2 SUPPLY CHAIN GAMES: MODELING
IN A STATIC FRAMEWORK

A supply chain can be defined as “a system of suppliers, manufacturers,
distributors, retailers, and consumers where materials flow downstream from
suppliers to customers and information flows in both directions” (Geneshan
et. al. 1998). The system is typically decentralized which implies that its
participants are independent firms each with its own frequently conflicting
goals spanning production, service, purchasing, inventory, transportation,
marketing and other such functions. Due to these conflicting goals a decen-
tralized supply chain is generally much less efficient than the correspond-
ing centralized or integrated chain with a single decision maker. Efficiency
suffers from both vertical (e.g., buyer-vendor competition) and horizontal
(e.g., a number of vendors competing for the same buyer) conflicts of
interest.

How to manage competition in supply chains is a challenging task which
comprises a variety of problems. The overall target is to make, to the extent
possible, the decentralized chain operate as efficiently as its benchmark,
the corresponding centralized chain. This particular aspect of supply chain
management is referred to as coordination. This chapter addresses simple
static supply chain models, competition between supply chain members
and their coordination.

2.1 STATIC GAMES IN SUPPLY CHAINS

In research and management literature where supply chain problems and
related game theoretic applications have gained much attention in recent
years, we see extensive reviews focusing on such aspects as taxonomy of
supply chain management (Geneshan et. al. 1998); integrated inventory
models (Goyal and Gupta 1989); game theory in supply chains (Cachon
and Netessine 2004); operations management (Li and Whang 2001); price
quantity discounts (Wilcox et. al. 1987); and competition and coordination
(Leng and Parlar 2005).
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In the literature, supply chains are distinguished by various features such
as: types of decisions; operations; competition and coordination; incentives;
objectives; and game theoretic concepts. In this chapter we deal with three
essential features of static supply chains, i.e., the supply chains with deci-
sions independent of time: customer demand, competition and risk. In this
sense we distinguish between

e deterministic and random demands; endogenous and exogenous
demands

e vertical and horizontal competition within supply chains

e no risk involved, risk incurred by only one of the parties and risk
shared between the parties.

In this chapter, supply chain games are combined into three groups. The
first group of games represents classical horizontal production and vertical
pricing competition under endogenous demands. These games involve
decisions about either product prices or quantities with respect to two types
of endogenous demands: (i) the quantity demanded for a product as a func-
tion of price set for the product and (ii) an inverse demand function with
price as a function of the quantity produced or sold. In both cases the de-
mands are deterministic, which implies that all produced/supplied products
are sold and thus there is no risk involved.

Random exogenous demand for products characterizes the second group
of games which is related to the classical newsvendor problem. The parties
vertically compete by deciding on a price to offer and a quantity to order
for a particular price. Since the demand is uncertain, the downstream party,
which faces the demand, runs the risk of overestimating or underestimating
it. The risk involves costs incurred due to choosing the quantity to order
and stock before customer demand is realized. We refer to this group of
games as stocking / pricing competition with random demand.

The third group of games represents classical risk-sharing interactions
between supply chain members. Similar to the second group, the competi-
tion is vertical and the demand is exogenous and random. Unlike the sec-
ond group, however, incentives to mitigate risk may be offered to a party
which faces uncertain customer demands. Since the incentives include
buyback and urgent purchase options, some of the uncertainty is trans-
ferred from one party to another. In such a case, the risk associated with
random demand is shared and the inventories of all involved parties are
affected when deciding on what quantities to stock.



2.1 STATIC GAMES IN SUPPLY CHAINS 53

Motivation

We describe a few production, pricing and inventory-stock related prob-
lems which have been found in various service and industry-related supply
chains. Most of these problems have been extensively studied and can be
found virtually in every survey devoted to supply chain management
including those mentioned above. It is worth noting that, in general, the
number of basic supply chain problems is significant and selecting just a
few of them for an introductory purpose is not a simple matter.

Our selection criterion is based on one of the overall goals of this book—
to show how optimal pricing and inventory policies evolve when static
operation conditions become dynamic. Under such conditions, we find par-
ticularly interesting the static problems which allow for straightforward
and, yet natural, dynamic extensions. The problems which we discuss in
this chapter will be discussed again in the following chapters to show the
effect of production and service dynamics on managerial decisions.

The static feature of the problems we select implies that the period of
time that the problems encompass is such that no change in system para-
meters is observed. Since all products are delivered at once by the end of
the period and then instantly sold, these problems ignore the intermediate
inventories (and associated costs) before and during the selling season.
Due to the focus on stock and pricing policies, shortages as well as left-
overs are avoided, as much as possible, by the end of the period. In all the
problems that we consider, it is assumed that the information needed for
decision-making is available and transparent to the supply chain partici-
pants and that the overall order lead-time is smaller than the length of the
period so that all deliveries are provided on time.

This chapter introduces and discusses basic models of horizontal and
vertical competition between supply chain members, the effect of uncertainty
and risk sharing as well as basic tools for coping with the competition by
coordinating supply chains. The analysis which we employ includes (i)
formal statements of problems of each non-cooperative party involved as
well as the corresponding centralized formulations where only one deci-
sion-maker is responsible for all managerial decisions in the supply chain;
(i) system-wide optimal and equilibria solution for competing parties; (iii)
analysis of the effect of competition on supply chain performance and of
coordination for improving the performance. In analyzing the problems we
use Nash and Stackelberg equilibria which we briefly present next.
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Nash and Stackelberg equilibria

Game theory is concerned with situations involving conflicts and coopera-
tion between the players. Our focus is on two important concepts of Nash
and Stackelberg equilibria intended respectively for dealing with simulta-
neous and sequential non-cooperating decision-making by multiple play-
ers. Consider a game, with the strategies y;, i=1,..,N being feasible actions
which the N players may undertake. All possible strategies of a player, i,
form a strategy set Y; of the player. A payoff (objective function), Ji(yy,
Va,¥8s), i=1,..,N is evaluated when each player i selects a feasible strategy,
vy, €Y,. We assume that the games are played on the basis that complete
information is available to all players. Since two-player games can be
straightforwardly extended to multiple players and to simplify the presen-
tation, we further assume that there are only two players 4 and B.

Each player’s goal is to maximize his own payoff. The following defini-
tion presents the concept of a Nash equilibrium (Nash 1950)

Definition 2.1

A pair of strategies (y ,*,y,*)is said to constitute a Nash equilibrium if

the following pair of inequalities is satisfied forall y, €Y, and y, €Y,

S, y8*) = Jaa, y&*) and Jp(y.*, ys*) 2 Js(va*, yp).
The definition implies that the Nash solution is
.= argnylax{JA (™)} and y,* =arg rrylaX{JB a5y}
YA<STy Ypelp
and a unilateral deviation from this solution results in a loss. If this prob-
lem is static, strategy sets are not constrained and the payoff functions are
continuously differentiable. The first-order (necessary) optimality condi-

tion results in the following system of two equations in two unknowns y,4*,

¥

0 (V.4 Y5™) 0S5 (¥,* V)
v, Wy
In addition, the second order (sufficient) optimality condition which
ensures that we maximize the payoffs is
0’J *
M ... <0 and
., o Yy
Equivalently, one may determine y’(y,) =argmax{J,(y,,y,)} for each
Vaely

yge Y, to find the best response function, y,=y%(y,), of player 4 and of

yazyat 0 and yB=yg* 0.

0, (¥, %, ¥y)

2

<0.

yp=yg*
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player B, y5=y,(y,) which constitute a system of two equations in two
unknowns.

The examples we shall consider here will be elaborated later in this and
subsequent chapters.

Example 2.1

Consider a supply chain consisting of one supplier, s, and one retailer r.
The supplier offers products at wholesale price w and the retailer buys ¢
product units and sets retail price p=w+m. This is the classical pricing
game where the two firms want to maximize their profits. Let the supplier
and retailer costs be negligible and the demand is linear and downward in
price, d=a-bp=a-b(w+m), a>0, b>0. Then the retailer’s optimization prob-
lem is
J(m,w)=m(a-b(w+m)) —> max,

OSmS%—W

and the suppliers problem is

Jy(m,w)y=w(a-b(w+m)) — max,

w2 0.

First we observe that both objective functions are strictly concave in their
decision variables. Thus, the first-order optimality condition is necessary
and sufficient. Using the first-order optimality condition we have

a-bw-2bm=0 and a-2bw-bm=0.
If our constraints are not binding, the two best response functions are
a—bm

2b

Solving these two equations (or equivalently the previous two) we find a
unique Nash equilibrium

a—bw

m=m"(w)= and w= w"(m)=

. a . a
m'=— and w'=—.
3b 3b

The equilibrium is evidently feasible and all constraints are met, as %>0,

n

a a . 2a . a
hence, m*>0, w*>0, and — <——w" =— , hence, m" <——w".
3b 3b b

Stackelberg strategy is applied when there is an asymmetry in power or
in moves of the players. As a result, the decision-making is sequential
rather than simultaneous as is the case with Nash strategy. The player who
first announces his strategy is considered to be the Stackelberg leader. The
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follower then chooses his best response to the leader’s move. The leader
thus has an advantage because he is able to optimize his objective function
subject to the follower’s best response. Formally this implies that if, player

A, for example, is the leader, then yz=y; (y,) is the same best response for

player B as determined for the Nash equilibrium. Since the leader is aware
of this response, he then optimizes his objective function subject to

vi=yi )=y (s ().

Definition 2.2

In a two-person game with player A as the leader and player B as the fol-
lower, the strategy y,*€Y, is called a Stackelberg equilibrium for the
leader if, for all y,,

J k5 yvs NI, (v ys (),

where yg =y (v ,) is the best response function of the follower.

Definition 2.2 implies that the leader's Stackelberg solution is
yA* = argn;aX{JA(yA’yg(yA)}‘
YA&ly
That is, if the strategy sets are unconstrained and the payoff functions are
continuously differentiable, the necessary optimality condition for the leader
is

0, (¥4 5 (V)
v,
To make sure that the leader maximizes his profits, we check also the
second-order sufficient optimality condition

°J (v, vs ()

=0.

Ya=ya*

Example 2.2

Consider again Example 2.1 but assume that the supplier is the leader.
That is, the supplier sets first his wholesale price. In response, the retailer,
in setting his retail price, determines the product quantity he orders. Then,
to find the Stackelberg solution, we substitute the best retailer’s response
a—bw

m=m"(w)= (see Example 2.1) into the supplier’s objective function.

a—bw aw  bw’
=max (— ——).
)=max (55~

max Jy(m,w)=max w(a-b(w+
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The supplier’s objective function is evidently strictly concave. Conse-
quently, the first-order optimality condition results in

w="L , m=m"(w")= a.
2b 4b

The found equilibrium is evidently unique and feasible, as 2i>0,

i>0 and g—w"=i and, thus, m’ =i<£—w“ =i, 1.e., all con-
4b b 2b 4b b 2b

straints are met.

For comparative reasons we shall also consider a centralized supply
chain with no competition (game) involved. The centralized problem can
be viewed as a single-player game.

Example 2.3

Consider again Example 2.1 but assume that there is only one decision-
maker in the system. Then the centralized objective function is

max J(m,w)= max [ J(m,w)+ J(m,w)]=max (wtm)(a-b(w+m)).

Applying the first-order optimality condition we get two identical equa-
tions for m and n. This implies that there is only one decision variable p, so

. . . a
that the system-wide optimal solution is, m*+w*= p* = 5

2.2 PRODUCTION/PRICING COMPETITION

We discuss here two classical problems arising in supply chains character-
ized by deterministic demands and either vertical supplier-retailer or horizon-
tal supplier-supplier competition. The competition is represented by games.
We first analyze pricing equilibrium based on Bertrand’s competition model
and then production equilibrium according to Cournot’s competition model.
Since the problems are deterministic, they can be viewed as both single-
period and continuous review models.

2.2.1 THE PRICING GAME

Consider a two-echelon supply chain consisting of a single supplier selling
a product type to a single retailer over a period of time. The supplier has
ample capacity and the period is longer than the supplier’s leadtime which
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implies that the supplier is able to deliver on time any quantity ¢ ordered
by the retailer. The retailer faces a concave endogenous demand, g=¢(p),

2
which decreases as product price p increases, i.e., Z—q <0 and % <0.
P P

The supplier incurs unit production cost ¢ and sells at unit wholesale price
w, 1.e., the supplier’s margin is w-c. Note that this formulation is an exten-
sion of that employed in Example 2.1, where a specific, linear in price,
demand was considered.

Let the retailer’s price per unit be p=w+m, where m is the retailer’s mar-
gin. Both players, the supplier and the retailer, want to maximize their
profits — margin times demand which are expressed as J(w)=(w-c)g(w+m)
and J,(p)=mq(w+m) respectively (see Figure 2.1). This leads us to the fol-
lowing problems.

The supplier’s problem
max Jy(w,m)=max (w-c)q(w+m) 2.1

s.t.
w2c. 2.2)

The retailer’s problem

max J,(w,m)=max mq(w+m) (2.3)

S.t.
m=0, 2.4)
qgw+m)=0. (2.5)

Note that from w=c¢ and m >0, it immediately follows that p=w+m > c.
In contrast to the vertical competition between the two decision-makers as
determined by (2.1)-(2-5), the supply chain may be vertically integrated or
centralized. Such a chain is characterized by a single decision-maker who
is in charge of all managerial aspects of the supply chain. We then have the
following single problem as a benchmark.
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Supplier: w

A

w g(w+m)

y

Retailer: m

Figure 2.1. Vertical pricing competition

The centralized problem
max J(m,w)=max [ J,(m,w)+ Jy(m,w)]=max (wtm-c)g(wtm)  (2.6)

s.t.
m=0, glw+m) =0.

To distinguish between different optimal strategies, we will use below
superscript n for Nash solutions, s for Stackelberg solutions and * for cen-
tralized solutions.

System-wide optimal solution

We first study the centralized problem by employing the first-order opti-
mality conditions

o (m,w) =g(w+ m)+(w+m—c)m=0,
om
—a](an;; W) =q(w+m)+(w+m _C)_aq(p) =0.

Since both equations are identical, only the optimal price matters in the
centralized problem, p*, while the wholesale price w=0 and the retailer’s
margin m =0 can be chosen arbitrarily so that p*=w+m. This is because w
and m represent internal transfers of the supply chain. Thus, the proper
notation for the payoff function is J(p) rather than J(m,w) and the only
optimality condition is

a(p*)+ (p*—c)%fmo. 2.7)

Let g(P)=0, P>c. Then it is easy to verify that,
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62J(2p) _%(p)  04(p) | 82q(zp) <,
& p p p

that is, the centralized objective function (2.6) is strictly concave in price

for p €[c, P]. This implies that equation (2.7) has a unique solution which

maximizes (2.6).

Game Analysis

We consider now a decentralized supply chain characterized by non-
cooperative or competing firms and assume first that both players make
their decisions simultaneously. The supplier chooses the wholesale price w
and the retailer selects his price, p, or equivalently his margin, m, and
hence buys ¢g(p) products. The supplier then delivers the products. Since
this pricing game is deterministic, all products that the retailer buys will be
sold.

Using the first-order optimality conditions for the retailer’s problem, we
find that the retailer’s best response is determined by the following expres-
sion

. mw) _ e my+m PP g 2.8)
om op

It is easy to verify that the retailer’s objective function is strictly concave
in m and, thus, (2.8) has a unique solution, or, in other words, the retailer’s
best response function is unique. Comparing (2.8) and (2.7) and taking into
account that w>c (otherwise the supplier has no profit), we conclude with
the following result:

Proposition 2.1. In vertical competition of the pricing game, if the supplier
makes a profit, i.e., w>c, the retail price will be greater and the retailer’s
order less than the system-wide optimal (centralized) price and order
quantity respectively.

Proof: Substituting p =w+m into (28) we have

%(p) =0. (2.9)
p

Comparing (2.7) and (2.9) we observe that

q(p)+(p—w)

q(p)+(p—w)%f’)=q(p*)+(p*—c>%f*)=o, (2.10)

while taking into account that w>c and % <0,
P
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4(p*) + (p *—w)%]’j*) > g(p*)+ (p *—c)%’]’*)—o. @.11)

9q

Next, by denoting f(p)=qg(p)+(p - w)@ , and recalling ™ <0
/4 P

d’q(p)

<0, we find that
op

and

) _%ap) , 24p), (, *q(p) _,
op op op op’

Thus, to have (2.10) we need fip)<fip*), which, with respect to the last
inequality, requires, p>p* and, hence, q¢(p)<q(p*), as stated in Proposition 1.

Note, that our conclusion that vertical pricing competition (2.1)-(2.5)
increases retail price and decreases the retailer’s order quantity does not
depend on whether both players make a simultaneous decision or whether
the supplier first sets the wholesale price and plays the role of the Stackelberg
leader, as is often the case in practice. In either of the two cases, the overall
efficiency of the supply chain deteriorates under vertical competition.

Equilibrium

To determine the Nash pricing equilibrium, which corresponds to simulta-
neous moves of the supplier and retailer, we next consider the optimality
conditions for the supplier’s objective function,
oJ, (m,w)
ow
One can readily verify that the supplier’s objective function is strictly
0*J (m,w)
ow’

is unique as well. As a result, the Nash equilibrium, (w",m") is found by
solving simultaneously the following system of equations

oq(w+m) _

=q(w+m)+(w=-c) 0. (2.12)

concave in w, <0 and, thus, the supplier’s best response (2.12)

q(w+m)+m%;m)=0, (2.13)
q(w+m)+(w—c)M=0. (2.14)
Solving (2.13) and (2.14) results in
w-c-m=0 and ¢(c+2m)+ mM =0.

p
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Assuming that the solution w+m=P, ¢(P)=0 cannot be optimal since it
leads to zero profit for all supply chain members, we conclude with the
following result.

Proposition 2.2. The pair (w",m"), where m" satisfies the following equation
oq(c+2m")
p
and w'=m"+c constitutes a unique Nash equilibrium of the pricing game

with 0<m"<(P-c)/2.
Proof: To see that a solution of equation (2.15) always exists and that it is
unique, assume m"=0. Then, since P>c and g(P)=0, g(c+2m") >0, while

» Og(m”) _ o
op

when m"=0. On the other hand, let c+2m"=P, since g(P)=0, while the sec-

ond term in (2.15) is strictly negative as m"=(P-c)/2>0, we have

qglc+2m")+m" =0. (2.15)

the second term in (2.15) is zero. Thus, f(m")=g(m")+m

f(m")y=q(m")y+m" % < 0. Finally, taking into account that
P

of (m")
om"
0<m"<(P-c)/2.

Next, we assume that the supplier makes the first move by setting the
wholesale price. The retailer then decides on what price to set and, hence,
the quantity to order. To find the Stackelberg equilibrium, we need to
maximize the supplier’s objective with m subject to the best retailer’s
response m=m"(w) determined by (2.8),

Jy(m,w)=(w-c)g(w+m"(w)).

<0, we conclude that the solution of f{m")=0 is unique and

Differentiating the supplier’s objective function we have

R
oJ ,(m, w)_ d(w+ m® (W) + (w— )6q(w+m) om (W)=O,
ow op ow
om"(w) . . . . .
where T is determined by differentiating (2.8) with m set equal to
m*(w).
R R R
dqOwem) om" (W), om* (w) 2g(p) | O q(p) 1 omn o
op ow ow op ow
Thus

amR(w): Oq(w+m) JrWazq(w+m)J /(6q(w+m) +8(](w+m) 5q(W+m)J (2.16)
)

ow op ! op’ op op
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Equation (2.16) naturally implies
the greater the supplier’s wholesale price w, the lower the retailer’s mar-
gin m.

Based on (2.16) and (2.8) we conclude that a pair (w',m") constitutes a
Stackelberg equilibrium of the pricing game if there exists a joint solution
in w and m of the following equations

dg(w +m) om

gw+m)+(w—c) pe GWZO’
q(w+m)+m—aQ(w+m) =0,
o
where
om :_(aq(erm) +m62q(w+m)J /[8q(w+m) , Qg(w+m) +m82q(w+m)J
ow p &’ op p &’

We do not study here the existence and uniqueness of the Stackelberg
solution. Instead we revisit Examples 2.1 and 2.2, which determine both
Stackelberg and Nash solutions for a special case of the pricing game.

Example 2.4

Let the demand be linear in price, g(p)=a-bp and the supplier’s cost negli-
gible, ¢=0. Thus we obtain the problem solved in Example 2.1. Note that

the demand requirements, —
519
function. Using Proposition 2.2. we solve (2.15),

qg(2m™) +m”@ =a—-b2m" +m"(-b)=0, w'=m"
P

2a

to find Nash equilibrium w'= m"= %, hence, p'= W't m" = and

q(p”)=% , as is also the case in Example 2.1. The payoff for the equilibrium

2
is identical for both players, J,,(m”,w")=.[?(m",w”)=;l—b. Similarly, one can

verify that the Stackelberg solution is the same as in Example 2.2,

a , a 3a
W_%am 4b9p w+ m’ 4b,q(p)

2 2

Jn', w)——b and J,(m’ w)—l%
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Finally, the centralized solution (2.7) (see also Example 2.3) is
£
q(p*)+(p*—c) —aqép ) —a-bp+p¥-b)=0,
P

that is,
2

a a a
* k= pk — , =2 and J(p*)=— .
mEwE=pt=— q(p*) 5 an r*) T

Comparing these results we find that the system-wide optimal order is
greater than that of the Nash or Stackelberg strategy

9')= §< q(p")=§ < q(p*)=§,

which agrees with Proposition 2.1. Correspondingly, the retail prices
increase under vertical competition

S:3_a > 11:2_a> * _ i
L 3 7T
and the overall chain payoff deteriorates
3a’ 2a° a’
J(m’ WY+ J(m’ W= <J(m" wWH+J(m" w")= <J(p*)=—.
{(m W)t Ji( )16b ( I )% (p)4b

Example 2.5

The goal of this example is twofold. First of all, it is rarely possible to find
an equilibrium analytically. This example illustrates how to conduct the
analysis numerically with Maple. Secondly, the condition imposed on the
second derivative of demand is sufficient for the equilibrium to be unique,
but it is not necessary, as the example demonstrates.

Let the demand be non-liner in price, g(p)=a-bp”. Assuming that 0<a<1,
we observe that the demand requirements with respect to the first deriva-

tive are met, 2_61 =—bap“'<0, while with respect to the second
2 P

2 621 =ba(l—a)p“ >0 is not. Using Proposition 2.2., we employ (2.13)
P

and (2.14) to obtain numerically the retailer’s and supplier’s best response

respectively, m=m"(w) and w=w"(m). Specifically, we first set the left-hand

side of (2.13) as L1

>L1:=a-b* (w+m) "alpha-m*alpha* (w+m) "~ (alpha-1) ;

a-1)

L1 :=a—b(w+m)°‘—moc(w+m)(
and the left-hand side of (2.14) as L2.
>L2:=a-b* (wt+m) “alpha- (w-c) *alpha* (w+m) "~ (alpha-1);
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L2 :=a—b(w+m)°‘—(w—c)a(w+m)(a_l)

Next we substitute specific parameters of the example 0=0.5, a=15,
b=2, c=1 to have numeric left-hand sides L11 and L12 respectively
>L11:=subs(alpha=0.5, a=15, b=2, c=1, L1);

0.5m

LII:=15-2(w+m)* - NE

(w+m
>L12:=subs (alpha=0.5, a=15, b=2, c=1, L2);

LI2 :=15—2(w+m)0'5—M_015).
(w+m)™

Next we find the equilibrium by solving the system of equations L11=0
and L12=0

>solve ({L11=0, L12=0}, {m,w});
{m=21.83319513, w=22.83319513 }

To verify that the equilibrium is unique, we find the best retailer’s re-
sponse m"(w) numerically as mR

>mR:=solve (L11=0,m);
mR = 18. + 1.200000000 ./225. + 5. w — 0.8000000000 w,
18. — 1.200000000 -/225. + 5. w — 0.8000000000 w

and the inverse function mRinv of the best supplier’s response w"(m)
>mRinv:=solve (L12=0,m) ;

mRinv = 28.37500000 + 1.875000000 ./229. — 4. w — 1.250000000 w,

28.37500000 — 1.875000000 /229. — 4. w — 1.250000000 w
Both responses have two solutions, positive and negative. Since the margin
is non-negative, we select only positive solutions mR[1] and mRinv[2] and
plot them on the same graph.
>plot ([mR[1],mRinv[1]],w=1..45,legend=[“"Retailer”,
“Supplier”]):;
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50

30- _—\_____“—b\__\___

20 T

104 iRt

| I - - ,

10 10 20 " 30 40
Retailer
Supplier

Figure 2.2. The pricing equilibrium

From Figure 2.2 we observe that there is only one point where the
responses intersect. This is the Nash equilibrium point which we found
numerically as m" =21.833 and w" =22.833.

The centralized solution (2.7) is found similarly with Maple
>L:=a-b*ptalpha- (p-c) *alpha*p” (alpha-1);

-1
L :=a—bp°‘—(p—c)ocp((x L
>L1ll:=subs(alpha=0.5, a=15, b=2, c=1, L);
05(p—-1
L11=15-2ps - 222 =1

pO.S

>popt:=solve (L11=0,p);
popt :=36.39890107

Comparing the system-wide optimal price with the equilibrium Nash price,
we find that p*=36.398<p"=m"+w"=21.833+22.833=44.666.

Coordination

According to Proposition 2.1, vertical competition has a negative effect on
the supply chain. The retailer orders less, the retail price goes up and prof-
its shrink. Moreover, although the supplier’s leadership allows the supplier
to increase his profit, in the specific case of linear price demand (see Exam-
ple 2.4), the leadership is also destructive as it further reduces the total
profit in the supply chain. The negative effect of the vertical competition is
due to the well-known double marginalization effect. This effect takes
place if the retailer ignores the supplier’s profit margin, w-c, when ordering
as shown in Proposition 2.1. Specifically, when recalling that p=w+m, the
retailer’s best response (2.9)
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a(p)+ (p-m L) o,
can be written as
qg(p)+m——— %(p) =0,
op

which implies that though the demand depends on price p=w+m, the
retailer accounts only for his margin m instead of ordering as indicated by
the centralized approach (2.7)

q(p)

gp)+(p-o)——=q(p)+(w-c+m)——

9q(p) _

9

and thus adding the suppher s margin, w-c, to m. Equivalently, from equa-
tion (2.14)

a(p) + (w—c) 24P "(p) ~0

we observe that the supplier ignores the retaller’s margin m when setting
the wholesale price. The remaining question is how to induce the retailer to
order more, or the supplier to reduce the wholesale price, i.e., how to coor-
dinate the supply chain and thus increase its total profit. Of course, the
supplier may set the wholesale price at his marginal cost, w=c, or the
retailer may set his margin at zero. Equation (2.7) then becomes identical
to (2.9) and the supply chain is perfectly coordinated. However, the supply
chain member who gives up his margin gets no profit at all. The most
popular way of dealing with such a problem is by discounting or by col-
laboration for profit sharing.

One approach to discounting is a simple two-part tariff. If the supplier is
the leader, he can set w=c, but charge the retailer a fixed fee. In this way,
the supplier can regulate his share in the total supply chain profit without a
special contract. Moreover, if the supplier sets the fixed fee very close to
the centralized supply chain profit, J(p*), then the retailer gets almost no
profit and still orders the system-wide optimal quantity g(p*) as well as
sets system-wide optimal price p*.

Regardless of whether there is a leader or not, signing a profit-sharing
contract is an alternative way to mitigate the double marginalization. In
such a contact, the parties would explicitly set their shares of the total sup-
ply chain profit, J(p*) with , 0< 5 <1, so that the retailer gets nJ(p*) and
the supplier (1-7)J(p*). This, however, is already cooperative rather than
competitive behavior. To illustrate one possibility for coordination with
cooperation, we briefly consider an example of bargaining over the whole-
sale price and retailer's margin in terms of the Nash bargain, which solves
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max [J(w,m) [J,(w,m)js],

where j, and j; represent the outside options to each party. Employing the
demand function of this section and assuming that all outside options are
normalized to zero, i.e., j, =0 and j; =0, we have the following bargaining
problem:

max J%(m,w)= max mw[g(w+m)]*.

If g(w+m) is such that J°(m,w) is concave, then applying the first-order op-
timality conditions we obtain the following two equations

q(m+w)+2mM=O,
op
q(m+w)+2(w—c)w=0.

From these equations we immediately find that m=w-c and thereby the two
equations result in a single condition:
og(m+w)
ap
Taking into account that p=m+w, we observe that the derived condition
is identical to the system-wide optimality condition (2.7). Thus, if J%m,w)
is concave, the Nash bargain perfectly coordinates the supply chain for the
case of the pricing game. The only difference is that the system-wide optimal
solution specifies only the optimal price p* (since the transfer costs are not
important for a centralized system), while the Nash bargain solution of the
pricing problem results in equal margins, m=w-c, and shares, J(w,m)=
Jy(w,m), for both parties.

gm+w)y+(m+w-c) 0.

The multi-echelon effect

It is intuitively clear that the greater the number of the upstream suppliers
involved, the more margins are added to the supply chain and thereby the
greater the deterioration of the expected system performance. Specifically,
let an upstream distributor have a marginal cost ¢, per product and let him
sell his products to the supplier at a price w,. Then the retail price would be
p= wtm, w2 ct+w, and the resulting problems of the three-echelon supply
chain are defined as follows.

The distributor’s problem
max JAw,w,m)= max (wWg-c,)qg(w+m)
wd Wd

S.t.
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Wy > Cg.

The supplier’s problem

max Jy(wg, w,m)=max (w-c-w,)q(w+m)

S.t.
w2 ctwy,.
The retailer’s problem
max J,(wgw,m)= max mq(w-+m)
s.t.

m=0, glw+m) 20.

The centralized problem
max J(m,w)=max ( m+w - c- cq)q(w+m)

s.t.
mz0, gw+m) 20, w=ct+ wy.

Consequently the system-wide optimal retail margin is determined by

aJ (m,w) Mzo
om op
while the equation for an optimal margin when the parties are non-
cooperative remains the same
oJ, (m,w)

oq(p)
= +m—=—==0.
5 q(p) o

We thus observe that the retailer when ordering, accounts for his margin m
and ignores both the supplier’s margin w-c-w, and the distributor’s margin
wg-cq , Which is, w-c-c; in total. Again, by employing the two-part tariff,
the supply chain becomes perfectly coordinated. This is accomplished if
the distributor and the supplier set the wholesale prices equal to their mar-
ginal costs, i.e., w,=c, and w=c+c,, respectively and charge a fixed cost
per transaction.

=q(p)+(m+w-c—c,)

b

2.2.2 THE PRODUCTION GAME

Previously we were concerned with vertical competition. Now we shall
study the effect of horizontal production competition (see Figure 2.3).
Consider two manufacturers producing the same or substitutable types of
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product over a period of time and thus competing horizontally for the same
customers, possibly for the same retailer. Accordingly, the manufacturers
are suppliers with ample capacity and the order period is longer than the
suppliers’ lead-time. This means that both suppliers are able to deliver on
time any quantity ¢; and ¢, to the retailer. The retailer, on the other hand,
adopts the so-called vendor managed inventory (VMI) policy, in which the
suppliers decide on the quantities to deliver while the retailer simply charges
a fixed percentage from sales. Since the retailer has no part in the competi-
tion, he does not affect the system-wide optimal solution, equilibrium order
quantities, or prices.

Further, in the previous section we assumed that the retailer demand is a
function of product price which is referred to as Bertrand’s model of com-
petition pricing. In this section we assume that the retail price is a function
of customer demand which is referred to as Cournot’s model of production
competition. Specifically, the product is characterized by an endogenous
price function of total demand Q=q;+¢,, p=p(Q), which, since the prod-
ucts are fully substitutable, is symmetric in ¢; and ¢,. We assume that this
symmetric function is down-sloping (concave) in the total quantity of the

P _P Py,
dq, 0Oq, ’

o’p 9’p  d'p

g, oq," 0q,04,
cost ¢, c<p(0), and seek to maximize profits, i.e., they maximize their mar-
gins, p(Q)-c, times the demand, ¢, or g,.

products, i.e., and concave, ie.,

<0. The suppliers incur identical unit production

The problem of supplier 1

max Ji(q1,92) max qi [P(q1+¢2)-c] (2.17)

S.t.
q120, p(q1+q2) 2c.

The problem of Supplier 2

manJz(CIqu): max ¢2[p(q1+q2)-c] (2.18)

S.t.
4220, p(q1+q2) 2 ¢,

where p(Q) is the price at which the retailer can sell Q product units; ¢;
and g, are the quantities produced by suppliers (manufacturers) 1 and 2
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respectively and sold by the retailer; O=q,+q> is the total quantity sold by
the retailer; and c is the unit production cost for both suppliers.

Supplier 1: ¢, Supplier 2: ¢,

~

Retailer: Bp(q1+q,)

l p(q1tq2)

Figure 2.3. Horizontal competition for the same retailer
Exactly, (2.17) and (2.18) can be presented as
max J1(¢1.¢2)=max S [p(q1+q2)-cl;

max J2(q1,92)= max Bqa[p(qi+¢2)-c],
2 q2

where f is percentage paid to the retailer by each manufacturer. Since
coefficient f does not affect the optimality conditions, it is omitted. More-
over, since the retailer’s profit is
J{q1.92)= (1-Pqi[p(q1tg2)-c] + (1-P)qap(g1 +q2)-c],

the centralized objective function does not involve £ at all since it repre-
sents internal supply chain transfers. Thus, if the supply chain is horizon-
tally integrated, that is, if a single decision maker is in charge, then we
have the following single problem as a benchmark.

The centralized problem

max J(q1,92) = max [Ji1(q1,92)1/2(q1,92)]=
q1-92 q91.92

max ¢\[p(gi+q)-cl+ glp(1+g2)-c] (2.19)

S.t.
4120, 220, p(q1+q2) 2c.



72 2 SUPPLY CHAIN GAMES: MODELING IN A STATIC FRAMEWORK

System-wide optimal solution

We first study the centralized problem by employing the first-order opti-
mality conditions

oJ(q,, 0 0 0
(9,,4,) = p(g +q,)—c+q 2D pQ) QH]2 p©Q) 99 _, 0,
0q, 00 0oq 00 0,
oJ(q,, 0 0 0
000 _ i gy —cs g, PO Q+q1 P(Q) 80 _
oq, 0Q  0q, o0 0q,
. . B d _p _p
Since the two problems are symmetric, Q=¢;+¢,, — = — , only
oq, 0q, 0Q°

total order O matters in terms of optimality. Considering the symmetric
solution to the above system of equations as well, g*= g;*=¢,*, we obtain
the following equation

%k
« P29 _ (2.20)
00
Define Q' so that p(Q")=c. Then it is easy to verify that,

2 2
6i 6]2 6]228_p+q16p qzap <0.
oq," oq," 0q,09, 90 ~ 00 00’
This implies that the Hessian of J(q1,¢,) is semi-definite negative and thus
the function J(g,,¢>) is jointly concave in production quantities ¢; and ¢,
for q, +q, €[0,0']. Though this does not ensure the uniqueness of the
optimal solution, by differentiating the left-hand side of equation (2.20) in
q=q* we obtain for the symmetric solution
82J:46p+4 82p
6q> 90 5Q2
that is, the left-hand side of (2.20) is strictly monotone in ¢. Thus, equation
(2.20) has a unique solution as formalized in the following proposition.

p(2q*)—c+2q

2

Proposition 2.3. The pair (q;*%q.*), where q,*=q,*=q* satisfy equation
(2.20) constitutes a unique symmetric system-wide optimal order with
0<q*<Q'/2.

Proof: Since the left-hand side of equation (2.20) is strictly decreasing in
g, if there is a feasible solution to (2.20), it is unique. To see that a solution
of (2.20) always exists, assume g=0, then, since p(0)>c, the left-hand side
of (2.20) is positive. On the other hand, if 2¢=Q", since p(Q')=c, while the
last term of (2.20) is strictly negative as g=0/2>0, we find that the left-
hand side of (2.20) is negative. Thus a feasible solution always exists and
0<g<Q'/2.
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Game analysis

Consider now a decentralized supply chain characterized by non-cooperative
firms and assume that both players simultaneously decide how many pro-
ducts to produce and supply to the retailer. Using the first-order optimality
conditions for the suppliers’ problems we find

oJ(q,, %) +
(41,9,) = g, +q,)—c+a, P(g, QQ):O’
8ql 891

zp(Q1+q2)_C+qz =0.

aq, aq,
Again, since the two problems are symmetric, the competition is symmetric.
That is, the solution to this system of equations is g= ¢;=¢,, which satisfies
the following equation

P29 _,
2g)—c+ 0. 2.21
pR2g)—c+q——= 20 (2.21)
Comparing (2.21) and (2.20), we conclude with the result highlighting the
differences between the centralized and (Nash) game solution.

Proposition 2.4. In horizontal competition of the production game with equal
power players, the retail price will be lower and the quantities produced
by the manufacturers higher than the system-wide optimal price and pro-
duction quantity respectively.

Proof: Comparing (2.21) and (2.20) we observe that if g=¢*, then

p(29) P (2q¥)
2 c+ >p2g*)—c+2q* =0,
p(2q)—c+q— = 0 p(2q%) - 20
while the derivative of the left-hand side of this inequality with respect to ¢
is negative. Thus, g>¢*, which, in regard to the down-sloping price func-
tion p(2q), means that p(2q)<p(2¢*).

Nash solution

Since it is easy to verify that the suppliers’ objective functions are strictly
concave in their production quantities, each supplier has a unique, best-
response function. In addition, since the derivative of the left-hand side of
(2.21) is strictly negative, (2.21) has a unique solution.

Proposition 2.5. The pair (q,",q,"), which satisfies q\"=q."= q" and
p(29")
2q")y—c+q" ———==0 2.22
p(29") 7" "o (2.22)

constitutes a unique Nash equilibrium of the production game with 0<q"<

0.
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Proof: The proof is identical to that for proposition (2.3).
The uniqueness of the Nash solution implies that both parties will tend to
attain the equilibrium when pursuing their own profits.

The effect of partial product substitutability

Let the product that the second supplier produces partially substitute for
the brand of the first supplier. This is expressed by the ratio 0<A<1, so
that p=p(Q)=p(¢q:+1q,). Then, the Nash optimality conditions take the follo-
wing form

aJ(q,,9,) ap(Q)

20 =P(Q)—C+Q1E:0,
aJ(q,,9,) — p(0)-c+q, 5P(Q)/1:0'
oq, 0

Though these conditions are no longer symmetric, subtracting one equation
from the other we find

6]1'121%'1.
Thus, O=q," +1¢," =2 A¢q," and ¢," is determined by
’ . 0p(24g,")
p(2Aq," ) —c+q, Tz/l =0.

In other words, the equilibrium exists, but the production quantities are
now proportional rather than identical.

Stackelberg solution

Next we assume that one of the suppliers is the leader, say supplier-one.
To find the Stackelberg equilibrium, we need to maximize supplier-one’s
objective with ¢, subject to the best supplier-two’s response ¢>= ¢."(¢,).
Let ¢= ¢,"(q,) satisfy the following equation

P4 +49,) _,

p(‘]l+qz)_c+qz—: . (223)
0q,

The Stackelberg equilibrium is determined by maximizing the following
function

max Ji(q1)= max qilp(qi+ q:"(q1))-cl.

Differentiating this function we find

8J1 (ql) :p(ql +q2R(q1))—C+q1 519(6]1 +q, (%)) 1+ aQ2 (%)) =0, (2_24)

oq, o0 0q,
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where w is determined by differentiating (2.23) with ¢, set equal to
q,
q:'(q1)
oq," oq," r 2 aq," (g,
PO, 8 ) 0 @ PO 1y QD G, g,
0 aq, dq, 00 oQ 0q,
Thus
00,"(q) _ (@@ v, @)/, PO PO
a ( 30 +4q, (9,) o0 J/(Z 20 +q, (4,) o0 j-(2.25)
Equation (2.25) implies, %, (4) <0,

1
the greater the production of the first supplier, q,, the lower the production
of the second supplier, ¢,"(q)).

Based on (2.23), (2.24) and (2.25) we conclude that the pair (¢:°,¢>")
constitutes the Stackelberg equilibrium of the production game if there
exists a joint solution in ¢, and ¢, of the following equations:

0 + O
p(g +q,)—c+q PO FD) g Oy

o0 aq,
0
p(q1+612)—0+612p(qé—5%)=0,
where
99, _ [ p(Q) ap*(Q) op(0) P Q)
g, ( o0 e ]/[2 o0 ]’Q e

We illustrate this with the following example:

Example 2.6

Let the price be linear in production quantity, p=a-bQ, O=q,*+q,, p(0)=a>c.

2 2
Note that the price requirements, P = 2 =-b<0 and op_0p =

oq, g, og,’ g’
2
op =0 are met for the selected function. Using Proposition 2.5 we
99,04,
solve (2.22),

p(2q")—c+q"%5)=a—2bq" —c+q"(-b)=0
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and find that ¢,"= ¢;" = %, hence, p”=§a +§c . The payoffs for the

equilibrium are thus identical for both players, Ji(¢q:",q.")=/2(¢1".q2")=
(a—c)’
9%

Based on (2.23) we can identify the best response function of the second
supplier

op(q, +
p(q1+q2)—c+qz%"z)=a—b(ql+q2)—c+q2(—b):o,
2
and thus
o _a-bg,—c
9, =9, (q,)= YR

This response is then employed in (2.24) and (2.25) to find the Stackelberg
equilibrium. Equivalently, by substituting this response into the first sup-
plier objective function
max giplgr+ g:'(q)-cl=max ¢,[4 005,
qa 9 2 2 2
and using the first-order optimality conditions, we obtain an explicit reso-
lution of equation (2.24) for our example,

aJ, _a bg ¢
o, 2 2 2

. a-c a-c a+3c (a—c)
Accordingly, ¢,'= , gy = , p*= , Ji(g’,g," )= ———and
gy, gr=—=s 4 = — = P g )=
2
D(q’ g2 )= (al 62) . Note that instead of equal payoff under a simultane-

ous Nash strategy, the first supplier, who is the leader, gains a profit which
is twice as much as the follower’s profit under a sequential Stackelberg
strategy.

Finally, the centralized solution (2.20) is

*
p(2q*)-c+2q*%5)=a—2bq*—c+2q*(—b)=o.

* a—=c¢

Or, q1*= q> =4—b, hence, p*=%a+%c and the system-wide optimal

2
supply chain profit is J(g; ,g» )= (a 4bC) .
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Comparing these results, we find for the first supplier, that his production

quantity under the centralized approach is smaller than both that of the

Nash strategy and that obtained when the supplier is the Stackelberg leader
%S:a_c >q,"= ﬂ>f11*:a_c .

2b 3b 4b

For the second supplier, the production level is the same under the

Stackelberg follower strategy and the system-wide policy, but higher for

the Nash strategy.

a-—c
n __
q> =

N *_ a—=c¢
T
Both results agree with Proposition 2.4 which compares Nash and system-

wide strategies. Correspondingly, given p(0)=a>c, the retail prices decrease
_atdc "=la+£c< *=la+—c
4 P 3 3 P 2 2

and the overall supply chain payoff deteriorates under horizontal competi-
tion,

s s s s 3(a— : n n n n
Ji(q1°,q2" )t (1,92 ):% <Ji(q1",q2") g1 ,q2")=
2(a—c)’ + o« (a—o)
——<J(q: 9> & .
o (91 .92) m

Example 2.7

This example illustrates how the equilibrium can be analyzed numerically.
Let the price be exponential in the production quantity, p=ae’?, O=q\+¢>,

p(0)=a>c. Note that, 6_p = 8_p =—abe™ <0, while for the second order
8% oq 2
0’ p 0’ 12 0’ p
=

aq, a%z B 04,04,
is not necessarily unique. The Nash equilibrium is determined by (2.22)

condition =ab’e™ >0 implying that the equilibrium

ae —c—q"abe™" =0.
Setting the left-hand side of this equation as L in Maple
>L:=a*exp (-b*2*g) -c-g*a*b*exp (-b*2*q) ;

-2b 2b
Li=aé' q)—c—qabe( ?

and substituting specific parameters of the problem a=15,b=0.1, c=1,
we have
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>L1l:=subs (a=15, b=0.1, c=1, L);

LI=15¢""" _1_154e
The solution to this transcendental equation is found with Maple’s SOLVE
>solve (L1=0, q);

(-0.2 q)

7.191168444

To verify that the Nash equilibrium is unique, we construct a plot of the
left-hand side Y=L1
>plot(Ll, g=0..10);

14

124\

104
g1

r

8-
41 \\‘x
H“\\xh
2 —
0 ; R

Figure 2.4. The Nash equilibrium

From this plot (see Figure 2.4) we observe that for feasible orders ¢,"= ¢,
">0, there is only one intersection of Y=L1 with line, Y=0, which is the
Nash equilibrium, ¢,"=¢,"=7.191168444.

Similarly, employing equation (2.20) to find the system-wide optimal
solution with Maple:
>LL:=a*exp (-b*2*q) -c-2*g*a*b*exp (-b*2*q) ;

LL :=ae(_2bq)—c—2qabe(_2bq)
>LL1:=subs (a=15, b=0.1, c=1, LL);
Ll =15 - 1-304e "7
>solve (LL1=0, q);
4.224140740

Comparing the system wide optimal production quantity with the Nash
quantity we find ¢*=4.224< ¢,"=¢,"=7.191.
Coordination

According to Proposition 2.4, although retailers and consumers may bene-
fit from non-cooperating suppliers leading to a fall in retail prices and an
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increase in production as well as consumption of products, the horizontal
competition has a negative effect on the supply chain’s profits. Thus, just
as with the double marginalization effect, the deterioration in the supply
chain performance arises because each manufacturer, when deciding on
the quantity to produce, ignores the quantity which the other manufacturer
is producing. This can be termed a “double quantification”. Indeed, in ver-
tical competition the supplier sells the retailer products which are then
resold to the customers. Two margins are being imposed then on the same
product quantity. On the other hand, in horizontal competition, each sup-
plier produces a number of products, but sells them at the same price. The
price is due to the two quantities being produced. Ignoring one of the
quantities, such as ignoring one of the margins, yields results that are dif-
ferent from the system-wide optimal solution.

The essential means to coordinate horizontal competition is thus to coop-
erate. By simply agreeing to simultaneously set the production quantities
equal to the system-wide optimal quantity, rather than to the non-cooperative
equilibrium quantities, the suppliers, will be perfectly coordinating the supply
chain and increasing their profits equally without any internal supply chain
transfers.

The multi-echelon effect

Recalling the effect of vertical competition on the supply chain discussed
in the previous section, it is apparent that the more upstream suppliers that
are involved, the more margins are added to the supply chain. This results
in a decrease in the quantity produced and an increase in prices. This is to
say, double marginalization may coordinate the supply chain if its effect is
not stronger than that of the horizontal competition. Specifically, let an
upstream distributor who has a marginal cost ¢, per product play a supply
part or sell products to both suppliers at price w, . (Of course, if the suppli-
ers are not symmetric, then the wholesale price that they can get from the
distributor may be different). The corresponding problems of the three-
echelon supply chain with two horizontally competing suppliers are as fol-
lows (as aforementioned in this section, we consider the case when the
retailer does not compete and therefore his problem is not accounted for):

The problem of supplier 1

max Ji(q1,92)= max g [P(q1F¢2)-c-wal

S.t.
120, p(g1+q2) 2 ctwg.
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The problem of supplier 2

man J:(q1,92)7 rr}lax q2[p(q1+q2)-c-wa]
s.t.
4220, p(q11+q2) = ctwy

The distributor’s problem
max J(wgw,m)= max (Wg-ca)(q1+ q1)
s.t.

Wy > C4.

The centralized problem

I}lng(ql,qz) = max q1[p(q1+g2)-c-calt qa[p(q1+q2)-c-cd]
s.t.
¢120,¢,20, p(q1+q2) = ctcy.

Assuming that the suppliers are at a Nash equilibrium, the equation for
an optimal order quantity g=¢,=¢, for the symmetric suppliers is similar to
(2.21). The only difference could be that w, is subtracted

ap(2q) _
o0

p(2q)—c—w, +q

A system-wide optimal solution, on the other hand, is similar to (2.20)

but corrected by c,,
# « P (2q%) _
pRg*)—c—c, +2¢q 20 0.

Comparing these two equations, we find that both suppliers account for
their margins, p(2¢)-c-wy, and ignore the distributor’s margin w,-¢,;, which,
if added, as in the centralized solution, results in a total of p(2¢)-c-c,. Since
wyz> ¢; and the derivatives of the left hand sides of these equations are
negative, the Nash production quantity g decreases compared to the sys-
tem-wide optimal solution. On the other hand, when the quantity which the
other party produces is ignored (as discussed in this section), the (Nash)
production quantity g decreases compared to the system-wide optimal
solution. Thus, if for g=¢* the following holds
p(2q) (24 « 9P (2g¥) ’

*)—c—c, +2q
00

p2g)—c—w, +q———

or, equivalently,
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_g* op(2g*)
o0

Then, the effect of horizontal competition between the two suppliers is
stronger than that of the vertical competition between the suppliers and
additional upstream parties coordinate the supply chain. More precisely,
the quantity produced and sold by the three-echelon supply chain will be
lower than that of the corresponding two-echelon chain which does not
involve an additional upstream distributor.

Finally, it is worth noting that horizontal competition in multi-echelon
supply chains opens up a whole spectrum of collaboration activities. For
example, horizontally competing producers may coordinate the quantities
they order from an upstream supplier to bargain lower wholesale prices.
Interested readers are referred to Davidson (1988), Horn and Wolinsky
(1988) and Viehoff (1987) who have addressed the benefits of various bar-
gaining schemes.

>Wd —Cy>

2.3 STOCKING COMPETITION WITH RANDOM DEMAND

In contrast to the previous section, we now assume that the retailer demand
is random and proceed to adapt two classic newsvendor models into two
stocking/pricing games. In one game the supplier sets the wholesale price
to sell some of his stock while the retailer decides on the quantity to pur-
chase in order to replenish his stock. The retailer incurs no fixed order
cost. We refer to this game as the stocking game.

The other game is related to a manufacturer who pays a setup cost for
each production order. To avoid this irreversible cost, the manufacturer has
the alternative of outsourcing current in-house production to a supplier.
Similar to the stocking game, the supplier decides on the wholesale price
and does not charge a fixed order cost. Unlike the stocking game, the
manufacturer determines first whether to outsource the production at this
wholesale price or to produce in-house and then determining the proper
quantity to order. We refer to this game as the outsourcing game.

2.3.1 THE STOCKING GAME

The classical, single-period, newsboy or newsvendor problem formulation
assumes random exogenous demand, d, in contrast to previously discussed
pricing and production problems with deterministic but endogenous demands.
The selling season is short and there is no time for additional orders so if
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the retailer orders less than the demand at the end of period, then shortage
h” cost per unit of unsatisfied demand is incurred. The shortage cost nor-
mally includes lost sales and a loss of customer goodwill. On the other
hand, if the retailer orders more than he is able to sell, unit inventory cost
h* (mitigated by salvage cost) is incurred for units left over at the end of
period. The fixed-order cost is assumed to be negligible. The retailer’s goal
is to find order quantity, ¢, to maximize expected overall profits. The des-
cribed newsvendor problem assumes that the product purchasing cost is
fixed and given. However, if we take into account a supplier who inde-
pendently maximizes his profit and thus impacts the retailer’s optimal solu-
tion by choosing a wholesale price, w, the newsvendor problem is reduced
to a game.

Let retailer’s margin, m, be fixed, D) and F(a)=j f(D)dD be the
0

demand probability density and cumulative distribution functions respec-
tively. Then, the retailer’s problem is formulated as follows.

The retailer’s problem

max J(g,w)= max {E[ym - h'x" - h'x]-wq}, (2.26)
q q
s.t.
x=q-d, (2.27)
q=0, (2.28)

where x '=max {0, x} and x" =max {0, -x} are inventory surplus and shortage
at the end of selling season respectively, and y=min{g,d} is the number of
products sold.

Applying conditional expectation to (2.26), the objective function trans-
forms into the following form

max J,(g,w)=max {
q q

j‘mDﬂD)dD+quﬂD)alD—j’h+ (g—D)f (D)dD—Th’ (D-q)f(D)dDwq} .(2.29)
The first term in the objective function E[ym]= j‘ij(D)dD+]2mqf(D)dD

0 q
represents income from selling y product units; the second and the third terms,
q ®©

E[h'x"]= j h*(q-D)f(D)dD, E[hx]= j h™(D-q)f(D)dD  represent



23 STOCKING COMPETITION WITH RANDOM DEMAND 83

losses due the inventory surplus and shortage respectively; and the last
term, wq, is the amount paid to the supplier.

Note, that the retailer orders products from the supplier if he expects
non-negative profit. In other words, there is a maximum wholesale price,
w", that the supplier can charge. Taking this into account, as well as the
unit production cost, ¢, of the supplier, we formulate the supplier’s prob-
lem.

The supplier’s problem
max Jy(g,w)= (w-c)q (2.30)

s.t.
c<wsw, (2.31)

The corresponding centralized problem is based on the sum of two objec-
tive functions (2.30) and (2.26), which results in a function independent of
the wholesale price, w, representing a transfer within the supply chain.

The centralized problem
max J(q)= max {E[ym - h'x"- h'x]- cq} (2.32)
q q
s.t.
x=q-d, ¢=0.

System-wide optimal solution
We first study the centralized problem. Similar to (2.29), by determining
the expectation of (2.32), we obtain

max J(g)=max {
q q

j me(D)dD+fmqf(D)dD— j h'(g-D) f(D)dD—jh- (D—q)f(D)dD—cq}.

By employing the first-order optimality condition to this function, we
have

oJ(q) _
oq

which, after simple manlpulatlons, results in
m(1—F(q))—h"F(q)+h (1-F(q))-c=0

Thus we find that the traditional newsvendor expression for the optimal
order quantity g*, which is feasible if m+h™>c,

maqf(q) —mqf(q) + j mf(D)dD — j ht f(D)dD+jh f£(D)dD~c =0,
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Flg*)= L,_C (2.33)
m+h +h"
We can also verify the sufficient condition, i.e., that the objective func-
tion (2.30) is concave,

a;‘](f) = —(m+h* +h)f(q) <O, (2.34)
q

Let AD)>0 for d™ <D<d™ . Then, since ordering less than the
minimum demand, d™" as well as more than the maximum demand, d™,
does not make any sense, the centralized objective function is strictly con-
cave and thus we find a unique solution.

The effect of initial inventory

Note that if the retailer has an initial inventory, x°, that is, x= x°+q-d, then
by using the same arguments we observe that the only change in (2.33) is
in the argument of F(.):

Fodig= R —¢ (2.35)
m+h” +h"
Let s satisfy the equation,
Fsy= Tt —e (2.36)
m+h” +h"

then s is the base stock, and the optimal order quantity is interpreted as the
well-known order-up-to policy,

0 0
*_{s—x ,f s > x

0, otherwise.

Service level

For the risk of shortage, we have the probability P[x<0]=1- o, where a is
referred to as the service level. From (2.32) it follows that the service level
in the centralized supply chain is P[x = 0]= F(g ™), or, equivalently,

a=m¥h —C (2.37)
m+h +h

When x">s, the service level is higher than the specified level a.

Game analysis

We consider now a decentralized supply chain characterized by non-
cooperative firms and assume first that both players make their decisions
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simultaneously. The supplier chooses the wholesale price w and the retailer
selects the order quantity, ¢g. The supplier then produces ¢ units at unit cost
c and delivers them to the retailer.

Using the first-order optimality conditions for the retailer’s problem, we
have

oJ(q,w)

~ = maflg)=mafig) + [mf(D)D~ [ f(D)YaD+ [ f(D)AD-w=0
q q 0 q

Thus, we find that the maximum wholesale price, wY=m+h", so that if
w<w" , the best retailer’s response is determined by
m+h —w
g ——. (2.38)
m+h" +h
From (2.38) we observe, that if w=w" the retailer does not order at all,
while if w< w", then comparing (2.33) and (2.38) and taking into account

OF(q)

w2 c¢ and > 0, we conclude with results similar to those found for

q
the pricing game with endogenous demand.

Proposition 2.6. In vertical competition of the stocking game, if the sup-
plier makes a profit, i.e., w>c, the retailer’s order quantity and the customer
service level are lower than the system-wide optimal order quantity and
service level.

Note that if the retailer would account for the supplier’s margin, w-c, by
including it into the numerator of (2.38), equation (2.38) would transform
into (3.33). We thus find the double marginalization effect discussed in the
pricing game. In addition, this effect decreases the customer service level
unless the supplier does not want to profit from the sale and sets w=c. On
the other hand, since the supplier’s objective function (2.30) is linear in w,
we conclude that the supplier would set the wholesale price as high as pos-
sible, i.e., w=w" under the Nash strategy. In such a case, the retailer makes
no profit and orders nothing. As a result of the Nash strategy, there is nei-
ther business nor customer service between the supplier and the retailer.

Similar to the pricing game of the previous section, the statement of
Proposition 2.6 that vertical competition causes the supply chain perform-
ance to deteriorate does not depend on whether the players make a simul-
taneous decision or if the supplier first sets wholesale price, as is often the
case in practice. In what follows, we show that under the supplier’s leader-
ship, the Stackelberg equilibrium’s wholesale price does not equal the
maximum purchasing price w".
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Equilibrium

Assume that the supplier is a leader in the Stackelberg game. The sup-
plier’s objective function with g subject to the optimal retailer’s response
g=q"(w) is determined by (2.38),

Ji(g:wy= (w-¢) ¢"(w).
Differentiating the supplier’s objective function, we have

AW _ vy w0y . (2.39)
ow ow
0g" (w) . , . - .
The value of e is determined by differentiating (2.38) with ¢ set
w
equal to ¢"(w),
8q (w) 1
A o) S m+h +hT

As aresult:
The greater the wholesale price, the lower the quantity that the retailer or-
ders and by substituting
oq " (w) _ 1
ow ek +h)f (")
into (2.38), we have

8Js(q,w)_ 2 B w—c _
ow LT Gty A0
where
R, . mM+h —w
Flg (w))= —m+h‘ e (2.41)

We conclude with the following proposition.

Proposition 2.7. Let f(D)>0 for D=0, otherwise f(D)=0 . The pair (W',q’),
where w' and ¢*= ¢*(W') satisfy
R s w' —c R s MR =W
w')— =0,FlgW)y=——""",

) T T @ ) AL ey
constitutes a Stackelberg equilibrium of the stocking game with ¢c<w'<
m+h=w".
Proof: First we consider equation (2.40) and verify that

M M
aJS(q,C):qR(C)>O, 6‘]A(W ):_ M_} C <O
ow ow (m+h +h")f(0)
Since f(D)>0 for D >0 we observe that
oJ (q,w w—c
_s(q ) :qR(W)_

ow (m+h"+h")f(g"(w))
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is a continuous function for c <w<w". We conclude that there is at least

oJ (g, w")

one root, =0, c<w’<w", as stated in Proposition 2.7.

To have a unique Stackelberg wholesale price, however we require that

(q, w)

the supplier's objective function be strictly concave, <0, that is,

&' () ! we Fg) ') g (5 10,
ow  (m+h +h")f(q" (W)) (m+h”+h)[f(@" W] &"  ow
which apparently does not hold for every distribution.

Example 2.8

Let the demand be characterized by the uniform distribution,

1(D) = , for 0<D< 4; and F(a)—%

0, otherwise

0<a<A.

Then the supplier objective function is strictly concave, as (2.42) holds.
Using (2.40) - (2.41) we find

w'— q (w) m+h —w'
wy——2 7 420 and F(g"(w .
AR e = ==
Thus,
m+h —w w' —c _
m+h +h' (m+h +h") ’
which results in
s, m+h +c  p m+h —c A
= ¢ =q¢g"W)=——————, 2.43
2 ¢ =9 W) m+h +h" 2 (243)
while the system-wide optimal order quantity is twice as large,
o Mmth —c 5 44
e (244)

Recalling our assumption that w"=m+h>c, we observe that c<w'<w"
and 0<g’<4/2. Thus, this problem has always a unique Stackelberg equili-
brium.

Example 2.9

Let the demand be characterized by an exponential distribution, i.e.,
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Ae™*”, for D >0;

and F(a)=1-e™,a>0.
0, otherwise

/(D)= {
Then according to (2.40), we have the equation for the Stackelberg
wholesale price

" (w) - L ——
(m+h™+h")Ae

where according to (2.41)

l_e_lqR(W): m+h__W
m+h +h'
and thus
1. m+h +h"
Rwy —In——mM8M83 ——
A

Substituting this into the equation of the Stackelberg wholesale price, we
obtain the following expression

1. m+h +h" w—c
—In - =0
A w+h' (w+h"HA

We solve this equation with Maple by first setting the left hand side as L
>L:=1n( (m+hplus+hminus) / (w+hplus) - (w-c)/ (w+hplus) ;

P ks hplus + hminus w-—c
' w + hplus w + hplus
Then substituting specific values for m=15, hplus=1, hminus=10,
c=2
>L1l:=subs (m=15, hplus=1, hminus=10, c=2, L);

26 j w—2

Ll = ln( -
w+1

we verify with a plot Y= L1 that it crosses line Y=0 only once and thus the
Stackelberg wholesale price is unique.
>plot (L1, w=2..15);
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Figure 2.5. The Stackelberg wholesale price

Next we solve equation L1=0 in a general form
>ws:=solve (L1=0, w);

3
LambertW (% ej -3

ws = — 3
LambertW (% e]

and evaluate the result numerically
>evalf (ws);

11.22512050

Finally we calculate the equilibrium order quantity by using the best
m+h +h"

w+h'
>qg:=1/lambda*1n ( (m+thplus+hminus)/ (w+hplus)) ;

ln( m + hplus + hminus )

- w + hplus
q = A

. : 1
retailer’s response function ¢*(w)= zln

and substituting the specific parameters of the problem
>gR:=subs (m=15, hplus=1, hminus=10, lambda=0.1,
w=evalf (ws), c=2, q);

gR =10.1In(2.126768403 ) .

Evaluating numerically the last result leads to
>gs=evalf (gqR);
qs =7.546036459 |
Thus w*=11.225 and ¢'= 7.546. The system-wide optimal order quantity
is determined by (2.33)
« L m+h +h"

=—In
T e
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which with Maple results in
>gopt:=1/lambda*1n ( (mthplus+hminus) / (c+hplus)) ;
ln[ m + hplus + hminus )

qopt = c +}thlus

>gswopt:=subs (m=15, hplus=1, hminus=10, lamb-
da=0.1, c=2, gopt):

26
gswopt = 10. ln(Sj

>evalf (gswopt) ;

21.59484249
Comparing the system-wide optimal solution with the equilibrium solution
we find that the system-wide optimal order is almost three-times as large.

¢'=7.546<q*=21.594.

Coordination

According to Proposition 2.6, vertical competition under exogenous ran-
dom demand has a negative effect on the supply chain: the retailer orders
less and the service level decreases. This is similar to the pricing competi-
tion considered in the previous section and again the negative effect is due
to the double marginalization. As opposed to the pricing game, there is no
Nash equilibrium in the stocking game while the supplier’s leadership has a
positive effect on the chain. More precisely, there is an equilibrium if the
supplier assumes leadership.

Due to the same double marginalization effect, the coordination in this
game is similar to that discussed for the pricing game: discounting and
profit sharing. We present here a straightforward approach for developing
a coordinating quantity discounting scheme.

First we generalize the supplier’s objective function J;(g,w)=(w-c)q to
make the wholesale price dependent on the order quantity, g,

Ji(g.w)=w(g)-cq.
Then the retailer’s best-response (2.38) takes the following form
m+h~ —0w/dq
Flg)= —————.
@ m+h +h"
We do not specify any specific requirement for wholesale price w(q) but
impose conditions on the rate of change of w(q)

2
ow(q) <, 0 W(;I) >0, if g<g* and oq) >c, if g>q*.
oq oq oq

(2.45)
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These conditions imply that the function w(g) may have various dis-
counting schemes for 0<g<qg*. Next we show that if the conditions are
met, the supplier can select any value for w(g), w(g*)<w", and still have
the retailer ordering the system-wide optimal quantity.

Proposition 2.8. Let w(q*)<w", and the discounting scheme be such that

W) _. g WD)
oq oq°

if w(q) is a continuous function of q, <0 for g<q*

0
and % > c for qg>q* then the supplier orders the system-wide optimal
q

quantity g*.

2
Proof: Since w(q) is continuous, w > (0 for g<g* and 6@(‘]) >c>0
q q
for g>q*, the wholesale price w(g) is a convex function, a solution which
satisfies (2.45). Note that derivative of w(q) at g=¢* is not required to
ow(g*)
oq

exist. We thus represent it by the sub-gradient, =e,ale<lc

_ %
where a= lim M) =g
9-q*.q<q* q—q*
(2.45). Assume there exists an optimal solution ¢', ¢'<¢*, such that
mq) <a<c and (2.45) is met. Recalling that F(q*)—w, we
oq m+h +h”

find that if (2.45) is met and v(;(Q) <c, then ¢"™>¢*, which contradicts our

<c. There can be three possible solutions to

initial assumption. Similarly, we observe that another solution, say ¢",

q">q* and thus @ 2 ¢ contradicts (2.45). The only solution left is
q
*
q"=q*, % = ¢ . Substituting this into (2.45) we find
q
m+h —e
F " :—,
G m+h +h"

which is satisfied for e=c as a<e<cand ¢"=¢*
A trivial example of linear discounting that satisfies Proposition 2.8 is
A—-aq,0<q<q*%
w(q) = . . .
A—aq*+c(q — g*), otherwise,

where A-ag*<w".
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2.3.2 THE OUTSOURCING GAME

In this section, the classical, single-period newsvendor model with a setup
cost is turned into an outsourcing game. We consider a single manufac-
turer with two potential situations. He either incurs a fixed cost per each
production order or the product produced is characterized by frequently
changing characteristics and/or technology. These changes may be due to
new product features and/or technological developments so that each
change induces a non-negligible fixed cost. The basic assumptions remain
unchanged: the demand is random with known density, D) and cumula-
tive F(a) distribution function. In addition we assume a short selling season.
If the manufacturer’s production or supply order is less than the demand
realized at the end of period, then a shortage cost 4 per unit of unsatisfied
demand is incurred and there is no time for additional orders. Otherwise, if
there is a surplus, the unit inventory cost /" is incurred at the end of period.

Accordingly, the manufacturer has two options. One is to order the pro-
duction in-house, which incurs an irreversible fixed cost C as well as vari-
able cost ¢, per unit product. This is in contrast to the newsvendor model
considered in the previous section, where the retailer's fixed-order cost was
assumed to be negligible. The other option involves outsourcing the pro-
duction to a single supplier. Then the manufacturer incurs only the variable
purchasing cost w per product unit and the supplier incurs a unit produc-
tion cost ¢. We assume that ¢>c,, no initial inventory, and a profitable
in-house production (at least when there is no initial inventory at the
manufacturer’s plant). Otherwise outsourcing is always advantageous.
Both the manufacturer and the supplier are profit maximizers.

The manufacturer’s problem
max J,,(q,w)=
q
max{ max {E[ym -h'x"- h'x]-wq}, max {E[ym -h'x"- h'xJ-c,q-C}}, (2.46)
q q

S.t.
x=q-d, (2.47)

g0, (2.48)

where x =max {0, x} and x" =max {0, -x} are respectively inventory surplus

and shortage at the end of a period, and y=min{q,d} is the number of
products sold.

The manufacturer’s objective function (2.46) consists of two parts. The

first part max {E[ym - h'x" - h'x]-wq} represents the profit which the
q
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manufacturer can gain if he decides to outsource the production. The other
part is the profit from in-house production (assuming that the production is
profitable). Since the first part is identical to that studied in the previous
section, application of conditional expectation to the first part of (2.46)
results into (2.29). Thus, the optimal manufacturer's outsourcing order ¢'
for (2.29) is given by (2.38),
m+h —w
A m+h +h"
If we assume that C=0, then the second part of (2.46) differs from the first
part by c,, only, replaced with w. Consequently, if C=0, then the optimal
response for the second part of (2.46), ¢", is

m+h —c
Fl(aM= m
") m+h +h'
Introduce a cost function, n(q), such that
w(q)=E[ym - h'x" - h'x]. (2.49)
Then,
n(q")-wg'=

[mDAD)AD+ [mg'f (D)AD~ [ 1" (¢'~ D) f(D)dD~ [ (D~q')f (D)ADwq’

is the maximum profit if outsourcing is selected (the first part of (2.46)).
The maximum profit when in-house production is selected (the second part
of (2.46)) is

m(g")-cnq"-C=

[mDADYAD+ [ mg'f(D)AD- [ (¢" D) f(D)dD- [ - (D-g")f(D)dD-c.iq"-C.

Thus, the optimal manufacturer's choice for a given wholesale price is
summarized by

:{q',if 7(q') - wq'27(q")~c,q"~C 2.50)

q'', otherwise,

where ¢' is the outsourcing order, while ¢" is the in-house production
(according to our assumption that in-house production is at least worth-
while, n(¢")-c,q"-C>0). Furthermore, condition (2.50) assumes that out-
sourcing is a dominating strategy when profits from in-house production
and outsourcing are identical.

Let outsourcing at supplier’s marginal cost be advantageous compared
to in-house production profit,
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n " il !/ m + h s
u(q")-cng"-C<m(q')-cq’, F(qg)=——.
m+h- +h

This, along with (2.50) and the fact that outsourcing profit decreases
when the wholesale price increases, implies that the maximum purchase

price w’ > ¢ always exists such that
" " ' o m + h7 -w
Mg")-cng"-C=m(g) - Wq', F(g)= — = —— =
+h +h
Using (2.49), w’ is the smallest root of the expression below

ijJ(D)dm j mg'f(D)ID- j (¢ ~D)f (DD~ j i (D~4/)f (DMD-c.g"-C

j mDf(D)dD + j mq'f (D)dD — j h*(g'—D)f(D)dD— j h™(D—q")f(D)dD -

w’q’, (2.51)
WhereF( "= m-f-h; andF( )— m
T v v mih +h

On the other hand, if outsourcing is not advantageous, then n(¢")-c,.q"-

C>n(q')-cq’, F(q'= % and ¢,<w’<c. Thus condition (2.50) can

be reformulated as follows

g, ifc<w<u’,
= e (2.52)
q",ifw <c,
m+h — m+h —w
here F(g')= —— = _
where Bt )= e O T

The interpretation of (2.52) is straightforward. If purchasing at the marginal
cost of the supplier is not beneficial compared to the in-house production,
then there is no wholesale price, w>c, to encourage outsourcing.

The supplier's problem is similar to that of the previous section.

The supplier’s problem

max Jy(q,w)= (w-c)q (2.53)

s.t.
c<w<w'. (2.54)

Note that if n(g")-c.q"-C<n(q")-cq’, then the supplier’s problem has a
feasible solution. Otherwise, c¢,<w’<c, and the supplier’s problem has no
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feasible solution since, in order to compete with in-house production, the
supplier has to set the wholesale price below his marginal cost, w<c.

Correspondingly, the centralized problem is split into two cases. If
1(q")-cnq"-C<7(q')-cq’, or equivalently, w’> ¢, the centralized problem is
reduced to that considered in the previous section. Indeed, if the supply
chain is integrated, then wholesale-related costs represent a transfer within
the chain which does not affect the system-wide optimal solution. Then the
supplier will deliver products at his marginal cost ¢ and no fixed irreversi-
ble cost will be paid since in-house production is not implemented.

The centralized problem
max J(g)=max {E[ym - h'x" - h'x-cq} (2.55)
q q

s.t.
x=q-d, ¢=0.

If w’<c, then the centralized objective function is identical to the second
part of (2.46), which is the classical newsvendor problem with a setup cost

max {E[ym -h'x"- h'x]-c,,q-C . (2.56)
q

In other words, the manufacturer’s problem and the centralized problem
become identical in such a case.

System-wide optimal solution

The centralized problem (2.55) was studied in the previous section. If out-
sourcing is selected, i.e., w”>c, the system-wide optimal order quantity g*'
is unique and defined by (2.33).

m+h —c

Flg*)y= — .
S m+h +h'

Note that if the supply chain is centralized, then it simply has two
options to produce the product (at the manufacturer and at the supplier).
Therefore, it is the production at the supplier option (if chosen) rather than
outsourcing.

Similarly, if production at the manufacturer is selected, w’<c, the optimal
solution is the newsvendor solution

Flg*)= m+h —c,

. 2.57
m+h +h" ( )
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The effect of initial inventory

Since the supplier does not impose any fixed-order cost, the effect of initial
inventories on outsourcing is identical to that for the centralized system as
discussed in the previous section,
m+h —c

m+h +h"

To study the effect of initial inventories on production at the manufac-
turer’s plant, let X’ <S, (otherwise it is not optimal to produce at all) and x=
x"+¢-d. Then the profit from not ordering anything is

Tc(xo)=

F(x0+q*')=

]me(D)dD + meO F(D)dD~ th* (x* — D) f(D)dD- ]Eh’ (D-x")f(D)dD.

On the other hand, if the manufacturer produces ¢>0 products, the profit

is
(g +x°)-Cug-C.
The optimal solution for this objective function is determined by (2.57)
m+h  —c,
Flg* )= — "
m+h- +h"
Denote S= ¢*"+x°, then the optimal in-house profit for a given x"is
7(S)-c(S- x°)-C.
0

Note that if x =0, then assuming that in-house production is profitable
under conditions of no initial inventory, we have, n(S)-c,(S- x°)-C>0,
while m(x")<0 since we do not sell anything when x’=0. That is,

(S)-cu(S- x°) -C> m(x"),
or equivalently,
1(S)-cpS -C> (x")-cx’,

which implies that it is optimal to produce in-house when x’=0. When initial
inventories increase x”>0, then the left-hand part of the inequality remains
unchanged while the right-hand part increases towards its maximum which
is attained at x"=S. Thus, when x"=S, C>0, we have

(S)-CpS - C< (Y-,
which implies that it is optimal not to produce when x’=S. The right-hand
side of the inequality represents the traditional newsvendor objective func-

tion, 7(x")-c,x", which monotonically increases when x” increases towards
S. We conclude that there exists x’=s<S, such that,

(S)-cuS - C= 1(s)-cps.
Thus, if x’<s, then (S)-c,,S -C> 1(x")-¢,x" and it is profitable to produce
so that S= ¢*"+x°. On the other hand, if x">s, then n(S)-c,S - C< T(x°)-¢,x°
and it is not profitable to produce. Consequently, in contrast to the optimal
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order-up-to policy when no fixed order cost is incurred, we obtain the
so-called security stock (s, S) policy which is widely used in industry as
well,

o S—x,ifx" <
q = .
0, otherwise,

where s is the smallest value that satisfies 7w(S)-c,,.S -C= 1(s)-c,s.

Game analysis

To simplify the presentation, we assume x’=0 and consider now a decen-
tralized supply chain characterized by non-cooperating firms. Let the sup-
plier first set the wholesale price. If w’<c, then regardless of the wholesale
price, an in-house production for q” is chosen. Otherwise, the manufac-
turer decides to outsource and issues an order, ¢', which the supplier deliv-
ers.

Since in-house (2.57) and the centralized in-house solutions are identi-
cal, we further focus on outsourcing, i.e., w’>c. Let us first assume that
w’=c, then the supplier has zero profit by setting w=c, and simply sustains
himself since the manufacturer’s dominating policy is to outsource (2.50)
when the profit from in-house production is equal to the outsourcing profit.

Let w”>c. Using the results from the previous section, the optimal order

is determined by (2.38)
m+h —w
Fq)y ———.
@) m+h +h"

This, similar to Proposition 2.6, implies the double marginalization effect.

Proposition 2.9. In the outsourcing game, if w’>c and the supplier makes a
profit, i.e., w>c, the manufacturer’s order quantity and the customer service
level are lower than the system-wide centralized order quantity and service
level.

Again, similar to the observation from the previous section, since the
supplier’s objective function is linear in w, the supplier would want to set
the wholesale price as high as possible, i.e., w=w’ under the Nash strategy.
This causes supply chain performance to deteriorate. In contrast to the
inventory game of the previous section, if the manufacturer’s dominating
policy is to outsource when the profit from in-house production is equal to
the profit from outsourcing, then the manufacturer will still outsource at
w=w’.
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Equilibrium

Given w”>c, Proposition 2.7 proves that there is a Stackelberg equilibrium
price c<w'<m+h". However, since ¢">0 and n(q")-w’q'=n(q")-c.(¢")-C>0,
then w’<w"=m+h. This implies that the Stackelberg wholesale price
found with respect to Proposition 2.7 may be greater than w°. In such a
case it is set to w'=w"’.

Based on Proposition 2.7 and the manufacturer’s optimal response
(2.52), we summarize our results.

If w’<c, then produce q'"' products in-house, where
m+h —c
Flgn= """ —Cn
m+h +h"
If w’=c, then outsource; the equilibrium wholesale price is w'=c, and
the outsourcing quantity q' is such that

m+h —c
Fg)= ——.
(@) m+h +h'
If w’>c, then outsource; find w' and q= q"(w) (according to Proposi-
tion 2.7), i.e.,

w'—c W m+h —w
=0, F({" W) ——.
(m+h +h")f(g"(W)) m+h +h
If w'<w’, then the equilibrium wholesale price is w'=w' and the
outsourcing order is q', otherwise w'=w’ and the outsourcing or-
m+h —w’

m+h +h"

q" (W) -

der q'is such that F(q')=

Example 2.10
Let the demand be characterized by the uniform distribution,
1
—, for 0<D< 4
foy=4a " and F(a)=
0, otherwise

a
—,0<a<4.
A
Then using the results of Example 2.8, we have a unique solution for each
case.
o 1. m+ h7 - cm . . .
If w’<c, then produce q"=————" A products in-house, which is
m+h +h

equivalent to the system-wide optimal solution.
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If w’=c, then we outsource, the equilibrium wholesale price is w'=c and

. . s mth —c o .
the outsourcing quantity is qé=++/1 products, which is equivalent
m+h +h
to the system-wide optimal order.
m+h +c D
If — <w’ (and thus w’>c), then we outsource; the equilibrium
Lo , m+h +c . .
wholesale price is w' = — and the outsourcing order is
g == m+h —c A
m+h +h" 2
m+h +c
If ————>w">c¢, then we outsource; the equilibrium

wholesale price is W' =w’and outsourcing order quantity is
m+h —w’ A
T v 2 o

where w° satisfies the expression

qsqu
q D 0 qu 4”h+ och_

m—dD+ | m>—dD—- |—(q"' - D)dD— | — (D—-¢q'"YdD-c,,q"-C
!A;[AQA@);”A(q)q}

+

m%dD+quja’D—j[’}l1

©

! Ooh7 !
(q —D)dD—J.j(D—q)dD-
q' q
m+h —c m+h —w’
o r, "_— m 4 d q'=
wa'tg m+h +h* e m+h +h*

Example 2.11

Let the demand be characterized by an exponential distribution, i.e.,

de ™, for D>0; w
f(D)= and F(a)=1-¢",a=0.
0, otherwise

We first formalize equation (2.51) for w” which, for the exponential dis-
tribution yields,

q" £
[imD- (q"~D)Vee P dD+ [y~ (D—4"YVie dD-c,iq"-C=
0 q"



100 2 SUPPLY CHAIN GAMES: MODELING IN A STATIC FRAMEWORK

q ©
= j [mD—h"(q' - D)}ie >dD+ j [mg' —h™(D—q'Yle >dD-wq’,
0 q

L m+h +h" 1L m+h +h"
where ¢"= —In———— and ¢'= —In————
A h* +c, A h™ +w
We calculate this expression with Maple. Specifically, we set the order
quantities ¢” and ¢’ as g2 and q1 respectively,
>g2:=1/lambda*1n ( (m+thplus+hminus) / (cm+hplus)) ;
m + hplus + hminus
In
cm + hplus
A
>gl:=1/lambda*1n ( (m+thplus+hminus)/ (wO+hplus)) ;

m + hplus + hminus
In
( w0 + hplus )
ql = 5
Next we define the left-hand side and right-hand side of (2.51) as LHS and
RHS
>LHS:=int ( (m*D-hplus* (g2-D) ) *lambda*exp (-lambda*
D) ,D=0..92)+int ( (m*g2-hminus* (D-g2) ) *lambda*exp (-
lambda*D), D=qg2..infinity)-cm*g2-C:
>RHS:=int ( (m*D-hplus* (gl-D) ) *lambda*exp (-lambda*
D),D=0..9l)+int ((m*gl-hminus* (D-gl) ) *lambda*exp (-
lambda*D), D=gl..infinity)-wO*qgl:

Then to see how fixed cost, C, effects the solution, specific values are
substituted for the parameters of the problem except for C.
>TLHSC:=subs (m=15, hplus=1, hminus=10, cm=2, lambda=0.1,
LHS) ;
>RHS1:=subs (m=15, hplus=1, hminus=10, cm=2, lambda=0.1,
RHS) ;

After evaluating the left-hand side and the right-hand side
>TLHSCe:=evalf (LHSC) ;

LHSCe:=65.2154725 -1.C
> RHSe:=evalf (RHS1) ;

q2 =

26.
w0 + 1.
26.
wo + 1.

RHSe :=—15.76923077 ln( ]+ 168.7967107 + 8.796710786 w0

—15.76923077 In w0 + 5.769230769 In o
w0 + 1.

+5.769230769 w0 In| L
w0 + 1.

we solve (2.51) in w’
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>solutionw0:=solve (LHSCe=RHSe, w0);

and plot the solution as a function of the fixed cost
>plot (solutionwO, C=0..200);

204 /
15 e
10+ -
5]
0 40 80 ¢120 160 200

Figure 2.6. The effect of the fixed cost C on the maximum wholesale price w,

The plot (Figure 2.6) implies that the higher the fixed cost, C, the
greater w” and thus the smaller the chance that in-house production is bene-
ficial compared to the outsourcing. For example, if C=120
> LHSes:=subs (C=120, LHSCe);

LHSes :=-54.7845275

then
>solve (LHSes=RHSe, w0);

11.26258264

w’=11.2625 and thus if supplier's cost ¢>11.2625, the in-house production
is advantageous (and is system-wide optimal) at quantity ¢"*=q2opt=21.594
>qg2opt:=evalf (subs (m=15, hplus=1, hminus=10, cm=2,
lambda=0.1, g2));

g2opt :=21.59484249

Otherwise, if ¢<11.2625 , then outsourcing is advantageous and the
Stackelberg equilibrium wholesale price w’ and order quantity ¢’ are calcu-
lated as described in the previous section. Note that in case of w'>w’, the
Stackelberg wholesale price equals w’ and the order quantity is computed
correspondingly.

Coordination

If w’>c, then outsourcing has a negative impact compared to the corres-
ponding centralized supply chain, the manufacturer orders less and the ser-
vice level decreases. This is similar to the vertical inventory game without
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a setup cost considered in the previous section. In contrast to that game,
this effect is reduced when ¢ <w’<w’, where w’ is calculated under an as-
sumption of no constraints, i.e., according to Proposition (2.7). In addition,
there can be a special case when w’=c¢, and thus the supplier is forced to set
the wholesale price equal to its marginal cost, w=c. This eliminates double
marginalization, the manufacturer outsources the system-wide optimal quan-
tity and the supply chain becomes perfectly coordinated regardless of whether
the supplier is leader in a Stackelberg game or the firms make decisions
simultaneously using a Nash strategy. On the other hand, since the case
when the manufacturer prefers in-house production is identical to the cor-
responding centralized problem, no coordination is needed. Consequently,
the case which requires coordination is when w”>c. This case coincides
with that derived for the inventory game with no setup cost. Thus, the co-
ordinating measures discussed in the previous section are readily applied
to an outsourcing-based supply chain.

An alternative way of improving the supply chain performance is to deve-
lop a risk-sharing contract which would make it possible to coordinate the
chain in an efficient manner as discussed in the following section.

2.4 INVENTORY COMPETITION WITH RISK SHARING

In competitive conditions discussed so far, the retailer incurs the overall
risk associated with uncertain demands. The fact that expected profit is the
criterion for decision-making implies that the retailer does not have an
assured profit. The supplier, on the other hand, profits by the quantity he
sells. If the supplier is sensitive to the retailer’s service level, he may agree
to mitigate demand uncertainty by buying back left-over products at the
end of selling season or offer an option for additional urgent deliveries to
cover cases of higher than expected demand. These well-known types of
risk-sharing contracts make it possible to improve the service level as well
as to coordinate the supply chain as discussed in the following sections.
(See also Ritchken and Tapiero 1986).

2.4.1 THE INVENTORY GAME WITH A BUYBACK OPTION

A modification of the traditional newsvendor problem considered here
arises when the supplier agrees to buy back leftovers at the end of selling

2
season at a price, b(w), @ >0 and M > 0. This means that the
4%

> =
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uncertainty associated with random demand may result in inventory asso-
ciated costs, b(w)x" at the supplier’s site while at the retailer’s site it is an
income h(w)x" rather than a cost. Thus the supplier mitigates the retailer’s
risk associated with demand overestimation or, in other words, the supplier
shares costs associated with demand uncertainty. The other parameters of
the problem remain the same as those of the stocking game.

The retailer’s problem

max J,(q,w)= max {E[ym + b(w)x" - h'x]-wq}, (2.58)

S.t.
x=q-d,
q=0,

where x "=max {0, x}, x =max {0, -x} and y=min{q,d}.

Applying conditional expectation to (2.58) the objective function trans-
forms into

max J(g,w)=max {
j.mD](D)dD+]c.mqj(D)dD-i-j.b(w)(q—D) /1 (D)dD—Th’ (D—-q)f(D)dD-wq}.(2.59)

q 0
The first term in the objective function, E[ym]= j mDf (D)dD + j mqf (D)dD ,
0 q

represents income from selling y product units; the second, E[b(w)x']=

q
Ib(w)(q—D) f(D)dD, represents income from selling leftover goods at
0

the end of the period; the third, E[Ax]= J.h’(D —q)f(D)dD , represents
q

losses due to an inventory shortage; while the last term, wg, is the amount
paid to the supplier for purchasing ¢ units of product. As discussed earlier,
there is a maximum wholesale price, w", that the supplier can charge so
that the retailer will still continue to buy products. Taking this into account
we formulate the supplier’s problem.

The supplier’s problem
max Jy(g,w)= max (w-c)q-E [B(w)x ] (2.60)
S.t.
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c<wsw",

The first term (w-c)q in (2.60) represents the supplier’s income from
selling ¢ products at margin w-c, while the second, E[h(w)x"] is the pay-
ment for the returned leftovers to the supplier. To simplify the problem, we
here assume that leftovers are salvaged at a negligible price rather than
stored at the supplier’s site. The centralized problem is then based on the
sum of two objective functions (2.59) and (2.60) which results in a func-
tion independent of the wholesale price, w.

The centralized problem

max J(q)= max {E[ym - h'x']-cq} (2.61)

s.t.
x=q-d, ¢=0.

Note that since w and b represent transfers within the supply chain, system-
wide profit does not depend on them.
System-wide optimal solution

Applying conditional expectation to (2.61) and the first-order optimality
condition, we find that

ag;q) maf (@) - maf (q) + jmf(D)dD j h™ f(D)dD — =0,
which results in
F(q*)= m (2.62)
m+h

Since this result differs from (2.33) by only /4" set at zero, the objective
function in (2.61) is strictly concave under the same assumptions. Simi-
larly, the service level in the centralized supply chain with a buyback con-
tract is

g=mth —c (2.63)
m+h

This is different from « Im of the traditional newsvendor
m+h +h"

problem only because of our assumption that surplus products are salvaged
at a negligible price rather than stored at the supplier’s site.
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Game analysis

Consider now a decentralized supply chain characterized by non-cooperative
firms and assume that both players make their decisions simultaneously.
The supplier chooses the wholesale price w and thereby buyback b(w)
price while the retailer selects the order quantity, g. The supplier then
delivers the products and buys back leftovers.

Using the first-order optimality conditions for the retailer’s problem, we
find w"=m+h", so that if w<w", then

m+h —w
gy ————
m+h- —b(w)

Since the retailer’s objective function is strictly concave, we conclude
from (2.64), the following result.

(2.64)

Proposition 2.10. In vertical competition, if the supplier makes a profit,
i.e., w>c¢, a buyback contract induces increased retail orders and an im-
proved customer service level compared to that obtained in the corres-
ponding stocking game.

Proof: To prove this proposition, compare the optimal orders with the non-
cooperative buyback option

m+h —w
g —————>
m+h" —b(w)
and without the buyback option
m+h —w
Flg= ——.
@ m+h” +h"

From Proposition 2.10 we conclude that the buyback contract has a
coordinating effect on the supply chain. Moreover, comparing (2.62) and
(2.64), we observe that in contrast to the stocking game, with buyback con-
tracts, i.e., b(c)>0, when setting w=c, the retailer orders even more than the
system-wide optimal quantity since there is less risk of overestimating
demands. In such a case, the supplier has only losses due to buying back
leftover products. Thus, the supplier can select w>c so that the retailer’s
non-cooperative order will be equal to the system-wide optimal order
quantity. This coordinating choice will be discussed below after analyzing
possible equilibria.
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Equilibrium

82b(w)

2

o) o
W ow
b(w) is chosen such that lim J(g,w)=— 0, i.e., the solution set is compact.

Let us first consider the case of > (0 and assume that

Then the Nash equilibrium can be found by differentiating the supplier’s

objective function J(g,w)=(w-c)g-E[b(w)x" ]=(w-c)q — Tb(w)(q -D)f(D)dD,

- =q- -D)f(D)dD =0. 2.65
S o | @D D) (2.65)
Veritfying the second-order optimality condition, we also find
' (g,w) & b w
5;3 ) ( )| f (g-D)f(D)dD <0. (2.66)

Since the functions of both suppher and retailer are strictly concave and
the solution space is compact, we readily conclude that a Nash equilibrium
exists (see, for example, Basar and Olsder 1999).

Proposition 2.11. The pair (W",q"), such that
m+h —w"
m+h —b(w")

constitutes a Nash equilibrium of the inventory game under a buyback
option.

¢ = [ (g7 - D)f(D)ID =0, Fig-
w 0

An interesting case arises when b(w) is a linear function of w. In such a
case, similar to the traditional stocking game, Jy(q,w) depends linearly on
w, i.e., the supplier would set the wholesale price as high as possible.
Unlike the stocking game, this situation does not lead to no-business under
a buyback contract. Indeed, by setting w close to but less than w", the sup-
plier may still be able to induce the retailer to order the desired quantity by
properly choosing a function b*=b*(w). In fact, this strategy leads to per-
fect coordination regardless of the fact whether the supplier is the Stackel-
berg leader or the decision is made simultaneously. This is because under
any wholesale price w, b*=b*(w) would ensure the same response from
the retailer by increasing w the supplier increases his profit. Thus, this time
we find the greater the wholesale price, the greater the supplier’s profit
while the order quantity remains the same.
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Example 2.12

2
Let b(w) >0, 0 b(zw)
ow ow

form distribution,

>0 and the demand be characterized by the uni-

1
. for 0<D< 4;
(D)= of and F(a)=2,0<a<A.
. A’
0, otherwise

Then using (2.64), we find
m+h —w"
(m+h —bw"))
Substituting into (2.65) we have
mth —w' A_%uwmim+h—w"J34:
2

n

q:

m+h" —b(w") ow \m+h —bw")
Rearranging this last equation we obtain
m+h—W’A@ ob(w") m+h —w" 1)
m+h —b(w") ow m+h —bw")?2

Since w'=w"=m-+h results in no order at all, the Nash equilibrium is found
by

obw") m+h —w" 1
ow m+h —b(w)2

If for example, b(w)=a+pw’, and the buyback price does not exceed the
maximum price, a+[>’[wM]2<m+h", then we have a unique Nash equilibrium

1-

; m+h —w"
=—O— ‘). q" = . 2
i) m+h m+h —oa— p[w"]
On the other hand, the system-wide optimal order is
gr= ey
m+h

Coordination

As discussed in previous sections, discounting, for example, a two-part tariff
is one tool which provides coordination by inducing a non-cooperative
solution to tend to the system-wide optimum.

In this section we show that buyback contacts provide an efficient
means for coordinating vertically competing supply chain participants.
Specifically, when b(w) is a linear function of w, the supplier’s objective
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function depends linearly on w. This implies that it is optimal for the sup-
plier to set the wholesale price as high as possible. However, unlike the
traditional stocking game, this situation does not lead to no orders if the
supplier chooses b*=b*(w) as described below.

Let the best retailer's response g defined by (2.64) be identical to the
system-wide optimal solution ¢* defined by (2.62),

m+h —c_ m+h —-w

- - . (2.67)
m+h m+h —b*(w)
From (2.67) we conclude that if
bE(w) = (m+h )———, (2.68)
m+h —c

then g=¢* for any w<w'. Thus, if b*(w) is set according to (2.68), the sup-
plier can maximize his profit by choosing w very close to w". This would
leave the retailer still ordering a system-wide optimal quantity which
would perfectly coordinate the supply chain. This result is independent of
the fact whether the supplier first sets w and b*(w) (as Stackelberg leader)
or whether decisions on w and ¢ are made simultaneously (Nash strategy)
if function b*(w) is known to the retailer.

Example 2.13

Let the demand be characterized by an exponential distribution, i.e.,
Ae*”, for D >0;

and F(a)=1-¢e™,a>0
0, otherwise

f(D)= {
and b*=b*(w) be chosen by the supplier so that the best retailer’s response
q is identical to the system-wide optimal solution g*, that is, b*(w) is
determined by (2.68). Then the equilibrium wholesale and buyback prices
are
M _ _ &
w=w"-e=m+h-¢ and b*(w) = (m +h )(1 -——),
m+h —c
where ¢ is a small number and the equilibrium order quantity is

- In
1 A c

Note that the smaller the &, the greater the supplier’s share of the risk asso-
ciated with uncertain demands and the greater the share of the overall sup-
ply chain profit that the supplier gains on account of the retailer. When ¢ is
very small, the retailer returns all unsold products at almost the same
wholesale price he purchased them. He therefore has no risk at all in case
the demand realization will be lower than the quantity stocked.
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2.4.2 THE INVENTORY GAME WITH A PURCHASING OPTION

Similar to the buyback option, this modification of the stocking game
arises when the supplier is willing to mitigate the risk the retailer incurs
with respect to the uncertainty of customer demands. Specifically, similar
to a buyback contract, the supplier may agree to have an inventory surplus
at the end of the selling season. In contrast to the buyback contract, this
surplus is due to an option which is offered to the retailer. The option
allows the retailer to issue an urgent or fast order, to be shipped immedi-

ou(w)

ately, at a predetermined option price, m>u(w)>w, >0, close to the

end of the selling season. The retailer will exercisewthis option only if
customer demand exceeds his inventories. It is this difference between the
retailer’s backorder and the supplier’s inventory level which the retailer’s
option purchase covers. If the supplier is unable to satisfy such a backor-
der, he will compensate the retailer for his loss. Thus, under this type of
contract, the supplier assumes the customer service level at the retailer’s
site by mitigating the retailer’s backlog costs. We assume that the system
parameters are such that the supplier’s order g, exceeds the retailer’s order
qr ¢,<¢s (an exact requirement for this to hold is stated in Proposition
2.13) which ensures an inventory game between the retailer and supplier.
Furthermore, we assume that the wholesale price and the retailer’s margin
are fixed and the supplier cost is negligible unless it is an urgent order.
This enables us to focus solely on the inventory game where the supplier
and retailer have to choose a quantity to order. To draw an analogy with
our previous analysis, we allow the wholesales price to change when coor-
dination aspects are discussed.

The retailer’s problem
max J{q,.q,)= max {E[my+(m- uw))x,” - h.'x. - b,x; ] - wg,},  (2.69)
qr qr

S.t.
xX=q.d,
Xs—=qs — 4r— xr_a
q,20,
where x, =max{0, x,}, x,, =max {0, -x,} and y=min{d, ¢,},

In this single-period formulation, x, is the retailer’s inventory level by
the end of a period prior to an urgent order when realization, D, of random
demand d is already known; x," is the retailer’s inventory surplus at the end
of the period; x,” is the retailer's inventory shortage prior to an urgent
order; the urgent quantity ordered by the retailer for immediate shipment,
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h,”, h, are the retailer’s inventory holding and shortage costs respectively;
and g, is the quantity ordered by the retailer at the beginning of the period
and shipped by the end of the period. If the supplier does not have enough
products to ship, then a purchase option implies that the supplier covers the
difference between the retailer’s margin and the option price m-u(w) for
unsold product.

Applying conditional expectation to (2.69), the objective function trans-
forms into

max J,(g,,q;)=max {
qr qr

[mDADID+ [mg F(DMD+ [ (m—u()D~g,)/(DMD~ [ g, ~ D)/ (D)D
~ [ (D-q,)f(D)dD—wq, }. (2.70)

qy ©
The first term in the objective function, E[ym]= j mDf (D)dD + J.mqr f(D)dD,
0

represents the income from selling y=min{d,q,} product units; the second,

E[(m-u(w))x, ] I (m—-u(w))(D—gq,)f(D)dD, represents the income from

backlog at the end of the period; the third and the fourth, E[A,'x, =

j h'(q. —D)f(D)dD, Elhx,]= j h (D-q.)f(D)dD, are the surplus and

qs
shortage costs; and the last term, wg,, is the amount paid to the supplier for
a regular order.

The supplier’s problem
max J(g,.qs)=
qs
max {wgq, +E[(u(w)-c)(x, - x,) - (m- u(w)) x,- hy'x, 1}, (2.71)
qs

S.t.

Xs—qs =~ 4r - Xp,
xr:qr - d)
gs=0,
x, =max {0, x,}, x,~max {0, -x,},
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where x; is the supplier’s inventory level by the end of period after an
urgent order; ¢, is the quantity ordered by the supplier at the beginning of the
period and shipped in time for reshipment from the supplier to the retailer
by the end of the period; u(w) is the option price; A, is the supplier’s
inventory holding cost; and c is the cost of processing the urgent order.
After simple manipulations with (2.71)
Js(qr,qs): wq, +E[(u(w)'c)xr - (m'c)xs_ - hs+xs+]
and determining expectation, we have

J,(4,-4,)=wg, + [ (W) =) (D~q,) f(D)dD~ [ (m=)(D~q,) f(D)dD~

qr

. . (2.72)
[ (q,~D)f(DYID-[ 1 (q,~q,)f (DYDY

The first term in the objective function, wg,, is the income from selling g,

products; the second, E[(u(w)-c)x,]= .T(u(w) —c)(D—gq,)f(D)dD, represents

qr

income from the optional order; the third, E[(m-c)x,] = J.(m—c)(D—qs )f(D)dD,
qs

represents the compensation paid by the supplier for the part of the

optional order which the supplier is unable to deliver (i.e., this is the sup-

qs
plier’s shortage cost); and the last term, E[h, x, |= J.h: (¢, —D)f(D)dD
qr

q’.
+ j h!(q, —q,)f(D)dD, is the inventory surplus cost incurred by the sup-
0

plier.
The centralized problem is based on the sum of two of the objective
functions (2.69) and (2.71).

The centralized problem

max J(¢.,q;)= max {E[my+(m-c)(x, - x;) - hy'x, - hy'x;" - hx ]} (2.73)
ar-4s 4y 44,

s.t.
-xs:CIs - qr - xr;
xr:qr - d)
4,20, gs=0.

Note that since w, u(w) and (m-c)x;, represent transfers within the supply
chain, the system-wide profit does not depend on w, u(w) and is reduced



112 2 SUPPLY CHAIN GAMES: MODELING IN A STATIC FRAMEWORK

by (m-c)x, to account only for the satisfied part (x,- x;) of the optional
(urgent) order. Applying conditional expectation to (2.73) we have explicitly,

U= | mDAD)D+ [ma, f(D)AD+ [ (m—c)Dq,)/(D)AD-

ar qr

[(m =)D /(D)D ~ [ (D) f(DMD~ [ I (q, - D)f(D)dD

©

~ [ !¢, D) (D)ID~ [ 1} g, ~4,)f (DUD=mE[D)~ [e(D~q,) /(DD

qr

~ [n=0)D—g)/(D)ID ~ [ (D~g,)/(D)ID

~ [} (4, = D)S(D)ID ~[ ; g, ~D) /(DD [ (4, ~4,)/(D)D.

System-wide optimal solution

The first-order optimality condition with respect to g, results in

0J(4q,.9,) _ ch( DYdD — qfh; f(D)dD+hi(q,—q,)f(q,)
oq qr 0

r

- h: (qa - qr )f(QV) :O'
Thus, the system-wide unique optimal order quantity of the supplier is

F(q,*)=——. (2.74)
c+h,
Similarly, the first-order optimality condition with respect to g yields,

2
TG0 _ oyt = F(g.)) ~ b (F(q.) - F(q,)) - h F(g,)+

oq
h, (1-F(q,))=O0.
Thus, the system-wide unique optimal supplier’s order is

F(g,*)=

s

_mocth (2.75)
m—c+h +h,

Furthermore, since the first derivative in one of the variables is inde-
pendent of the other variable, the corresponding Hessian is negative defi-
nite and this newsvendor type of the objective function is strictly concave
in both decision variables.
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Game analysis

Consider now a decentralized supply chain characterized by non-cooperative
firms and assume that both players make their decisions simultaneously.
After the retailer and supplier choose their orders ¢, and ¢, , the supplier
delivers g, units as a regular order and (x,” - x,) as an urgent order as well
as covers the retailer for losses if the urgent order does saturate the
demand, x; .

Applying the first-order optimality condition to the retailer’s objective

function (2.70) we find
0J(4q,,9,) _
oq

r

ma,£(q,)~mq,f(q,)+ [mf(DYID~ [ (m—u(w)/(D)ID~ [ B} f(D)dD-w=

=m(1-F(q,))—(m—uw)1-F(q,))—h F(q,)-w=0,
that is,
F(g) =202
u(w)+h,

Equation (2.76) represents a unique, newsvendor-type, optimal solution.
As long as our assumption u(w)<m holds, the regular order is independent
of the retailer’s margin. Shortage cost /,” is not a part of this equation since
the purchasing option causes a shortage which depends on the supplier’s
order quantity rather than on the retailer’s decision.

To determine the Nash equilibrium, we next differentiate the supplier’s
objective function (2.72),

(2.76)

4,4,) _ T(m—c) f(D)dD—qfh; f(D)dD—qfh; A(D)dD=
aqs 45 ar 0
=(m—c)(1-F(q,))—h; (F(q,)-F(q,))—h F(q,)=0
that is,
Flg)=—""5_. 2.77)
m—c+h;

This solution is unique and identical to (2.75) if 4,=0, that is, the supplier’s
equilibrium order is system-wide optimal if h,” is negligible.
However, if /,>0, then qs*>qs.
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Equilibrium

It is easy to verify that the second derivative with respect to the supplier’s
order quantity is negative and the supplier’s objective function is also
strictly concave. Thus, imposing our assumption, ¢, < g, we readily conclude
with the following statement.

m—c u(w)—w
m—c+h’  u(w)+h'

F(g,")
constitutes a unique Nash equilibrium of the inventory game under a pur-

chasing option.
Since c<u(w)<m, then we can assume that u(w)-w<c. If this condition

Proposition 2.12. Let . The pair (gq,",q,"), such that

_ u(w)—w and F(g.")= m—c

u(w)+h’ m—c+h

¢ iy uUw)—w . _
holds, then F(q,*)=—-—>F(q, ):% which, of course, is not a
c+h u(w)+h,
new discovery. In contrast to previous results, the total order also includes
m—c

urgent order, x,’-x,, while the supplier’s inventory level, F (qS):—W
m—c+h,

determines the service level in the supply chain with a purchasing option.
We thus conclude with the following property:

m—c u(w)—w
m—c+h’  u(w)+h

Proposition 2.13. Let . In vertical competition, if u(w)-
w<c, a contract with a purchasing option induces lower order quantities
from the retailer and supplier as well as a lower service level than the sys-
tem-wide optimal solution.

Next, comparing the retailer’s order with (g,") and without (g,) purchas-
ing option (see the stocking game in Section 2.3.2), we conclude that
ay u(w)—w
Flg, ) =————<F(q,)=

S u(w)+h

m+h —w
m+h +h"’
as u(w)<m.

m—c u(w)—w
m—c+h!  u(w)+h’
contract with a purchasing option induces a lower regular order quantity

by the retailer compared to the contract without a purchasing option,
while the service level depends on h,'.

. In vertical competition, a

Proposition 2.14. Let

From Proposition 2.14, it follows that unless the supplier’s inventory
holding cost is too high, a contract with a purchasing option improves the
service level, but the regular order quantity decreases. This is expected,
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since, given the possibility of an urgent order, it is beneficial for the retailer
to reduce the regular order and wait for demand to realize and only then
increase profit by an urgent purchase if the demand exceeds the regular order
stock. Note that since the urgent order is random, x,” - x,’, and always non-
negative, it means that

Elx, - x.1= [ (D=g,)f(D)dD- [(D~q,)f(D)dD, (2.78)
qr qs
is not zero and thus the overall quantity ordered by the retailer is greater
than that of a regular order. Moreover, the regular order quantity can be
increased since a contract with a purchasing option allows efficient coordi-
nation by the proper choice of the option price, u(w). These results are
demonstrated in the following example.

Example 2.14

Let the demand be characterized by the uniform distribution,

1
L for0<D<4
=11 ’amiFM)ziyoﬁaSA

0, otherwise
Then using Proposition 2.12, we find the Nash equilibrium

2 MODTW L nd g =
u(w)+h’ S m—c+h
The centralized solution is
—c+h
qr*: ¢ A and q?*:L’i
c+h' " om—c+h +h

The average urgent order is thus,

Elx, -x,1= [(D—q,)f(D)dD-

T n n 1 n n
[(P=4)f(DMdD=(q," ~4 )1~ (a," +4, )]0,
9s

while the total average retailer’s order is

1
n+ n_ n 1__ n+ n .
q' +(q, —q,)l M@ g, )]
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Coordination

Coordination under a purchasing option is similar to buyback contacts
where a proper choice of the buyback price, b(w), induces the retailer to
choose a system-wide optimal order quantity. Specifically, if the supplier
chooses the option price u(w) as a linear function of w, u*(w), so that

u*(w)—w: c
u*(wy+h'  c+h'’

and thus
ch’
w+ n
wk(wy=— (2.79)
1—- C
c+h'

then g,"=q,*. Moreover, since u*(w) is chosen as a linear function of w, the
supplier, as is the case with the buyback contacts, can increase the whole-
sale price very close to its maximum level and thus gain most of the supply
chain profit while still having the retailer order the system-wide optimal
quantity. The overall game will, however, become perfectly coordinated
only if the retailer’s shortage cost is negligible. If it is not negligible, shar-
ing inventory-related costs may have a positive effect on the supply chain’s
performance.
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