must be negative.

A diagonal matrix Ĥ can be obtained by performing row and column oper-
ations on H, like adding k times a given row to another row or adding m times
a given column to another column. For a symmetric matrix, these operations
can be carried out by applying elementary transformations, that is, Ĥ can be
formed as

Ĥ = · · ·E3E2E1HET
1 ET

2 ET
3 · · · (2.8)

where E1,E2, · · · are elementary matrices. Typical elementary matrices are

Ea =

⎡
⎣ 1 0 0

0 1 0
0 k 1

⎤
⎦

and

Eb =

⎡
⎢⎢⎣

1 m 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

If Ea premultiplies a 3 × 3 matrix, it will cause k times the second row to be
added to the third row, and if Eb postmultiplies a 4 × 4 matrix it will cause m
times the first column to be added to the second column. If

B = ET
1 ET

2 ET
3 · · ·
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then
BT = · · ·E3E2E1

and so Eq. (2.8) can be expressed as

Ĥ = BTHB

Since elementary matrices are nonsingular, B is nonsingular, and hence Ĥ
is positive definite, positive semidefinite, etc., if H is positive definite, positive
semidefinite, etc.

Therefore, the characterization of H can be achieved by diagonalizing H,
through the use of appropriate elementary matrices, and then using Theorem
2.7.

Example 2.6 Diagonalize the matrix

H =

⎡
⎣ 1 −2 4
−2 2 0
4 0 −7

⎤
⎦

and then characterize it.

Solution Add 2 times the first row to the second row as⎡
⎣ 1 0 0

2 1 0
0 0 1

⎤
⎦
⎡
⎣ 1 −2 4
−2 2 0
4 0 −7

⎤
⎦
⎡
⎣ 1 2 0

0 1 0
0 0 1

⎤
⎦ =

⎡
⎣ 1 0 4

0 −2 8
4 8 −7

⎤
⎦

Add −4 times the first row to the third row as⎡
⎣ 1 0 0

0 1 0
−4 0 1

⎤
⎦
⎡
⎣ 1 0 4

0 −2 8
4 8 −7

⎤
⎦
⎡
⎣ 1 0 −4

0 1 0
0 0 1

⎤
⎦ =

⎡
⎣ 1 0 0

0 −2 8
0 8 −23

⎤
⎦

Now add 4 times the second row to the third row as⎡
⎣ 1 0 0

0 1 0
0 4 1

⎤
⎦
⎡
⎣ 1 0 0

0 −2 8
0 8 −23

⎤
⎦
⎡
⎣ 1 0 0

0 1 4
0 0 1

⎤
⎦ =

⎡
⎣ 1 0 0

0 −2 0
0 0 9

⎤
⎦

Since ĥ1 = 1, ĥ2 = −2, ĥ3 = 9, H is indefinite.

Example 2.7 Diagonalize the matrix

H =

⎡
⎣ 4 −2 0
−2 3 0
0 0 50

⎤
⎦
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and determine its characterization.

Solution Add 0.5 times the first row to the second row as⎡
⎣ 1 0 0

0.5 1 0
0 0 1

⎤
⎦
⎡
⎣ 4 −2 0
−2 3 0
0 0 50

⎤
⎦
⎡
⎣ 1 0.5 0

0 1 0
0 0 1

⎤
⎦ =

⎡
⎣ 4 0 0

0 2 0
0 0 50

⎤
⎦

Hence H is positive definite.

Another theorem that can be used to characterize the Hessian is as follows:

Theorem 2.8 Eigendecomposition of symmetric matrices
(a) If H is a real symmetric matrix, then there exists a real unitary (or

orthogonal) matrix U such that

Λ = UTHU

is a diagonal matrix whose diagonal elements are the eigenvalues of H.
(b) The eigenvalues of H are real.

(See Chap. 4 of Horn and Johnson [3] for proofs.)

For a real unitary matrix, we have UTU = In where

In =

⎡
⎢⎢⎢⎣

1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1

⎤
⎥⎥⎥⎦

is the n × n identity matrix, and hence det U = ±1, that is, U is nonsingular.
From Theorem 2.6, Λ is positive definite, positive semidefinite, etc. if H is
positive definite, positive semidefinite, etc. Therefore, H can be characterized
by deducing its eigenvalues and then checking their signs as in Theorem 2.7.

Another approach for the characterization of a square matrix H is based on
the evaluation of the so-called principal minors and leading principal minors of
H, which are described in Sec. A.6. The details of this approach are summarized
in terms of the following theorem.

Theorem 2.9 Properties of matrices
(a) If H is positive semidefinite or positive definite, then

det H ≥ 0 or > 0

(b) H is positive definite if and only if all its leading principal minors are
positive, i.e., det Hi > 0 for i = 1, 2, . . . , n.



Basic Principles 47

(c) H is positive semidefinite if and only if all its principal minors are nonneg-
ative, i.e., det (H(l)

i ) ≥ 0 for all possible selections of {l1, l2, . . . , li}
for i = 1, 2, . . . , n.

(d) H is negative definite if and only if all the leading principal minors of
−H are positive, i.e., det (−Hi) > 0 for i = 1, 2, . . . , n.

(e) H is negative semidefinite if and only if all the principal minors of −H
are nonnegative, i.e., det (−H(l)

i ) ≥ 0 for all possible selections of
{l1, l2, . . . , li} for i = 1, 2, . . . , n.

(f ) H is indefinite if neither (c) nor (e) holds.

Proof (a) Elementary transformations do not change the determinant of a matrix
and hence

det H = det Ĥ =
n∏

i=1

ĥi

where Ĥ is a diagonalized version of H with diagonal elements ĥi. If H is
positive semidefinite or positive definite, then ĥi ≥ 0 or > 0 from Theorem 2.7
and, therefore,

det H ≥ 0 or > 0

(b) If

d = [d1 d2 · · · di 0 0 · · · 0]T

and H is positive definite, then

dT Hd = dT
0 Hid0 > 0

for all d0 �= 0 where

d0 = [d1 d2 · · · di]T

and Hi is the ith leading principal submatrix of H. The preceding inequality
holds for i = 1, 2, . . . , n and, henceHi is positive definite for i = 1, 2, . . . , n.
From part (a)

det Hi > 0 for i = 1, 2, . . . , n

Now we prove the sufficiency of the theorem by induction. If n = 1, then
H = a11, and det (H1) = a11 > 0 implies that H is positive definite. We
assume that the sufficiency is valid for matrix H of size (n − 1) by (n − 1)
and we shall show that the sufficiency is also valid for matrix H of size n by n.
First, we write H as

H =
[
Hn−1 h
hT hnn

]
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where

Hn−1 =

⎡
⎢⎢⎢⎣

h11 h12 · · · h1,n−1

h21 h22 · · · h2,n−1
...

...
...

hn−1,1 hn−1,2 · · · hn−1,n−1

⎤
⎥⎥⎥⎦ , h =

⎡
⎢⎢⎢⎣

h1n

h2n
...

hn−1,n

⎤
⎥⎥⎥⎦

By assumption Hn−1 is positive definite; hence there exists an R such that

RTHn−1R = In−1

where In−1 is the (n − 1) × (n − 1) identity matrix. If we let

S =
[
R 0
0 1

]

we obtain

STHS =
[
RT 0
0 1

] [
Hn−1 h
hT hnn

] [
R 0
0 1

]
=

[
In−1 RTh
hTR hnn

]

If we define

T =
[
In−1 −RTh
0 1

]
then

TT STHST =
[

In−1 0
−hT R 1

] [
In−1 RTh
hTR hnn

] [
In−1 −RTh
0 1

]

=
[
In−1 0
0 hnn − hTRRTh

]

So if we let U = ST and α = hnn − hTRRTh, then

UTHU =

⎡
⎢⎢⎢⎣

1
. . .

1
α

⎤
⎥⎥⎥⎦

which implies that
(det U)2 det H = α

As detH > 0, we obtain α > 0 and, therefore, UTHU is positive definite
which implies the positive definiteness of H.

(c) The proof of the necessity is similar to the proof of part (b). If

d = [0 · · · 0 dl1 0 · · · 0 dl2 0 · · · 0 dli 0 · · · 0]T
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and H is positive semidefinite, then

dTHd = dT
0 H(l)

i d0 ≥ 0

for all d0 �= 0 where
d0 = [dl1 dl2 · · · dli ]

T

and H(l)
i is an i× i principal submatrix. Hence H(l)

i is positive semidefinite for
all possible selections of rows (and columns) from the set l = {l1, l2, . . . , li, }
with 1 ≤ l1 ≤ l2 < . . . < li ≤ n} and i = 1, 2, . . . , n. Now from part (a)

det (Hl
i) ≥ 0 for 1, 2, . . . , n.

The proof of sufficiency is rather lengthy and is omitted. The interested reader
is referred to Chap. 7 of [3].

(d) If Hi is negative definite, then −Hi is positive definite by definition and
hence the proof of part (b) applies to part (d).

(e) If H(l)
i is negative semidefinite, then −H(l)

i is positive semidefinite by
definition and hence the proof of part (c) applies to part (e).

(f ) If neither part (c) nor part (e) holds, then dTHd can be positive or
negative and hence H is indefinite.

Example 2.8 Characterize the Hessian matrices in Examples 2.6 and 2.7 by
using the determinant method.

Solution Let
∆i = det (Hi)

be the leading principal minors of H. From Example 2.6, we have

∆1 = 1, ∆2 = −2, ∆3 = −18

and if ∆
′
i = det (−Hi), then

∆
′
1 = −1, ∆

′
2 = −2, ∆

′
3 = 18

since
det (−Hi) = (−1)i det (Hi)

Hence H is indefinite.
From Example 2.7, we get

∆1 = 4, ∆2 = 8, ∆3 = 400

Hence H is positive definite.
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Example 2.9 Find and classify the stationary points of

f(x) = x2
1 + 2x1x2 + 2x2

2 + 2x1 + x2

Solution The first partial derivatives of f(x) are

∂f

∂x1
= 2x1 + 2x2 + 2

∂f

∂x2
= 2x1 + 4x2 + 1

If g = 0, then
2x1 + 2x2 + 2 = 0

2x1 + 4x2 + 1 = 0

and so there is a stationary point at

x = x1 = [−3
2

1
2 ]T

The Hessian is deduced as

H =
[
2 2
2 4

]
and since ∆1 = 2 and ∆2 = 4, H is positive definite. Therefore, x1 is a
minimizer.

Example 2.10 Find and classify the stationary points of function

f(x) = x2
1 − x2

2 + x2
3 − 2x1x3 − x2x3 + 4x1 + 12

Solution The first-order partial derivatives of f(x) are

∂f

∂x1
= 2x1 − 2x3 + 4

∂f

∂x2
= −2x2 − x3

∂f

∂x3
= −2x1 − x2 + 2x3

On equating the gradient to zero and then solving the simultaneous equations
obtained, the stationary point x1 = [−10 4 −8]T can be deduced. The Hessian
is

H =

⎡
⎣ 2 0 −2

0 −2 −1
−2 −1 2

⎤
⎦
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and since ∆1 = 2, ∆2 = −4, ∆3 = −2, and ∆
′
1 = −2, ∆

′
2 = −4, ∆

′
3 = 2,

H is indefinite. Therefore, point x1 = [−10 4 − 8]T is a saddle point. The
solution can be readily checked by diagonalizing H as

Ĥ =

⎡
⎣ 2 0 0

0 −2 0
0 0 21

2

⎤
⎦

2.7 Convex and Concave Functions
Usually, in practice, the function to be minimized has several extremum

points and, consequently, the uncertainty arises as to whether the extremum
point located by an optimization algorithm is the global one. In a specific class
of functions referred to as convex and concave functions, any local extremum
point is also a global extremum point. Therefore, if the objective function is
convex or concave, optimality can be assured. The basic principles relating to
convex and concave functions entail a collection of definitions and theorems.

Definition 2.7
A set Rc ⊂ En is said to be convex if for every pair of points x1, x2 ⊂ Rc

and for every real number α in the range 0 < α < 1, the point

x = αx1 + (1 − α)x2

is located in Rc, i.e., x ∈ Rc.

In effect, if any two points x1, x2 ∈ Rc are connected by a straight line,
then Rc is convex if every point on the line segment between x1 and x2 is a
member of Rc. If some points on the line segment between x1 and x2 are not in
Rc, the set is said to be nonconvex. Convexity in sets is illustrated in Fig. 2.5.

The concept of convexity can also be applied to functions.

Definition 2.8
(a) A function f(x) defined over a convex set Rc is said to be convex if for

every pair of points x1, x2 ∈ Rc and every real number α in the range
0 < α < 1, the inequality

f [αx1 + (1 − α)x2] ≤ αf(x1) + (1 − α)f(x2) (2.9)

holds. If x1 �= x2 and

f [αx1 + (1 − α)x2] < αf(x1) + (1 − α)f(x2)
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Convex set

Nonconvex set
x 2

x 1
x 2

x 1

Figure 2.5. Convexity in sets.

then f(x) is said to be strictly convex.
(b) If φ(x) is defined over a convex set Rc and f(x) = −φ(x) is convex,

then φ(x) is said to be concave. If f(x) is strictly convex, φ(x) is
strictly concave.

In the left-hand side of Eq. (2.9), function f(x) is evaluated on the line
segment joining points x1 and x2 whereas in the right-hand side of Eq. (2.9) an
approximate value is obtained for f(x) based on linear interpolation. Thus a
function is convex if linear interpolation between any two points overestimates
the value of the function. The functions shown in Fig. 2.6a and b are convex
whereas that in Fig. 2.6c is nonconvex.

Theorem 2.10 Convexity of linear combination of convex functions If

f(x) = af1(x) + bf2(x)

where a, b ≥ 0 and f1(x), f2(x) are convex functions on the convex set Rc,
then f(x) is convex on the set Rc.

Proof Since f1(x) and f2(x) are convex, and a, b ≥ 0, then for x = αx1 +
(1 − α)x2 we have
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x 1 x 2

Convex
f(x)

Nonconvex

x 2x 1

x 2x 1

Convex

(a) ( b)

(c)

f(x)

Figure 2.6. Convexity in functions.

af1[αx1 + (1 − α)x2] ≤ a[αf1(x1) + (1 − α)f1(x2)]

bf2[αx1 + (1 − α)x2] ≤ b[αf2(x1) + (1 − α)f2(x2)]

where 0 < α < 1. Hence

f(x) = af1(x) + bf2(x)
f [αx1 + (1 − α)x2] = af1[αx1 + (1 − α)x2] + bf2[αx1 + (1 − α)x2]

≤ α[af1(x1) + bf2(x1)] + (1 − α)[af1(x2)
+bf2(x2)]

Since

af1(x1) + bf2(x1) = f(x1)
af1(x2) + bf2(x2) = f(x2)

the above inequality can be expressed as

f [αx1 + (1 − α)x2] ≤ αf(x1) + (1 − α)f(x2)

that is, f(x) is convex.



54

Theorem 2.11 Relation between convex functions and convex sets If f(x) is
a convex function on a convex set Rc, then the set

Sc = {x : x ∈ Rc, f(x) ≤ K}

is convex for every real number K.

Proof If x1, x2 ∈ Sc, then f(x1) ≤ K and f(x2) ≤ K from the definition of
Sc. Since f(x) is convex

f [αx1 + (1 − α)x2] ≤ αf(x1) + (1 − α)f(x2)
≤ αK + (1 − α)K

or
f(x) ≤ K for x = αx1 + (1 − α)x2 and 0 < α < 1

Therefore
x ∈ Sc

that is, Sc is convex by virtue of Def. 2.7.

Theorem 2.11 is illustrated in Fig. 2.7, where set SC is convex if f(x) is a
convex function on convex set Rc.

Figure 2.7. Graphical construction for Theorem 2.11.

An alternative view of convexity can be generated by examining some the-
orems which involve the gradient and Hessian of f(x).
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Theorem 2.12 Property of convex functions relating to gradient If f(x) ∈
C1, then f(x) is convex over a convex set Rc if and only if

f(x1) ≥ f(x) + g(x)T (x1 − x)

for all x and x1 ∈ Rc, where g(x) is the gradient of f(x).

Proof The proof of this theorem consists of two parts. First we prove that if
f(x) is convex, the inequality holds. Then we prove that if the inequality holds,
f(x) is convex. The two parts constitute the necessary and sufficient conditions
of the theorem. If f(x) is convex, then for all α in the range 0 < α < 1

f [αx1 + (1 − α)x] ≤ αf(x1) + (1 − α)f(x)

or

f [x + α(x1 − x)] − f(x) ≤ α[f(x1) − f(x)]

As α → 0, the Taylor series of f [x + α(x1 − x)] yields

f(x) + g(x)T α(x1 − x) − f(x) ≤ α[f(x1) − f(x)]

and so
f(x1) ≥ f(x) + g(x)T (x1 − x) (2.10)

Now if this inequality holds at points x and x2 ∈ Rc, then

f(x2) ≥ f(x) + g(x)T (x2 − x) (2.11)

Hence Eqs. (2.10) and (2.11) yield

αf(x1) + (1 − α)f(x2) ≥ αf(x) + αg(x)T (x1 − x) + (1 − α)f(x)
+(1 − α)g(x)T (x2 − x)

or

αf(x1) + (1 − α)f(x2) ≥ f(x) + gT (x)[αx1 + (1 − α)x2 − x]

With the substitution
x = αx1 + (1 − α)x2

we obtain

f [αx1 + (1 − α)x2] ≤ αf(x1) + (1 − α)f(x2)

for 0 < α < 1. Therefore, from Def. 2.8 f(x) is convex.
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x1x

f (x)

f(x1)

x1(     - x)

x
f

x
f

Figure 2.8. Graphical construction for Theorem 2.12.

Theorem 2.12 states that a linear approximation of f(x) at point x1 based
on the derivatives of f(x) at x underestimates the value of the function. This
fact is illustrated in Fig. 2.8.

Theorem 2.13 Property of convex functions relating to the Hessian A function
f(x) ∈ C2 is convex over a convex set Rc if and only if the Hessian H(x) of
f(x) is positive semidefinite for x ∈ Rc.

Proof If x1 = x+d where x1 and x are arbitrary points in Rc, then the Taylor
series yields

f(x1) = f(x) + g(x)T (x1 − x) + 1
2d

TH(x + αd)d (2.12)

where 0 ≤ α ≤ 1 (see Eq. (2.4h)). Now if H(x) is positive semidefinite
everywhere in Rc, then

1
2d

TH(x + αd)d ≥ 0

and so
f(x1) ≥ f(x) + g(x)T (x1 − x)

Therefore, from Theorem 2.12, f(x) is convex.
If H(x) is not positive semidefinite everywhere in Rc, then a point x and at

least a d exist such that

dTH(x + αd)d < 0

and so Eq. (2.12) yields
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f(x1) < f(x) + g(x)T (x1 − x)

and f(x) is nonconvex from Theorem 2.12. Therefore, f(x) is convex if and
only if H(x) is positive semidefinite everywhere in Rc.

For a strictly convex function, Theorems 2.11–2.13 are modified as follows.

Theorem 2.14 Properties of strictly convex functions
(a) If f(x) is a strictly convex function on a convex set Rc, then the set

Sc = {x : x ∈ Rc for f(x) < K}

is convex for every real number K.
(b) If f(x) ∈ C1, then f(x) is strictly convex over a convex set if and only if

f(x1) > f(x) + g(x)T (x1 − x)

for all x and x1 ∈ Rc where g(x) is the gradient of f(x).
(c) A function f(x) ∈ C2 is strictly convex over a convex set Rc if and only

if the Hessian H(x) is positive definite for x ∈ Rc.

If the second-order sufficient conditions for a minimum hold at x∗ as in
Theorem 2.4, in which case x∗ is a strong local minimizer, then from Theorem
2.14(c), f(x) must be strictly convex in the neighborhood of x∗. Consequently,
convexity assumes considerable importance even though the class of convex
functions is quite restrictive.

If φ(x) is defined over a convex set Rc and f(x) = −φ(x) is strictly con-
vex, then φ(x) is strictly concave and the Hessian of φ(x) is negative definite.
Conversely, if the Hessian of φ(x) is negative definite, then φ(x) is strictly
concave.

Example 2.11 Check the following functions for convexity:

(a) f(x) = ex1 + x2
2 + 5

(b) f(x) = 3x2
1 − 5x1x2 + x2

2

(c) f(x) = 1
4x4

1 − x2
1 + x2

2

(d) f(x) = 50 + 10x1 + x2 − 6x2
1 − 3x2

2

Solution In each case the problem reduces to the derivation and characterization
of the Hessian H.

(a) The Hessian can be obtained as

H =
[
ex1 0
0 2

]
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For −∞ < x1 < ∞, H is positive definite and f(x) is strictly convex.
(b) In this case, we have

H =
[

6 −5
−5 2

]

Since ∆1 = 6, ∆2 = −13 and ∆
′
1 = −6, ∆

′
2 = −13, where ∆i = det (Hi)

and ∆
′
i = det (−Hi), H is indefinite. Thus f(x) is neither convex nor concave.

(c) For this example, we get

H =
[
3x2

1 − 2 0
0 2

]

For x1 ≤ −
√

2/3 and x1 ≥
√

2/3, H is positive semidefinite and f(x) is
convex; for x1 < −

√
2/3 and x1 >

√
2/3, H is positive definite and f(x) is

strictly convex; for −
√

2/3 < x1 <
√

2/3, H is indefinite, and f(x) is neither
convex nor concave.

(d) As before

H =
[−12 0

0 −6

]
In this case H is negative definite, and f(x) is strictly concave.

2.8 Optimization of Convex Functions
The above theorems and results can now be used to deduce the following

three important theorems.

Theorem 2.15 Relation between local and global minimizers in convex func-
tions If f(x) is a convex function defined on a convex set Rc, then

(a) the set of points Sc where f(x) is minimum is convex;
(b) any local minimizer of f(x) is a global minimizer.

Proof (a) If F ∗ is a minimum of f(x), then Sc = {x : f(x) ≤ F ∗, x ∈ Rc}
is convex by virtue of Theorem 2.11.

(b) If x∗ ∈ Rc is a local minimizer but there is another point x∗∗ ∈ Rc which
is a global minimizer such that

f(x∗∗) < f(x∗)

then on line x = αx∗∗ + (1 − α)x∗

f [αx∗∗ + (1 − α)x∗] ≤ αf(x∗∗) + (1 − α)f(x∗)
< αf(x∗) + (1 − α)f(x∗)
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or
f(x) < f(x∗) for all α

This contradicts the fact that x∗ is a local minimizer and so

f(x) ≥ f(x∗)

for all x ∈ Rc. Therefore, any local minimizers are located in a convex set,
and all are global minimizers.

Theorem 2.16 Existence of a global minimizer in convex functions If f(x) ∈
C1 is a convex function on a convex set Rc and there is a point x∗ such that

g(x∗)Td ≥ 0 where d = x1 − x∗

for all x1 ∈ Rc, then x∗ is a global minimizer of f(x).

Proof From Theorem 2.12

f(x1) ≥ f(x∗) + g(x∗)T (x1 − x∗)

where g(x∗) is the gradient of f(x) at x = x∗. Since

g(x∗)T (x1 − x∗) ≥ 0

we have
f(x1) ≥ f(x∗)

and so x∗ is a local minimizer. By virtue of Theorem 2.15, x∗ is also a global
minimizer.

Similarly, if f(x) is a strictly convex function and

g(x∗)Td > 0

then x∗ is a strong global minimizer.

The above theorem states, in effect, that if f(x) is convex, then the first-order
necessary conditions become sufficient for x∗ to be a global minimizer.

Since a convex function of one variable is in the form of the letter U whereas
a convex function of two variables is in the form of a bowl, there are no theorems
analogous to Theorems 2.15 and 2.16 pertaining to the maximization of a convex
function. However, the following theorem, which is intuitively plausible, is
sometimes useful.

Theorem 2.17 Location of maximum of a convex function If f(x) is a
convex function defined on a bounded, closed, convex set Rc, then if f(x) has
a maximum over Rc, it occurs at the boundary of Rc.
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Proof If point x is in the interior of Rc, a line can be drawn through x which
intersects the boundary at two points, say, x1 and x2, since Rc is bounded and
closed. Since f(x) is convex, some α exists in the range 0 < α < 1 such that

x = αx1 + (1 − α)x2

and
f(x) ≤ αf(x1) + (1 − α)f(x2)

If f(x1) > f(x2), we have

f(x) < αf(x1) + (1 − α)f(x1)
= f(x1)

If
f(x1) < f(x2)

we obtain

f(x) < αf(x2) + (1 − α)f(x2)
= f(x2)

Now if
f(x1) = f(x2)

the result
f(x) ≤ f(x1) and f(x) ≤ f(x2)

is obtained. Evidently, in all possibilities the maximizers occur on the boundary
of Rc.

This theorem is illustrated in Fig. 2.9.
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Problems
2.1 (a) Obtain a quadratic approximation for the function

f(x) = 2x3
1 + x2

2 + x2
1x

2
2 + 4x1x2 + 3

at point x + δ if xT = [1 1].
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Figure 2.9. Graphical construction for Theorem 2.17.

(b) Now obtain a linear approximation.

2.2 An n-variable quadratic function is given by

f(x) = a + bTx + 1
2x

T Qx

where Q is an n×n symmetric matrix. Show that the gradient and Hessian
of f(x) are given by

g = b + Qx and ∇2f(x) = Q

respectively.

2.3 Point xa = [2 4]T is a possible minimizer of the problem

minimize f(x) = 1
4 [x2

1 + 4x2
2 − 4(3x1 + 8x2) + 100]

subject to: x1 = 2, x2 ≥ 0

(a) Find the feasible directions.

(b) Check if the second-order necessary conditions are satisfied.

2.4 Points xa = [0 3]T , xb = [4 0]T , xc = [4 3]T are possible maximizers of
the problem

maximize f(x) = 2(4x1 + 3x2) − (x2
1 + x2

2 + 25)

subject to: x1 ≥ 0, x2 ≥ 0

(a) Find the feasible directions.



62

(b) Check if the second-order necessary conditions are satisfied.

2.5 Point xa = [4 −1]T is a possible minimizer of the problem

minimize f(x) = 16
x1

− x2

subject to: x1 + x2 = 3, x1 ≥ 0

(a) Find the feasible directions.

(b) Check if the second-order necessary conditions are satisfied.

2.6 Classify the following matrices as positive definite, positive semidefinite,
etc. by using LDLT factorization:

(a) H =

⎡
⎣ 5 3 1

3 4 2
1 2 6

⎤
⎦ , (b) H =

⎡
⎣−5 1 1

1 −2 2
1 2 −4

⎤
⎦

(c) H =

⎡
⎣−1 2 −3

2 4 5
−3 5 −20

⎤
⎦

2.7 Check the results in Prob. 2.6 by using the determinant method.

2.8 Classify the following matrices by using the eigenvalue method:

(a) H =
[
2 3
3 4

]
, (b) H =

⎡
⎣ 1 0 4

0 2 0
4 0 18

⎤
⎦

2.9 One of the points xa = [1 −1]T , xb = [0 0]T , xc = [1 1]T minimizes
the function

f(x) = 100(x2 − x2
1)

2 + (1 − x1)2

By using appropriate tests, identify the minimizer.

2.10 An optimization algorithm has given a solution xa = [0.6959 −11.3479]T

for the problem

minimize f(x) = x4
1 + x1x2 + (1 + x2)2

(a) Classify the general Hessian of f(x) (i.e., positive definite, . . ., etc.).

(b) Determine whether xa is a minimizer, maximizer, or saddle point.

2.11 Find and classify the stationary points for the function

f(x) = x2
1 − x2

2 + x2
3 − 2x1x3 − x2x3 + 4x1 + 12

2.12 Find and classify the stationary points for the following functions:

(a) f(x) = 2x2
1 + x2

2 − 2x1x2 + 2x3
1 + x4

1

(b) f(x) = x2
1x

2
2 − 4x2

1x2 + 4x2
1 + 2x1x

2
2 + x2

2 − 8x1x2 + 8x1 − 4x2
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2.13 Show that
f(x) = (x2 − x2

1)
2 + x5

1

has only one stationary point which is neither a minimizer or a maximizer.

2.14 Investigate the following functions and determine whether they are convex
or concave:

(a) f(x) = x2
1 + coshx2

(b) f(x) = x2
1 + 2x2

2 + 2x2
3 + x2

4 − x1x2 + x1x3 − 2x2x4 + x1x4

(c) f(x) = x2
1 − 2x2

2 − 2x2
3 + x2

4 − x1x2 + x1x3 − 2x2x4 + x1x4

2.15 A given quadratic function f(x) is known to be convex for ‖x‖ < ε.
Show that it is convex for all x ∈ En.

2.16 Two functions f1(x) and f2(x) are convex over a convex set Rc. Show
that

f(x) = αf1(x) + βf2(x)

where α and β are nonnegative scalars is convex over Rc.

2.17 Assume that functions f1(x) and f2(x) are convex and let

f(x) = max{f1(x), f2(x)}

Show that f(x) is a convex function.

2.18 Let γ(t) be a single-variable convex function which is monotonic non-
decreasing, i.e., γ(t1) ≥ γ(t2) for t1 > t2. Show that the compound
function γ[f(x)] is convex if f(x) is convex [2].
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