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CHAPTER II

CRITICAL VALUES OF DIRICHLET L-FUNCTIONS

4. The values of elementary Dirichlet series at integers

4.1. We first introduce the Euler numbers and the Euler polynomials not just
in the classical sense, but in more generalized forms by putting

(4.1)
(1 + c)ez

e2z + c
=

∞∑

n=0

Ec,n

n!
zn,

(4.2)
(1 + c)etz

ez + c
=

∞∑

n=0

Ec,n(t)
n!

zn.

Here c = −e(α) with α ∈ R, /∈ Z. Thus c �= −1. The standard Euler numbers
and the Euler polynomials are E1,n and E1,n(t), that is, the symbols in the case
α = 1/2 and c = 1. Though they are usually written En and En(t), we include
1 in the subscript for the purpose of distinguishing them from the Eisenstein
series that we will introduce later. Thus Ec,n and Ec,n(t) may be called the
generalized Euler numbers and the generalized Euler polynomials. To
make our formulas short, put b = −(1 + c)−1. Then we have

(4.3a) Ec,n = 2nEc,n(1/2),

(4.3b) Ec,n(t) = tn + b
n−1∑

k=0

(
n
k

)
Ec,k(t), b = −(1 + c)−1,

(4.3c) (d/dt)Ec,n(t) = nEc,n−1(t) (n > 0),

(4.3d) Ec,n(t + 1) + cEc,n(t) = (1 + c)tn,

(4.3e) E1,2n+1 = 0,

(4.3f) Ec,n(1 − t) = (−1)nEc−1,n(t),

(4.3g) Ec−1,n(0) = (−1)n+1cEc,n(0).

All formulas except (4.3c) are valid for n ≥ 0. Formula (4.3a) can be obtained
by substituting (1/2, 2z) for (t, z) in (4.2). Since −b(ez +c) = 1−b

∑∞
n=1 zn/n!,

(4.2) can be written
∞∑

n=0

tnzn

n!
= etz =

{
1 − b

∞∑

n=1

zn

n!

} ∞∑

n=0

Ec,n(t)zn

n!
,



26 II. CRITICAL VALUES OF DIRICHLET L-FUNCTIONS

which produces (4.3b). Applying d/dt to (4.2), we obtain (4.3c). From (4.2) we
obtain

∑∞
n=0

{
Ec,n(t + 1) + cEc,n(t)

}
zn/n! = (1 + c)etz, which gives (4.3d). We

will prove (4.3e) and (4.3f) in the Remark after the following theorem. Combin-
ing (4.3d) with (4.3f), we obtain (4.3g). Clearly Ec,0(t) = 1. Using (4.3b), we
can easily verify that Ec,n(t) is a polynomial in t of degree n whose coefficients
are polynomials in b with coefficients in Z. For example,

(4.3h) Ec,0(t) = 1, Ec,1(t) = t + b, Ec,2(t) = t2 + 2bt + 2b2 + b,

Ec,3(t) = t3 + 3bt2 + (6b2 + 3b)t + 6b3 + 6b2 + b, b = −(1 + c)−1.

The significance of Ec,n(t) is that it gives the value of the infinite series Fc,n(t)
(with c = −e(α) as above) defined by

(4.4) Fc,n(t) =
∑

h∈Z

(h + α)−n−1e
(
(h + α)t

)
(0 ≤ n ∈ Z, t ∈ R).

The infinite sum on the right-hand side depends only on α (mod Z), and so
the notation Fc,n is meaningful. Also, the sum is clearly convergent for n > 0.

If n = 0, we understand that
∑

h∈Z means limm→∞
∑

|h|≤m, which is indeed
meaningful, as will be shown below. We have

(4.4a) Fc,n(t + m) = e(mα)Fc,n(t) if m ∈ Z,

(4.4b) Fc,n(1 − t) = (−1)ncFc−1,n(t).

Formula (4.4a) is obvious. Replacing h by −h in (4.4), we obtain (4.4b). Taking
α = q/N with a positive integer N and an integer q such that q /∈ NZ, we easily
see that

(4.4c) Fc,k−1(Nt) = Nk
∑

m∈q+NZ

m−ke(mt) (c = −e(q/N), 0 < k ∈ Z).

Theorem 4.2. For 0 ≤ n ∈ Z and 0 < t < 1 we have

(4.5) Ec,n(t) = (1 + c−1)n!(2πi)−n−1Fc,n(t).

This is true even for 0 ≤ t ≤ 1 if n > 0. Moreover,

(4.5a) (1 + c−1)(2πi)−1Fc,0(0) = (1 − c−1)/2.

Remark. These formulas combined with (4.4a) determine Fn,c(t) for every
t ∈ R. Notice that Ec,0(0) = 1, which is different from (4.5a). Putting t = α =
1/2 in (4.4) and (4.5), we obtain (4.3e). Formula (4.3f) follows from (4.4b) and
(4.5).

Proof. We obtain (4.5a) directly from (2.18). We prove (4.5) first in the
case n > 0 and 0 ≤ t ≤ 1 by taking the contour integral

(∗)
∫

S

f(z)dz, f(z) =
etz

zn+1(ez + c)
,



4. VALUES OF ELEMENTARY DIRICHLET SERIES 27

where S is a square, with center at the origin, whose vertices are A ± iA and
−A± iA, A = 2Nπ with 0 < N ∈ Z. The poles of f in C are 0 and 2πi(h+α)
with h ∈ Z. The residue of f at 2πi(h + α) is easily seen to be −c−1e

(
t(h +

α)
)
(2πi(h + α))−n−1. From (4.2) we see that the residue of f at 0 is (1 +

c)−1Ec,n(t)/n!. Thus by the theorem of residues, the integral of (4.5) equals 2πi

times

(1 + c)−1Ec,n(t)/n! − c−1(2πi)−n−1
∑

h

(h + α)−n−1e
(
(h + α)t

)
,

where h runs over the integers such that |h + α| < N. To make an estimate
of the integral on the sides of S, put z = x + iy. If x = A, then |etz| = etA

and |ez + c| ≥ eA − 1, and so |etz/(ez + c)| ≤ eA/(eA − 1). If x = −A, then
|etz| = e−tA ≤ 1 and |ez +c| ≥ 1−e−A, and so |etz/(ez +c)| ≤ eA/(eA−1). Next
suppose y = ±iA. If ex > 2, then |etz| = etx ≤ ex and |ez + c| ≥ ex − 1, and so
|etz/(ez + c)| ≤ ex/(ex − 1) = 1/(1 − e−x) ≤ 2. If ex ≤ 2, then |etz| = etx ≤ 2
and |ez + c| = |ex − e(α)| ≥ B with a positive constant B depending only on
α, and so |etz/(ez + c)| ≤ 2/B. Therefore, because of the factor z−n−1, we see
that the integral of (∗) tends to 0 as N → ∞. This proves (4.5) for n > 0 with
0 ≤ t ≤ 1. To prove the case n = 0, we need the following lemma.

Lemma 4.3. (i) Let {an}∞n=1 be an increasing sequence of positive numbers
such that limn→∞ an = ∞ and let T be a compact subset of R such that T∩Z = ∅.
Then the series

∑∞
n=1 a−s

n e((α + n)t) and
∑∞

n=1 a−s
n e((α − n)t) are uniformly

convergent for a fixed α ∈ C, t ∈ T, and s > σ with any positive constant σ.

(ii) Let χ be a C-valued function on Z/NZ such that
∑N

a=1 χ(a) = 0, and let
{an}∞n=1 be as in (i). Then

∑∞
n=1 a−s

n χ(n) is uniformly convergent for s > σ

with any positive constant σ.

Proof. To prove (i), put M = Maxt∈T 2/|1 − e(t)|, ω = e(t), and γn =∑n
h=1 ωh. Then |γn| = |(ω−ωn+1)/(1−ω)| ≤ M if t ∈ T, and so for 1 < m ≤ n

we have
n∑

h=m

a−s
h e(ht) =

n∑

h=m

(γh − γh−1)a−s
h

=
n−1∑

h=m

γh{a−s
h − a−s

h+1} + γna−s
n − γm−1a

−s
m .

Thus
∣∣M−1

∑n
h=m a−s

h e(ht)
∣∣ ≤ a−s

m + a−s
n +

∑n−1
h=m(a−s

h − a−s
h+1) ≤ 2a−s

m , which
proves the desired uniform convergence of

∑∞
n=1 a−s

n e((α + n)t), as |e(αt)| is
bounded for t ∈ T. The case with α−n in place of α+n can be handled in the
same way. To prove (ii), we replace γn in the above proof by γ′

n =
∑n

h=1 χ(h).
We easily see that the |γ′

n| are bounded for all n, and we obtain the desired fact
by the same technique.

To complete the proof of Theorem 4.2, we consider the series
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∞∑

n=1

(n + α)−2e((n + α)t) + α−2e(αt) +
∞∑

n=1

(n − α)−2e((α − n)t),

∞∑

n=1

(n + α)−1e((n + α)t) + α−1e(αt) −
∞∑

n=1

(n − α)−1e((α − n)t).

Termwise application of d/dt to the first series produces 2πi times the second
series. Since (d/dt)Ec,1(t) = Ec,0(t), we thus obtain (4.5) for Ec,0(t), provided
such termwise differentiation is valid, which is indeed the case, as Lemma 4.3
shows that these series are uniformly convergent for b ≤ t ≤ b′ with constants
b and b′ such that 0 < b < b′ < 1. As for s, we simply take it to be 1 or 2.
(Actually, the standard theorem on termwise differentiation requires the uniform
convergence only for the latter series.)

4.4. Taking t = 0 in (4.5) with n > 0 and comparing the result with (2.16),
we find that

(4.6) Pn+1(x) = (x − 1)nE−x,n(0) (n > 0),

where x is an indeterminate. We can make it valid even when n = 0 by putting
P1(x) = 1. This combined with (4.3g) resp. (4.3b) proves (2.19) resp. (2.20).

4.5. The right-hand side of (4.4) has α−n−1e(αt) as the term for h = 0, which
makes the sum meaningless if α = 0. However, removing that term, for α = 0
we have

∑
0 �=h∈Z h−n−1e(ht). We will now show that this sum can be handled by

introducing the Bernoulli numbers Bn and Bernoulli polynomials Bn(t)
for 0 ≤ n ∈ Z as follows:

(4.7a)
z

ez − 1
=

∞∑

n=0

Bn

n!
zn,

(4.7b)
zetz

ez − 1
=

∞∑

n=0

Bn(t)
n!

zn.

We have, for every n ≥ 0 unless stated otherwise,

(4.8a) Bn = Bn(0),

(4.8b)
n−1∑

k=0

(
n
k

)
Bk(t) = ntn−1 (n > 0),

(4.8c) (d/dt)Bn(t) = nBn−1(t) (n > 0),

(4.8d) Bn(t + 1) − Bn(t) = ntn−1,

(4.8e) B2m+1 = 0 (0 < m ∈ Z),

(4.8f) Bn(1 − t) = (−1)nBn(t).

These are well known, and can be proved in the same way as for (4.3a–f). Also,
Bn(t) is a polynomival in t of degree n with rational coefficients. For example,
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(4.8f) B0(t) = 1, B1(t) = t − 1
2 , B2(t) = t2 − t + 1

6 , B3(t) = t3 − 3
2 t2 + 1

2 t.

Theorem 4.6. For 1 ≤ n ∈ Z and 0 < t < 1 we have

(4.9) Bn(t) = −n!(2πi)−n
∑

0 �=h∈Z

h−ne(ht),

where
∑

0 �=h∈Z means limm→∞
∑

0<|h|≤m when n = 1. This formula is valid
even for 0 ≤ t ≤ 1 if n > 1.

Proof. This can be proved in the same manner as for Theorem 4.2. We
consider ∫

S

f(z)dz, f(z) =
etz

zn(ez − 1)
,

where S is a square, with center at the origin, whose vertices are A ± iA and
−A ± iA, A = (2N + 1)π with 0 < N ∈ Z. The poles of f in C are 2πih with
h ∈ Z. If h �= 0, the residue of f at 2πih is easily seen to be (2πih)−ne(th).
From (4.7b) we see that the residue of f at 0 is Bn(t)/n!. Using the theorem of
residues and making N large, we obtain (4.9) for n > 1 and 0 ≤ t ≤ 1. Since
B′

2(t) = 2B1(t), we obtain (4.9) for B1(t) by applying d/dt to the formula for
B2(t), as we can justify termwise differentiation when 0 < t < 1, by virtue of
Lemma 4.3.

Now the main theorem on the values of Dr
a,N (s) at integers can be stated as

follows:

Theorem 4.7. Given 0 < N ∈ Z, a ∈ Z, and r = 0 or 1, define Dr
a,N (s) by

(3.11) and put ξ = e(a/N). Then for 0 < m ∈ Z the following assertions hold:
(i) The quantities (2πi)−2mD0

a,N (2m) and (2πi)1−2mD1
a,N (2m − 1) for 0 <

a < N are numbers of Q(ξ) given as follows:

(4.10a) (2m − 1)!N2m(2πi)−2mD0
a,N (2m) =

ξ

ξ − 1
E−ξ,2m−1(0) =

ξP2m(ξ)
(ξ − 1)2m

,

(4.10b) (2m − 2)!N2m−1(2πi)1−2mD1
a,N (2m − 1)

=

⎧
⎪⎪⎨

⎪⎪⎩

ξ

ξ − 1
E−ξ,2m−2(0) =

ξP2m−1(ξ)
(ξ − 1)2m−1

(m > 1),

ξ + 1
2(ξ − 1)

(m = 1).

(ii) If σ ∈ Gal
(
Q(ζ)/Q

)
and e(1/N)σ = e(q/N) with q ∈ Z, then

(4.11)
{
(2πi)r−2mDr

a,N (2m − r)
}σ = (2πi)r−2mDr

qa,N (2m − r).

(iii) In the case a = 0 we have

(4.12) − (2m)!(2πi)−2mN2mD0
0,N (2m) = B2m.
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(iv) The quantity Dr
a,N (r + 1− 2m) for 0< a<N is a rational number given

by

(4.13) Dr
a,N (r + 1 − 2m) =

2
r − 2m

N2m−r−1B2m−r(a/N).

This is true even for a = 0 if 2m − r > 1.

Remark. From (4.12) we see that (−1)m+1B2m > 0.

Proof. The first two formulas are already given in (3.9), as Dr
a,N (2m− r) =

M2m−r
a,N (0) and Pn+1(x) = (x − 1)nE−x,n(0); see (3.12) and (4.6). We can also

prove them by taking α = a/N and t = 0 in (4.5), excluding the case involving
D1

a,N (1). Formula (4.12) follows from (4.9) with t = 0. Assertion (ii) can easily
be seen from (4.10a, b). Putting t = a/N in (4.9) and comparing the result with
(3.16), we obtain (4.13).

4.8. For 1 < N ∈ Z let χ be a primitive or an imprimitive Dirichlet character
modulo N. This means that χ is a homomorphism (Z/NZ)× → C× which can
be trivial. We put χ(a) = 0 for a not prime to N. We define, as usual, the
Dirichlet L-function L(s, χ) by

(4.14) L(s, χ) =
∞∑

n=1

χ(n)n−s.

The right-hand side is absolutely convergent for Re(s) > 1, and convergent even
for Re(s) > 0 provided χ is nontrivial, by virtue of Lemma 4.3 (ii). Suppose
χ(−1) = (−1)r with r = 0 or 1; then

(4.15) 2L(s, χ) =
N∑

a=1

χ(a)Dr
a,N (s) =

N∑

a=1

χ(a)M−r
a,N

(
(s + r)/2

)
,

and so Γ
(
(s + r)/2

)
L(s, χ) can be continued as a meromorphic function to the

whole s-plane with possible poles at s = 0 and s = 1, which occur only when
χ is trivial.

Theorem 4.9. Let χ and N be as in §4.8; let k be a positive integer such
that χ(−1) = (−1)k, m = [(N − 1)/2], and ζ = e(1/N). Then

(4.16a) Nk(k − 1)!(2πi)−kL(k, χ) =
m∑

a=1

χ(a)
ζaE−ζa,k−1(0)

ζa − 1

=
m∑

a=1

χ(a)
ζaPk(ζa)
(ζa − 1)k

(1 < k ∈ Z),

(4.16b) L(1, χ) =
πi

N

m∑

a=1

χ(a)
ζa + 1
ζa − 1

if χ(−1) = −1.

Moreover, let µd denote the primitive character modulo d, where d is 3 or 4.
Then we have, with ζ = e(1/d),
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(4.17a) dk(k − 1)!(2πi)−kL(k, µd) =
ζPk(ζ)
(ζ − 1)k

=
ζE−ζ,k−1(0)

ζ − 1
(0<k−1∈2Z),

(4.17b) dL(1, µd) = πi(ζ + 1)/(ζ − 1).

Proof. Since 2L(k + 2s, χ) =
∑N−1

a=1 χ(a)Mk
a,N (s) if χ(−1) = (−1)k, from

(3.9) and (4.6) we obtain, for k > 1,

2Nk(k − 1)!(2πi)−kL(k, χ) =
N−1∑

a=1

χ(a)
ζaE−ζa,k−1(0)

ζa − 1
.

Now N = 2m + 1 or 2m + 2, and so the last sum can be written
m∑

a=1

{
χ(a)

E−ζa,k−1(0)
1 − ζ−a

+ χ(N − a)
E−ζ−a,k−1(0)

1 − ζa

}
,

as χ(m+1) = 0 if N is even. Using (4.3g), we obtain the part of (4.16a) involving
E∗,∗, which combined with (4.6) gives the remaining part. We can prove (4.16b)
in the same manner by means of (3.9) with ν = 1. Formulas (4.17a, b) are mere
special cases of (4.16a, b).

The formulas of the above theorem are different from the classical formulas
for L(k, χ), which we will present in Theorem 4.12 below.

4.10. Take N = 2, 3, 4, or 6 and a = 0 or 1. Then we easily see that
D0

0,N (s) = 2N−sζ(s) and

(4.18a) D0
1,2(s) = 2(1 − 2−s)ζ(s),

(4.18b) D0
1,3(s) = (1 − 3−s)ζ(s),

(4.18c) D0
1,4(s) = (1 − 2−s)ζ(s),

(4.18d) D0
1,6(s) = (1 − 2−s)(1 − 3−s)ζ(s).

Thus ζ(2m) and ζ(1−2m) can be obtained from (4.10a) and (4.13). For instance,
for 0 < k ∈ 2Z we have

(4.19a) (k/2)ζ(1 − k) =
2k−1

2k − 2
Bk(1/2) =

3k−1

3k−1 − 1
Bk(1/3)

=
4k−1

2k−1 − 1
Bk(1/4) =

−6k−1

(2k−1 − 1)(3k−1 − 1)
Bk(1/6),

(4.19b)
(k − 1)!ζ(k)

(2πi)k
=

−Pk(−1)
2k+1(2k − 1)

=
ω2Pk(ω2)

(3k − 1)(ω2 − 1)k

=
iPk(i)

(4k − 2k)(i − 1)k
=

ωPk(ω)
(2k − 1)(3k − 1)(ω − 1)k

,

where ω = e(1/6). Comparing (4.19b) with (4.12), we obtain the part of the
following formula concerning even k.

(4.19c)
2Pk(i)
(i − 1)k

=

{
k−1i(4k − 2k)Bk (0 < k ∈ 2Z),

− E1, k−1 (0 < k − 1 ∈ 2Z).
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The part for odd k follows from (4.17a) and (4.30b) below.

4.11. Let us now treat the values of L(k, χ) first in the traditional way and
then in several novel ways. We take a primitive Dirichlet character χ modulo
d, and define the Gauss sum G(χ) by

(4.20) G(χ) =
d∑

a=1

χ(a)e(a/d).

The following properties of G(χ) are well known:

(4.21)
d∑

a=1

χ(a)e(ab/d) = χ(b)G(χ) for every b ∈ Z,

(4.22) G(χ)G(χ) = χ(−1)d, G(χ) = χ(−1)G(χ), |G(χ)|2 = d.

See [S71, Lemma 3.63], for example. Here and throughout the rest of this section
d is a positive integer

From (3.7) or (3.15) we can easily derive the functional equation for L(s, χ).
Namely, Let χ be a primitive character modulo d such that χ(−1) = (−1)r

with r = 0 or 1. Put

(4.23) R(s, χ) = (d/π)s/2Γ
(
(s + r)/2

)
L(s, χ).

Then

(4.24) R(s, χ) = W (χ)R(1 − s, χ) with W (χ) = i−rd−1/2G(χ).

Indeed, from (3.7) and (4.21) we obtain, with k = r + 1/2,

πs−kΓ (k − s)
d∑

a=1

χ(a)M−r
a,d(k − s) = d2s−r−1π−sΓ (s)i−rG(χ)

d∑

b=1

χ(b)M−r
b,d (s).

Substituting (s + r)/2 for s and employing (4.22), we obtain (4.24).

Theorem 4.12. (i) Let ζ(s) denote the Riemann zeta function. Then for
0 < n ∈ 2Z we have

(4.25) 2 · n!(2πi)−nζ(n) = nζ(1 − n) = −Bn.

(ii) Let χ be a nontrivial primitive Dirichlet character modulo d, and let k

be a positive integer such that χ(−1) = (−1)k. Then

(4.26) 2 · k!(2πi)−kG(χ)L(k, χ) = kd1−kL(1 − k, χ) = −
d−1∑

a=1

χ(a)Bk(a/d).

In particular, if k = 1 and χ(−1) = −1, then

(4.27) (πi)−1G(χ)L(1, χ) = L(0, χ) = −
d−1∑

a=1

χ(a)a/d.

Proof. Formula (4.25) can be obtained from (4.8a), (4.12), and (4.13) by
taking N = 1 and r = a = 0, as D0

0,1(s) = 2ζ(s). As for (4.26), by (4.21) and
(4.9) we have
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2G(χ)L(k, χ) =
∑

0 �=h∈Z

h−kG(χ)χ(h)

=
∑

0 �=h∈Z

d∑

a=1

h−kχ(a)e(ha/d) = − (2πi)k

k!

d∑

a=1

χ(a)Bk(a/d).

If k = 1, we need to show that 2L(1, χ) = limm→∞
∑

0 �=|h|≤m χ(h)h−1, which
follows from the uniform convergence of

∑∞
h=1 χ(h)h−s for s > 1/2, as guaran-

teed by Lemma 4.3 (ii). The value L(1 − k, χ) can be obtained by considering∑d
a=1 χ(a)Dr

a,d(r + 1 − 2m) and employing (4.13) and (4.15) with N = d and
k = 2m − r. It also follows from (4.24). Formula (4.27) is merely a special case
of (4.26), as B1(t) = t − 1/2 and

∑d−1
a=1 χ(a) = 0.

Let us insert here a few comments. The first one is historical. Formula (4.25)
is due to Euler. Dirichlet proved (4.27) and even found a formula for L(1, χ)
when χ(−1) = 1. As for (4.26), Hecke stated and proved it in [He40], and he
is perhaps the first person who did so, though the fact was possibly known to
other number-theorists, as (4.9) had been known since much earlier periods.

In any case, (4.26) is the well known standard formula for L(k, χ), but there
is no reason for accepting it as the best or most important result. Indeed, we
have a clear-cut formula (4.13), which we can view as more basic than (4.26). If
the values of Dirichlet series are our main interest, the series Dr

a,N (s) and the
infinite sum of (4.4c) are most natural objects of study. In the same spirit we
will present various new formulas for L(k, χ) which are different from (4.26) and
are derived by the idea expressed by (4.4c).

We first prove

Lemma 4.13. (i) Let χ be a nontrivial primitive Dirichlet character modulo
d, and let k be a positive integer such that χ(−1) = (−1)k. Further let q =
[(d − 1)/2]. Then

(4.28)
d−1∑

a=1

χ(a)Bn(a/d) =

⎧
⎪⎨

⎪⎩
2

q∑

a=1

χ(a)Bn(a/d) if n = k,

0 if n = k − 1.

(ii) In the setting of (i), suppose d is odd. Then

(4.29)
d−1∑

a=1

(−1)aχ(a)E1,n(a/d) =

⎧
⎪⎨

⎪⎩
2

q∑

a=1

(−1)aχ(a)E1,n(a/d) if n = k − 1,

0 if n = k.

(iii) In the setting of (i), suppose d = 4d0 with 1 < d0 ∈ Z. Then

(4.30)
q∑

a=1

χ(a)E1,n(2a/d) =

⎧
⎪⎨

⎪⎩
2

d0−1∑

a=1

χ(a)E1,n(2a/d) if n = k − 1,

0 if n = k.
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(iv) For χ, d, and q as in (i), suppose χ(−1) = 1. Then

(4.31a)
q∑

a=1

χ(a) = 0,

(4.31b)
d−1∑

a=1

χ(a)a = 0,

(4.31c)
d−1∑

a=1

(−1)aχ(a) = 0 if d /∈ 2Z,

(4.31d)
d−1∑

a=1

χ(a)a3 = (3d/2)
d−1∑

a=1

χ(a)a2.

Proof. We have d = 2q + 1 or d = 2q + 2 according as d is odd or even.
If d is even, then 4|d, and so χ(q + 1) = 0. By (4.8f) we have Bn

(
(d − a)/d

)
=

(−1)nBn(a/d), and so
d−1∑

a=1

χ(a)Bn(a/d) =
q∑

a=1

χ(a)Bn(a/d) +
q∑

a=1

χ(d − a)Bn

(
(d − a)/d

)

=
q∑

a=1

χ(a)
{
Bn(a/d) + (−1)k+nBn(a/d)

}
.

This proves (4.28). We can similarly prove (4.29); the only difference is that
we have (−1)d+k+n instead of (−1)k+n. If d = 4d0 > 4 as in (iii), we have
q = 2d0 − 1, and so

q∑

a=1

χ(a)E1,n(2a/d) =
d0−1∑

a=1

{
χ(a)E1,n(2a/d) + χ(2d0 − a)E1,n

(
2(2d0 − a)/d

)}
,

as χ(d0) = 0. Since 2d0a− 2d0 ∈ dZ for odd a, we have χ(2d0 − a) = χ(2d0a−
a) = χ(−a)χ(1 − 2d0). Thus by (4.3f) the last sum equals

{
1 + (−1)n+kχ(1 − 2d0)

} d0−1∑

a=1

χ(a)E1,n(2a/d).

By Lemma 1.12 we have χ(1 − 2d0) = −1. Thus we obtain (4.30). Finally
suppose χ(−1) = 1. Then χ(d − a) = χ(a), and so

0 =
d−1∑

a=1

χ(a) =
q∑

a=1

χ(a) +
q∑

a=1

χ(d − a) = 2
q∑

a=1

χ(a),

which proves (4.31a). (Notice that χ(q + 1) = 0 if d is even.) Therefore
d−1∑

a=1

χ(a)a =
q∑

a=1

χ(a)a +
q∑

a=1

χ(d − a)(d − a) = d

q∑

a=1

χ(a) = 0,

which is (4.31b). Similarly, employing (4.31a), we find that
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d−1∑

a=1

χ(a)a2 =
q∑

a=1

χ(a)
{
a2 + (d − a)2

}
= 2

q∑

a=1

χ(a)(a2 − da),

d−1∑

a=1

χ(a)a3 =
q∑

a=1

χ(a)
{
a3 + (d − a)3

}
= 3d

q∑

a=1

χ(a)(a2 − da).

Formula (4.31d) follows from these two equalities. If d is odd,
d−1∑

a=1

(−1)aχ(a) =
d−1∑

b=1

(−1)d−bχ(d − b) = −
d−1∑

b=1

(−1)bχ(b),

from which we obtain (4.31c).

We now state the principal results of this section, among which (4.32), (4.34),
and (4.35) are most essential.

Theorem 4.14. (i) Let χ be a nontrivial primitive Dirichlet character mod-
ulo d, and let k be a positive integer such that χ(−1) = (−1)k. Further let
q = [(d − 1)/2]. Then

(4.32) (k − 1)!(2πi)−kG(χ)L(k, χ) =
1

2
(
2k − χ(2)

)
q∑

a=1

χ(a)E1,k−1(2a/d),

(4.33) k!(2πi)−kG(χ)L(k, χ) = −
q∑

a=1

χ(a)Bk(a/d).

(ii) Suppose in particular d = 4d0 with 1 < d0 ∈ Z. Then

(4.34) (k − 1)!(πi)−kG(χ)L(k, χ) =
d0−1∑

a=1

χ(a)E1,k−1(2a/d).

(iii) If d is odd, then

(4.35) (k − 1)!(2πi)−kG(χ)L(k, χ) =
χ(2)

2
(
2k − χ(2)

)
q∑

b=1

(−1)bχ(b)E1,k−1(b/d).

In particular, if k = 1, m = [q/2], and n = [(q − 1)/2], then we have

(4.36) (2πi)−1G(χ)L(1, χ)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
{1 + χ(2)}{2 − χ(2)}

m∑

a=1

χ(a) if χ(2) �= −1,

1
{1 − χ(2)}{2 − χ(2)}

n∑

c=0

χ(2c + 1) if χ(2) �= 1.

(iv) If µd denotes the primitive character modulo d with d = 3 or 4, then
for k = 2m + 1 with 0 ≤ m ∈ Z we have

(4.37) k!(−1)m(2π)−k
√

3 L(k, µ3) = −Bk( 1
3 ) =

k

2(2k + 1)
E1, 2m( 2

3 ),
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(4.38) k!(−4)−mπ−kL(k, µ4) = −Bk( 1
4 ) = 2−2kkE1, 2m.

Proof. In the proof of Lemma 4.13 we noted that χ(q + 1) = 0 if d ∈ 2Z.

Therefore by (4.21) we have, for every m ∈ Z,

G(χ)χ(m) =
q∑

a=1

χ(a)e(am/d) +
q∑

a=1

χ(d − a)e((d − a)m/d)

=
q∑

a=1

χ(a)
{
e(am/d) + (−1)ke(−am/d)

}
.

Take n = k− 1, α = 1/2, and t=2a/d with 1 ≤ a ≤ q in (4.4) and (4.5). Then

(∗) E1,k−1(2a/d) = 2(k − 1)!(2πi)−k2k
∑

m odd

m−ke(ma/d).

On the other hand,

2G(χ)
(
1 − χ(2)2−k

)
L(k, χ) = G(χ)

∑

m odd

χ(m)m−k

=
q∑

a=1

χ(a)
{ ∑

m odd

m−ke(am/d) +
∑

m odd

(−m)−ke(−am/d)
}

= 2
q∑

a=1

χ(a)
∑

m odd

m−ke(am/d).

Combining this with (∗), we obtain (4.32). We have to be careful about the case
k = 1, but Lemma 4.3 settles the technical point as explained in the proof of
Theorem 4.12. Formula (4.33) follows immediately from (4.26) combined with
(4.28).

If d = 4d0 > 4, then q = 2d0 − 1, and we have
q∑

a=1

χ(a)E1,k−1(2a/d) =
{
1 − χ(1 − 2d0)

}d0−1∑

a=1

χ(a)E1,k−1(2a/d),

as shown in the proof of Lemma 4.13. (Take n = k−1.) Since (1−2d0)2−1 ∈ dZ,

we have χ(1−2d0) = ±1. If χ(1−2d0) = 1, then (4.32) shows that L(k, χ) = 0,
a contradiction. Thus χ(1 − 2d0) = −1, and we obtain (4.34) from (4.32), as
χ(2) = 0. (We already stated the equality χ(1 − 2d0) = −1 in Lemma 1.12 and
gave an elementary proof.)

As for (iii), putting m = [q/2] and n = [(q − 1)/2], we have clearly

χ(2)
q∑

a=1

χ(a)E1,k−1(2a/d)=
m∑

a=1

χ(2a)E1,k−1(2a/d) +
q∑

a=m+1

χ(2a)E1,k−1(2a/d).

For m < a ≤ q put c = q−a. Then 2a = d−2c−1, and so χ(2a) = χ(−2c−1)
and E1,k−1(2a/d) = (−1)k−1E1,k−1((2c + 1)/d) by (4.3f). Thus the last sum∑q

a=m+1 can be written −
∑n

c=0 χ(2c+1)E1,k−1((2c+1)/d). Therefore we obtain
(4.35). If k = 1, we recall that E1,0(t) = 1. We consider (4.32) and χ(2) times
(4.35). Taking the sum and difference of these two equalities, we obtain (4.36).
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Finally, taking d = 3 and 4 in (4.32) and (4.33), we obtain (4.37) and (4.38),
as E1,n = 2nE1,n(1/2). This completes the proof.

We note here an easy fact. Taking c = 1 and t = 0 in (4.5), we obtain

(4.39) 4(2k − 1)(k − 1)!(2πi)−kζ(k) = E1, k−1(0) (0 < k ∈ 2Z).

Since Pk(−1) = (−2)k−1E1, k−1(0), (4.39) is essentially the same as the first
equality of (4.19b). Comparing this with (4.25), we obtain

(4.40) 2(1 − 2k)Bk = kE1, k−1(0) = (−2)1−kkPk(−1) (0 < k ∈ 2Z).

The relation between L(2m + 1, µ4) and the Euler number E1,2m as stated
in (4.38) is classical and perhaps due to Euler. Otherwise, the equalities in the
above theorem seem to be new, except for (4.33) and (4.37), which may possibly
be known. In particular, taking χ to be real and k = 1 in (4.32), we obtain
a well known class number formula for an imaginary quadratic field, which we
will state in (5.9) below. Thus (4.32) includes such a classical result as a special
case, but apparently it has never been stated in that general form even when
k = 1. Notice that for d = 8 or 12, the right-hand side of (4.34) contains only
one nonvanishing term, and so we can state formulas similar to (4.37) and (4.38)
in such cases. We will not give their explicit forms here, since they are included
in (6.3) and (6.5) below as special cases. It should also be noted that Ec, k−1(t)
is a polynomial in t of degree k − 1, while Bk(t) is of degree k.

Since E1,0(t) = 1, the formulas of Theorem 4.14 involving E1,k−1 have simple
forms if k = 1. Another simple formula is (4.27). In general, E1,k−1(t) and
Bk(t) have more terms, and the matter is not so simple. However, a similar
simplification is feasible at least to the extent described in the following theorem,
which gives recurrence formulas for L(k, χ) modified by elementary factors.

Theorem 4.15. Let χ be a nontrivial primitive Dirichlet character of con-
ductor d and k a positive integer such that χ(−1) = (−1)k; let q = [(d− 1)/2]
and m = [(k − 1)/2].

(i) Define A(k, χ) by

(4.41) A(k, χ) = 2 · k!(2πi)−kG(χ)L(k, χ).

Then

(4.42) A(k, χ) =
−1
dk

d−1∑

a=1

χ(a)ak − 1
k + 1

m∑

ν=1

(
k + 1
2ν + 1

)
A(k − 2ν, χ).

(ii) Suppose d is odd or d > 4. Define Λ(k, χ) by

(4.43) Λ(k, χ) =

{
4{χ(2) − 2−k}(k − 1)!(πi)−kG(χ)L(k, χ) if d /∈ 2Z,

2(k − 1)!(πi)−kG(χ)L(k, χ) if d ∈ 2Z.



38 II. CRITICAL VALUES OF DIRICHLET L-FUNCTIONS

Then

(4.44) Λ(k, χ) = −1
2

m∑

ν=1

(
k − 1
2ν

)
Λ(k − 2ν, χ)

+

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
dk−1

d−1∑

a=1

(−1)aχ(a)ak−1 if d /∈ 2Z,

2k−1

dk−1

q∑

a=1

χ(a)ak−1 if d ∈ 2Z.

Proof. By (4.26), A(k, χ) = −
∑d−1

a=1 χ(a)Bk(a/d), and by (4.8b) we have

(k + 1)Bk(t) = (k + 1)tk −
k−1∑

µ=0

(
k + 1

µ

)
Bµ(t).

By (4.28),
∑d−1

a=1 χ(a)Bµ(a/d) = 0 if µ − k /∈ 2Z. The sum is 0 also for µ = 0,

as B0(t) = 1. Thus we obtain (4.42). Similarly we have, by (4.3b),

E1,k−1(t) = tk−1 − 1
2

k−1∑

λ=1

(
k − 1
λ − 1

)
E1,λ−1(t).

Therefore we obtain (4.44) by combining (4.34) and (4.35) with (4.30) and (4.29).

If k = 2, we can state clear-cut formulas as follows.

Corollary 4.16. Let χ be a nontrivial Dirichlet character of conductor d

such that χ(−1) = 1 and let q = [(d − 1)/2]. Then

(4.45) π−2G(χ)L(2, χ) =
4

d
(
χ(2) − 4

)
q∑

a=1

χ(a)a,

(4.46) π−2G(χ)L(2, χ) =
1
d2

d−1∑

a=1

χ(a)a2.

Proof. Take k = 2 in (4.32). Since E1,1(t) = t − 1/2, the sum of (4.32)
becomes 2

∑q
a=1 χ(a)a/d −

∑q
a=1 χ(a)/2, and so we obtain (4.45) in view of

(4.31a). Similarly take k = 2 in (4.26). Since B2(t) = t2 − t + 1/6, we obtain
(4.46) in view of (4.31b). We can also take k = 2 in (4.44), but obtain nothing
better than (4.45).

4.17. We end this section by mentioning a classical formula and its analogues.
First, as an immediate consequence of (4.8d) we obtain

(4.47) Bn+1(m + 1) − Bn+1 = (n + 1)
m∑

k=0

kn (0 ≤ n ∈ Z),

which is often cited in connection with the Euler-Maclaurin formula. (We un-
derstand that 00 = 1.) Likewise, from (4.3d) we can easily derive
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(4.48) Ec,n(0) − e(−mα)Ec,n(m) =
{
1 − e(−α)

} m−1∑

k=0

e(−kα)kn,

where c = −e(α), α ∈ R, /∈ Z. In particular, for α = 1/2 we have

(4.49) E1,n(0) − (−1)mE1,n(m) = 2
m−1∑

k=0

(−1)kkn

with the classical Euler polynomial E1,n(t). Apparently no previous researchers
took the trouble of stating this rather nice-looking formula. Notice that (4.48)
and (4.49) are of degree n in the parameter m, whereas (4.47) is of degree n+1.

We will present some more formulas for L(k, χ) in Section 6, but before doing
so, we first consider applications of those we already have to certain class number
formulas.

5. The class number of a cyclotomic field

5.1. The value L(1, χ) is closely related to the class number of a cyclotomic
field, an imaginary quadratic field in particular. Let us now discuss this topic
in the easiest cases and present some new class number formulas, assuming that
the reader is familiar with some basic facts on cyclotomic fields. For an alge-
braic number field M of finite degree we denote by rM , DM , RM , ζM , hM , and
wM the maximal order, discriminant, regulator, Dedekind zeta function, class
number of M and the number of roots of unity in M. It is a well known result
of Dedekind that

(5.1) lim
s→1

(s − 1)ζM (s) =
2r1(2π)r2RMhM

wM |DM |1/2
,

where r1 resp. r2 is the number of real resp. imaginary archimedean primes of
M. We apply this to a subfield of Qab. Any subfield M of Qab is either totally
real or totally imaginary. In the former case, r1 = [M : Q] and r2 = 0; in the
latter case r1 = 0 and r2 = [M : Q]/2.

We now fix a totally imaginary finite extension K of Q contained in Qab and
put F =

{
x ∈ K

∣∣ xρ = x
}
, where ρ is the restriction of complex conjugation

to K. Then F is totally real, wF = 2, and [K : F ] = 2. Let [K : Q] = 2t. From
(5.1) we obtain

(5.2) (ζK/ζF )(1) =
2πt

wK
· hK

hF
· RK

RF
·
∣∣∣∣
DF

DK

∣∣∣∣
1/2

.

Suppose K ⊂ Q(ζ) with ζ = e(1/m), where m is a positive integer that is
either odd or divisible by 4. Then Gal

(
Q(ζ)/Q

)
is isomorphic to (Z/mZ)×, and

Gal
(
Q(ζ)/K

)
to a subgroup H of (Z/mZ)×. We can show that

(5.3) ζK(s) = ζF (s)
∏

χ∈X

L(s, χ),
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where X is the set of all primitive Dirichlet characters χ such that χ(−1) = −1,

the conductor of χ divides m, and χ(H) = 1. Thus we obtain the following
formula:

(5.4)
hK

hF
=

wK

2πt
· RF

RK
·
∣∣∣∣
DK

DF

∣∣∣∣
1/2 ∏

χ∈X

L(1, χ).

In the simplest case we take K to be an imaginary quadratic field of dis-
criminant −d. Then ζK(s) = L(s, χ)ζ(s), where χ is a unique real Dirichlet

character of conductor d such that χ(−1) = −1, that is, χ(a) =
(
−d

a

)
, and

(5.4) takes the form

(5.5) hK =
wK

√
d

2π
L(1, χ).

This formula was first proved by Dirichlet in a somewhat different context. The
functional equations of ζ(s) and ζK(s) show that R(s, χ) = R(1 − s, χ), which
together with (4.24) proves that

(5.6) G(χ) = i
√

d if χ(a) =
(
−d

a

)
.

This argument, due to Hecke, is applicable also to a quadratic character χ such
that χ(−1) = 1, and even to any Hecke character of a number field corresponding
to a quadratic extension; see [S97, (A6.3.4), (A6.4.1)]. Combining (4.27), (5.5),
and (5.6), we obtain a classical formula

(5.7) hK = −wK

2d

d∑

a=1

χ(a)a.

5.2. Let χ be a primitive (not necessarily real) Dirichlet character of con-
ductor d such that χ(−1) = −1. Since E1,0(t) = 1, from (4.32) with k = 1 we
obtain

(5.8) G(χ)L(1, χ) =
πi

2 − χ(2)

q∑

a=1

χ(a), q = [(d − 1)/2].

Comparing this with (4.27), we obtain

(5.8a)
d∑

a=1

χ(a)a =
d

χ(2) − 2

q∑

a=1

χ(a).

In particular, if χ is real and K = Q(
√
−d ), then (5.5) combined with (5.6) and

(5.8) shows that

(5.9) hK =
wK

2
(
2 − χ(2)

)
q∑

a=1

χ(a), q = [(d − 1)/2],
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where the symbols are the same as in (5.5) and (5.7). This formula is also
classical. Thus (4.32) or its special case (5.8) can be viewed as a generalization
of (5.9). We will present several new formulas for hK in Corollary 6.4 below.

5.3. We now consider the field K = Q(ζ) with ζ = e(1/m), 0 < m ∈ Z. We
will soon specialize this to the case where m is a prime power, but first recall
some basic facts on K under the assumption that m is either odd or divisible
by 4. Let F =

{
x ∈ K

∣∣ xρ = x
}

as in §5.1. We put

(5.10) t = [K : Q]/2.

Here are some basic facts that can be found in most textbooks on algebraic
number theory:

(5.11a) wK = 2m if m is odd, and wK = m if 4|m.

(5.11b) A prime number p is ramified in K if and only if p|m.

(5.11c) For a prime number p not dividing m, let f be the smallest positive
integer such that pf − 1 ∈ mZ and let g = 2t/f. Then p splits into
exactly g prime ideals in K each of which has degree f.

(5.11d) rK = Z[ζ].

(5.11e) hK/hF ∈ Z.

To prove the last statement, take the maximal unramified abelian extension J of
F. Since K is ramified over F at every archimedean prime, we see that K �⊂ J.

Thus hF = [J : F ] = [JK : K], which divides hK , as JK is an unramified
abelian extension of K. This proves (5.11e).

We now assume that m = 
r with a prime 
 and 0 < r ∈ Z; r > 1 if 
 = 2.

Then 2t = 
r−1(
 − 1) and the following statements hold:

(5.12a) (1 − ζ)rK is a prime ideal in K and 
rK = (1 − ζ)2trK .

(5.12b) |DK | = 
e, where e = r
r − (r + 1)
r−1) if 
 �= 2, and e = (r − 1)2r−1

if 
 = 2; |DF | = 
(e−1)/2 if 
 �= 2, and |DF | = 2(e−2)/2 if 
 = 2.

Lemma 5.4. If m is a prime power, then r
×
K = W r

×
F , where W is the set

of all roots of unity in K. Consequently, RK = 2t−1RF .

Proof. For α ∈ r
×
K let β = αρ/α. Then |βσ| = 1 for every σ ∈ Gal(K/Q).

By Kronecker’s theorem, β ∈ W. Suppose m is odd. Then β = εγ2 with γ ∈ W

and ε = ±1. If ε = −1, we have (αγ)ρ = −αγ, and so 2αγ = αγ − (αγ)ρ ∈
d(K/F ), where d(K/F ) is the different of K relative to F. This is a contradiction,
since d(K/F ) is nontrivial (as can be seen from (5.12a)) and prime to 2. Thus
ε = 1, and so (αγ)ρ = αγ, which shows that αγ ∈ F. Therefore α ∈ W rF as
expected. Suppose m = 2r; let n = 2r−1 and β = ζ−a with a ∈ Z. Then
ζn = −1. If a is even, we can put ζ = γ2 with γ ∈ W, which together with the
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above argument leads to the desired conclusion; so assume a to be odd. Since
rK = Z[ζ], we have α =

∑n−1
s=0 csζ

s with cs ∈ Z. Then
∑

csζ
s =

∑
csζ

a−s. Hence
cs = ±cs′ if s + s′ ≡ a (mod n). Now the elements ζs and ζa−s for positive
odd s < n form a basis of K over Q. In other words, ζs′

with even s′ can be
replaced by ζa−s with some odd s < n. Therefore α =

∑
s odd cs (ζs ± ζa−s) .

Now ζs ± ζa−s = ζs(1− ζq) with some q, and this is divisible by 1− ζ, which is
a contradiction, since α is a unit. Once we know that r

×
K = W r

×
F , the assertion

concerning RK and RF easily follows from the definition of the regulator.

Lemma 5.5. Let m = 
r with a prime number 
 and 0 < r ∈ Z; assume
r > 3 if 
 = 2. Let X be the set of all primitive Dirichlet characters χ such that
χ(−1) = −1 and the conductor of χ divides m. Then


 �= 2 :
∏

χ∈X

G(χ) = it
(e+1)/4, e = r
r − (r + 1)
r−1,


 = 2 :
∏

χ∈X

G(χ) =
√

2 · 2c, c = (r − 1)2r−3.

Proof. We can put X =
⊔r

s=1 Xs, where Xs is the set of all χ ∈ X with
conductor 
s. Put es = #(Xs).

(I) We first consider the case of odd 
. We easily see that e1 = (
− 1)/2 and
es = 
s−2(
 − 1)2/2 if s > 1. For χ ∈ X we have χ = χ only if 
 + 1 ∈ 4Z, in
which case there is exactly one such χ, which belongs to X1. Thus χ �= χ for
χ ∈ Xs if s > 1 or 
 − 1 ∈ 4Z. Therefore by (4.22) we have

(5.13)
∏

χ∈Xs

G(χ) = (−
s)es/2 if s > 1 or 
 − 1 ∈ 4Z.

If 
 + 1 ∈ 4Z, we have, by (5.6),
∏

χ∈X1
G(χ) = i
1/2(−
)(�−3)/4, which can be

written

(5.14)
∏

χ∈X1

G(χ) = (i
1/2)(�−1)/2.

This is true also when 
 − 1 ∈ 4Z. To simplify our notation, put q = (
 − 1)/2.

Then from (5.13) and (5.14) we obtain
∏

χ∈X G(χ) = ia
b/2 with

a = q +
r∑

s=2

es and b = q +
r∑

s=2

ses.

We easily find that a = q
r−1 = t. To calculate b, we note an elementary equality

(5.15)
k∑

n=1

nxn =
kxk+2 − (k + 1)xk+1 + x

(x − 1)2
,

where x is an indeterminate. Now
∑r

s=2 s
s−2 = 2
∑r

s=2 
s−2+
∑r

s=2(s−2)
s−2.

Applying (5.15) to the last sum, we eventually find that 2b = r
r−(r+1)
r−1+1.
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(II) Next we take 
 = 2. Then e1 = 0, e2 = 1, and es = 2s−3 if s > 2. The
set X2 resp.X3 consists of a real character of conductor 4 resp. 8; otherwise
χ �= χ. Then by the same type of reasoning as for odd 
, we find the result as
stated in our lemma.

Lemma 5.6. Let m = 
r as in Lemma 5.5, and let p be a prime number
other than 
. Let Z be the subgroup of (Z/mZ)× generated by p and let f =
[Z : 1]. (In other words, f is the smallest positive integer such that pf−1 ∈ mZ.)
Then

(5.16)
∏

χ∈X

[
1 − χ(p)p−s

]
=

{
(1 + p−fs/2)2t/f if − 1 ∈ Z,

(1 − p−fs)t/f if − 1 /∈ Z.

Moreover, if 
 is odd, then f is even if and only if −1 ∈ Z.

Proof. The canonical isomorphism of (Z/mZ)× onto Gal(K/Q) sends −1
to ρ and Z to the decomposition group of p. Therefore the Euler p-factor of ζK

is (1− p−fs)2t/f . Let p be the prime factor of p in K. Then pρ = p if and only
if −1 ∈ Z. Thus the Euler p-factor of ζF equals (1− p−fs/2)2t/f if −1 ∈ Z, and
(1− p−fs)t/f if −1 /∈ Z. Taking the quotient ζK/ζF , we obtain (5.16). The last
assertion follows from the fact that (Z/mZ)× is cyclic if 
 is odd.

We now present formulas for hk/hF different from classical ones.

Theorem 5.7. Let K and F be as in §5.3 with m = 
r, 0 < r ∈ Z, where 


is a prime number and r > 2 if 
 = 2. Let X be the set of all primitive Dirichlet
characters χ such that χ(−1) = −1 and the conductor of χ divides m. Then
the following assertions hold:

(i) Suppose 
 �= 2; let f be the smallest positive integer such that 2f −1 ∈ mZ.

Put A = (2f/2 + 1)2t/f or (2f − 1)t/f according as f is even or odd. For each
χ ∈ X of conductor 
s put qχ = (
s − 1)/2. Then we have

(5.17)
hK

hF
= 21−t
rA−1

∏

χ∈X

{ qχ∑

a=1

χ(a)
}

.

Moreover, the sum
∑qχ

a=1 χ(a) can be replaced by

(5.17a)
2

1 + χ(2)

kχ∑

a=1

χ(a) with kχ = [qχ/2] if χ(2) �= −1,

(5.17b)
2

1 − χ(2)

nχ∑

c=0

χ(2c + 1) with nχ = [(qχ − 1)/2] if χ(2) �= 1.

(ii) Suppose 
 = 2; let Y be the set of all χ ∈ X of conductor > 4. For χ ∈ Y

of conductor 2s, put bχ = 2s−2. Then
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(5.18)
hK

hF
= 2γ

∏

χ∈Y

{ bχ−1∑

a=1

χ(a)
}

with γ = r − 1 − 2r−2.

Proof. We employ (5.4). We have wK = 2m if 
 �= 2 and wK = m if

 = 2; RF /RK = 21−t as shown in Lemma 5.4; |DK/DF | is given by (5.12b).
We have to determine

∏
χ∈X L(1, χ). Suppose 
 �= 2. Then we use (5.8) which

involves 2 − χ(2) and the Gauss sum. As for the latter, we employ Lemma 5.5.
As for the former, from Lemma 5.6 we obtain

(5.19)
∏

χ∈X

[
2 − χ(2)

]
=

{
(2f/2 + 1)2t/f if f ∈ 2Z,

(2f − 1)t/f if f /∈ 2Z.

Combining all these factors, we obtain (5.17). The sum
∑qχ

a=1 χ(a) can be re-
placed by (5.17a, b) by virtue of (4.36). If 
 = 2, we use (4.34) instead of (5.8).
Special care must be given to the character of conductor 4, which is included in
X but not in Y. Observing that c of Lemma 5.5 equals e/4 with e of (5.12b),
we obtain (5.18) for r > 3. Actually we see that (5.18) is true even for r = 2
and 3.

Remark. For odd 
, it often happens that 2 is a primitive root modulo m,

in which case we have f = 2t, and so A = 2t +1. Thus we can put A = 
rI with
a positive integer I, and the factor 
rA−1 in (5.17) equals I−1.

5.8. Let us now state the classical formulas for hK/hF that can be found in
the standard literature on this topic:

(5.20)
hK

hF
= B

∏

χ∈X

{
−

cχ∑

a=1

χ(a)a
}

with

B =

{
21−t
α, α = r − 2−1(r
r − (r + 1)
r−1 + 1) if 
 �= 2,

2β , β = r − 1 − 2r−2r if 
 = 2.

Here cχ is the conductor of χ. This can be obtained from (5.4) by applying
(4.27) to L(1, χ) and employing Lemmas 5.4 and 5.5.

Clearly formulas (5.17) and (5.18) are of “smaller sizes” than (5.20). That is
especially so for (5.18). As for (5.17), we derived it from (5.20) combined with
(5.8a). Equality (5.8a) is an old well known fact at least for real χ. Even for
non-real χ, it must have been known at least to some experts, but apparently
nobody tried to state (5.17).

In stating formulas for hK/hF , we confined ourselves to the case where K =
Q(ζ), ζ = e(1/m), with a prime power m. A formula of type (5.20) for more
general cyclotomic fields is known; see [Ha]. We can of course state analogues
of (5.17) and (5.18) for such fields, whose precise statements may be left to the
reader.
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6. Some more formulas for L(k, χ)

6.1. Let us now state several sum expressions for L(k, χ) different from those
of Section 4. The first type has fewer terms than the sum of (4.32), and are
technically more complex than the second type, which follows from (4.5) rather
easily. We present the first type as eight formulas depending on the nature of
the Dirichlet character and the parameter c of the generalized Euler polynomial
Ec,n. One formula, (6.2), is somewhat different from the other seven. Though
it may be possible to state those seven as a single formula, we do not do so, as
such would make it cumbersome and less easy to understand. In the following
theorem, the product χλ for two characters χ and λ means the character
defined by (χλ)(m) = χ(m)λ(m), which can be imprimitive if the conductors of
χ and λ are not relatively prime. We first prove

Lemma 6.2. Let ε denote ±1, and given two positive integers d and s, let
g = [d/s]+1 or g = −[d/s] according as ε = 1 or −1. Then 0 ≤ (ε/s)+(j/d) ≤
1 for every j ∈ Z such that 1− g ≤ j ≤ d− g. Moreover, 0 < (ε/s) + (j/d) < 1
for all such j’s if d/s /∈ Z.

Proof. If g = [d/s]+1, then g−1 ≤ d/s < g, and so (g−1)/d ≤ 1/s < g/d.

For 1 − g ≤ j ≤ d − g we have (1 − g)/d ≤ j/d ≤ 1 − g/d, and therefore
0 ≤ (1/s) + (j/d) < 1. If g = −[d/s], then −g ≤ d/s < 1− g, and so (g− 1)/d <

−1/s ≤ g/d, and we obtain 0 < (−1/s) + (j/d) ≤ 1. If d/s /∈ Z, we easily see
that 0 < (ε/s) + (j/d) < 1 in both cases.

Theorem 6.3. Let χ and λ be primitive Dirichlet characters and µ3, µ4 be
as in Theorem 4.14 (iv); let d be the conductor of χ and k a positive integer;
further let ε denote ±1. Then the following assertions hold:

(i) Suppose d is odd, > 3, and χ(−1) = (−1)k+1; suppose also k > 1 if 3|d;
let g = [d/3] + 1. Then

(6.1)
d−g∑

j=1−g

(−1)jχ(j)E1,k−1

(
1
3 + j

d

)

= (k − 1)!2
√
−3(πi)−kχ(2)G(χ)

{
1 + χ(2)2−k

}
L(k, χµ3).

(ii) Suppose d = 2m + 1 with 0 < m ∈ Z and χ(−1) = (−1)k+1. Then

(6.2)
m∑

j=1

(−1)jχ(j)E1,k−1

(
1
2 + j

d

)
= (k − 1)!2i(πi)−kχ(2)G(χ)L(k, χµ4).

(iii) Suppose d is odd, λ(m) =
(

δ
m

)
with δ = ±8, and (χλ)(−1) = (−1)k.

Then

(6.3)
d−g∑

j=1−g

(−1)jχ(j)E1,k−1

(
1
4 + j

d

)
= (k − 1)!

√
δ(πi)−kχ(2)G(χ)L(k, χλ),
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where g = [d/4]+1. The formula is valid even for d = 1 and trivial χ, in which
case the sum on the left-hand side is E1,k−1(1/4) and G(χ) = 1.

(iv) For d, λ, χ, and k of (iii) we have also

(6.4)
d−g∑

j=1−g

e(−dj/4)χ(j)E−i,k−1

(
1
2 + j

d

)

= (k − 1)!
√
−2 · 2k(πi)−kχ(4)G(χ)L(k, χλ),

where g = [d/2]+1. The formula is valid even for d = 1 and trivial χ, in which
case the sum on the left-hand side is E−i,k−1(1/2) and G(χ) = 1.

(v) Suppose d is odd, > 3, λ(m) =
(

3
m

)
, and χ(−1) = (−1)k. Then

(6.5)
d−g∑

j=1−g

(−1)jχ(j)E1,k−1

(
1
6 + j

d

)
= (k − 1)!2

√
3(πi)−kχ(2)G(χ)L(k, χλ),

where g = [d/6]+1. The formula is valid even for d = 1 and trivial χ, in which
case G(χ) = 1 and the sum on the left-hand side is E1,k−1(1/6).

(vi) For d prime to 6 and λ, χ, k of (v) we have

(6.6)
d−g∑

j=1−g

e(−dj/6)χ(j)Ec,k−1

(
1
2 + j

d

)

= (k − 1)! · 3ki(πi)−kχ(6)G(χ)L(k, χλ),

where g = [d/2] + 1 and c = e(2/3). The formula is valid even for d = 1
and trivial χ, in which case G(χ) = 1 and the sum on the left-hand side is
Ec,k−1(1/2).

(vii) Suppose d is prime to 3; let λ be the Dirichlet character modulo 9 such
that λ(2) = e(2/3). Then

(6.7)
d−g∑

j=1−g

e(−dj/3)χ(j)Ec,k−1

(
ε
3 + j

d

)
= (k − 1)!e(ε/9){1 + e(1/6)}

· (2πi)−k3kχ(3)G(χ) ·
{

L(k, χλε) if χ(−1) = (−1)k,

L(k, µ3χλε) if χ(−1) = (−1)k+1,

where c = −e(1/3), and g = [d/3]+1 or g = −[d/3] according as ε = 1 or ε =
−1. The formula is valid even for d = 1 and trivial χ, in which case G(χ) = 1
and the sum on the left-hand side is Ec,k−1(1/3) if ε = 1 and Ec,k−1(2/3) if
ε = −1.

(viii) Suppose d is odd; let λ be the Dirichlet character modulo 16 such that
λ(5) = i and (χλ)(−1) = (−1)k. Then

(6.8)
d−g∑

j=1−g

e(−dj/4)χ(j)E−i,k−1

(
ε
4 + j

d

)

= (k − 1)!(1 + i)e
(

ε
16

)
· 2k(πi)−kχ(4)G(χ)L(k, χλε),
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where g = [d/4] + 1 or g = −[d/4] according as ε = 1 or ε = −1. The formula
is valid even for d = 1 and trivial χ, in which case G(χ) = 1 and the sum on
the left-hand side is E−i,k−1(1/4) if ε = 1 and E−i,k−1(3/4) if ε = −1. (Once
χ and k are given, λ is uniquely determined by the conditions λ(5) = i and
(χλ)(−1) = (−1)k.)

Proof. We first consider Case (v), which has a feature that the other cases
lack. We use formula (4.5) with α = 1/2 and t = (1/6) + (j/d) with j in
the sum expression of (6.5). By Lemma 6.2 we have 0 < t < 1, and so (4.5)
is applicable to the present setting for n ≥ 0. Put j = pd + 2q with p, q ∈ Z.

Then for h ∈ Z we have

e
(
(h + α)t

)
= e(1/12)e(h/6)e(p/2)e

(
(2h + 1)q/d

)
.

Clearly e(p/2) = e(j/2) = (−1)j . Therefore, by (4.5), the left-hand side of (6.5)
equals

2e(1/12)(k − 1)!(πi)−k
∑

h∈Z

(2h + 1)−ke(h/6)
∑

j

χ(j)e
(
(2h + 1)q/d

)
.

Since χ(j) = χ(2q) and q runs over Z/dZ, the sum
∑

j equals χ(2)G(χ)χ(2h+1).
Put

∑
h∈Z e(h/6)χ(2h + 1)(2h + 1)−k =

∑∞
n=1 bnn−k. Since χ(−1) = (−1)k, we

have bn = χ(n)
{
e((n− 1)/12) + e((−n− 1)/12)

}
. We easily see that this equals

{1 + e(5/6)}χ(n)λ(n). (Notice that bn = 0 if 3|n.) Therefore we obtain (6.5).
If d = 1 and χ is trivial, we consider E1,k−1(1/6) and put G(χ) = 1. Then
the above argument is valid in that case too. Also, if k = 1, we have to invoke
Lemma 4.3 for the same reason as in the proof of Theorems 4.12 and 4.14.

The other cases except Case (ii) can be proven basically in the same fashion.
We take α = 1/3 in Case (vii), α = 1/6 in Case (vi), α = 1/4 in Cases (iv)
and (viii), and α = 1/2 in the remaining cases. We also take j = pd + qr with
p, q ∈ Z, where r = α−1. If 3|d in Case (i), then (1/3)+(j/d) = 0 for j = 1−g,

and therefore (4.5) is applicable only to the case k > 1.

In Case (ii), by the same technique with α = r−1 = 1/2 we first obtain

(6.9)
m∑

j=−m

(−1)jχ(j)E1,k−1

(
1
2 + j

d

)
= (k − 1)!4i(πi)−kχ(2)G(χ)L(k, χµ4),

where m = [d/2]. The left-hand side can be written
m∑

j=1

(−1)jχ(j)
{

E1,k−1

(
1
2 + j

d

)
+ χ(−1)E1,k−1

(
1
2 − j

d

)}
.

By (4.3f) this equals twice the left-hand side of (6.2). Dividing by 2, we obtain
(6.2).

Now some class number formulas different from (5.7) and (5.9) can be obtained
by taking k = 1 and χ to be a real character in (4.34), (4.36), and also in the
first six cases of the above theorem. Here are their explicit statements.
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Corollary 6.4. Let d0 denote a positive squarefree integer > 1 and hK the
class number of the field K given in each case below. Except in Case (i) suppose
d0 is odd and let χ0 be the real primitive Dirichlet character of conductor d0.

Then the following assertions hold.
(i) Suppose 2 < d0 + 1 /∈ 4Z and K = Q(

√
−d0 ); let χ be the primitive

quadratic Dirichlet character of conductor 4d0 that corresponds to K, and ν =
[d0/2]. Then

(6.10) hK =
d0−1∑

a=1

χ(a) =
ν∑

b=1

χ(2b − 1).

(ii) Suppose d0 = 4µ + 1 with 0 < µ ∈ Z and let K = Q(
√
−d0 ). Then

(6.11) hK = χ0(2)
2µ∑

a=1

(−1)aχ0(a).

(iii) Suppose d0 = 4µ + 3 with 0 < µ ∈ Z and let K = Q(
√
−d0 ). Then

(6.12) hK =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

µ∑

a=1

χ(a) (µ /∈ 2Z),

1
3

µ∑

c=0

χ(2c + 1) (µ ∈ 2Z).

(iv) Let K = Q(
√
−2d0 ) and µ = [d0/4]. Then

(6.13) hK = 2χ0(2)
µ∑

a=1

(−1)aχ0(a) if d0 = 4µ + 1,

(6.14) hK = 2
µ∑

a=0

(−1)aχ0(2a + 1) = 2χ0(2)
2µ+1∑

b=µ+1

(−1)bχ0(b) if d0 = 4µ + 3.

(v) Suppose that d0 is prime to 3 and d0 + 1 ∈ 4Z; let K = Q(
√
−3d0 ) and

m = [d0/2]. Then

(6.15) hK = 2χ0(2)
{ ∑

a

χ0(a) −
∑

b

χ0(b)
}

,

where 1 ≤ a ≤ m, 1 ≤ b ≤ m, a ≡ 1, 2 (mod 6), and b ≡ 4, 5 (mod 6).
(vi) Let K and d0 be the same as in (iv) and let m = [d0/6]. Then

(6.16) hK = 2χ0(2)
(d0−1)/2∑

a=m+1

(−1)aχ0(a).

(vii) Suppose that d0 is prime to 3 and d0 − 1 ∈ 4Z; let K = Q(
√
−3d0 ) and

m = [d0/3]. Then

(6.17) hK =
2

2χ0(2) + 1

m∑

a=1

(−1)aχ0(a).
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Proof. We first recall that Ec,0(t) = 1 as noted in (4.3h). Take k = 1 in
(4.34). Then by (5.5) we obtain (6.10), as χ(a) = 0 for even a. Formula (6.12)
folllows immediately from (4.36) combined with (5.5). Next we take k = 1
and (χ0, d0) to be (χ, d) in Theorem 6.3. Let us first consider (6.3). Suppose
d0 = 4µ + 3. Then χ0(−1) = −1, and the left-hand side of (6.3) equals

3µ+2∑

a=−µ

(−1)aχ0(a) =
µ∑

a=−µ

(−1)aχ0(a) +
3µ+2∑

b=µ+1

(−1)bχ0(b)

=
µ∑

a=1

(−1)a
{
χ0(a) + χ0(−a)

}
+

2µ+1∑

b=µ+1

{
(−1)bχ0(b) + (−1)d0−bχ0(d0 − b)

}
.

The first sum of the last line is 0; the second sum equals 2
∑2µ+1

b=µ+1(−1)bχ0(b).
Putting b = 2µ + 1 − c, we have 2b = d − 2c − 1, and so the last sum equals
χ0(2)

∑µ
c=0(−1)c+1χ0(d0 − 2c − 1) = χ0(2)

∑µ
c=0 χ0(2c + 1). Applying (6.3) to

the factor L(1, χλ) of (6.3), we obtain (6.14). Taking d0 = 4µ + 1 in (6.3), we
similarly obtain (6.13). These formulas (6.13) and (6.14) can be obtained also
from (6.4).

Formula (6.11) follows directly from (6.2) combined with (5.5) applied to the
present K. To prove (6.15), we use (6.6). Notice that d0 ≡ 7 or 11 (mod 12).
Put ω = e(1/6), and suppose d0 − 7 ∈ 12Z. Then the left-hand side of (6.6) can
be written

∑m
j=−m χ(j)ω−j , which equals

∑m
j=1 χ(j)(ω−j − ωj). We easily see

that this equals

(6.18) − i
√

3
{∑

a

χ0(a) −
∑

b

χ0(b)
}

with a and b as in (v). Applying (5.5) to L(1, χ0λ), we can verify that the
right-hand side of (6.6) equals i

√
3χ0(6)hK/2. If d0 − 11 ∈ 12Z, then ω must

be replaced by ω−1, and we have i
√

3 instead of −i
√

3 in (6.18). Now χ0(3) =(
3
d0

)
, which equals −1 or 1 according as d0 ≡ 7 or 11 (mod 12). Therefore we

obtain (6.15) in both cases as expected.
We derive (6.16) from (6.5). Put m = [d0/6] and d0 = 2q + 1. Then the left-

hand side of (6.5) becomes
∑d0−m−1

a=−m (−1)aχ0(a). We have
∑m

a=−m(−1)aχ0(a) =
0 as χ0(−1) = −1, and so we only have to consider

∑d0−m−1
a=m+1 (−1)aχ0(a), which

equals
q∑

a=m+1

{
(−1)aχ0(a) + (−1)d0−aχ0(d0 − a)

}
= 2

q∑

a=m+1

(−1)aχ0(a).

Thus we obtain (6.16).
Finally, in the setting of (vii) we see that the left-hand side of (6.1) equals

d0−m−1∑

a=−m

(−1)aχ0(a) =
m∑

a=−m

(−1)aχ0(a) +
d0−m−1∑

b=m+1

(−1)bχ0(b).
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The same argument as for (6.14) shows that the last sum over b vanishes, while
the sum over −m ≤ a ≤ m equals 2

∑m
a=1(−1)aχ0(a). Thus we obtain (6.17)

and our proof is complete.

6.5. Though it may be possible to prove the formulas of the above corollary
more directly, our point of presenting them is that they follow easily from a more
general principle concerning L(k, χ) with k ≥ 1. It should also be noted that
they are quite different from (5.9). Take, for example, K = Q(

√
−2d0 ) with

d0 = 4µ + 1 as in (6.13). Then the discriminant of K is −8d0, and so the sum
of (5.9) has 16µ + 3 terms. Since χ(a) = 0 for even a in this case, the number
of nonvanishing terms is much smaller, but not so small as that for (6.13).

One more remark may be added, First, we can state formulas for L(1, χ)
of various types of χ that are not necessarily real. Take χ0 to be a primitive
character whose conductor d0 is of the form d0 = 4µ+3 and such that χ0(−1) =
1. (Such a χ0 cannot be real.) Let λ(m) =

(−2
m

)
. Then from (6.3) we can derive,

by the same technique as in the proof of Corollary 6.4,

(6.19) π−1
√

2 χ0(2)G(χ0)L(1, χ0λ) =
µ∑

a=1

(−1)aχ0(a).

Similarly we can handle L(1, χ0λ) when d0 = 4µ+1, χ0(−1) = −1, and λ(m) =(
2
m

)
, in which case a formula of type (6.14) appears. Some more formulas for

L(1, χ) will be given in Corollary 6.7 below.

We now state some analogues of (4.32), which are not so technically involved
as Theorem 6.3.

Theorem 6.6. Let χ be a primitive character modulo d, and k a positive
integer such that χ(−1) = (−1)k. Then the following assertions hold:

(i) Suppose d is prime to 3; let c = −e(1/3). Then

(6.20) (k − 1)!(2πi)−kG(χ)L(k, χ)

=
χ(3)

(1 + c−1){3k − χ(3)}

d−1∑

a=1

χ(a)e(−da/3)Ec,k−1(a/d).

(ii) Suppose d is prime to 2; let c = −e(1/4). Then

(6.21) (k − 1)!(2πi)−kG(χ)L(k, χ)

=
χ(4)

(1 + i){4k − χ(2)2k}

d−1∑

a=1

χ(a)e(−da/4)Ec,k−1(a/d).

(iii) Suppose d is prime to 6; let c = −e(1/6). Then

(6.22) (k − 1)!(2πi)−kG(χ)L(k, χ)
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=
χ(6)

e(1/6){2k − χ(2)}{3k − χ(3)}

d−1∑

a=1

χ(a)e(−da/6)Ec,k−1(a/d).

Proof. For simplicity, let us write F and E for Fc, k−1 and Ec, k−1. We first
prove (iii). Thus c = −e(α) with α = 1/6. Taking N = 6, q = 1, and t = b/d

in (4.4c), we obtain

(∗) F (6b/d) = 6k
∑

m∈1+6Z

m−ke(mb/d) (b ∈ Z).

Clearly F (6b/d) depends only on b (mod d). Also, we easily see that

(∗∗)
∑

m∈1+6Z

χ(m)m−k =
{
1 − χ(2)2−k

}{
1 − χ(3)3−k

}
L(k, χ).

If k = 1, the sums of (∗) and (∗∗) should be understood in the sense explained
in a few lines below (4.4). Take integers µ and ν so that 1 = dµ+6ν. Then for
0 < a < d we have a = adµ + 6aν and F (a/d) = e(aµ/6)F (6aν/d) by (4.4a).
Since e(aµ/6) = e(ad/6), we have, in view of (∗),

d−1∑

a=1

χ(a)e(−ad/6)F (a/d) =
d−1∑

a=1

χ(a)F (6aν/d)

= χ(ν)
d−1∑

a=1

χ(aν)6k
∑

m∈1+6Z

m−ke(maν/d)

= 6kχ(ν)G(χ)
∑

m∈1+6Z

χ(m)m−k.

Applying (4.5) to F (a/d) and employing (∗∗), we obtain (6.22), as χ(6ν) = 1.
The other two cases with α = 1/3 and α = 1/4 can be proved in the same
manner.

Corollary 6.7. Let χ be a primitive character modulo d such that χ(−1) =
−1. Then the following assertions hold.

(i) If d is prime to 3, we have

(6.23) (2πi)−1G(χ)L(1, χ) =
χ(3)

3 − χ(3)

{ [d/6]∑

a=1

χ(3a) −
∑

b∈B

χ(b)
}

,

B =
{
b ∈ Z

∣∣ 0 < b < d/2, b − d ∈ 3Z
}
.

(ii) If d is prime to 2, we have

(6.24) (2πi)−1G(χ)L(1, χ) =
χ(4)

2 − χ(2)
·

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
χ(4) + 1

∑

a∈A

χ(a) if χ(4) �= −1,

1
χ(4) − 1

∑

b∈B

χ(b) if χ(4) �= 1,

A =
{
a ∈ Z

∣∣ 0 < a < d/2, a ≡ 0 or −d (mod 4)
}
,

B =
{
b ∈ Z

∣∣ 0 < b < d/2, b ≡ 2 or d (mod 4)
}
.
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(iii) If d is prime to 6, we have

(6.25) (2πi)−1G(χ)L(1, χ) =
χ(6)

{2 − χ(2)}{3 − χ(3)}

·
{ ∑

a∈A1

χ(a) + 2
∑

a∈A2

χ(a) −
∑

b∈B1

χ(b) − 2
∑

b∈B2

χ(b)
}

,

A1 =
{
a ∈ Z

∣∣ 0 < a < d/2, a ≡ 0 or −2d (mod 6)
}
,

A2 =
{
a ∈ Z

∣∣ 0 < a < d/2, a ≡ −d (mod 6)
}
,

B1 =
{
b ∈ Z

∣∣ 0 < b < d/2, b ≡ d or 3 (mod 6)
}
,

B2 =
{
b ∈ Z

∣∣ 0 < b < d/2, b ≡ 2d (mod 6)
}
.

Proof. We take k = 1 in Theorem 6.6 and use the fact that Ec,0(t) = 1 as
noted in (4.3h). We first consider the case c = −e(1/6). Put q = (d − 1)/2 and
ζ = e(1/6). Then the sum on the right-hand side of (6.22) can be written

q∑

a=1

χ(a)
{
e(−da/6) − e((da − 1)/6)

}
,

and e(−b/6) − e((b − 1)/6) is ζ, −ζ, 2ζ, or −2ζ according to b (mod 6). Then
we obtain (6.25) with Aν and Bν as given there. Case (i) can be proved in the
same manner. In Case (ii), by the same technique we first obtain

(6.26) (2πi)−1G(χ)L(1, χ) =
χ(4)

4 − 2χ(2)
(X − Y ),

X =
∑

a∈A

χ(a), Y =
∑

b∈B

χ(b)

with A and B as given in (6.24). On the other hand, (4.32) with k = 1 shows
that this equals (X + Y )/

(
4 − 2χ(2)

)
. Thus X + Y = χ(4)(X − Y ). Therefore

we can state the result as in (6.24).

If K = Q(
√
−d ) and −d is the discriminant of K and d > 4, then the

formulas of Corollary 6.7 give hK/2. Of course we cannot attach importance to
any of such class number formulas, but we mention them simply because they
follow from more general results on L(k, χ), which are well worthy of notice.
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