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Dispersion Models

2.1 Introduction

In the analysis of correlated data, it is relatively easy to recognize one-
dimensional marginal distribution for each of the response vectors. In the
example of Indonesian children’s health study in Section 1.3.1, the univariate
response at a given visit is the infection status, which takes two values with 1
representing the presence of infection and 0 otherwise. Obviously, the marginal
distribution of such a binary response variable is Bernoulli or binomial with
the size parameter equal to one. In some cases where marginal distributions
are subtle to determine, one may apply some model diagnostic tools to check
the assumption of marginal distributions. For example, univariate histograms,
quantile-quantile plots, and some residual-based model diagnostics in univari-
ate regression analysis, whichever is suitable, could be applied to draw some
preliminary understanding of marginal distributions. In the GLMs, the diag-
nostic analysis of distributional assumptions is carried out through primarily
validating the so-called mean and variance relationship. As far as a corre-
lated data analysis concerns, the knowledge of marginal distributions is not
yet developed enough to specify a full joint probability model for the data,
and a proper statistical inference has to address the correlation among the
components of the response vector. Failing to incorporate the correlation in
the data analysis will, in general, result in a certain loss of efficiency in the
estimation for the model parameters, which may cause misleading conclusions
on statistical significance for some covariates.

There are two essential approaches to handling the correlation. One is
to construct a full probability model that integrates the marginal distribu-
tions and the correlation coherently; within such a framework, the maximum
likelihood estimation and inference can be then established. When the joint
model is adequately specified, this approach is preferable, because the maxi-
mum likelihood method provides a fully efficient inference. Such an approach
has been extensively investigated in the class of multivariate normal distribu-
tions. However, for many nonnormal data types, constructing a suitable joint
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probability distribution is not trivial, and relatively less effort on this mat-
ter has been made in the literature in comparison to other areas of research
in statistics. In particular, the construction of multivariate discrete distribu-
tions, such as multivariate binomial distributions and multivariate Poisson
distributions, is still under debate, particularly as to which of many versions
of their multivariate extensions is desirable relative to the others. More details
concerning this approach will be presented in Chapters 6 and 7. Two major
classes of joint probability models are specified via, respectively, Gaussian
copulas and random effects.

To avoid the difficulty of specifying a full probability model, the second
approach takes a compromise; that is, it only specifies the first two moments
of the data distribution. This approach constitutes the minimal requirements
for a quasi-likelihood inference procedure. Although the resulting estimation
is less efficient than the MLE, it enjoys the robustness against model mis-
specifications on higher moments. This quasi-likelihood inference would be
the choice when robustness appears to be more appealing than efficiency in
a given data analysis. A kind of such a quasi-likelihood approach, known as
generalized estimating equations (GEE), will be discussed in Chapter 5.

To proceed, it is needed to first outline the marginal parametric distribu-
tions that will be used to develop either the full probability model approach or
the quasi-likelihood approach. Marginal distributions are the essential pieces
to formulate both inference approaches in correlated data analysis. To some
extent, the breadth of marginal distributions determines the variety of data
types that the proposed inference can handle. This means if one only con-
siders marginal normal distributions, the resulting inference would be merely
restricted to continuous data type.

This chapter is devoted to a review of the theory of dispersion models
based primarily on Jørgensen’s (1997) book, The theory of dispersion models.
The dispersion models provide a rich class of one-dimensional parametric dis-
tributions for various data types, including those commonly considered in the
GLM analysis. In effect, error distributions in the GLMs form a special sub-
class of the dispersion models, which are the exponential dispersion models.
This means that the GLMs considered in this chapter, as well as in the entire
book, encompass a wider scope of GLMs than those outlined in McCullagh
and Nelder’s (1989) book. Two special examples are the von Mises distribu-
tion for directional (circular or angular) data and the simplex distribution for
compositional (or proportional) data, both of which are the dispersion models
but not the exponential dispersion models.

According to McCullagh and Nelder (1989), the random component of a
GLM is specified by an exponential dispersion (ED) family density of the
following form:

p(y; θ, φ) = exp
[{yθ − κ(θ)}

a(φ)
+ C(y, φ)

]
, y ∈ C, (2.1)
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with parameters θ ∈ Θ and φ > 0, where κ(·) is the cumulant generating
function and C is the support of the density. It is known that the first derivative
of the cumulant function κ(·) gives the expectation of the distribution, namely
μ = E(Y ) = κ̇(θ). Table 2.1 lists some ED distributions.

Table 2.1. Some commonly used exponential dispersion GLMs.

Distribution Domain Data type Canonical link Model

Normal (−∞,∞) Continuous Identity Linear model

Binomial {0, 1, . . . , n} Binary or counts Logit Logistic model

Poisson {0, 1, . . . , } Counts Log Loglinear model

Gamma (0,∞) Positive continuous Reciprocal Reciprocal model

The systematic component of a GLM is then assumed to take the form:

g(μ) = xTβ = β0 + β1x1 + · · · + βpxp (2.2)

where g is the link function, x = (1, x1, . . . , xp)T is a (p + 1)-dimensional
vector of covariates, and β = (β0, . . . , βp)T is a (p+ 1)-dimensional vector of
regression coefficients. The canonical link function g(·) is such that g(μ) = θ,
the canonical parameter.

The primary statistical tasks include estimation and inference for β.
Checking model assumptions is also an important task of regression analy-
sis, which, however, is not the main focus of the book.

2.2 Dispersion Models

The normal distribution N(μ, σ2) plays the central role in the classical linear
regression regression. The density of N(μ, σ2) is

p(y;μ, σ2) =
1√
2πσ

exp
{
− 1

2σ2
(y − μ)2

}
, y ∈ R,

where (y − μ)2 can be regarded as an Euclidean distance that measures the
discrepancy between the observed y and the expected μ. And this discrepancy
measure is used to develop many regression analysis methods, such as the F -
statistic for the assessment of goodness-of-fit for nested models.
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Mimicking the normal density, Jørgensen (1987) defines a dispersion mod-
els (DM) by extending the Euclidean distance (y−μ)2 to a general discrepancy
function d(y;μ). It is found that many commonly used parametric distribu-
tions, such as those in Table 2.1, are included as special cases of this extension.
Moreover, each of such distributions will be determined uniquely by the dis-
crepancy function d, and the resulting distribution is fully parameterized by
two parameters μ and σ2.

2.2.1 Definitions

A (reproductive) dispersion model DM(μ, σ2) with location parameter μ and
dispersion parameter σ2 is a family of distributions whose probability density
functions take the following form:

p(y;μ, σ2) = a(y;σ2) exp
{
− 1

2σ2
d(y;μ)

}
, y ∈ C (2.3)

where μ ∈ Ω, σ2 > 0, and a ≥ 0 is a suitable normalizing term that is
independent of the μ. Usually, Ω ⊆ C ⊆ R. The fact that the normalizing
term a does not involve μ will allow to estimate μ (or β in the GLM setting)
separately from estimating σ2, which gives rise to great ease in the parameter
estimation. Such a nice property, known as the likelihood orthogonality, holds
in the normal distribution, and it will remain in the dispersion models.

A bivariate function d(·; ·) is called the unit deviance defined on (y, μ) ∈
C ×Ω if it satisfies the following two properties:

i) It is zero when the observed y and the expected μ are equal, namely

d(y; y) = 0, ∀y ∈ Ω;

ii) It is positive when the observed y and the expected μ are different, namely

d(y;μ) > 0, ∀y �= μ.
Furthermore, a unit deviance is called regular if function d(y;μ) is twice

continuously differentiable with respect to (y, μ) on Ω ×Ω and satisfies

∂2d

∂μ2
(y; y) =

∂2d

∂μ2
(y;μ)

∣∣∣∣
μ=y

> 0, ∀y ∈ Ω.

For a regular unit deviance, the variance function is defined as follows.
The unit variance function V : Ω → (0,∞) is

V (μ) =
2

∂2d
∂μ2 (y;μ)|y=μ

, μ ∈ Ω. (2.4)

Some popular dispersion models are given in Table 2.2, in which the unit
deviance d and variance function V can be found in a similar fashion to that
presented in the following two examples.



2.2 Dispersion Models 27

Table 2.2. Unit deviance and variance functions of some dispersion models.

Distribution Deviance d C Ω V (μ)

Normal (y − μ)2 (−∞,∞) (−∞,∞) 1

Poisson 2(y log y
μ
− y + μ) {0, 1, . . .} (0,∞) μ

Binomial 2
{

y log y
μ

+ (n − y) log n−y
n−μ

}
{0, 1, . . . , n} (0, 1) μ(1 − μ)

Negative binomial 2
{

y log y
μ

+ (1 − y) log 1−y
1−μ

}
{0, 1, . . .} (0,∞) μ(1 + μ)

Gamma 2
(

y
μ
− log y

μ
− 1
)

(0,∞) (0,∞) μ2

Inverse Gaussian (y−μ)2

yμ2 (0,∞) (0,∞) μ3

von Mises 2{1 − cos(y − μ)} (0, 2π) (0, 2π) 1

Simplex (y−μ)2

y(1−y)μ2(1−μ)2
(0, 1) (0, 1) μ3(1 − μ)3

Example 2.1 (Normal Distribution). In the normal distribution N(μ, σ2), first
the unit deviance function d(y;μ) = (y−μ)2, y ∈ C = R, and μ ∈ Ω = R. It is
easy to see that this d function is non-negative and has the unique minimum
0 when y = μ. This unit deviance is regular because it is twice continuously
differentiable. Moreover, the first and second order derivatives of the d function
w.r.t. μ are, respectively,

∂d

∂μ
= −2(y − μ), and

∂2d

∂μ2
= 2.

It follows that the unit variance function is V (μ) = 2
2 = 1.

Example 2.2 (Poisson Distribution). To verify the results of the Poisson dis-
tribution given in Table 2.2, express the Poisson density with mean parameter
μ as follows:

p(y;μ) =
μy

y!
e−μ, y ∈ {0, 1, . . .}; μ ∈ Ω = (0,∞),

or equivalently

p(y;μ) =
1
y!

exp{y logμ− μ}.
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Note that the exponent {y logμ − μ} is not a deviance function because it
does not equal to zero when y = μ. To yield a deviance function, a new term
{y log y − y} is added into the exponent, which results in

p(y;μ) =
{

1
y!

exp(y log y − y)
}

exp
{
−1

2
2(y log y + y − y logμ+ μ)

}
.

Comparing to the DM density in (2.3), one can identify the d function, the
normalizing term, and the dispersion parameter, respectively,

d(y;μ) = 2(y log
y

μ
− y + μ),

a(y) =
1
y!

exp{y log y − y},
σ2 = 1.

To show this d function is a regular deviance function, it is sufficient to
show it is convex with a unique minimum of zero. First, note that at a given
mean value μ, the first and second order derivatives of the d w.r.t. y are

∂d

∂y
= 2(log y − logμ), and

∂2d

∂y2
=

2
y
.

Clearly, the first order derivative is negative when y < μ and positive when
y > μ, implying that the d is a convex function with a unique minimum 0
at y = μ. Thus, the d function is a regular unit deviance for the Poisson
distribution.

To find the unit variance function, note that the second order derivative
∂2d
∂μ2 = 2 y

μ2 , which immediately leads to V (μ) = μ by the definition (2.4).

2.2.2 Properties

This section lists some useful properties of the dispersion models.

Proposition 2.3. If a unit deviance d is regular, then

∂2d

∂y2
(y; y) =

∂2d

∂μ2
(y; y) = − ∂2d

∂μ∂y
(y; y), ∀y ∈ Ω. (2.5)

Proof. By the definition of a unit deviance,

d(y; y) = d(μ;μ) = 0 and d(y;μ) ≥ 0, ∀y, μ ∈ Ω,
implying that d(y; ·) has a unique minimum at y and similarly d(·;μ) has a
unique minimum at μ. Therefore,

∂d

∂μ
(y; y) =

∂d

∂y
(y; y) = 0. (2.6)

The result of (2.5) holds by simply differentiating both equations in (2.6)
w.r.t. y.
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Proposition 2.4. Taylor expansion of a regular unit deviance d near its min-
imum (μ0, μ0) is given by

d(μ0 + xδ;μ0 +mδ) =
δ2

V (μ0)
(x −m)2 + o(δ2),

where V (·) is the unit variance function.

Proof. It follows from equation (2.6) that

d(μ0 + xδ;μ0 +mδ) = d(μ0, μ0) +
∂d

∂μ
(μ0, μ0)(xδ) +

∂d

∂y
(μ0, μ0)(mδ)

1
2
∂d2

∂μ2
(μ0, μ0)(δ2x2) +

1
2
2
∂d2

∂μ∂y
(μ0, μ0)(δm)

+
1
2
∂d2

∂y2
(μ0, μ0)(δ2m2) + o(δ2)

=
δ2

V (μ0)
x2 − δ2

V (μ0)
2xm+

δ2

V (μ0)
m2 + o(δ2)

=
δ2

V (μ0)
(x−m)2 + o(δ2).

In some cases, the normalizing term a(·) has no closed form expression,
which gives rise to the difficulty of estimating the dispersion parameter σ2.
The following proposition presents an approximation to the normalizing term
a(·), resulting from the saddlepoint approximation of the density for small
dispersion. Notation a � b exclusively stands for an approximation of a to b
when the dispersion σ2 → 0, useful for small-dispersion asymptotics.

Proposition 2.5 (Saddlepoint approximation). As the dispersion σ2 →
0, the density of a regular DM model can be approximated to be:

p(y;μ, σ2) � {2πσ2V (y)}− 1
2 exp

{
− 1

2σ2
d(y;μ)

}
,

which equivalently says that as σ2 → 0, the normalizing term has a small
dispersion approximation,

a(y;σ2) � {2πσ2V (y)}−1/2, (2.7)

with the unit variance function V (·).
The proof of this proposition is basically an application of the Laplace

approximation given in, for example, Barndorff-Nielsen and Cox (1989, p.60).
Also see Jørgensen (1997, p.28).

It follows from Propositions 2.4 and 2.5 that the small dispersion asymp-
totic normality holds, as stated in the following:
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Proposition 2.6 (Asymptotic Normality). : Let Y ∼ DM(μ0 + σμ, σ2)
be a dispersion model with uniformly convergent saddlepoint approximation,
namely convergence in (2.7) is uniformly in y. Then

Y − μ0

σ

d→ N(μ, V (μ0)) as σ2 → 0.

In other words, DM(μ0 +σμ, σ2)
d� N(μ0 +σμ, σ2V (μ0)) for small dispersion

σ2.
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Fig. 2.1. Simplex density functions with mean μ = (0.1, 0.5, 0.7) from left to right
and dispersion parameter σ2 = (42, 22, 1) from top to bottom. The solid lines repre-
sent the simplex densities with the histograms as the background. These histograms
are based on 500 simulated data from respective densities.

To illustrate this small-dispersion asymptotic normality, Figure 2.1 dis-
plays the simplex distributions with different mean μ and dispersion σ2 pa-
rameters. See the detail of a simplex distribution in Table 2.2. This figure
clearly indicates that the smaller the dispersion is, the less deviation the sim-
plex distribution is from the normality.

2.3 Exponential Dispersion Models

The class of dispersion models contains two important subclasses, namely the
exponential dispersion (ED) models and the proper dispersion (PD) models.
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The PD models are mostly of theoretical interest, so they are not discussed
in this book. Readers may refer to the book of Jørgensen (1997) for relevant
details.

This section focuses on the ED models, which have already been intro-
duced in Section 2.1 as a family of GLMs’ error distributions. The family of
ED models includes continuous distributions such as normal, gamma, and in-
verse Gaussian, and discrete distributions such as Poisson, binomial, negative
binomial, among others. To establish the connection of the ED model repre-
sentation (2.1) to the DM, it is sufficient to show that expression (2.1) is a
special form of (2.3). An advantage with the DM type of parametrization for
the ED models is that both mean μ and dispersion parameters σ2 are explic-
itly present in the density, whereas expression (2.1) hides the mean μ in the
first order derivative μ = κ̇(θ). In addition, having a density form similar to
the normal enables us to easily borrow the classical normal regression theory
to the development of regression analysis for nonnormal data. One example
is the analogue of the likelihood ratio test in the GLMs to the F-test for
goodness-of-fit in the normal regression model.

To show an ED model, denoted by ED(μ, σ2), as a special case of the DM,
it suffices to find a unit deviance function d such that the density of the ED
model can be expressed in the form of (2.3). First, denote λ = 1/a(φ). Then,
the density in (2.1) can be rewritten as of the form:

p(y; θ, λ) = c(y;λ) exp[λ{θy − κ(θ)}], y ∈ C (2.8)

where c(·) is a suitable normalizing term. Parameter λ = 1/σ2 ∈ Λ ⊂ (0,∞)
is called the index parameter and Λ is called the index set. To reparametrize
this density (2.1) by the mean μ and dispersion σ2, define the mean value
mapping: τ : intΘ→ Ω,

τ(θ) = κ̇(θ) ≡ μ,
where int(Θ) is the interior of the parameter space Θ.

Proposition 2.7. The mean mapping function τ(θ) is strictly increasing.

Proof. The property of the natural exponential family distribution leads to

Var(Y ) = λκ̈(θ) > 0, θ ∈ intΘ.

In the mean time, because τ̇(θ) = κ̈(θ), τ̇ (·) is positive. This implies that τ(θ)
is a strictly increasing function in θ.

It follows that the inverse of the mean mapping function τ(·) exists, de-
noted by θ = τ−1(μ), μ ∈ Ω. Hence, the density in (2.8) can be reparametrized
as follows,

p(y;μ, σ2) = c(y;σ−2) exp
[

1
σ2

{yτ−1(μ) − κ(τ−1(μ))}
]
. (2.9)
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Proposition 2.8. The first order derivative of τ−1(μ) with respect to μ is
1/V ∗(μ), where V ∗(μ) = τ̇ (τ−1(μ)).

Proof. Differentiating both sides of equation μ = τ(θ) gives

dμ = τ̇ (θ)dθ = τ̇(τ−1(μ))dθ = V ∗(μ)dθ,

with V ∗(μ) = τ̇ (τ−1(μ)). This implies immediately that

dτ−1(μ)
dμ

=
dθ

dμ
=

1
V ∗(μ)

.

Moreover, Proposition 2.9 below shows that the V ∗(μ) is indeed the same
as the unit variance function V (μ) given by the definition (2.4). The proof of
this result will be given after the unit deviance function of the ED model is
derived.

To derive the unit deviance function of the ED model, let

f(y;μ) = yτ−1(μ) − κ(τ−1(μ)) = yθ − κ(θ).

Obviously, this f is not the unit deviance function since it does not equal to
zero when μ = y. One way to resolve this problem is to add a new term so
that the resulting function is positive and equal to zero uniquely at μ = y.
Such a valley point corresponds effectively to the maximum of the density
p(y;μ, σ2).

Differentiating f with respect to μ and using Propositions 2.8 and 2.9, one
can obtain

ḟ(y, μ) =
y − μ
V (μ)

, (2.10)

which is positive for y > μ and negative for y < μ. This means that the f has
a unique maximum, or equivalently, the −f has a unique minimum at μ = y.
Therefore, it seems natural to define

d(y;μ) = 2
[
sup
μ
{f(y;μ)} − f(y;μ)

]

= 2
[
sup
θ∈Θ

{θy − κ(θ)} − yτ−1(μ) + κ(τ−1(μ))
]
. (2.11)

Clearly, this d function satisfies (i) d(y;μ) ≥ 0 for all y ∈ C and μ ∈ Ω, and
(ii) d(y;μ) attains the minimum at μ = y because the supermum term is in-
dependent of μ. Thus, (2.11) gives a proper unit deviance function. Moreover,
since it is continuously twice differentiable, it is also regular. As a result, the
density of an ED model can be expressed as of the DM form:

p(y;μ, σ2) = a(y;σ2) exp
{
− 1

2σ2
d(y;μ)

}
,
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with the unit deviance function d given in (2.11) and the normalizing term
given by

a(y;σ2) = c(y;σ−2) exp
[
σ−2 sup

θ∈Θ
{yθ − κ(θ)}

]
.

Proposition 2.9. For the unit deviance function (2.11), the corresponding
unit variance function V (μ) given in (2.4) is V ∗(μ) = τ̇(τ−1(μ)); that is,
V (μ) = V ∗(μ).

Proof. It follows from equations (2.10) and (2.11) that

∂d

∂μ
= −2

∂f

∂μ
= −2

y − μ
V ∗(μ)

,

where V ∗(μ) = τ̇ (τ−1(μ)). Then, according to Proposition 2.3,

∂2d

∂μ2
= − ∂2d

∂y∂μ
=

2
V ∗(μ)

.

Plugging this into the definition of the unit variance function (2.4) leads to

V (μ) =
2

∂2d
∂μ2 (y;μ)|y=μ

= V ∗(μ).

Here are a few remarks for the ED models:

(1) Parameter μ is the mean of the distribution, namely E(Y ) = μ.
(2) Variance of the distribution is

Var(Y ) = σ2V (μ). (2.12)

This mean-variance relationship is one of the key properties for the ED
models, which will play an important role in the development of quasi-
likelihood inference.

(3) An important variant of the reproductive ED model representation is
the so-called additive exponential dispersion model, denoted by ED∗(θ, λ),
whose density takes the form

p∗(z; θ, λ) = c∗(z;λ) exp{θz − λκ(θ)}, z ∈ C. (2.13)

Essentially the ED and ED∗ representations are equivalent under the du-
ality transformation that converts one form to the other.
Suppose Z ∼ ED∗(θ, λ) and Y ∼ ED(μ, σ2). Then, the duality transfor-
mation performs

Z ∼ ED∗(θ, λ) ⇒ Y = Z/λ ∼ ED(μ, σ2), with μ = τ(θ), σ2 = 1/λ;
Y ∼ ED(μ, σ2) ⇒ Z = Y/σ2 ∼ ED∗(θ, λ), with θ = τ−1(μ), λ = 1/σ2.

Consequently, the mean and variance of ED∗(θ, λ) are, respectively,
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μ∗ = E(Z) = λτ(θ), Var(Z) = λV (μ∗/λ).

Moreover, the normalizing term in the DM density (2.3) is

a∗(z;σ2) = c∗(z;σ−2) exp
[
σ−2 sup

θ∈Θ
{zθ − κ(θ)}

]
.

An important property for the ED models is the closure under convolution
operation.

Proposition 2.10 (Convolution for the ED∗ models). Assume Z1, . . . , Zn
are independent and Zi ∼ ED∗(θ, λi), i = 1, . . . , n. Then the sum follows still
an ED∗ model:

Z+ = Z1 + · · · + Zn ∼ ED∗(θ, λ1 + · · · + λn).

For example, consider two independent and identically distributed (i.i.d.)
Poisson random variables Zi ∼ ED∗(logμ, 1), i = 1, 2, where μ is the mean
parameter and the canonical parameter θ = log(μ). Then, Proposition 2.10
implies that the sum Z+ = Z1 + Z2 ∼ ED∗(logμ, 2).

Proposition 2.11 (Convolution for the ED models). Assume Y1, . . . , Yn
are independent and

Yi ∼ ED(μ,
σ2

wi
), i = 1, . . . , n,

where wis are certain positive weights. Let w+ = w1 + · · · + wn. Then the
weighted average follows still an ED model; that is,

1
w+

n∑
i=1

wiYi ∼ ED(μ,
σ2

w+
).

In particular, with wi = 1, i = 1, . . . , n the sample average

1
n

n∑
i=1

Yi ∼ ED(μ,
σ2

n
).

For the example of two i.i.d. Poisson random variables with Yi ∼ ED(μ, 1),
i = 1, 2, their average (Y1 + Y2)/2 ∼ ED(μ, 1

2 ). Note that the resulting
ED(μ, 1

2 ) is no longer a Poisson distribution but it is still an ED distribu-
tion.

It is noticeable that although the class of the ED models is closed under the
convolution operation, it is in general not closed under scale transformation.
That is, cY may not follow an ED model even if Y ∼ ED(μ, σ2), for a constant
c. However, a subclass of the ED models, termed as the Tweedie class, is closed
under this type of scale transformation. The Tweedie models will be discussed
in Section 2.5.

Finally, the following property concerns sufficient and necessary conditions
for the de-convolution for the ED models.
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Definition 2.12 (Infinite Divisibility). X is said to be infinitely divisible,
if for any integer n ∈ {1, 2, . . .}, there exist i.i.d. random variables X1, . . . , Xn

such that X d= X1+· · ·+Xn. Notation U d= V means that two random variables
U and V are identically distributed.

Proposition 2.13 (Deconvolution for the ED∗). Suppose Z ∼ ED∗(θ, λ).
Then, Z is infinitely divisible if and only if the index parameter set Λ = (0,∞).

This result holds simply because by Proposition 2.10 there exist Xi ∼
ED∗(θ, λ/n), i = 1, . . . , n such that

ED∗(θ, λ) = ED∗(θ, λ/n) + · · · + ED∗(θ, λ/n).

It is easy to see that gamma models are infinitely divisible, but binomial
models are not infinitely divisible.

2.4 Residuals

Residual analysis is an important part of regression analysis. In the context
of the dispersion models where the unit deviance functions d are highly non-
linear in comparison to the square normal deviance (y − μ)2 of the normal
model, there are several other types of residuals besides the traditional Pear-
son residual (y − μ). Table 2.3 lists some proposed residuals in the GLMs.
Among them, the Pearson and deviance residuals are most commonly used in
practice, which are in fact implemented in statistical softwares such as SAS.
For example, SAS PROC GENMOD uses the deviance residual in the analysis
of outliers and influential data cases.

Table 2.3. Some types of residuals in the GLMs.

Type Notation Definition

Pearson residual rp
y−μ

V 1/2(μ)

Score residual rs − ∂d
2∂μ

V 1/2(μ)

Dual score residual rd
∂d
2∂y

V 1/2(μ)

Deviance residual r ±d1/2(y; μ)

Modified deviance residual r∗ r
σ

+ σ
r

log rd
r
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Besides the residual analysis for model diagnosis, another important ap-
plication of residuals is in the approximation of tail area probabilities with
small dispersion. Calculating tail probabilities is often encountered, such as in
the calculation of p-values. Most of cumulative distribution functions (CDFs)
of the ED models have no closed form expressions, so a certain approximation
to their CDF is useful.

Let F (y;μ, σ2) be the CDF of an ED(μ, σ2). By Proposition 2.6, the small
dispersion asymptotic normality gives

F (y;μ, σ2) � Φ(rp/σ) for σ2 small,

where Φ is the CDF of the standard normal N(0, 1). This result is based on
the Pearson residual rp. Because it is a first-order linear approximation, this
approximation may not be satisfactorily accurate when the unit deviance d is
highly nonlinear.

Two formulas based on the so-called third-order approximation provide
much more accurate approximations for the CDF of the DM model. One is
Barndorff-Nielsen’s formula given by,

F (y;μ, σ2) = Φ(r∗){1 +O(σ3)},
where r∗ is the modified deviance residual given in Table 2.3. The other is
Lugannani-Rice’s formula

F (y;μ, σ2) = Φ∗(y;μ, σ2){1 +O(σ3)},
where

Φ∗(y;μ, σ2) = Φ(
r

σ
) + σφ(

r

σ
)(

1
r
− 1
rd

),

where r is the deviance residual and φ is the density of the standard normal
N(0, 1).

2.5 Tweedie Class

Tweedie class is an important subclass of the ED models, which is closed
under the scale transformation. Tweedie models are characterized by the unit
variance functions in the form of the power function:

Vp(μ) = μp, μ ∈ Ωp, (2.14)

where p ∈ R is a shape parameter.
It is shown that the ED model with the power unit variance function

(2.14) always exists except 0 < p < 1. A Tweedie model is denoted by Y ∼
Twp(μ, σ2) with mean μ and variance

Var(Y ) = σ2μp.

The following proposition gives the characterization of the Tweedie models.
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Proposition 2.14 (Tweedie Characterization). Let ED(μ, σ2) be a re-
productive ED model satisfying V (1) = 1 and 1 ∈ Ω. If the model is
closed with respect to scale transformation, such that there exists a function
f : R+ × Λ−1 → Λ−1 for which

cED(μ, σ2) ∼ ED[cμ, f(c, σ2)], ∀c > 0,

then

(a) ED(μ, σ2) is a Tweedie model for some p ∈ R\(0, 1);
(b) f(c, σ2) = c2−pσ2;
(c) the main domain Ω = R for p = 0 and Ω = (0,∞) for p �= 0;
(d) the model is infinitely divisible.

It follows immediately from Proposition 2.14 that

cTwp(μ, σ2) = Twp(cμ, c2−pσ2).

The importance of the Tweedie class is that it serves as a class of limiting
distributions of the ED models, as described in the following proposition.

Definition 2.15. The unit variance function V is said to be regular of order
p at 0 (or at ∞), if V (μ) ∼ c0μp as μ→ 0(or μ→ ∞) for certain p ∈ R and
c0 > 0.

Proposition 2.16. Suppose the unit variance function V is regular of order
p at 0 or at ∞, with p /∈ (0, 1). For any μ > 0 and σ2 > 0,

c−1ED(cμ, c2−pσ2) d→ TWp(μ, c0σ2), as c→ 0 or ∞,

where the convergence is through values of c such that cμ ∈ Ω and cp−2/σ2 ∈
Λ.

Refer to Jørgensen et al. (1994) for the proof of this result.

2.6 Maximum Likelihood Estimation

This section is devoted to maximum likelihood estimation in the GLMs based
on the dispersion models. Therefore, the MLE theory given in, for example,
McCullagh and Nelder (1989) are the special cases, because the ED family is
a subclass of the DM family.
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2.6.1 General Theory

Consider a cross-sectional dataset, (yi,xi), i = 1, . . . ,K, where the yi’s are
i.i.d. realizations of Yi’s according to DM(μi, σ2) and g(μi) = xTi β. Let y =
(y1, . . . , yK)T and μ = (μ1, . . . , μK)T . The likelihood for the parameter vector
θ = (β, σ2) is given by

L(θ;y) =
K∏
i=1

a(yi;σ2) exp
{
− 1

2σ2
d(yi;μi)

}
, β ∈ Rp+1, σ2 > 0.

The log-likelihood is then

�(θ;y) =
K∑
i=1

log a(yi;σ2) − 1
2σ2

K∑
i=1

d(yi;μi)

=
K∑
i=1

log a(yi;σ2) − 1
2σ2

D(y;μ), (2.15)

where μi = μi(β) is a nonlinear function in β and D(y;μ) =
∑K

i=1 d(yi;μi)
is the sum of deviances depending on β only. This D is analogous to the sum
of squared residuals in the linear regression model.

The score function for the regression coefficient β is

s(y;β) =
∂�(θ)
∂β

= − 1
2σ2

K∑
i=1

∂d(yi;μi)
∂μi

∂μi
∂β
.

Denote the i-th linear predictor by ηi = xTi β, and denote the deviance scores
by

δ(yi;μi) = −1
2
∂d(yi;μi)
∂μi

, i = 1, . . . ,K. (2.16)

Note that
∂μi
∂β

=
∂μi
∂ηi

∂ηi
∂β

= {ġ(μi)}−1xi,

where ġ(μ) is the first order derivative of link function g w.r.t μ. Table 2.4
lists some commonly used link functions and their derivatives.

Then the score function for β takes the form

s(y;β) =
1
σ2

K∑
i=1

xi
1

ġ(μi)
δ(yi;μi). (2.17)

Moreover, the score equation leading to the maximum likelihood estimate of
the β is

K∑
i=1

xi
1

ġ(μi)
δ(yi;μi) = 0. (2.18)
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Table 2.4. Some common link functions and derivatives. NB and IG stand for
Negative binomial and Inverse Gaussian, respectively.

Model Link Derivative Domain
g ġ Ω

Binomial or simplex log
(

μ
1−μ

)
1

μ(1−μ)
μ ∈ (0, 1)

Poisson, NB, gamma, or IG log(μ) 1
μ

μ ∈ (0,∞)

Gamma 1
μ

− 1
μ2 μ ∈ (0,∞)

von Mises tan(μ/2) 1
2
sec2(μ/2) μ ∈ [−π, π)

Note that this equation does not involve the dispersion parameter σ2. Under
some mild regularity conditions, the resulting ML estimator β̂K , which is the
solution to the score equation (2.18), is consistent

β̂K
p→ β as K → ∞,

and asymptotically normal with mean 0 and covariance matrix i−1(θ). Here
i(θ) is the Fisher information matrix given by

i(θ) = −E{ṡ(Y;β)}

=
1
σ2

K∑
i=1

xi
1

{ġ(μi)}2
E{−δ̇(Yi;μi)}xTi

=
1
σ2

K∑
i=1

xiu−1
i xTi

= XTU−1X/σ2, (2.19)

where X is a K × (p + 1) matrix with the i-th row being the xTi , and U is a
diagonal matrix with the i-th diagonal element ui given by

ui =
{ġ(μi)}2

E{−δ̇(Yi;μi)}
, i = 1, . . . ,K. (2.20)

When the dispersion parameter σ2 is present in the model, the ML estima-
tion for the dispersion parameter σ2 can be derived similarly, if the normalizing
term a(y;σ2) is simple enough to allow such a derivation, such as the case of
the normal distribution. However, in many cases, the term a(·) has no closed
form expression and its derivative w.r.t. σ2 may appear too complicated to
be numerically solvable. In this case, two methods have been suggested to ac-
quire the estimation for σ2. The first method is to invoke the small dispersion
asymptotic normality (Proposition 2.5), where subject to a constant,
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log a(y;σ2) � −1
2

log σ2.

Applying this approximation in the log-likelihood (2.15) and differentiating
the resulting approximate log-likelihood w.r.t. σ2, one can obtain an equation
as follows,

− K

2σ2
+

1
2σ4

D(y;μ) = 0.

Solution to this equation gives an estimator of the dispersion parameter σ2,

σ̂2 =
1
K
D(y; μ̂) =

1
K

K∑
i=1

d(yi; μ̂i). (2.21)

This book refers this estimator to as the Jørgensen estimator of the dispersion
parameter, which in fact is an average of the estimated unit deviances.

However, the Jørgensen estimator is not, in general, unbiased even if the
adjustment on the degrees of freedom, K − (p + 1) is made to replace K.
Moreover, this formula is recommended when the dispersion parameter σ2 is
small, say less than 5.

To obtain an unbiased estimator of the dispersion parameter σ2, the second
method utilizes a moment property given in the following proposition.

Proposition 2.17. Let Y ∼ DM(μ, σ2) with a regular unit deviance d(y;μ).
Then,

E{δ(Y ;μ)} = 0,
Var{δ(Y ;μ)} = σ2E{−δ̇(Y ;μ)},

where δ̇ is the first order derivative of the deviance score given in (2.16) w.r.t.
μ.

Proof. Differentiating both sides of equation
∫
p(y;μ, σ2)dy = 1 w.r.t. μ gives

− 1
2σ2

∫
ḋ(y;μ)p(y;μ, σ2)dy = 0,

or E{ḋ(Y ;μ)} = 0. Differentiating the above equation again w.r.t. μ, we obtain

− 1
2σ2

∫
{ḋ(y;μ)}2p(y;μ, σ2)dy +

∫
d̈(y;μ)p(y;μ, σ2)dy = 0,

or equivalently

E{d̈(Y ;μ)} =
1

2σ2
E{ḋ(Y ;μ)}2 =

1
2σ2

Var{ḋ(Y ;μ)}.

According to (2.16), this relation can be rewritten as follows,

Var{δ(Y ;μ)} = σ2E{−δ̇(Y ;μ)}.
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Based on this result, one can consistently estimate the dispersion param-
eter σ2 by the method of moments:

σ̂2 =
∑K
i=1(δi − δ̄)2∑K
i=1(−δ̇i)

, (2.22)

where δi = δ(yi; μ̂i), δ̇i = δ̇(yi; μ̂i) and δ̄ = 1
K

∑
i δi.

2.6.2 MLE in the ED Models

Now return to the special case of the GLMs based on the ED models. For the
unit deviance of the ED model given in (2.11), it is easy to see

δ(y;μ) =
y − μ
V (μ)

. (2.23)

It follows that the score equation (2.18) becomes

K∑
i=1

xi
1

ġ(μi)V (μi)
(yi − μi) = 0.

Let wi = ġ(μi)V (μi). Then the score equation can be re-expressed as of the
form

K∑
i=1

xiw−1
i (yi − μi) = 0,

or in the matrix notation,

XTW−1(y − μ) = 0,

where W = diag(w1, . . . , wK). The following result is useful to calculate the
Fisher information.

Proposition 2.18. Suppose Y ∼ ED(μ, σ2). Then,

E{−δ̇(Y ;μ)} =
1

V (μ)
,

where δ̇(y;μ) is the first order derivative of the deviance score δ(y;μ) w.r.t.
μ.

Proof. Differentiating δ in (2.16) w.r.t. μ gives

−δ̇(y;μ) =
1

V (μ)
+

(y − μ)V̇ (μ)
V 2(μ)

,

which leads to
E{−δ̇(Y ;μ)} =

1
V (μ)

,

because E(Y ) = μ in the ED model.
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In the Fisher information matrix i(θ) of (2.19), i(θ) = XTU−1X/σ2, U is
a diagonal matrix whose i-th diagonal element can be simplified as

ui = {ġ(μi)}2V (μi).

Furthermore, if the canonical link function g = τ−1(·) is chosen, then a further
simplification leads to wi = 1 and ui = 1/V (μi) because in this case, ġ(μi) =
1/V (μi). So, the matrix W becomes the identity matrix and the matrix U is
determined by the reciprocals of the variance functions.

It is interesting to note that the choice of the canonical link simplifies both
score function and Fisher information. In summary, under the canonical link
function, the score equation of an ED GLM is

K∑
i=1

xi(yi − μi) = 0, or XT (y − μ) = 0,

and the Fisher information takes the form

i(θ) = XTU−1X/σ2

where U = diag(u1, . . . , uK), a diagonal matrix with variance function V (μi)
as the i-th diagonal element.

Each ED model holds the so-called mean-variance relation, i.e. Var(Y ) =
σ2V (μ), which may be used to obtain a consistent estimator of the dispersion
parameter σ2 given as follows:

σ̂2 =
1

K − p− 1

K∑
i=1

r̂2p,i =
1

K − p− 1

K∑
i=1

{
yi − μ̂i√
V (μ̂i)

}2

,

where r̂p is the Pearson residual listed in Table 2.3. This estimator is referred
to as the Pearson estimator of the dispersion parameter σ2. In fact, the relation
given in Proposition 2.17 is equivalent to this mean-variance relation for the
ED models, simply because of Proposition 2.18.

2.6.3 MLE in the Simplex GLM

The GLM for binary data or logistic regression model, the GLM for count data
or log-linear regression model, and the GLM for positive continuous data or
gamma regression model have been extensively illustrated in the literature.
Interested readers can find examples of these ED GLMs easily in many ref-
erences such as McCullagh and Nelder’s (1989). This section supplies two
non-ED GLMs based, respectively, on the simplex distribution and the von
Mises distribution. Both are not available in the classical theory of GLMs.

In the ED GLMs, both score equation and Fisher information can be
treated as a special case of weighted least squares estimation, due to the fact
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that its first order derivative of the unit deviance is (y − μ)/V (μ), which is
linear in y. However, this linearity no longer holds for a DM GLM outside the
class of the ED GLMs. The simplex distribution is one of such examples. A
simplex model S−(μ;σ2) has the density given by

p(y;μ, σ2) = [2πσ2{y(1− y)}3]−1/2 exp
{
− 1

2σ2
d(y;μ)

}
, y ∈ (0, 1), μ ∈ (0, 1),

with the unit deviance function

d(y;μ) =
(y − μ)2

y(1 − y)μ2(1 − μ)2 , y ∈ (0, 1), μ ∈ (0, 1),

where μ = E(Y ) is the mean. The unit variance function is V (μ) = μ3(1−μ)3,
obtained from (2.4).

For a non-ED GLM, the canonical link function no longer helps to sim-
plify the weights ui or the wi, because the density does not explicitly involve
the cumulant generating function κ(·) as in the ED GLM. For the simplex
distribution, since μ ∈ (0, 1), one may take the logit as the link function to
formulate the systematic component:

log
μ

1 − μ = xTβ.

According to Table 2.4, ġ(μ) = {μ(1 − μ)}−1. It follows from (2.18) that the
score equation for the regression parameter β is

K∑
i=1

xi{μi(1 − μi)}δ(yi;μi) = 0, (2.24)

where the deviance score is

δ(y;μ) = −1
2
ḋ(y;μ)

=
y − μ
μ(1 − μ)

{
d(y;μ) +

1
μ2(1 − μ)2

}
. (2.25)

It is clear that this δ function is nonlinear in both y and μ. Solving nonlinear
equation (2.24) can be done iteratively by the Newton-Raphson algorithm or
quasi-Newton algorithm. The calculation of the Fisher information requires
the knowledge of E{−δ̇(Yi;μi)}. It is equivalent to deriving 1

2Ed̈(Yi;μi).
Differentiating ḋ w.r.t. μ gives

1
2
d̈(y;μ) =

1
μ(1 − μ)d(y;μ) +

1 − 2μ
μ2(1 − μ)2 (y − μ)d(y;μ)

+
1

μ3(1 − μ)3 +
1 − 2μ

μ4(1 − μ)4 (y − μ)

− 1
μ(1 − μ) (y − μ)ḋ(y;μ) − 2(2μ− 1)

μ4(1 − μ)4 (y − μ). (2.26)
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Hence,

1
2
E{d̈(Y ;μ)} =

1
μ(1 − μ)

[
E{d(Y ;μ)} − E{(Y − μ)ḋ(Y ;μ)}

]

+
1 − 2μ

μ2(1 − μ)2 E{(Y − μ)d(Y ;μ)} +
1

μ3(1 − μ)3

=
3σ2

μ(1 − μ) +
1

μ3(1 − μ)3 , (2.27)

where the last equation holds by applying part (e) of Proposition 2.19 below.
Therefore, the Fisher information is

i(β) =
1
σ2

K∑
i=1

xiu−1
i xTi ,

where

ui =
μi(1 − μi)

1 + 3σ2{μi(1 − μi)}2
, i = 1, . . . ,K.

As seen in (2.26), the first order derivative of the deviance score δ̇ appears
tedious, but its expectation in (2.27) is much simplified. Therefore, it is appeal-
ing to implement the Fisher-scoring algorithm in the search for the solution
to the score equation (2.24). One complication in the application of Fisher-
scoring algorithm is the involvement of the dispersion parameter σ2. This can
be resolved by replacing σ2 with a

√
K-consistent estimate, σ̂2. A consistent

estimate of such a type can be obtained by the method of moments. For ex-
ample, the property (a) in Proposition 2.19 is useful to establish an estimate
of σ2 as follows:

σ̂2 =
1

K − (p+ 1)

K∑
i=1

d(yi; μ̂i). (2.28)

Proposition 2.19. Suppose Y ∼ S−(μ;σ2) with mean μ and dispersion σ2.
Then,

(a) E{d(Y ;μ)} = σ2;
(b) E{(Y − μ)ḋ(Y ;μ)} = −2σ2;
(c) E{(Y − μ)d(Y ;μ)} = 0;
(d) E{ḋ(Y ;μ)} = 0;
(e) 1

2E{d̈(Y ;μ)} = 3σ2

μ(1−μ) + 1
μ3(1−μ)3 ;

(f) Var{d(Y ;μ)} = 2
(
σ2
)2 ;

(g) Var{δ(Y ;μ)} = 3σ4

μ(1−μ) + σ2

μ3(1−μ)3 .

The following lemma is needed in order to prove Proposition 2.19.
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Lemma 2.20 (Jørgensen, 1997, P.191). Consider a dispersion model
DM(μ, σ2) whose density takes the form:

f(y;μ, λ) = cα(μ, λ)yα−1 exp
{
−λ(y − μ)

2

2yμ1−2α

}
,

where λ = 1/σ2 and the normalization constant is defined by

1
cα(μ, λ)

= 2Kα(λμ2α)eλμ
2α

μα.

Then the asymptotic expansion of 1/cα(μ, λ) is given by, for large λ,

{
2π
λ

} 1
2
{

1 +
4α2 − 1
8λμ2α

+
(4α2 − 1)(4α2 − 9)

2!(8λμ2α)2

+
(4α2 − 1)(4α2 − 9)(4α2 − 25)

3!(8λμ2α)3
+ · · ·

}
.

The proof of Proposition 2.19 is given as follows.

Proof. First prove part (b). Note that

0 = E[(Y − μ)] =
∫ 1

0

(y − μ)p(y;μ, σ2)dy,

and differentiating both sides of the equation with respect to μ gives

0 = −1 − 1
2σ2

E[(Y − μ)ḋ(Y ;μ)],

and hence E[(Y − μ)ḋ(Y ;μ)] = −2σ2.
To prove part (a) and part (c), take the following transformations for both

y and μ,
x =

y

1 − y , ξ =
μ

1 − μ
and rewrite the two expectations in the following forms:

E[d(Y ;μ)] =
∫ 1

0

d(y;μ)p(y;μ, σ2)dy

=

√
λ

2π
(1 + ξ)2

ξ2

∫ ∞

0

{
x

1
2 + (1 − 2ξ)x−

1
2

+ξ(ξ − 2)x−
3
2 + ξ2x−

5
2

}
f(x; ξ, λ)dx,

and
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E[(Y − μ)d(Y ;μ)] =
∫ 1

0

(y − μ)d(y;μ)p(y;μ, σ2)dy

=

√
λ

2π
1 + ξ
ξ2

∫ ∞

0

{
x

1
2 − 3ξx−

1
2

+3ξ2x−
3
2 − ξ3x− 5

2

}
f(x; ξ, λ)dx,

where λ = 1/σ2 and

f(x; ξ, λ) = exp
{
−λ

2
(1 + ξ)2

ξ2
(x− ξ)2
x

}
.

Applying Lemma 2.20 leads to

∫ ∞

0

x
1
2 f(x; ξ, λ)dx =

(
2π
λ

) 1
2 ξ3 + λξ2(1 + ξ)2

λ(1 + ξ)3
,

∫ ∞

0

x−
1
2 f(x; ξ, λ)dx =

(
2π
λ

) 1
2 ξ

1 + ξ
,

∫ ∞

0

x−
3
2 f(x; ξ, λ)dx =

(
2π
λ

) 1
2 1

1 + ξ
,

and ∫ ∞

0

x−
5
2 f(x; ξ, λ)dx =

(
2π
λ

) 1
2 ξ + λ(1 + ξ)2

λξ(1 + ξ)3
.

Plugging these results into the expressions above leads to

E{d(Y ;μ)} = 1/λ = σ2 and E{(Y − μ)d(Y ;μ)} = 0.

Part (d) is given by applying part (c) to (2.25) and then taking expectation.
Also, part (e) is proved by applying parts (a), (b), and (c) to (2.27).

By part (a), to prove part (f), it is sufficient to show that

E{d2(Y ;μ)} = 3
(
σ2
)2
.

Simple algebra leads to

E{d2(Y ;μ)} =
∫ 1

0

d2(y;μ)p(y;μ, σ2)dy

=

√
λ

2π
(1 + ξ)4

ξ4

∫ ∞

0

{x 3
2 + (1 − 4ξ)x

1
2

+2ξ(3ξ − 2)x−
1
2 + 2ξ2(3 − 2ξ)x−

3
2

+ξ3(ξ − 4)x−
5
2 + ξ4x−

7
2 }f(x; ξ, λ)dx. (2.29)
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An application of Lemma 2.20 again results in

∫ ∞

0

x
3
2 f(x; ξ, λ)dx =

(
2π
λ

) 1
2 λ2ξ3(1 + ξ)4 + 3λξ4(1 + ξ)2 + 3ξ5

λ2(1 + ξ)5

and
∫ ∞

0

x−
7
2 f(x; ξ, λ)dx =

(
2π
λ

) 1
2 λ2(1 + ξ)4 + 3λξ(1 + ξ)2 + 3ξ2

λ2ξ2(1 + ξ)5
.

Based on these results, the integration (2.29) can be simplified as

E{d2(Y ;μ)} = 3
(
σ2
)2
.

Part (g) can be proved by applying part (e) in the relation between ḋ and
δ from Proposition 2.17.

In the application of the simplex GLM, one issue that deserves some atten-
tion is whether there is much difference between the normal linear model based
on logit-transformed data, log{yi/(1−yi)}, and the direct simplex GLM. The
difference between the two models is the former models E[log{Yi/(1 − Yi)}]
as a linear function of covariates, and the latter models μi = E(Yi) via
log{μi/(1−μi)} as a linear function of covariates. Apparently the direct GLM
approach gives rise to much ease in interpretation.

The following simulation study suggests that when the dispersion param-
eter σ2 is large, the performance of the logit-transformed analysis may be
questionable, if the data are really from a simplex distributed population.

The simulation study assumes the proportional data are generated inde-
pendently from the following simplex distribution,

Yi ∼ S−(μi, σ2), i = 1, . . . , 150,

where the mean follows a GLM of the following form:

logit(μi) = β0 + β1Ti + β2Si.

Covariates T and S are presumably drug dosage levels indicated by {−1, 0, 1}
for each 50 subjects and illness severity score ranged in {0, 1, 2, 3, 4, 5, 6} that
is randomly assumed to each subject by a binomial distribution B(7, 0.5). The
true values of regression coefficients are set as β0 = 0.5, β1 = −0.5, β2 = 0.5,
and the dispersion parameter σ2 = 0.5, 50, 200, 400.

For each combination of parameters, the same simulated data was fit by the
simplex GLM for the original responses and the normal linear model for logit-
transformed responses. Two hundred replications were done for each case.
Results are summarized in Table 2.5, including the averaged estimates, stan-
dard deviations of 200 replicated estimates, and standard errors of estimates
calculated from the Fisher information.
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Table 2.5. Summary of the simulation results for the comparison between the direct
simplex GLM analysis and logit-transformed linear model analysis.

Parameter Simplex GLM Logit-Trans LM

True Mean Std Dev Std Err Mean Std Dev Std Err

σ2 = 0.5

β0(0.5) .4996 .0280 .0254 .5089 .0288 .0263
β1(−0.5) −.5023 .0330 .0308 −.5110 .0345 .0322
β2(0.5) .5015 .0195 .0205 .5101 .0199 .0222

σ2 = 50

β0(0.5) .5062 .0983 .0960 .8057 .1769 .1752
β1(−0.5) −.5068 .1141 .1185 −.7998 .2065 .2148
β2(0.5) .5170 .0860 .0835 .8153 .1366 .1483

σ2 = 200

β0(0.5) .5060 .1145 .1021 1.0162 .2741 .2541
β1(−0.5) −.5262 .1346 .1263 −1.0479 .3218 .3114
β2(0.5) .5238 .0971 .0899 1.0430 .1919 .2150

σ2 = 400

β0(0.5) .5253 .0963 .1032 1.2306 .2767 .2980
β1(−0.5) −.5001 .1486 .1275 −1.1336 .3888 .3652
β2(0.5) .5165 .1000 .0909 1.1686 .2286 .2521

This simulation study indicates that (i) when the dispersion parameter
σ2 is small, the logit-transformed analysis appears fine, with little bias and
little loss of efficiency, because of small-dispersion asymptotic normality; (ii)
when the dispersion parameter is large, the estimation based on the logit-
transformed analysis is unacceptable, in which bias increases and efficiency
drops when the σ2 increases.

One may try to make a similar comparison by simulating data from the
normal distribution as well as from the beta distribution. Our simulation
study suggested that in the case of normal data, the direct simplex GLM
performed nearly as well as the normal model, with only a marginal loss of
efficiency; in the case of beta data, the simplex GLM clearly outperformed the
normal linear model. Interested readers can verify the findings through their
own simulation studies.
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Example 2.21 (Body Fat Index).
Penrose et al. (1985) reports a dataset consisting of 19 variables, includ-

ing percentage of body fat, age, weight, height, and ten body circumfer-
ence measurements (e.g., abdomen) for 252 men. This dataset is available
at http://www.amstat.org/publications/jse/jse data archive.html. Body fat,
a measure of health, is estimated through an underwater weighing technique.
Percentage of body fat may be then calculated by either Brozek’s equation
or Siri’s equation. Fitting body fat to the other measurements using GLM
provides a convenient way of estimating body fat for men using only a scale
and a measuring tape.

In this example, the simplex GLM is illustrated simply by fitting the the
body fat index as a function of covariate age. Suppose the percentage of body
fat Yi ∼ S−(μi, σ2), where

log
μi

1 − μi = β0 + β1 age.

The Fisher-scoring algorithm was applied to obtain the estimates of the re-
gression coefficients and the standard errors were calculated from the Fisher
information. The results were summarized in Table 2.6, in which the disper-
sion parameter is estimated by the method of moments in (2.28). Clearly, from
the results given in Table 2.6, age is an important predictor to the percentage
of body fat in both Brozek’s and Siri’s equations. The dispersion σ2 is found
not small in this study, so it might be worrisome for the appropriateness of
either a direct linear model analysis (with no transformation on the response)
or logit-transformed linear model analysis. Some further investigations are
needed to elucidate the choice of modeling approach in this data analysis.

Table 2.6. Results in the regression analysis of body fat percentage using the
simplex GLM.

Parameter

Body-fat measure Intercept (Std Err) Age (Std Err) σ2

Brozek’s −2.7929(0.3304) 0.0193(0.0070) 55.9759

Siri’s −2.8258(0.3309) 0.0202(0.0070) 57.0353

2.6.4 MLE in the von Mises GLM

Angular data are a special case of circular data. Mardia (1972) has presented
a general framework of estimation and inference in the models for circular
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data. Fisher (1993) gave an overview of the state-of-art of research in this
field. Although the analysis of circular data is an old topic, there have been
recent developments in applied areas, such as multi-dimensional circular data
(Fisher, 1993; Rivest, 1997; Breckling, 1989), time series of circular observa-
tions (Accardi et al. 1987; Fisher and Lee 1994; Coles 1998), and longitudinal
circular data (Artes et al. 2000; D’Elia et al. 2001).

The von Mises distribution is another example of the DM model but not
of an ED model. The density of a von Mises distribution takes the form

p(y;μ, σ2) =
1

2πI0(λ)
exp{λ cos(y − μ)}, y ∈ [−π, π), (2.30)

where μ ∈ [−π, π) is the mean, λ = 1/σ2 > 0 is the index parameter, and
I0(λ) is the modified Bessel function of the first kind of order 0, given by

I0(λ) =
1
2π

∫ π

−π
exp{λ cos(y)}dy.

It is easy to rewrite the von Mises density in the form of DM model with the
unit deviance function given by

d(y;μ) = 2{1 − cos(y − μ)}, y, μ ∈ [−π, π),

whose first and second order derivatives w.r.t. μ are, respectively,

ḋ = −2 sin(y − μ), d̈ = 2 cos(y − μ).

It follows that the unit variance function is V (μ) = 1 for μ ∈ [−π, π) and the
deviance score δ(y;μ) = sin(y − μ).

Now consider a GLM for directional (circular or angular) data, where
Yi ∼ vM(μi, σ2), associated with p-element vector of covariates xi. According
to Fisher and Lee (1992) or Fisher (1993, Section 6.4), a GLM for the mean
direction μi = E(Yi|xi) may be formulated as follows:

μi = μ0 + 2arctan(xi1β1 + · · · + xipβp), (2.31)

where μ0 is an offset mean parameter representing the origin. If Y ∗
i = Yi−μ0

is taken as a surrogate response, then the corresponding mean direction is
μ∗i = μi − μ0 = 2arctan(ηi) with the origin of 0o. This implies

tan(μ∗i /2) = ηi = xTi β,

where the intercept term is not included, because of the 0o origin. Clearly,
in this GLM, the link function g(z) = tan(z/2) and ġ(z) = 1

2 sec2(z/2), as
shown in Table 2.4. To estimate the regression parameter β, formula (2.18) is
applied here to yield the following score equation:
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s(y;β) = λ
K∑
i=1

xi
1

ġ(μ∗i )
δ(y∗i ;μ

∗
i )

= 2λ
K∑
i=1

xi

(
1

1 + η2i

)
sin(y∗i − μ∗i )

= 2λ
K∑
i=1

xi

(
1

1 + η2i

)
sin(yi − μ0 − 2arctan(xTi β)),

where the identity of sec2(arctan(a)) = 1 + a2 is used. The MLE of β is the
solution to the score equation

s(y;β) = 0. (2.32)

To find the Fisher Information for β̂, first note that the surrogate response
Y ∗
i ∼ vM(μ∗i , σ

2), and then

E{−δ̇(Y ∗
i ;μ∗i )} = E{cos(Y ∗

i − μ∗i )} =
I1(λ)
I0(λ)

,

where I1(λ) is the first order modified Bessel function of the first kind given
by

I1(λ) =
1
2π

∫ π

−π
cos(y) exp{λ cos(y)}dy.

Denote the mean resultant length by A1(σ2) = I1(σ−2)/I0(σ−2). Then the
weights ui in (2.20) are found as

ui =
(1 + η2i )

2

4A1(σ2)
, i = 1, . . . ,K.

Moreover, the Fisher Information for the β̂ is i(β) = XTU−1X/σ2, with
U = diag(u1, . . . , uK).

To estimate the parameter μ0 and the dispersion parameter σ2, the MLE
may be also employed. The log likelihood is proportional to

�(θ) ∝ −K log I0(λ) + λ
K∑
i=1

cos(yi − μ0 − 2arctan(ηi)),

and the scores for μ0 and λ are, respectively,

s(y;μ0) = λ
K∑
i=1

sin(yi − μ0 − 2arctan(ηi)),

s(y;λ) = −K İ0(λ)
I0(λ)

+
K∑
i=1

cos(yi − μ0 − 2arctan(ηi)).
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Also,

−E{ṡμ0(y;μ0)} = KλA1(λ),

−E{ṡβ(y;μ0)} = 4λA1(λ)
K∑
i=1

xi
1

(1 + η2i )2
,

−E{ṡλ(y;λ)} = K

{
İ1(λ)
I0(λ)

−A2
1(λ)

}
,

−E{ṡβ(y;λ)} = 0.

It is easy to show that İ0(λ) = I1(λ) and İ1(λ) = 1
2{I1(λ) + I0(λ)}. Let μ̂0

and λ̂ be the MLE. Then (μ̂0, β̂, λ̂) will be the solution to the following joint
score equations:
⎛
⎝ s(y;μ0)
s(y;β)
s(y;λ)

⎞
⎠ =

(
λ
∑K

i=1 diag[1,xi][1, 2(1 + η2i )
−1]T sin(yi − μ0 − 2arctan(ηi))

−KA1(λ) +
∑K

i=1 cos(yi − μ0 − 2arctan(ηi))

)

= 0. (2.33)

The corresponding Fisher information matrix is

i(μ0,β, λ) =(
λ
∑K

i=1 diag[1,xi][1, u−1
i ]T [1, u−1

i ]diagT [1,xi] 0
0 K

{
1
2 (A1(λ) + 1) −A2

1(λ)
}
)
.

One may use the iterative Fisher-scoring algorithm to solve jointly the
score equation (2.33) for the MLE, which involves inverting the above Fisher
information matrix at current values of the parameters. Alternatively, one
may solve equations (2.32), and the following (2.34) and (2.35) in cycle,

μ̂0 = arctan
(
S̄/C̄

)
(2.34)

λ̂ = A−1
1

{
1
K

K∑
i=1

cos(yi − μ0 − 2arctan(ηi))

}
, (2.35)

where A−1
1 {·} is the inverse function of A1, and

S̄ =
1
K

K∑
i=1

sin(yi − 2arctan(ηi)),

C̄ =
1
K

K∑
i=1

cos(yi − 2arctan(ηi)).

It is known in the literature that when the sample size K is small, the
MLE of σ2 or λ appears to have some noticeable bias. Alternatively, one may
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use the moment property, Var(Y ) = 1−A1(λ), to obtain a consistent moment
estimator,

λ̂mom = A−1
1

{
1 − 1

K − p− 1

K∑
i=1

(yi − μ̂i)2
}
. (2.36)

An R package CircStats provides functions to plot circular data (e.g.,
function circ.plot) and compute many quantities given above, such as I0(λ),
I1(λ), and even Ip(λ) for any integer p. In this package, another useful function
is circ.kappa, which provides a bias correction for the MLE estimation for
the index parameter λ = 1/σ2. Interested readers can follow Problem 2.5
in Problem Set 2 (available at the book webpage) to gain some numerical
experience with the analysis of circular data.
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