
A supply chain can be defined as “a system of suppliers, manufacturers, 
distributors, retailers, and consumers where materials flow downstream from 
suppliers to customers and information flows in both directions” (Geneshan 
et. al. 1998). The system is typically decentralized which implies that its 
participants are independent firms each with its own frequently conflicting 
goals spanning production, service, purchasing, inventory, transportation, 
marketing and other such functions. Due to these conflicting goals a decen-
tralized supply chain is generally much less efficient than the correspond-
ing centralized or integrated chain with a single decision maker. Efficiency 
suffers from both vertical (e.g., buyer-vendor competition) and horizontal 
(e.g., a number of vendors competing for the same buyer) conflicts of  
interest.  

How to manage competition in supply chains is a challenging task which 
comprises a variety of problems. The overall target is to make, to the extent 
possible, the decentralized chain operate as efficiently as its benchmark, 
the corresponding centralized chain. This particular aspect of supply chain 
management is referred to as coordination. This chapter addresses simple 
static supply chain models, competition between supply chain members 
and their coordination. 

2.1 STATIC GAMES IN SUPPLY CHAINS 

In research and management literature where supply chain problems and 
related game theoretic applications have gained much attention in recent 
years, we see extensive reviews focusing on such aspects as taxonomy of 
supply chain management (Geneshan et. al. 1998); integrated inventory 
models (Goyal and Gupta 1989); game theory in supply chains (Cachon 
and Netessine 2004); operations management (Li and Whang 2001); price 
quantity discounts (Wilcox et. al. 1987); and competition and coordination 
(Leng and Parlar 2005). 
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In the literature, supply chains are distinguished by various features such 
as: types of decisions; operations; competition and coordination; incentives; 
objectives; and game theoretic concepts. In this chapter we deal with three 
essential features of static supply chains, i.e., the supply chains with deci-
sions independent of time: customer demand, competition and risk. In this 
sense we distinguish between  

• deterministic and random demands; endogenous and exogenous 
demands  

• vertical and horizontal competition within supply chains 
• no risk involved, risk incurred by only one of the parties and risk 

shared between the parties. 

In this chapter, supply chain games are combined into three groups. The 
first group of games represents classical horizontal production and vertical 
pricing competition under endogenous demands. These games involve  
decisions about either product prices or quantities with respect to two types 
of endogenous demands: (i) the quantity demanded for a product as a func-
tion of price set for the product and (ii) an inverse demand function with 
price as a function of the quantity produced or sold. In both cases the de-
mands are deterministic, which implies that all produced/supplied products 
are sold and thus there is no risk involved. 

Random exogenous demand for products characterizes the second group 
of games which is related to the classical newsvendor problem. The parties 
vertically compete by deciding on a price to offer and a quantity to order 
for a particular price. Since the demand is uncertain, the downstream party, 
which faces the demand, runs the risk of overestimating or underestimating 
it. The risk involves costs incurred due to choosing the quantity to order 
and stock before customer demand is realized. We refer to this group of 
games as stocking / pricing competition with random demand.  

The third group of games represents classical risk-sharing interactions 
between supply chain members. Similar to the second group, the competi-
tion is vertical and the demand is exogenous and random. Unlike the sec-
ond group, however, incentives to mitigate risk may be offered to a party 
which faces uncertain customer demands. Since the incentives include 
buyback and urgent purchase options, some of the uncertainty is trans-
ferred from one party to another. In such a case, the risk associated with 
random demand is shared and the inventories of all involved parties are  
affected when deciding on what quantities to stock. 
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Motivation 

We describe a few production, pricing and inventory-stock related prob-
lems which have been found in various service and industry-related supply 
chains. Most of these problems have been extensively studied and can be 
found virtually in every survey devoted to supply chain management  
including those mentioned above. It is worth noting that, in general, the 
number of basic supply chain problems is significant and selecting just a 
few of them for an introductory purpose is not a simple matter.  

Our selection criterion is based on one of the overall goals of this book– 
to show how optimal pricing and inventory policies evolve when static  
operation conditions become dynamic. Under such conditions, we find par-
ticularly interesting the static problems which allow for straightforward 
and, yet natural, dynamic extensions. The problems which we discuss in 
this chapter will be discussed again in the following chapters to show the 
effect of production and service dynamics on managerial decisions. 

The static feature of the problems we select implies that the period of 
time that the problems encompass is such that no change in system para-
meters is observed. Since all products are delivered at once by the end of 
the period and then instantly sold, these problems ignore the intermediate 
inventories (and associated costs) before and during the selling season. 
Due to the focus on stock and pricing policies, shortages as well as left-
overs are avoided, as much as possible, by the end of the period. In all the 
problems that we consider, it is assumed that the information needed for 
decision-making is available and transparent to the supply chain partici-
pants and that the overall order lead-time is smaller than the length of the 
period so that all deliveries are provided on time.  

This chapter introduces and discusses basic models of horizontal and 
vertical competition between supply chain members, the effect of uncertainty 
and risk sharing as well as basic tools for coping with the competition by 
coordinating supply chains. The analysis which we employ includes (i) 
formal statements of problems of each non-cooperative party involved as 
well as the corresponding centralized formulations where only one deci-
sion-maker is responsible for all managerial decisions in the supply chain; 
(ii) system-wide optimal and equilibria solution for competing parties; (iii) 
analysis of the effect of competition on supply chain performance and of 
coordination for improving the performance. In analyzing the problems we 
use Nash and Stackelberg equilibria which we briefly present next.  
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Nash and Stackelberg equilibria 

Game theory is concerned with situations involving conflicts and coopera-
tion between the players. Our focus is on two important concepts of Nash 
and Stackelberg equilibria intended respectively for dealing with simulta-
neous and sequential non-cooperating decision-making by multiple play-
ers. Consider a game, with the strategies yi, i=1,..,N being feasible actions 
which the N players may undertake. All possible strategies of a player, i, 
form a strategy set Yi of the player. A payoff (objective function), Ji(y1,  
 y2,..,yN,), i=1,..,N is evaluated when each player i selects a feasible strategy, 

ii Yy ∈ . We assume that the games are played on the basis that complete 
information is available to all players. Since two-player games can be 
straightforwardly extended to multiple players and to simplify the presen-
tation, we further assume that there are only two players A and B.  

tion presents the concept of a Nash equilibrium (Nash 1950) 

Definition 2.1 

A pair of strategies *)*,( BA yy is said to constitute a Nash equilibrium if 
the following pair of inequalities is satisfied for all AA Yy ∈ , and AB Yy ∈  

JA(yA*, yB*) ≥  JA(yA, yB*) and JB(yA*, yB*) ≥  JB(yA*, yB).  

The definition implies that the Nash solution is 
*)},({maxarg* BAA

Yy
A yyJy

AA∈
=  and )}*,({maxarg* BAB

Yy
B yyJy

BB∈
= , 

and a unilateral deviation from this solution results in a loss. If this prob-
lem is static, strategy sets are not constrained and the payoff functions are 
continuously differentiable. The first-order (necessary) optimality condi-
tion results in the following system of two equations in two unknowns yA*, 
yB*: 

0
*),(

* =
∂

∂
= AA yy

A

BAA

y
yyJ

 and 0
)*,(

* =
∂

∂
= BB yy

B

BAB

y
yyJ

. 

In addition, the second order (sufficient) optimality condition which  
ensures that we maximize the payoffs is  

0
*),(

*2

2

<
∂

∂
= AA yy

A

BAA

y
yyJ

 and 0
)*,(

*2

2

<
∂

∂
= BB yy

B

BAB

y
yyJ

. 

Equivalently, one may determine )},({maxarg)( BAA
Yy

B
R
A yyJyy

AA∈
=  for each 

yB BY∈  to find the best response function, yA= )( B
R
A yy , of player A and of 

Each player’s goal is to maximize his own payoff. The following defini-
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player B, yB= )( A
R
B yy  which constitute a system of two equations in two 

unknowns. 
The examples we shall consider here will be elaborated later in this and 

subsequent chapters. 

Example 2.1 

Consider a supply chain consisting of one supplier, s, and one retailer r. 
The supplier offers products at wholesale price w and the retailer buys q 
product units and sets retail price p=w+m. This is the classical pricing 
game where the two firms want to maximize their profits. Let the supplier 
and retailer costs be negligible and the demand is linear and downward in 

lem is 
Jr(m,w)= m(a-b(w+m)) max→ , 

w
b
am −≤≤0  

and the suppliers problem is 
Js(m,w)=w(a-b(w+m)) max→ , 

w ≥ 0. 
First we observe that both objective functions are strictly concave in their 
decision variables. Thus, the first-order optimality condition is necessary 
and sufficient. Using the first-order optimality condition we have 

a-bw-2bm=0 and a-2bw-bm=0. 
If our constraints are not binding, the two best response functions are 

m=mR(w)=
b
bwa

2
−  and w= wR(m)=

b
bma

2
− . 

Solving these two equations (or equivalently the previous two) we find a 
unique Nash equilibrium 

mn=
b
a
3

 and wn=
b
a
3

. 

The equilibrium is evidently feasible and all constraints are met, as 
b
a
3

>0, 

hence, m*>0, w*>0, and 
b
aw

b
a

b
a n

3
2

3
=−< , hence, nn w

b
am −< .  

Stackelberg strategy is applied when there is an asymmetry in power or 
in moves of the players. As a result, the decision-making is sequential 
rather than simultaneous as is the case with Nash strategy. The player who 
first announces his strategy is considered to be the Stackelberg leader. The  
 

price, d=a-bp=a-b(w+m), a>0, b>0. Then the retailer’s optimization prob-
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follower then chooses his best response to the leader’s move. The leader 
thus has an advantage because he is able to optimize his objective function 
subject to the follower’s best response. Formally this implies that if, player 
A, for example, is the leader, then yB= )( A

R
B yy  is the same best response for 

player B as determined for the Nash equilibrium. Since the leader is aware 
of this response, he then optimizes his objective function subject to 
yA= )( B

R
A yy = ))(( A

R
B

R
A yyy . 

Definition 2.2 

In a two-person game with player A as the leader and player B as the fol-
lower, the strategy yA*∈YA is called a Stackelberg equilibrium for the 
leader if, for all yA, 

))(,(*))(*,( A
R
BAAA

R
BAA yyyJyyyJ ≥ , 

where yB = )( A
R
B yy  is the best response function of the follower.  

Definition 2.2 implies that the leader's Stackelberg solution is 
)}(,({maxarg* A

R
BAA

Yy
A yyyJy

AA∈
= . 

That is, if the strategy sets are unconstrained and the payoff functions are 
continuously differentiable, the necessary optimality condition for the leader 
is 

0
)(,(

* =
∂

∂
= AA yy

A

A
R
BAA

y
yyyJ

. 

To make sure that the leader maximizes his profits, we check also the  
second-order sufficient optimality condition 

0
)(,(

*2

2

<
∂

∂
= AA yy

A

A
R
BAA

y
yyyJ

. 

Example 2.2 

Consider again Example 2.1 but assume that the supplier is the leader. 
That is, the supplier sets first his wholesale price. In response, the retailer, 
in setting his retail price, determines the product quantity he orders. Then, 

m=mR(w)=
b
bwa

2
−

w
max Js(m,w)=

w
max w(a-b(w+

b
bwa

2
− ))=

w
max (

22

2bwaw
− ). 

 

to find the Stackelberg solution, we substitute the best retailer’s response 

 (see Example 2.1) into the supplier’s objective function. 
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The supplier’s objective function is evidently strictly concave. Conse-
quently, the first-order optimality condition results in 

ws=
b

a
2

, ms=mR(ws)=
b

a
4

. 

The found equilibrium is evidently unique and feasible, as 
b

a
2

>0, 

b
a
4

>0 and sw
b
a

− =
b

a
2

 and, thus, 
b

aw
b
a

b
am ss

24
=−<= , i.e., all con-

straints are met.   

For comparative reasons we shall also consider a centralized supply 
chain with no competition (game) involved. The centralized problem can 
be viewed as a single-player game. 

Example 2.3 

Consider again Example 2.1 but assume that there is only one decision-
maker in the system. Then the centralized objective function is 

wm,
max J(m,w)= 

wm,
max [ Jr(m,w)+ Js(m,w)]=

wm,
max (w+m)(a-b(w+m)). 

Applying the first-order optimality condition we get two identical equa-
tions for m and n. This implies that there is only one decision variable p, so 

that the system-wide optimal solution is, m*+w*=
b

ap
2

* = .  

2.2 PRODUCTION/PRICING COMPETITION 

We discuss here two classical problems arising in supply chains character-
ized by deterministic demands and either vertical supplier-retailer or horizon-
tal supplier-supplier competition. The competition is represented by games. 
We first analyze pricing equilibrium based on Bertrand’s competition model 
and then production equilibrium according to Cournot’s competition model. 
Since the problems are deterministic, they can be viewed as both single-
period and continuous review models. 

Consider a two-echelon supply chain consisting of a single supplier selling 
a product type to a single retailer over a period of time. The supplier has 
ample capacity and the period is longer than the supplier’s leadtime which  
 

2.2.1  THE PRICING GAME 
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implies that the supplier is able to deliver on time any quantity q ordered 
by the retailer. The retailer faces a concave endogenous demand, q=q(p), 

which decreases as product price p increases, i.e., 0<
∂
∂
p
q  and 0)(

2

2

≤
∂

∂
p

pq . 

The supplier incurs unit production cost c and sells at unit wholesale price 
w, i.e., the supplier’s margin is w-c. Note that this formulation is an exten-
sion of that employed in Example 2.1, where a specific, linear in price, 
demand was considered. 

Let the retailer’s price per unit be p=w+m, where m is the retailer’s mar-
gin. Both players, the supplier and the retailer, want to maximize their 
profits – margin times demand which are expressed as Js(w)=(w-c)q(w+m) 
and Jr(p)=mq(w+m) respectively (see Figure 2.1). This leads us to the fol-
lowing problems. 

w
max Js(w,m)=

w
max (w-c)q(w+m)   (2.1) 

s.t. 
w ≥ c.     (2.2) 

m
max Jr(w,m)=

m
max mq(w+m)   (2.3) 

s.t. 
m ≥ 0,    (2.4) 

q(w+m) ≥ 0.   (2.5) 

Note that from w ≥ c and m ≥ 0, it immediately follows that p=w+m ≥ c. 
In contrast to the vertical competition between the two decision-makers as 
determined by (2.1)-(2-5), the supply chain may be vertically integrated or 
centralized. Such a chain is characterized by a single decision-maker who 
is in charge of all managerial aspects of the supply chain. We then have the 
following single problem as a benchmark. 

The supplier’s problem  

The retailer’s problem 
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Figure 2.1. Vertical pricing competition 

The centralized problem 

wm,
max J(m,w)=

wm,
max [ Jr(m,w)+ Js(m,w)]=

wm,
max (w+m-c)q(w+m) (2.6) 

s.t.  
m ≥ 0, q(w+m) ≥ 0. 

To distinguish between different optimal strategies, we will use below  
superscript n for Nash solutions, s for Stackelberg solutions and * for cen-
tralized solutions. 

System-wide optimal solution 

We first study the centralized problem by employing the first-order opti-
mality conditions 

p
pqcmwmwq

m
wmJ

∂
∂

−+++=
∂

∂ )()()(),( =0, 

p
pqcmwmwq

w
wmJ

∂
∂

−+++=
∂

∂ )()()(),( =0. 

Since both equations are identical, only the optimal price matters in the 
centralized problem, p*, while the wholesale price w ≥ 0 and the retailer’s 
margin m ≥ 0 can be chosen arbitrarily so that p*=w+m. This is because w 
and m represent internal transfers of the supply chain. Thus, the proper  
notation for the payoff function is J(p) rather than J(m,w) and the only  
optimality condition is 

p
pqcppq

∂
∂

−+
*)()*(*)( =0.   (2.7) 

Let q(P)=0, P>c. Then it is easy to verify that, 

Supplier: w

Retailer: m

w q(w+m) 
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2

2

2

2 )()()()()(
p

pqcp
p
pq

p
pq

p
pJ

∂
∂

−+
∂

∂
+

∂
∂

=
∂

∂ <0, 

that is, the centralized objective function (2.6) is strictly concave in price 
for ],[ Pcp∈ . This implies that equation (2.7) has a unique solution which 
maximizes (2.6). 

Game Analysis 

We consider now a decentralized supply chain characterized by non-
cooperative or competing firms and assume first that both players make 
their decisions simultaneously. The supplier chooses the wholesale price w 
and the retailer selects his price, p, or equivalently his margin, m, and 
hence buys q(p) products. The supplier then delivers the products. Since 
this pricing game is deterministic, all products that the retailer buys will be 
sold.  

sion 

0)()(
),(

=
∂

∂
++=

∂
∂

p
pqmmwq

m
wmJ r .   (2.8) 

It is easy to verify that the retailer’s objective function is strictly concave 
in m and, thus, (2.8) has a unique solution, or, in other words, the retailer’s 
best response function is unique. Comparing (2.8) and (2.7) and taking into 
account that w>c (otherwise the supplier has no profit), we conclude with 
the following result: 

Proposition 2.1. In vertical competition of the pricing game, if the supplier 
makes a profit, i.e., w>c, the retail price will be greater and the retailer’s 
order less than the system-wide optimal (centralized) price and order 
quantity respectively.  
Proof: Substituting p =w+m into (28) we have 

0)()()( =
∂

∂
−+

p
pqwppq .   (2.9) 

Comparing (2.7) and (2.9) we observe that 

=
∂

∂
−+

p
pqwppq )()()(

p
pqcppq

∂
∂

−+
*)()*(*)( =0, (2.10) 

while taking into account that w>c and 0<
∂
∂
p
q , 

 
 
 

Using the first-order optimality conditions for the retailer’s problem, we 
find that the retailer’s best response is determined by the following expres-
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>
∂

∂
−+

p
pqwppq *)()*(*)(

p
pqcppq

∂
∂

−+
*)()*(*)( =0.     (2.11) 

Next, by denoting 
p
pqwppqpf

∂
∂

−+=
)()()()( , and recalling 0<

∂
∂
p
q  

and 0)(
2

2

≤
∂

∂
p

pq , we find that 

0)()()()()(
2

2

<
∂

∂
−+

∂
∂

+
∂

∂
=

∂
∂

p
pqwp

p
pq

p
pq

p
pf  

Note, that our conclusion that vertical pricing competition (2.1)-(2.5)  

depend on whether both players make a simultaneous decision or whether 
the supplier first sets the wholesale price and plays the role of the Stackelberg 
leader, as is often the case in practice. In either of the two cases, the overall 
efficiency of the supply chain deteriorates under vertical competition.  

Equilibrium 

To determine the Nash pricing equilibrium, which corresponds to simulta-
neous moves of the supplier and retailer, we next consider the optimality 

0)()()(
),(

=
∂

+∂
−++=

∂
∂

p
mwqcwmwq

w
wmJ s . (2.12) 

One can readily verify that the supplier’s objective function is strictly 

concave in w, 0
),(

2

2

<
∂

∂
w

wmJ s  and, thus, the supplier’s best response (2.12) 

is unique as well. As a result, the Nash equilibrium, (wn,mn) is found by 
solving simultaneously the following system of equations 

0)()( =
∂

+∂
++

p
mwqmmwq ,   (2.13)  

0)()()( =
∂

+∂
−++

p
mwqcwmwq .  (2.14) 

Solving (2.13) and (2.14) results in 

w-c-m=0 and 0)2()2( =
∂
+∂

++
p

mcqmmcq . 

 
 

increases retail price and decreases the retailer’s order quantity does not 

conditions for the supplier’s objective function, 

Thus, to have (2.10) we need f(p)<f(p*), which, with respect to the last 
inequality, requires, p>p* and, hence, q(p)<q(p*), as stated in Proposition 1.
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Assuming that the solution w+m=P, q(P)=0 cannot be optimal since it 
leads to zero profit for all supply chain members, we conclude with the 
following result. 

n n n

0)2()2( =
∂
+∂

++
p

mcqmmcq
n

nn .  (2.15) 

and wn=mn+c constitutes a unique Nash equilibrium of the pricing game 
with 0<mn<(P-c)/2. 
Proof: To see that a solution of equation (2.15) always exists and that it is 
unique, assume mn=0. Then, since P>c and q(P)=0, 0)2( >+ nmcq , while 

the second term in (2.15) is zero. Thus, 0)()()( >
∂

∂
+=

p
mqmmqmf

n
nnn  

when mn=0. On the other hand, let c+2mn=P, since q(P)=0, while the sec-
ond term in (2.15) is strictly negative as mn=(P-c)/2>0, we have 

)()()(
∂

∂
+=

p
mqmmqmf

n
nnn

0)(
<

∂
∂

n

n

m
mf , we conclude that the solution of f(mn)=0 is unique and 

0<mn<(P-c)/2.    

Next, we assume that the supplier makes the first move by setting the 
wholesale price. The retailer then decides on what price to set and, hence, 
the quantity to order. To find the Stackelberg equilibrium, we need to 

response m=mR(w) determined by (2.8),  
Js(m,w)=(w-c)q(w+mR(w)). 

0)()()())((
),(

=
∂

∂
∂

+∂
−++=

∂
∂

w
wm

p
mwqcwwmwq

w
wmJ R

Rs , 

where 
w

wm R

∂
∂ )(  is determined by differentiating (2.8) with m set equal to 

mR(w).  

0))(1()()()())(1()(
2

2

=
∂

∂
+

∂
∂

+
∂

∂
∂

∂
+

∂
∂

+
∂

+∂
w
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p

pqm
p
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w
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w
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p
mwq RRR

. 

Thus 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

+∂
+

∂
+∂

+
∂

+∂
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

+∂
+

∂
+∂

−=
∂

∂
2

2

2

2 )()()()()()(
p

mwqm
p

mwq
p

mwq
p

mwqm
p

mwq
w

wmR

. (2.16) 

 

Proposition 2.2 . The pair (w ,m ), where m  satisfies the following equation 

maximize the supplier’s objective with m subject to the best retailer’s  

< 0 . Finally, taking into account that 

Differentiating the supplier’s objective function we have 
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Equation (2.16) naturally implies 

gin m. 
Based on (2.16) and (2.8) we conclude that a pair (ws,ms) constitutes a 

Stackelberg equilibrium of the pricing game if there exists a joint solution 
in w and m of the following equations 

0)()()( =
∂
∂

∂
+∂

−++
w
m

p
mwqcwmwq , 

0)()( =
∂

+∂
++

p
mwqmmwq , 

where 
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⎠

⎞
⎜⎜
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⎛
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+
∂

+∂
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

+∂
+

∂
+∂

−=
∂
∂

2

2

2

2 )()()()()(
p

mwqm
p

mwq
p

mwq
p

mwqm
p
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w
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We do not study here the existence and uniqueness of the Stackelberg 
solution. Instead we revisit Examples 2.1 and 2.2, which determine both 
Stackelberg and Nash solutions for a special case of the pricing game. 

gible, c=0. Thus we obtain the problem solved in Example 2.1. Note that 

the demand requirements, b
p
q

−=
∂
∂ <0 and 02

2

≤
∂
∂
p

q  are met for the selected 

function. Using Proposition 2.2. we solve (2.15),  

0)(2)2()2( =−+−=
∂

∂
+ bmmba

p
mqmmq nn

n
nn , wn= mn 

to find Nash equilibrium wn= mn= 
b
a
3

, hence, pn= wn+ mn =
b
a

3
2  and 

q(pn)=
3
a , as is also the case in Example 2.1. The payoff for the equilibrium 

is identical for both players, Jr(mn,wn)=Js(mn,wn)=
b

a
9

2

. Similarly, one can 

verify that the Stackelberg solution is the same as in Example 2.2, 

ws=
b
a
2

, ms=
b
a
4

, ps= ws+ ms =
b
a

4
3

, q(ps)= 
4
a

, 

Js(ms,ws)=
b

a
8

2

 and Jr(ms,ws)=
b

a
16

2

. 

 

Example 2.4 

the greater the supplier’s wholesale price w, the lower the retailer’s mar-

Let the demand be linear in price, q(p)=a-bp and the supplier’s cost negli-
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Finally, the centralized solution (2.7) (see also Example 2.3) is 

p
pqcppq

∂
∂

−+
*)()*(*)( =a-bp*+p*(-b)=0, 

that is,  

m*+w*=
b

ap
2

* = , q(p*)=
2
a  and J(p*)=

b
a
4

2

. 

Comparing these results we find that the system-wide optimal order is 
greater than that of the Nash or Stackelberg strategy 

q(ps)= 
4
a

< q(pn)=
3
a

< q(p*)=
2
a

, 

which agrees with Proposition 2.1. Correspondingly, the retail prices  
increase under vertical competition 

ps=
b
a

4
3 > pn=

b
a

3
2 >

b
ap
2

* = . 

and the overall chain payoff deteriorates 

Js(ms,ws)+ Jr(ms,ws)=
b

a
16
3 2

<Jr(mn,wn)+Js(mn,wn)=
b
a

9
2 2

< J(p*)=
b

a
4

2

.  

The goal of this example is twofold. First of all, it is rarely possible to find 
an equilibrium analytically. This example illustrates how to conduct the 
analysis numerically with Maple. Secondly, the condition imposed on the 
second derivative of demand is sufficient for the equilibrium to be unique, 
but it is not necessary, as the example demonstrates.  

Let the demand be non-liner in price, q(p)=a-bpα. Assuming that 0<α<1, 
we observe that the demand requirements with respect to the first deriva-
tive are met, 1−−=

∂
∂ ααpb
p
q <0, while with respect to the second 

2
2

2

)1( −−=
∂
∂ ααα pb
p
q >0 is not. Using Proposition 2.2., we employ (2.13) 

respectively, m=mR(w) and w=wR(m) .  Specifically, we first set the left-hand 
side of (2.13) as L1 
>L1:=a-b*(w+m)^alpha-m*alpha*(w+m)^(alpha-1); 

 := L1  −  − a b ( ) + w m α m α ( ) + w m ( )− α 1
 

and the left-hand side of (2.14) as L2. 
> L2:=a-b*(w+m)^alpha-(w-c)*alpha*(w+m)^(alpha-1); 
 

Example 2.5 

and (2.14) to obtain numerically the retailer’s and supplier’s best response 
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 := L2  −  − a b ( ) + w m α ( ) − w c α ( ) + w m ( )− α 1
 

Next we substitute specific parameters of the example α=0.5, a=15, 
b=2,c=1 to have numeric left-hand sides L11 and L12 respectively 
>L11:=subs(alpha=0.5, a=15, b=2, c=1, L1); 

 := L11  −  − 15 2 ( ) + w m 0.5 0.5 m
( ) + w m 0.5

 

> L12:=subs(alpha=0.5, a=15, b=2, c=1, L2); 

 := L12  −  − 15 2 ( ) + w m 0.5 0.5 ( )− w 1
( ) + w m 0.5

. 

Next we find the equilibrium by solving the system of equations L11=0 
and L12=0 
>solve({L11=0, L12=0}, {m,w});  

{ }, = m 21.83319513 = w 22.83319513  

sponse mR(w) numerically as mR 
> mR:=solve(L11=0,m); 

mR  + − 18. 1.200000000 + 225. 5. w 0.8000000000 w, := 

 −  − 18. 1.200000000  + 225. 5. w 0.8000000000 w

 

and the inverse function mRinv of the best supplier’s response wR(m) 
>mRinv:=solve(L12=0,m); 

mRinv  + − 28.37500000 1.875000000 − 229. 4. w 1.250000000 w , := 

 −  − 28.37500000 1.875000000  − 229. 4. w 1.250000000 w

 

Both responses have two solutions, positive and negative. Since the margin 
is non-negative, we select only positive solutions mR[1] and mRinv[2] and 
plot them on the same graph. 
>plot([mR[1],mRinv[1]],w=1..45,legend=[“Retailer”, 
“Supplier”]); 

 

To verify that the equilibrium is unique, we find the best retailer’s re-
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From Figure 2.2 we observe that there is only one point where the  
responses intersect. This is the Nash equilibrium point which we found 
numerically as mn =21.833 and wn =22.833. 

The centralized solution (2.7) is found similarly with Maple 
> L:=a-b*p^alpha-(p-c)*alpha*p^(alpha-1); 

 := L  −  − a b pα ( ) − p c α p( )− α 1
 

> L11:=subs(alpha=0.5, a=15, b=2, c=1, L); 

 := L11  −  − 15 2 p0.5 0.5 ( )− p 1
p0.5

 

> popt:=solve(L11=0,p);  
:= popt 36.39890107  

Comparing the system-wide optimal price with the equilibrium Nash price, 
we find that p*=36.398<pn=mn+wn=21.833+22.833=44.666.  

Coordination 

According to Proposition 2.1, vertical competition has a negative effect on 
the supply chain. The retailer orders less, the retail price goes up and prof-
its shrink. Moreover, although the supplier’s leadership allows the supplier 
to increase his profit, in the specific case of linear price demand (see Exam-
ple 2.4), the leadership is also destructive as it further reduces the total 
profit in the supply chain. The negative effect of the vertical competition is 
due to the well-known double marginalization effect. This effect takes 
place if the retailer ignores the supplier’s profit margin, w-c, when ordering 
as shown in Proposition 2.1. Specifically, when recalling that p=w+m, the 
retailer’s best response (2.9) 
 
 

Figure 2.2. The pricing equilibrium 
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0)()()( =
∂

∂
−+

p
pqwppq , 

can be written as 

0)()( =
∂

∂
+

p
pqmpq , 

which implies that though the demand depends on price p=w+m, the  
retailer accounts only for his margin m instead of ordering as indicated by 
the centralized approach (2.7)  

p
pqcppq

∂
∂

−+
)()()( =

p
pqmcwpq

∂
∂

+−+
)()()( =0 

and thus adding the supplier’s margin, w-c, to m. Equivalently, from equa-
tion (2.14)  

0)()()( =
∂

∂
−+

p
pqcwpq  

we observe that the supplier ignores the retailer’s margin m when setting 
the wholesale price. The remaining question is how to induce the retailer to 
order more, or the supplier to reduce the wholesale price, i.e., how to coor-
dinate the supply chain and thus increase its total profit. Of course, the 
supplier may set the wholesale price at his marginal cost, w=c, or the  
retailer may set his margin at zero. Equation (2.7) then becomes identical 
to (2.9) and the supply chain is perfectly coordinated. However, the supply 
chain member who gives up his margin gets no profit at all. The most 
popular way of dealing with such a problem is by discounting or by col-
laboration for profit sharing. 

One approach to discounting is a simple two-part tariff. If the supplier is 
the leader, he can set w=c, but charge the retailer a fixed fee. In this way, 
the supplier can regulate his share in the total supply chain profit without a 
special contract. Moreover, if the supplier sets the fixed fee very close to 
the centralized supply chain profit, J(p*), then the retailer gets almost no 
profit and still orders the system-wide optimal quantity q(p*) as well as 
sets system-wide optimal price p*. 

Regardless of whether there is a leader or not, signing a profit-sharing 
contract is an alternative way to mitigate the double marginalization. In 
such a contact, the parties would explicitly set their shares of the total sup-
ply chain profit, J(p*) with η, 0 ≤  η 1≤ , so that the retailer gets ηJ(p*) and 
the supplier (1-η)J(p*). This, however, is already cooperative rather than 
competitive behavior. To illustrate one possibility for coordination with 
cooperation, we briefly consider an example of bargaining over the whole-
sale price and retailer's margin in terms of the Nash bargain, which solves 
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wm,
max [Jr(w,m)-jr][Js(w,m)-js], 

where jr and js represent the outside options to each party. Employing the 
demand function of this section and assuming that all outside options are 
normalized to zero, i.e., jr =0 and js =0, we have the following bargaining 
problem: 

wm,
max JB(m,w)= 

wm,
max mw[q(w+m)]2. 

If q(w+m) is such that JB(m,w) is concave, then applying the first-order op-
timality conditions we obtain the following two equations 

0)(2)( =
∂

+∂
++

p
wmqmwmq , 

0)()(2)( =
∂

+∂
−++

p
wmqcwwmq . 

From these equations we immediately find that m=w-c and thereby the two 
equations result in a single condition: 

0)()()( =
∂

+∂
−+++

p
wmqcwmwmq . 

Taking into account that p=m+w, we observe that the derived condition 
is identical to the system-wide optimality condition (2.7). Thus, if J B(m,w) 
is concave, the Nash bargain perfectly coordinates the supply chain for the 
case of the pricing game. The only difference is that the system-wide optimal 
solution specifies only the optimal price p* (since the transfer costs are not 
important for a centralized system), while the Nash bargain solution of the 
pricing problem results in equal margins, m=w-c, and shares, Jr(w,m)= 
Js(w,m), for both parties.  

The multi-echelon effect 

It is intuitively clear that the greater the number of the upstream suppliers 
involved, the more margins are added to the supply chain and thereby the 
greater the deterioration of the expected system performance. Specifically, 
let an upstream distributor have a marginal cost cd per product and let him 
sell his products to the supplier at a price wd. Then the retail price would be 
p= w+m, w ≥ c+wd and the resulting problems of the three-echelon supply 
chain are defined as follows. 

dw
max Jd(wd,w,m)= 

dw
max (wd-cd)q(w+m) 

s.t. 
 

The distributor’s problem  
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wd ≥ cd. 

w
max Js(wd,w,m)=

w
max (w-c-wd)q(w+m) 

s.t. 
w ≥ c+wd. 

m
max Jr(wd,w,m)= 

m
max mq(w+m) 

s.t. 
m ≥ 0, q(w+m) ≥ 0. 

The centralized problem 

wm,
max J(m,w)=

wm,
max ( m+w - c- cd)q(w+m) 

s.t. 
m ≥ 0, q(w+m) ≥ 0, w ≥ c+ wd. 

Consequently the system-wide optimal retail margin is determined by 

p
pqccwmpq

m
wmJ

d ∂
∂

−−++=
∂

∂ )()()(),( =0, 

while the equation for an optimal margin when the parties are non-
cooperative remains the same 

0)()(),(
=

∂
∂

+=
∂

∂
p
pqmpq

m
wmJ r . 

We thus observe that the retailer when ordering, accounts for his margin m 
and ignores both the supplier’s margin w-c-wd and the distributor’s margin 
wd-cd , which is, w-c-cd in total. Again, by employing the two-part tariff, 
the supply chain becomes perfectly coordinated. This is accomplished if 
the distributor and the supplier set the wholesale prices equal to their mar-
ginal costs, i.e., wd=cd and w=c+cd, respectively and charge a fixed cost 
per transaction. 

Previously we were concerned with vertical competition. Now we shall 
study the effect of horizontal production competition (see Figure 2.3). 
Consider two manufacturers producing the same or substitutable types of  
 

2.2.2  THE PRODUCTION GAME 

The supplier’s problem  

The retailer’s problem 
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product over a period of time and thus competing horizontally for the same 
customers, possibly for the same retailer. Accordingly, the manufacturers 
are suppliers with ample capacity and the order period is longer than the 

time any quantity q1 and q2 to the retailer. The retailer, on the other hand, 
adopts the so-called vendor managed inventory (VMI) policy, in which the 
suppliers decide on the quantities to deliver while the retailer simply charges 
a fixed percentage from sales. Since the retailer has no part in the competi-
tion, he does not affect the system-wide optimal solution, equilibrium order 
quantities, or prices.  

Further, in the previous section we assumed that the retailer demand is a 

petition pricing. In this section we assume that the retail price is a function 

competition. Specifically, the product is characterized by an endogenous 
price function of total demand Q=q1+q2, p=p(Q), which, since the prod-
ucts are fully substitutable, is symmetric in q1 and q2. We assume that this 
symmetric function is down-sloping (concave) in the total quantity of the 

products, i.e., 0
21

<
∂
∂

=
∂
∂

q
p

q
p  and concave, 02

2

≤
∂
∂
Q

p , i.e., 

0
21

2

2
2

2

2
1

2

≤
∂∂

∂
=

∂
∂

=
∂
∂

qq
p

q
p

q
p . The suppliers incur identical unit production 

cost c, c<p(0), and seek to maximize profits, i.e., they maximize their mar-
gins, p(Q)-c, times the demand, q1 or q2.  

The problem of supplier 1  

1
max

q
J1(q1,q2)=

1
max

q
 q1[p(q1+q2)-c]  (2.17) 

s.t. 
q1 ≥ 0, p(q1+q2) ≥ c. 

The problem of Supplier 2  

2
max

q
J2(q1,q2)= 

2
max

q
 q2[p(q1+q2)-c]  (2.18) 

s.t. 
q2 ≥ 0, p(q1+q2) ≥  c, 

where p(Q) is the price at which the retailer can sell Q product units; q1 
and q2 are the quantities produced by suppliers (manufacturers) 1 and 2  
 

 

suppliers’ lead-time. This means that both suppliers are able to deliver on 

of customer demand which is referred to as Cournot’s model of production 

function of product price which is referred to as Bertrand’s model of com-
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respectively and sold by the retailer; Q=q1+q2 is the total quantity sold by 
the retailer; and c is the unit production cost for both suppliers. 

 

Exactly, (2.17) and (2.18) can be presented as 

1
max

q
J1(q1,q2)=

1
max

q
βq1[p(q1+q2)-c]; 

2
max

q
J2(q1,q2)=

2

max
q

βq2[p(q1+q2)-c], 

where β is percentage paid to the retailer by each manufacturer. Since  
coefficient β does not affect the optimality conditions, it is omitted. More-

Jr(q1,q2)= (1-β)q1[p(q1+q2)-c] + (1-β)q2[p(q1+q2)-c], 
the centralized objective function does not involve β at all since it repre-
sents internal supply chain transfers. Thus, if the supply chain is horizon-
tally integrated, that is, if a single decision maker is in charge, then we 
have the following single problem as a benchmark. 

The centralized problem 

21 ,
max

qq
J(q1,q2) =

21,
max

qq
[J1(q1,q2)+J2(q1,q2)]= 

21 ,
max

qq
 q1[p(q1+q2)-c]+ q2[p(q1+q2)-c]   (2.19) 

s.t. 
q1 ≥ 0, q2 ≥ 0, p(q1+q2) ≥ c. 

q1 q2 

Supplier 1: q1 

Retailer: βp(q1+q2) 

Supplier 2: q2 

p(q1+q2) 

Figure 2.3. Horizontal competition for the same retailer 

over, since the retailer’s profit is 
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System-wide optimal solution 

We first study the centralized problem by employing the first-order opti-
mality conditions 

1
2

1
121

1

21 )()()(
),(

q
Q

Q
Qpq

q
Q

Q
Qpqcqqp

q
qqJ

∂
∂

∂
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∂
∂

∂
∂

+−+=
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∂
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2
1

2
221
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Q
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Qpqcqqp

q
qqJ

∂
∂

∂
∂

+
∂
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∂
∂

+−+=
∂

∂ =0. 

Since the two problems are symmetric, Q=q1+q2, Q
p

q
p

q
p

∂
∂

=
∂
∂

=
∂
∂

21

, only 

total order Q matters in terms of optimality. Considering the symmetric  
solution to the above system of equations as well, q*= q1*=q2*, we obtain 
the following equation 

0*)2(*2*)2( =
∂

∂
+−

Q
qpqcqp .   (2.20) 

Define Q' so that p(Q')=c. Then it is easy to verify that, 

02 2

2

22

2

1
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2
1
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<
∂
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+
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=
∂∂

∂
=

∂
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=
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qq
J

q
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J . 

This implies that the Hessian of J(q1,q2) is semi-definite negative and thus 
the function J(q1,q2) is jointly concave in production quantities q1 and q2 
for ]',0[21 Qqq ∈+ . Though this does not ensure the uniqueness of the  
optimal solution, by differentiating the left-hand side of equation (2.20) in 
q=q* we obtain for the symmetric solution 

2

2

2

2

44
Q

pq
Q
p

q
J

∂
∂

+
∂
∂

=
∂
∂ <0, 

that is, the left-hand side of (2.20) is strictly monotone in q. Thus, equation 
(2.20) has a unique solution as formalized in the following proposition. 

1 2 1 2
(2.20) constitutes a unique symmetric system-wide optimal order with 
0<q*<Q'/2. 
Proof: Since the left-hand side of equation (2.20) is strictly decreasing in 
q, if there is a feasible solution to (2.20), it is unique. To see that a solution 
of (2.20) always exists, assume q=0, then, since p(0)>c, the left-hand side 
of (2.20) is positive. On the other hand, if 2q=Q', since p(Q')=c, while the 
last term of (2.20) is strictly negative as q=Q/2>0, we find that the left-
hand side of (2.20) is negative. Thus a feasible solution always exists and 
0<q<Q'/2.   

Proposition 2.3 The pair (q *,q *), where q *=q *=q* satisfy equation .
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Game analysis 

Consider now a decentralized supply chain characterized by non-cooperative 
firms and assume that both players simultaneously decide how many pro- 
ducts to produce and supply to the retailer. Using the first-order optimality 

1

21
121

1

21 )(
)(

),(
q
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q
qqJ
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q
qqp

qcqqp
q

qqJ . 

Again, since the two problems are symmetric, the competition is symmetric. 
That is, the solution to this system of equations is q= q1=q2, which satisfies 
the following equation 

Q
qpqcqp

∂
∂

+−
)2()2( =0.   (2.21) 

Comparing (2.21) and (2.20), we conclude with the result highlighting the 
differences between the centralized and (Nash) game solution. 

Proposition 2.4. In horizontal competition of the production game with equal 
power players, the retail price will be lower and the quantities produced 
by the manufacturers higher than the system-wide optimal price and pro-
duction quantity respectively. 
Proof: Comparing (2.21) and (2.20) we observe that if q=q*, then 

Q
qpqcqp

∂
∂

+−
)2()2( >

Q
qpqcqp

∂
∂

+−
*)2(*2*)2( =0, 

while the derivative of the left-hand side of this inequality with respect to q 
is negative. Thus, q>q*, which, in regard to the down-sloping price func-
tion p(2q), means that p(2q)<p(2q*).  

Nash solution 

concave in their production quantities, each supplier has a unique, best-
response function. In addition, since the derivative of the left-hand side of 
(2.21) is strictly negative, (2.21) has a unique solution. 

1
n,q2

n), which satisfies q1
n=q2

n= qn and 

0)2()2( =
∂

∂
+−

Q
qpqcqp

n
nn    (2.22) 

constitutes a unique Nash equilibrium of the production game with 0<qn< 
Q'/2. 
 

Proposition 2.5. The pair (q

Since it is easy to verify that the suppliers’ objective functions are strictly 

conditions for the suppliers’ problems we find 
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Proof: The proof is identical to that for proposition (2.3).   
The uniqueness of the Nash solution implies that both parties will tend to 
attain the equilibrium when pursuing their own profits. 

The effect of partial product substitutability  

Let the product that the second supplier produces partially substitute for 
the brand of the first supplier.  This is expressed by the ratio 0 ≤ λ≤ 1, so 
that p=p(Q)=p(q1+λq2). Then, the Nash optimality conditions take the follo-
wing form 

Q
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Though these conditions are no longer symmetric, subtracting one equation 
from the other we find 

q1
n=λq2

n. 
Thus, Q=q1

 n +λq2
 n =2 λq2

 n and q2
n is determined by 

0
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nn . 

In other words, the equilibrium exists, but the production quantities are 
now proportional rather than identical. 

Stackelberg solution 

Next we assume that one of the suppliers is the leader, say supplier-one. 
To find the Stackelberg equilibrium, we need to maximize supplier-one’s 

1 2 2
R(q1). 

Let q2= q2
R(q1) satisfy the following equation 

2
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221
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q
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qcqqp
∂
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+−+ =0.  (2.23) 

The Stackelberg equilibrium is determined by maximizing the following 
function  

1
max

q
J1(q1)=

1
max

q
 q1[p(q1+ q2

R(q1))-c].    

Differentiating this function we find 
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objective with q , subject to the best supplier-two’s response q = q
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where 
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12 )(
q

qq R

∂
∂  is determined by differentiating (2.23) with q2 set equal to 
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Equation (2.25) implies, 0
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, 

the greater the production of the first supplier, q1, the lower the production 
of the second supplier, q2

R(q1). 

Based on (2.23), (2.24) and (2.25) we conclude that the pair (q1
s,q2

s) 
constitutes the Stackelberg equilibrium of the production game if there  
exists a joint solution in q1 and q2 of the following equations: 
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Qpq
Q
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Q
Qpq

Q
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q
q

, Q=q1+q2. 

We illustrate this with the following example: 

Example 2.6 

Let the price be linear in production quantity, p=a-bQ, Q=q1+q2, p(0)=a>c. 

0
21

<−=
∂
∂

=
∂
∂ b

q
p

q
p  and 

21

2

∂∂
∂

qq
p

0)(2)2()2( =−+−−=
∂

∂
+− bqcbqa

Q
qpqcqp nn

n
nn  

Note that the price requirements, 
2

2

2

2
1

2

=
∂
∂

=
∂
∂

q
p

q
p

= 0  are met for the selected function. Using Proposition 2.5 we 

solve (2.22),  
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and find that q1
n= q2

n = 
b

ca
3
− , hence, pn= ca

3
2

3
1

+ . The payoffs for the 

b
ca

9
)( 2− .  

Based on (2.23) we can identify the best response function of the second 
supplier  

0)()(
)(

)( 221
2

21
221 =−+−+−=

∂
+∂

+−+ bqcqqba
q

qqp
qcqqp , 

and thus 

b
cbqa

qqq r

2
)( 1

122

−−
== . 

This response is then employed in (2.24) and (2.25) to find the Stackelberg 
equilibrium. Equivalently, by substituting this response into the first sup-
plier objective function 

1
max

q
 q1[p(q1+ q2

R(q1))-c]=
1

max
q

]
222

[ 1
1

cbqaq −− . 

and using the first-order optimality conditions, we obtain an explicit reso-
lution of equation (2.24) for our example, 

0]
2

[]
222

[ 1
1

1

1 =−+−−=
∂
∂ bqcbqa
q
J . 

Accordingly, q1
s=

b
ca

2
− , q2

s = 
b

ca
4
− , ps=

4
3ca + , J1(q1

s,q2
s)= 

b
ca

8
)( 2− and 

J2(q1
s,q2

s)= 
b
ca

16
)( 2− . Note that instead of equal payoff under a simultane-

ous Nash strategy, the first supplier, who is the leader, gains a profit which 
is twice as much as the follower’s profit under a sequential Stackelberg 
strategy. 

Finally, the centralized solution (2.20) is 

0)(*2*2*)2(*2*)2( =−+−−=
∂

∂
+− bqcbqa

Q
qpqcqp . 

Or, q1
*= q2

* =
b

ca
4
− , hence, p*= ca

2
1

2
1

+  and the system-wide optimal 

supply chain profit is J(q1
*,q2

*)=
b
ca

4
)( 2− . 

 
 
 

J1(q1
n,q2

n)=J2(q1
n,q2

n)=equilibrium are thus identical for both players, 
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Comparing these results, we find for the first supplier, that his production 
quantity under the centralized approach is smaller than both that of the 
Nash strategy and that obtained when the supplier is the Stackelberg leader 

q1
s =

b
ca

2
− > q1

n= 
b

ca
3
− > q1

*=
b

ca
4
− . 

For the second supplier, the production level is the same under the 
Stackelberg follower strategy and the system-wide policy, but higher for 
the Nash strategy. 

q2
n =

b
ca

3
− >q2

s = q2
*=

b
ca

4
− . 

Both results agree with Proposition 2.4 which compares Nash and system-
wide strategies. Correspondingly, given p(0)=a>c, the retail prices decrease  

ps=
4

3ca + <pn= ca
3
2

3
1

+ <p*= ca
2
1

2
1

+  

and the overall supply chain payoff deteriorates under horizontal competi-
tion, 

J1(q1
s,q2

s)+J2(q1
s,q2

s)=
b
ca

16
)(3 2− <J1(q1

n,q2
n)+J2(q1

n,q2
n)= 

b
ca

9
)(2 2− <J(q1

*,q2
*)=

b
ca

4
)( 2− .    

Example 2.7  

This example illustrates how the equilibrium can be analyzed numerically. 
Let the price be exponential in the production quantity, p=ae-bQ, Q=q1+q2, 

p(0)=a>c. Note that, 0
21

<−=
∂
∂

=
∂
∂ −bQabe

q
p

q
p , while for the second order 

condition 02

21

2

2
2

2

2
1

2

>=
∂∂

∂
=

∂
∂

=
∂
∂ −bQeab

qq
p

q
p

q
p  implying that the equilibrium  

is not necessarily unique. The Nash equilibrium is determined by (2.22) 

022 =−− −− nn qbnqb abeqcae . 
Setting the left-hand side of this equation as L in Maple 
>L:=a*exp(-b*2*q)-c-q*a*b*exp(-b*2*q); 

 := L  −  − a e( )−2 b q c q a b e( )−2 b q
 

and substituting specific parameters of the problem a=15,b=0.1,c=1, 
we have 
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> L1:=subs(a=15, b=0.1, c=1, L); 

 := L1  −  − 15 e( )−0.2 q 1 1.5 q e( )−0.2 q
 

The solution to this transcendental equation is found with Maple’s SOLVE 
> solve(L1=0, q); 

7.191168444  
To verify that the Nash equilibrium is unique, we construct a plot of the 

left-hand side Y=L1 
> plot(L1, q=0..10); 

Figure 2.4. The Nash equilibrium 
 

From this plot (see Figure 2.4) we observe that for feasible orders q1
n= q2

 

n ≥ 0, there is only one intersection of Y=L1 with line, Y=0, which is the 
Nash equilibrium, q1

n=q2
n=7.191168444. 

Similarly, employing equation (2.20) to find the system-wide optimal 
solution with Maple:  
> LL:=a*exp(-b*2*q)-c-2*q*a*b*exp(-b*2*q); 

 := LL  −  − a e( )−2 b q c 2 q a b e( )−2 b q
 

> LL1:=subs(a=15, b=0.1, c=1, LL); 

 := LL1  −  − 15 e( )−0.2 q 1 3.0 q e( )−0.2 q
 

> solve(LL1=0, q); 
4.224140740  

Comparing the system wide optimal production quantity with the Nash 
quantity we find q*=4.224< q1

n=q2
n=7.191.   

Coordination 

According to Proposition 2.4, although retailers and consumers may bene-
fit from non-cooperating suppliers leading to a fall in retail prices and an  
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increase in production as well as consumption of products, the horizontal 
competition has a negative effect on the supply chain’s profits. Thus, just 
as with the double marginalization effect, the deterioration in the supply 
chain performance arises because each manufacturer, when deciding on 
the quantity to produce, ignores the quantity which the other manufacturer 
is producing. This can be termed a “double quantification”. Indeed, in ver-
tical competition the supplier sells the retailer products which are then  
resold to the customers. Two margins are being imposed then on the same 
product quantity. On the other hand, in horizontal competition, each sup-
plier produces a number of products, but sells them at the same price. The 
price is due to the two quantities being produced. Ignoring one of the 
quantities, such as ignoring one of the margins, yields results that are dif-
ferent from the system-wide optimal solution.  

The essential means to coordinate horizontal competition is thus to coop-
erate. By simply agreeing to simultaneously set the production quantities 
equal to the system-wide optimal quantity, rather than to the non-cooperative 
equilibrium quantities, the suppliers, will be perfectly coordinating the supply 
chain and increasing their profits equally without any internal supply chain 
transfers. 

The multi-echelon effect 

Recalling the effect of vertical competition on the supply chain discussed 
in the previous section, it is apparent that the more upstream suppliers that 
are involved, the more margins are added to the supply chain. This results 
in a decrease in the quantity produced and an increase in prices. This is to 
say, double marginalization may coordinate the supply chain if its effect is 
not stronger than that of the horizontal competition. Specifically, let an  
upstream distributor who has a marginal cost cd per product play a supply 
part or sell products to both suppliers at price wd . (Of course, if the suppli-
ers are not symmetric, then the wholesale price that they can get from the 
distributor may be different). The corresponding problems of the three-
echelon supply chain with two horizontally competing suppliers are as fol-
lows (as aforementioned in this section, we consider the case when the  
retailer does not compete and therefore his problem is not accounted for): 

The problem of supplier 1 

1
max

q
J1(q1,q2)=

1
max

q
 q1[p(q1+q2)-c-wd] 

s.t. 
q1 ≥ 0, p(q1+q2) ≥  c+wd. 
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The problem of supplier 2  

2
max

q
J2(q1,q2)= 

2
max

q
 q2[p(q1+q2)-c-wd] 

s.t. 
q2 ≥ 0, p(q1+q2) ≥  c+wd 

dw
max Jd(wd,w,m)= 

dw
max (wd-cd)(q1+ q1) 

s.t. 
wd ≥ cd. 

The centralized problem 

21 ,
max

qq
J(q1,q2) = 

21 ,
max

qq
 q1[p(q1+q2)-c-cd]+ q2[p(q1+q2)-c-cd] 

s.t. 
q1 ≥ 0, q2 ≥ 0, p(q1+q2) ≥  c+cd. 

Assuming that the suppliers are at a Nash equilibrium, the equation for 
an optimal order quantity q=q1=q2 for the symmetric suppliers is similar to 
(2.21). The only difference could be that wd is subtracted 

Q
qpqwcqp d ∂

∂
+−−

)2()2( =0. 

A system-wide optimal solution, on the other hand, is similar to (2.20) 
but corrected by cd, 

0*)2(*2*)2( =
∂

∂
+−−

Q
qpqccqp d . 

Comparing these two equations, we find that both suppliers account for 
d d d

if added, as in the centralized solution, results in a total of p(2q)-c-cd. Since 
wd> cd and the derivatives of the left hand sides of these equations are 
negative, the Nash production quantity q decreases compared to the sys-
tem-wide optimal solution. On the other hand, when the quantity which the 
other party produces is ignored (as discussed in this section), the (Nash) 
production quantity q decreases compared to the system-wide optimal  
solution. Thus, if for q=q* the following holds 

Q
qpqwcqp d ∂

∂
+−−

)2()2( >
Q
qpqccqp d ∂

∂
+−−

*)2(*2*)2( , 

or, equivalently, 

The distributor’s problem  

their margins, p(2q)-c-w , and ignore the distributor’s margin w -c , which, 
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Q
qpq

∂
∂

−
*)2(* > dd cw − , 

Then, the effect of horizontal competition between the two suppliers is 
stronger than that of the vertical competition between the suppliers and  
additional upstream parties coordinate the supply chain. More precisely, 
the quantity produced and sold by the three-echelon supply chain will be 
lower than that of the corresponding two-echelon chain which does not  
involve an additional upstream distributor. 

Finally, it is worth noting that horizontal competition in multi-echelon 
supply chains opens up a whole spectrum of collaboration activities. For 
example, horizontally competing producers may coordinate the quantities 
they order from an upstream supplier to bargain lower wholesale prices. 
Interested readers are referred to Davidson (1988), Horn and Wolinsky 
(1988) and Viehoff (1987) who have addressed the benefits of various bar-
gaining schemes. 

2.3 STOCKING COMPETITION WITH RANDOM DEMAND 

In contrast to the previous section, we now assume that the retailer demand 
is random and proceed to adapt two classic newsvendor models into two 
stocking/pricing games. In one game the supplier sets the wholesale price 
to sell some of his stock while the retailer decides on the quantity to pur-
chase in order to replenish his stock. The retailer incurs no fixed order 
cost. We refer to this game as the stocking game.  

The other game is related to a manufacturer who pays a setup cost for 
each production order. To avoid this irreversible cost, the manufacturer has 
the alternative of outsourcing current in-house production to a supplier. 
Similar to the stocking game, the supplier decides on the wholesale price 
and does not charge a fixed order cost. Unlike the stocking game, the 
manufacturer determines first whether to outsource the production at this 
wholesale price or to produce in-house and then determining the proper 
quantity to order. We refer to this game as the outsourcing game. 

The classical, single-period, newsboy or newsvendor problem formulation 
assumes random exogenous demand, d, in contrast to previously discussed 
pricing and production problems with deterministic but endogenous demands. 
The selling season is short and there is no time for additional orders so if  
 

2.3.1  THE STOCKING GAME 
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the retailer orders less than the demand at the end of period, then shortage 
h- cost per unit of unsatisfied demand is incurred. The shortage cost nor-
mally includes lost sales and a loss of customer goodwill. On the other 
hand, if the retailer orders more than he is able to sell, unit inventory cost 
h+ (mitigated by salvage cost) is incurred for units left over at the end of 

is to find order quantity, q, to maximize expected overall profits. The des-
cribed newsvendor problem assumes that the product purchasing cost is 
fixed and given. However, if we take into account a supplier who inde-

tion by choosing a wholesale price, w, the newsvendor problem is reduced 
to a game. 

Let retailer’s margin, m, be fixed, f(D) and F(a)= ∫
a

dDDf
0

)(  be the  

demand probability density and cumulative distribution functions respec-

q
max Jr(q,w)= 

q
max {E[ym - h+x+ - h-x-]-wq},  (2.26) 

s.t. 
x=q-d,    (2.27) 
q ≥ 0,    (2.28) 

where x+=max{0, x} and x- =max{0, -x} are inventory surplus and shortage 
at the end of selling season respectively, and y=min{q,d} is the number of 
products sold. 

Applying conditional expectation to (2.26), the objective function trans-
forms into the following form 

q
max Jr(q,w)=

q
max { 

∫ ∫∫∫
∞

−+
∞

−−−−+
q

qq

q

dDDfqDhdDDfDqhdDDmqfdDDmDf
00

)()()()()()( wq}.(2.29) 

The first term in the objective function E[ym]= ∫∫
∞

+
q

q

dDDmqfdDDmDf )()(
0

 

represents income from selling y product units; the second and the third terms, 

E[h+x+]= ∫ −+
q

dDDfDqh
0

)()( , E[h-x-]= ∫
∞

− −
q

dDDfqDh )()(  represent  

 
 

The retailer’s problem 

period. The fixed-order cost is assumed to be negligible. The retailer’s goal 

pendently maximizes his profit and thus impacts the retailer’s optimal solu-

tively. Then, the retailer’s problem is formulated as follows. 
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losses due the inventory surplus and shortage respectively; and the last 
term, wq, is the amount paid to the supplier.  

Note, that the retailer orders products from the supplier if he expects 
non-negative profit. In other words, there is a maximum wholesale price, 
wM, that the supplier can charge. Taking this into account, as well as the 

lem. 

w
max Js(q,w)= (w-c)q   (2.30) 

s.t. 
c ≤ w ≤ wM.   (2.31) 

The corresponding centralized problem is based on the sum of two objec-
tive functions (2.30) and (2.26), which results in a function independent of 
the wholesale price, w, representing a transfer within the supply chain. 

The centralized problem 

q
max J(q)= 

q
max {E[ym - h+x+- h-x-]- cq}  (2.32) 

s.t. 
x=q- d, q ≥ 0. 

System-wide optimal solution 

We first study the centralized problem. Similar to (2.29), by determining 
the expectation of (2.32), we obtain 

q
max J(q)=

q
max {

cqdDDfqDhdDDfDqhdDDmqfdDDmDf
q

qq

q

−−−−−+ ∫ ∫∫∫
∞

−+
∞

00

)()()()()()( }. 

By employing the first-order optimality condition to this function, we 
have 

=
∂

∂
q
qJ )( cdDDfhdDDfhdDDmfqmqfqmqf

q

qq

−+−+− ∫ ∫∫
∞

−+
∞

0

)()()()()( =0, 

which, after simple manipulations, results in 

0))(1()())(1( =−−+−− −+ cqFhqFhqFm . 

Thus we find that the traditional newsvendor expression for the optimal 
order quantity q*, which is feasible if m+h->c, 

The supplier’s problem 

unit production cost, c, of the supplier, we formulate the supplier’s prob-
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F(q*)= 
+−

−

++
−+
hhm
chm .   (2.33) 

We can also verify the sufficient condition, i.e., that the objective func-
tion (2.30) is concave, 

=
∂

∂
2

2 )(
q

qJ )()( qfhhm −+ ++− ≤ 0.  (2.34) 

Let f(D)>0 for maxmin dDd ≤≤ . Then, since ordering less than the 
minimum demand, d min, as well as more than the maximum demand, dmax, 
does not make any sense, the centralized objective function is strictly con-
cave and thus we find a unique solution. 

The effect of initial inventory  

Note that if the retailer has an initial inventory, x0, that is, x= x0+q-d, then 
by using the same arguments we observe that the only change in (2.33) is 
in the argument of F(.): 

F(x0+q)= 
+−

−

++
−+
hhm
chm .                             (2.35) 

Let s satisfy the equation, 

F(s)=
+−

−

++
−+
hhm
chm ,   (2.36) 

then s is the base stock, and the optimal order quantity is interpreted as the 
well-known order-up-to policy, 

⎩
⎨
⎧ >−

=
otherwise. ,0

 if ,
*

00 xsxs
q  

Service level 

For the risk of shortage, we have the probability P[x<0]=1- α, where α is 
referred to as the service level. From (2.32) it follows that the service level 
in the centralized supply chain is P[x ≥ 0]= F(q*), or, equivalently, 
 

α = +−

−

++
−+
hhm
chm

.   (2.37) 

When x0>s, the service level is higher than the specified level α. 

Game analysis 

We consider now a decentralized supply chain characterized by non-
cooperative firms and assume first that both players make their decisions 
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simultaneously. The supplier chooses the wholesale price w and the retailer 
selects the order quantity, q. The supplier then produces q units at unit cost 
c and delivers them to the retailer.  

have 

=
∂

∂
q

wqJ ),( wdDDfhdDDfhdDDmfqmqfqmqf
q

qq

−+−+− ∫ ∫∫
∞

−+
∞

0

)()()()()( =0 

Thus, we find that the maximum wholesale price, wM=m+h-, so that if 
w ≤ wM

F(q)= 
+−

−

++
−+

hhm
whm .   (2.38) 

From (2.38) we observe, that if w=wM, the retailer does not order at all, 
while if w< wM, then comparing (2.33) and (2.38) and taking into account 

w ≥ c and 0)(
>

∂
∂

q
qF , we conclude with results similar to those found for 

the pricing game with endogenous demand. 

Proposition 2.6. In vertical competition of the stocking game, if the sup-

service level are lower than the system-wide optimal order quantity and 
service level.     

including it into the numerator of (2.38), equation (2.38) would transform 
into (3.33). We thus find the double marginalization effect discussed in the 
pricing game. In addition, this effect decreases the customer service level 
unless the supplier does not want to profit from the sale and sets w=c. On 
the other hand, since the supplier’s objective function (2.30) is linear in w, 
we conclude that the supplier would set the wholesale price as high as pos-
sible, i.e., w=wM under the Nash strategy. In such a case, the retailer makes 
no profit and orders nothing. As a result of the Nash strategy, there is nei-
ther business nor customer service between the supplier and the retailer. 

Similar to the pricing game of the previous section, the statement of 
Proposition 2.6 that vertical competition causes the supply chain perform-
ance to deteriorate does not depend on whether the players make a simul-
taneous decision or if the supplier first sets wholesale price, as is often the 
case in practice. In what follows, we show that under the supplier’s leader-

maximum purchasing price wM. 

plier makes a profit, i.e., w>c, the retailer’s order quantity and the customer 

Note that if the retailer would account for the supplier’s margin, w-c, by 

ship, the Stackelberg equilibrium’s wholesale price does not equal the 

 , the best retailer’s response is determined by 

Using the first-order optimality conditions for the retailer’s problem, we 
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Equilibrium 

Assume that the supplier is a leader in the Stackelberg game. The sup-

q=qR(w) is determined by (2.38),  
Js(q,w)= (w-c) qR(w). 

0)()()(
),(

=
∂

∂
−+=

∂
∂

w
wqcwwq

w
wqJ R

Rs . (2.39) 

The value of 
w

wq R

∂
∂ )(  is determined by differentiating (2.38) with q set 

equal to qR(w), 

f(qR(w))
w

wq R

∂
∂ )( =

+− ++
−

hhm
1 . 

As a result:  
The greater the wholesale price, the lower the quantity that the retailer or-
ders and by substituting 

w
wq R

∂
∂ )( = ( ) ))((

1
wqfhhm R+− ++

−  

into (2.38), we have 

0
))(()(

)(
),(

=
++

−
−=

∂
∂

+− wqfhhm
cwwq

w
wqJ

R
Rs , (2.40) 

where 

F(qR(w))= 
+−

−

++
−+

hhm
whm .  (2.41) 

We conclude with the following proposition. 

Proposition 2.7. Let f(D)>0 for D ≥ 0, otherwise f(D)=0 . The pair (ws,qs), 
where ws and qs= qR(ws) satisfy 

0
))(()(

)( =
++

−
−

+− sR

s
sR

wqfhhm
cwwq , F(qR(ws))=

+−

−

++
−+

hhm
whm s

, 

 constitutes a Stackelberg equilibrium of the stocking game with c<ws< 
m+h-=wM.  
Proof: First we consider equation (2.40) and verify that  

0)(
),(

>=
∂

∂
cq

w
cqJ Rs , 0

)0()(
)(

<
++

−
−=

∂
∂

+− fhhm
cw

w
wJ MM

s  . 

Since f(D)>0 for D ≥ 0 we observe that 

))(()(
)(

),(
wqfhhm

cwwq
w

wqJ
R

Rs
+− ++
−

−=
∂

∂
 

plier’s objective function with q subject to the optimal retailer’s response 

Differentiating the supplier’s objective function, we have 
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is a continuous function for c ≤ w ≤ wM. We conclude that there is at least 

one root, 0
),(

=
∂

∂
w

wqJ s
s , c<ws<wM, as stated in Proposition 2.7.  

To have a unique Stackelberg wholesale price, however, we require that 

the supplier's objective function be strictly concave, 2

2 ),(
w

wqJ s

∂
∂ <0, that is, 

w
wq

q
qf

wqfhhm
cw

wqfhhmw
wq R

R

R

RR

R

∂
∂

∂
∂

++
−

+
++

−
∂

∂
+−+−

)()(
))](()[())(()(

1)(
2 <0, (2.42) 

which apparently does not hold for every distribution. 

Let the demand be characterized by the uniform distribution,  

⎪⎩

⎪
⎨
⎧ ≤≤

=
otherwise 0,

;0for  ,1
)(

AD
ADf  and 

A
aaF =)( , 0 ≤ a ≤ A. 

Then the supplier objective function is strictly concave, as (2.42) holds. 
Using (2.40) - (2.41) we find 

0
)(

)( =
++

−
−

+−
A

hhm
cwwq

s
sR  and F(qR(ws))=

A
wq sR )( = 

+−

−

++
−+

hhm
whm s

. 

Thus, 

+−

−

++
−+

hhm
whm s

A 0
)(

=
++

−
−

+−
A

hhm
cws

, 

which results in 

2
chmws ++

=
−

, 
2

)( A
hhm
chmwqq sRs

+−

−

++
−+

== , (2.43) 

while the system-wide optimal order quantity is twice as large,  

q*= +−

−

++
−+
hhm
chm

A.   (2.44) 

Recalling our assumption that wM=m+h->c, we observe that c<ws<wM 
and 0<qs<A/2. Thus, this problem has always a unique Stackelberg equili-
brium.   

Let the demand be characterized by an exponential distribution, i.e., 
 

Example 2.8 

Example 2.9 
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⎪⎩

⎪
⎨
⎧ ≥

=
−

otherwise 0,

;0for  ,
)(

De
Df

Dλλ
 and aeaF λ−−= 1)( , a ≥ 0. 

Then according to (2.40), we have the equation for the Stackelberg 
wholesale price 

0
)(

)(
)(

=
++

−
−

−+− wq

R
R

ehhm
cwwq

λλ
, 

where according to (2.41) 
)(1 wqR

e λ−− = +−

−

++
−+

hhm
whm

 

and thus 

qR(w)= +

+−

+
++

hw
hhmln1

λ
. 

Substituting this into the equation of the Stackelberg wholesale price, we 
obtain  the following expression   

+

+−

+
++

hw
hhmln1

λ
0

)(
=

+
−

− + λhw
cw

. 

We solve this equation with Maple by first setting the left hand side as L 
>L:=ln((m+hplus+hminus)/(w+hplus)-(w-c)/(w+hplus); 

 := L  − ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ln  + + m hplus hminus

 + w hplus
− w c

 + w hplus  

Then substituting specific values for m=15, hplus=1, hminus=10, 
c=2 
>L1:=subs(m=15, hplus=1, hminus=10, c=2, L); 

 := L1  − ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ln 26

 + w 1
− w 2
 + w 1  

we verify with a plot Y= L1 that it crosses line Y=0 only once and thus the 
Stackelberg wholesale price is unique. 
>plot(L1, w=2..15); 
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Figure 2.5. The Stackelberg wholesale price 

Next we solve equation L1=0 in a general form 
> ws:=solve(L1=0, w); 

 := ws −
 − ⎛

⎝
⎜⎜

⎞
⎠
⎟⎟LambertW 3

26 e 3

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟LambertW 3

26 e

 

and evaluate the result numerically 
> evalf(ws); 

11.22512050  
Finally we calculate the equilibrium order quantity by using the best  

retailer’s response function qR(w)= +

+−

+
++

hw
hhmln1

λ
. 

> q:=1/lambda*ln((m+hplus+hminus)/(w+hplus)); 

 := q

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ln + + m hplus hminus

 + w hplus
λ

 

and substituting the specific parameters of the problem 
>qR:=subs(m=15, hplus=1, hminus=10, lambda=0.1, 
w=evalf(ws), c=2, q); 

 := qR 10. ( )ln 2.126768403 . 
Evaluating numerically the last result leads to 

> qs=evalf(qR); 
= qs 7.546036459 . 

Thus ws=11.225 and qs= 7.546. The system-wide optimal order quantity 
is determined by (2.33) 

q*=
+

+−

+
++

hc
hhmln1

λ
, 
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which with Maple results in 
> qopt:=1/lambda*ln((m+hplus+hminus)/(c+hplus)); 

 := qopt

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ln + + m hplus hminus

 + c hplus
λ

 

>qswopt:=subs(m=15, hplus=1, hminus=10, lamb-
da=0.1, c=2, qopt); 

 := qswopt 10. ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ln 26

3  

>evalf(qswopt); 
21.59484249  

Comparing the system-wide optimal solution with the equilibrium solution 
we find that the system-wide optimal order is almost three-times as large. 

qs= 7.546<q*=21.594.     

Coordination 

According to Proposition 2.6, vertical competition under exogenous ran-
dom demand has a negative effect on the supply chain: the retailer orders 
less and the service level decreases. This is similar to the pricing competi-
tion considered in the previous section and again the negative effect is due 
to the double marginalization. As opposed to the pricing game, there is no 

positive effect on the chain. More precisely, there is an equilibrium if the 
supplier assumes leadership.  

Due to the same double marginalization effect, the coordination in this 
game is similar to that discussed for the pricing game: discounting and 
profit sharing. We present here a straightforward approach for developing 
a coordinating quantity discounting scheme.  

s
make the wholesale price dependent on the order quantity, q, 

Js(q,w)= w(q)-cq. 

F(q)= 
+−

−

++
∂∂−+

hhm
qwhm .   (2.45) 

We do not specify any specific requirement for wholesale price w(q) but 
impose conditions on the rate of change of w(q)  

q
qw

∂
∂ )( <c, 0)(

2

2

≥
∂

∂
q

qw , if q<q* and 
q
qw

∂
∂ )( ≥ c, if q>q*. 

 
 

First we generalize the supplier’s objective function J (q,w)=(w-c)q to 

Nash equilibrium in the stocking game while the supplier’s leadership has a 

Then the retailer’s best-response (2.38) takes the following form 
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These conditions imply that the function w(q) may have various dis-
counting schemes for 0 ≤ q ≤ q*. Next we show that if the conditions are 
met, the supplier can select any value for w(q), w(q*)<wM, and still have 
the retailer ordering the system-wide optimal quantity. 

Proposition 2.8. Let w(q*)<wM, and the discounting scheme be such that 

if w(q) is a continuous function of q, 
q
qw

∂
∂ )( <c and 0)(

2

2

≤
∂

∂
q

qw  for q<q*, 

and 
q
qw

∂
∂ )( ≥ c for q>q*, then the supplier orders the system-wide optimal 

quantity q*. 

Proof: Since w(q) is continuous, 0)(
2

2

≥
∂

∂
q

qw for q<q* and 
q
qw

∂
∂ )( ≥ c>0 

for q>q*, the wholesale price w(q) is a convex function, a solution which 
satisfies (2.45). Note that derivative of w(q) at q=q* is not required to  

exist. We thus represent it by the sub-gradient, e
q
qw

=
∂

∂ *)( , cea ≤≤  

where a=
*

*)()(lim
**, qq

qwqw
qqqq −

−
<→

<c. There can be three possible solutions to 

(2.45). Assume there exists an optimal solution q', q'<q*, such that 

q
qw

∂
∂ )( ≤ a<c and (2.45) is met. Recalling that F(q*)=

+−

−

++
−+
hhm
chm , we 

find that if (2.45) is met and 
q
qw

∂
∂ )( <c, then q'>q*, which contradicts our 

initial assumption. Similarly, we observe that another solution, say q'', 

q''>q* and thus 
q
qw

∂
∂ )( ≥ c contradicts (2.45). The only solution left is 

q'''=q*, e
q
qw

=
∂

∂ *)( . Substituting this into (2.45) we find 

F(q''')=
+−

−

++
−+
hhm
ehm , 

which is satisfied for e=c as a ≤ e ≤ c and q''=q*.   

A trivial example of linear discounting that satisfies Proposition 2.8 is 

⎩
⎨
⎧

−+−
≤≤−

=
otherwise, *),(*

*;0 ,
)(

qqcaqA
qqaqA

qw  

where A-aq*<wM. 
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In this section, the classical, single-period newsvendor model with a setup 
cost is turned into an outsourcing game. We consider a single manufac-
turer with two potential situations. He either incurs a fixed cost per each 
production order or the product produced is characterized by frequently 
changing characteristics and/or technology. These changes may be due to 
new product features and/or technological developments so that each 
change induces a non-negligible fixed cost. The basic assumptions remain 
unchanged: the demand is random with known density, f(D) and cumula-
tive F(a) distribution function. In addition we assume a short selling season. 
If the manufacturer’s production or supply order is less than the demand 
realized at the end of period, then a shortage cost h- per unit of unsatisfied 
demand is incurred and there is no time for additional orders. Otherwise, if 
there is a surplus, the unit inventory cost h+ is incurred at the end of period.  

Accordingly, the manufacturer has two options. One is to order the pro-
duction in-house, which incurs an irreversible fixed cost C as well as vari-
able cost cm per unit product. This is in contrast to the newsvendor model 
considered in the previous section, where the retailer's fixed-order cost was 
assumed to be negligible. The other option involves outsourcing the pro-
duction to a single supplier. Then the manufacturer incurs only the variable 
purchasing cost w per product unit and the supplier incurs a unit produc-
tion cost c. We assume that c>cm, no initial inventory, and a profitable  
in-house production (at least when there is no initial inventory at the 
manufacturer’s plant). Otherwise outsourcing is always advantageous. 
Both the manufacturer and the supplier are profit maximizers.  

q
max Jm(q,w)= 

 max{
q

max {E[ym -h+x+- h-x-]-wq},
q

max {E[ym -h+x+- h-x-]-cmq-C}}, (2.46) 

s.t. 
x=q-d,    (2.47) 

q ≥ 0,    (2.48) 

where x+=max{0, x} and x- =max{0, -x} are respectively inventory surplus 
and shortage at the end of a period, and y=min{q,d} is the number of 
products sold. 

first part 
q

max {E[ym - h+x+ - h-x-]-wq} represents the profit which the  

 

2.3.2  THE OUTSOURCING GAME 

The manufacturer’s problem 

The manufacturer’s objective function (2.46) consists of two parts. The 
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manufacturer can gain if he decides to outsource the production. The other 
part is the profit from in-house production (assuming that the production is 
profitable). Since the first part is identical to that studied in the previous 
section, application of conditional expectation to the first part of (2.46)  
results into (2.29). Thus, the optimal manufacturer's outsourcing order q' 
for (2.29) is given by (2.38), 

F(q')= +−

−

++
−+

hhm
whm

. 

If we assume that C=0, then the second part of (2.46) differs from the first 
part by cm only, replaced with w. Consequently, if C=0, then the optimal 
response for the second part of (2.46), q'', is 

F(q'')= +−

−

++
−+

hhm
chm m . 

Introduce a cost function, π(q), such that 

π(q)=E[ym - h+x+ - h-x-].   (2.49) 
Then, 

π(q')-wq'= 

∫ ∫∫∫
′ ∞

′

−+
∞

′

′

′−−−′−′+
q

qq

q

dDDfqDhdDDfDqhdDDfqmdDDmDf
00

)()()()()()( wq' 

is the maximum profit if outsourcing is selected (the first part of (2.46)). 
The maximum profit when in-house production is selected (the second part 
of (2.46)) is 

π(q'')-cmq''-C= 

∫ ∫∫∫
′′ ∞

′′

−+
∞

′′

′′

′′−−−′′−′′+
q

qq

q

dDDfqDhdDDfDqhdDDfqmdDDmDf
00

)()()()()()( -cmq''-C. 

Thus, the optimal manufacturer's choice for a given wholesale price is 
summarized by 

⎩
⎨
⎧ −−≥−

=
otherwise, ,''

'')''(')'( if ,'
q

Cqcqwqqq
q mππ

   (2.50) 

where q' is the outsourcing order, while q'' is the in-house production  
(according to our assumption that in-house production is at least worth-
while, π(q'')-cmq''-C>0). Furthermore, condition (2.50) assumes that out-
sourcing is a dominating strategy when profits from in-house production 
and outsourcing are identical. 

Let outsourcing at supplier’s marginal cost be advantageous compared 
to in-house production profit,  
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π(q'')-cmq''-C ≤ π(q')-cq', F(q')=
+−

−

++

−+

hhm

chm
. 

This, along with (2.50) and the fact that outsourcing profit decreases 
when the wholesale price increases, implies that the maximum purchase 
price wo ≥ c always exists such that  

π(q'')-cmq''-C=π(q') - woq', F(q')= +−

−

++
−+

hhm
whm o

 . 

Using (2.49), wo is the smallest root of the expression below 

∫ ∫∫∫
′′ ∞

′′

−+
∞

′′

′′

′′−−−′′−′′+
q

qq

q

dDDfqDhdDDfDqhdDDfqmdDDmDf
00

)()()()()()( -cmq''-C= 

∫ ∫∫∫
′ ∞

′

−+
∞

′

′

′−−−′−′+
q

qq

q

dDDfqDhdDDfDqhdDDfqmdDDmDf
00

)()()()()()( -

woq',     (2.51) 

where F(q'')= 
+−

−

++
−+

hhm
chm m  and F(q')= 

+−

−

++
−+

hhm
whm o

. 

On the other hand, if outsourcing is not advantageous, then π(q'')-cmq''-

C>π(q')-cq', F(q')= +−

−

++
−+
hhm
chm  and cm<wo<c. Thus condition (2.50) can 

be reformulated as follows 

⎩
⎨
⎧

<

≤≤
=

, if ,''
, if ,'

0

0

cwq
wwcq

q    (2.52) 

where F(q'')= 
+−

−

++
−+

hhm
chm m  and F(q')= +−

−

++
−+

hhm
whm o

. 

The interpretation of (2.52) is straightforward. If purchasing at the marginal 
cost of the supplier is not beneficial compared to the in-house production, 
then there is no wholesale price, w>c, to encourage outsourcing.  

The supplier's problem is similar to that of the previous section. 

w
max Js(q,w)= (w-c)q   (2.53) 

s.t. 
c ≤ w ≤ w0.   (2.54) 

m

m
o

 

The supplier’s problem 

Note that if π(q'')-c q''-C ≤ π(q')-cq', then the supplier’s problem has a 
feasible solution. Otherwise, c <w <c, and the supplier’s problem has no  
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feasible solution since, in order to compete with in-house production, the 
supplier has to set the wholesale price below his marginal cost, w<c.  

Correspondingly, the centralized problem is split into two cases. If 
π(q'')-cmq''-C ≤ π(q')-cq', or equivalently, wo ≥ c, the centralized problem is  
 reduced to that considered in the previous section. Indeed, if the supply 
chain is integrated, then wholesale-related costs represent a transfer within 
the chain which does not affect the system-wide optimal solution. Then the 
supplier will deliver products at his marginal cost c and no fixed irreversi-
ble cost will be paid since in-house production is not implemented. 

The centralized problem 

q
max J(q)=

q
max {E[ym - h+x+ - h-x-]-cq}  (2.55) 

s.t. 
x=q-d, q ≥ 0. 

If wo<c, then the centralized objective function is identical to the second 
part of (2.46), which is the classical newsvendor problem with a setup cost  

q
max {E[ym -h+x+- h-x-]-cmq-C .   (2.56) 

become identical in such a case. 

System-wide optimal solution 

The centralized problem (2.55) was studied in the previous section. If out-
sourcing is selected, i.e., wo>c, the system-wide optimal order quantity q*' 
is unique and defined by (2.33).  

F(q*')= 
+−

−

++
−+
hhm
chm . 

Note that if the supply chain is centralized, then it simply has two  
options to produce the product (at the manufacturer and at the supplier). 
Therefore, it is the production at the supplier option (if chosen) rather than 
outsourcing.  

Similarly, if production at the manufacturer is selected, wo<c, the optimal 
solution is the newsvendor solution  

F(q*'')=
+−

−

++
−+

hhm
chm m .   (2.57) 

In other words, the manufacturer’s problem and the centralized problem 
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The effect of initial inventory  

Since the supplier does not impose any fixed-order cost, the effect of initial 
inventories on outsourcing is identical to that for the centralized system as 
discussed in the previous section, 

F(x0+q*')=
+−

−

++
−+
hhm
chm . 

To study the effect of initial inventories on production at the manufac-
0

x0+q-d. Then the profit from not ordering anything is 
π(x0)=

∫ ∫∫∫
∞

−+
∞

−−−−+
0

00

0

0

000

0

)()()()()()(
x

xx

x

dDDfxDhdDDfDxhdDDfmxdDDmDf . 

On the other hand, if the manufacturer produces q>0 products, the profit 
is 

π(q+x0)-cmq-C. 
The optimal solution for this objective function is determined by (2.57) 

F(q*''+x0)=
+−

−

++

−+

hhm

chm m
. 

Denote S= q*''+x0, then the optimal in-house profit for a given x0 is  
π0(S)-cm(S- x0)-C. 

Note that if x
0
=0, then assuming that in-house production is profitable 

under conditions of no initial inventory, we have, π(S)-cm(S- x0)-C>0, 
while π(x0)<0 since we do not sell anything when x0=0. That is, 

π(S)-cm(S- x0) -C> π(x0), 
or equivalently, 

π(S)-cmS -C> π(x0)-cmx0, 
which implies that it is optimal to produce in-house when x0=0. When initial 
inventories increase x0>0, then the left-hand part of the inequality remains 
unchanged while the right-hand part increases towards its maximum which 
is attained at x0=S. Thus, when x0=S, C>0, we have 

π(S)-cmS - C< π(x0)-cmx0, 
which implies that it is optimal not to produce when x0=S. The right-hand 
side of the inequality represents the traditional newsvendor objective func-
tion, π(x0)-cmx0, which monotonically increases when x0 increases towards 
S. We conclude that there exists x0=s<S, such that, 

π(S)-cmS - C= π(s)-cms. 
Thus, if x0<s, then π(S)-cmS -C> π(x0)-cmx0 and it is profitable to produce 

so that S= q*''+x0. On the other hand, if x0>s, then π(S)-cmS - C< π(x0)-cmx0 
and it is not profitable to produce. Consequently, in contrast to the optimal  
 

turer’s plant, let x <S, (otherwise it is not optimal to produce at all) and x= 
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order-up-to policy when no fixed order cost is incurred, we obtain the  
so-called security stock (s, S) policy which is widely used in industry as 
well, 

⎩
⎨
⎧ <−

=′′
otherwise, ,0

 if ,
*

00 sxxS
q  

where s is the smallest value that satisfies π(S)-cmS -C= π(s)-cms. 

Game analysis 

To simplify the presentation, we assume x0=0 and consider now a decen-
tralized supply chain characterized by non-cooperating firms. Let the sup-
plier first set the wholesale price. If wo<c, then regardless of the wholesale 
price, an in-house production for q” is chosen. Otherwise, the manufac-
turer decides to outsource and issues an order, q', which the supplier deliv-
ers.  

Since in-house (2.57) and the centralized in-house solutions are identi-
cal, we further focus on outsourcing, i.e., wo ≥ c. Let us first assume that 
wo=c, then the supplier has zero profit by setting w=c, and simply sustains 
himself since the manufacturer’s dominating policy is to outsource (2.50) 
when the profit from in-house production is equal to the outsourcing profit.  

Let wo>c. Using the results from the previous section, the optimal order 
is determined by (2.38) 

F(q')= 
+−

−

++
−+

hhm
whm . 

This, similar to Proposition 2.6, implies the double marginalization effect. 

Proposition 2.9. In the outsourcing game, if wo>c and the supplier makes a 
profit, i.e., w>c, the manufacturer’s order quantity and the customer service 
level are lower than the system-wide centralized order quantity and service 
level.    

Again, similar to the observation from the previous section, since the 

the wholesale price as high as possible, i.e., w=wo under the Nash strategy. 
This causes supply chain performance to deteriorate. In contrast to the  
inventory game of the previous section, if the manufacturer’s dominating 
policy is to outsource when the profit from in-house production is equal to 
the profit from outsourcing, then the manufacturer will still outsource at 
w=wo.  

supplier’s objective function is linear in w, the supplier would want to set 
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Equilibrium 

Given wo>c, Proposition 2.7 proves that there is a Stackelberg equilibrium 
price c<ws<m+h-. However, since q'>0 and π(q')-woq'=π(q'')-cm(q'')-C>0, 
then wo<wM=m+h-. This implies that the Stackelberg wholesale price 
found with respect to Proposition 2.7 may be greater than wo. In such a 
case it is set to ws= wo.  

Based on Proposition 2.7 and the manufacturer’s optimal response 
(2.52), we summarize our results.  

If wo<c, then produce q'' products in-house, where 

F(q'')= 
+−

−

++
−+

hhm
chm m . 

If wo=c, then outsource; the equilibrium wholesale price is ws=c, and 
the outsourcing quantity q' is such that  

F(q')= 
+−

−

++
−+
hhm
chm . 

If wo>c, then outsource; find w' and q'= qR(w') (according to Proposi-
tion 2.7), i.e.,  

0
))'(()(

')'( =
++

−
−

+− wqfhhm
cwwq R

R , F(qR(w'))=
+−

−

++
−+

hhm
whm ' . 

If w'<wo, then the equilibrium wholesale price is ws=w' and the 
outsourcing order is q', otherwise ws=wo and the outsourcing or-

der q' is such that F(q')= +−

−

++
−+

hhm
whm 0

. 

Let the demand be characterized by the uniform distribution,  

⎪⎩

⎪
⎨
⎧ ≤≤

=
otherwise 0,

;0for  ,1
)(

AD
ADf  and 

A
aaF =)( , 0 ≤ a ≤ A. 

Then using the results of Example 2.8, we have a unique solution for each 
case. 

If wo<c, then produce q''=
+−

−

++
−+

hhm
chm m A products in-house, which is 

equivalent to the system-wide optimal solution.  
 
 
 
 

Example 2.10 
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If wo=c, then we outsource; the equilibrium wholesale price is ws=c and 

the outsourcing quantity is qs=
+−

−

++
−+
hhm
chm A products, which is equivalent 

to the system-wide optimal order. 

If 
2

chm ++ −

≤ wo (and thus wo>c), then we outsource; the equilibrium 

wholesale price is 
2

chmws ++
=

−

 and the outsourcing order is 

2
' A

hhm
chmqq s

+−

−

++
−+

== .  

If 
2

chm ++ −

>wo>c, then we outsource; the equilibrium 

wholesale price is os ww = and outsourcing order quantity is 

2
'

0 A
hhm
whmqq s

+−

−

++
−+

==  products, 

where wo satisfies the expression 

∫ ∫∫∫
′′ ∞
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q
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Dm
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woq'}, q''=
+−

−

++
−+

hhm
chm m A and A

hhm
whmq

o

+−

−

++
−+

=' .  

Example 2.11 

Let the demand be characterized by an exponential distribution, i.e., 
 

⎪⎩

⎪
⎨
⎧ ≥

=
−

otherwise 0,

;0for  ,
)(

De
Df

Dλλ
 and aeaF λ−−= 1)( , a ≥ 0. 

 
We first formalize equation (2.51) for wo which, for the exponential dis-

tribution yields, 

∫ ∫
′′ ∞

′′

−−−+ ′′−−′′+−′′−
q

q

DD dDeqDhqmdDeDqhmD
0

)]([)]([ λλ λλ -cmq''-C= 

 



= ∫ ∫
′ ∞

′

−−−+ ′−−′+−′−
q

q

DD dDeqDhqmdDeDqhmD
0

)]([)]([ λλ λλ -woq', 

where q''= 
mch
hhm

+
++

+

+−

ln1
λ

 and q'= 0ln1
wh

hhm
+

++
+

+−

λ
. 

We calculate this expression with Maple. Specifically, we set the order 
quantities q'' and q' as q2 and q1 respectively, 
> q2:=1/lambda*ln((m+hplus+hminus)/(cm+hplus)); 

 := q2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ln + + m hplus hminus

 + cm hplus
λ

 

> q1:=1/lambda*ln((m+hplus+hminus)/(w0+hplus)); 

 := q1

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ln + + m hplus hminus

 + w0 hplus
λ

 

Next we define the left-hand side and right-hand side of (2.51) as LHS and 
RHS 
>LHS:=int((m*D-hplus*(q2-D))*lambda*exp(-lambda* 
D),D=0..q2)+int((m*q2-hminus*(D-q2))*lambda*exp(-
lambda*D), D=q2..infinity)-cm*q2-C: 
>RHS:=int((m*D-hplus*(q1-D))*lambda*exp(-lambda* 
D),D=0..q1)+int((m*q1-hminus*(D-q1))*lambda*exp(-
lambda*D), D=q1..infinity)-w0*q1: 

Then to see how fixed cost, C, effects the solution, specific values are 
substituted for the parameters of the problem except for C. 
> LHSC:=subs(m=15, hplus=1, hminus=10, cm=2, lambda=0.1, 

LHS); 
> RHS1:=subs(m=15, hplus=1, hminus=10, cm=2, lambda=0.1, 

RHS); 
After evaluating the left-hand side and the right-hand side 

> LHSCe:=evalf(LHSC); 
:= LHSCe − 65.2154725 1. C  

> RHSe:=evalf(RHS1); 

RHSe 15.76923077 ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ln 26.

 + w0 1. 168.7967107 8.796710786 w0−  +  +  := 

15.76923077 ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ln 26.

 + w0 1. w0 5.769230769 ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ln 1

 + w0 1. −  + 

5.769230769 w0 ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ln 1

 + w0 1. + 
 

we solve (2.51) in w0 
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> solutionw0:=solve(LHSCe=RHSe, w0); 
and plot the solution as a function of the fixed cost  
>plot(solutionw0, C=0..200); 

 
Figure 2.6. The effect of the fixed cost C on the maximum wholesale price w0 

The plot (Figure 2.6) implies that the higher the fixed cost, C, the 
greater w0 and thus the smaller the chance that in-house production is bene-
ficial compared to the outsourcing. For example, if C=120 
> LHSes:=subs(C=120, LHSCe); 

:= LHSes -54.7845275  
then 
>solve(LHSes=RHSe, w0); 

11.26258264  
w0=11.2625 and thus if supplier's cost c>11.2625, the in-house production 
is advantageous (and is system-wide optimal) at quantity q''*=q2opt=21.594 
>q2opt:=evalf(subs(m=15, hplus=1, hminus=10, cm=2, 
lambda=0.1, q2));  

:= q2opt 21.59484249  
Otherwise, if c ≤ 11.2625 , then outsourcing is advantageous and the 
Stackelberg equilibrium wholesale price w' and order quantity q' are calcu-
lated as described in the previous section. Note that in case of w'>wo, the 
Stackelberg wholesale price equals wo and the order quantity is computed 
correspondingly.   

Coordination 

If w0>c, then outsourcing has a negative impact compared to the corres-
ponding centralized supply chain, the manufacturer orders less and the ser-
vice level decreases. This is similar to the vertical inventory game without  
 
 



a setup cost considered in the previous section. In contrast to that game, 
this effect is reduced when c ≤ wo<ws, where ws is calculated under an as-
sumption of no constraints, i.e., according to Proposition (2.7). In addition, 
there can be a special case when wo=c, and thus the supplier is forced to set 
the wholesale price equal to its marginal cost, w=c. This eliminates double 
marginalization, the manufacturer outsources the system-wide optimal quan-
tity and the supply chain becomes perfectly coordinated regardless of whether 
the supplier is leader in a Stackelberg game or the firms make decisions 
simultaneously using a Nash strategy. On the other hand, since the case 
when the manufacturer prefers in-house production is identical to the cor-
responding centralized problem, no coordination is needed. Consequently, 
the case which requires coordination is when w0>c. This case coincides 
with that derived for the inventory game with no setup cost. Thus, the co-
ordinating measures discussed in the previous section are readily applied 
to an outsourcing-based supply chain.  

An alternative way of improving the supply chain performance is to deve-
lop a risk-sharing contract which would make it possible to coordinate the 
chain in an efficient manner as discussed in the following section.  

2.4 INVENTORY COMPETITION WITH RISK SHARING 

In competitive conditions discussed so far, the retailer incurs the overall 
risk associated with uncertain demands. The fact that expected profit is the 
criterion for decision-making implies that the retailer does not have an  
assured profit. The supplier, on the other hand, profits by the quantity he 

to mitigate demand uncertainty by buying back left-over products at the 
end of selling season or offer an option for additional urgent deliveries to 
cover cases of higher than expected demand. These well-known types of 
risk-sharing contracts make it possible to improve the service level as well 
as to coordinate the supply chain as discussed in the following sections. 
(See also Ritchken and Tapiero 1986). 

A modification of the traditional newsvendor problem considered here 
arises when the supplier agrees to buy back leftovers at the end of selling 

season at a price, b(w), 0)(
≥

∂
∂

w
wb  and 0)(

2

2

≥
∂

∂
w

wb . This means that the  
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sells. If the supplier is sensitive to the retailer’s service level, he may agree 
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uncertainty associated with random demand may result in inventory asso-
+

income b(w)x+ rather than a cost. Thus the supplier mitigates the retailer’s 
risk associated with demand overestimation or, in other words, the supplier  
 shares costs associated with demand uncertainty. The other parameters of 
the problem remain the same as those of the stocking game. 

q
max Jr(q,w)= 

q
max {E[ym + b(w)x+ - h-x-]-wq},  (2.58) 

s.t. 
x=q-d, 
q ≥ 0, 

where x+=max{0, x}, x- =max{0, -x} and y=min{q,d}. 

Applying conditional expectation to (2.58) the objective function trans-
forms into 

q
max Jr(q,w)=

q
max { 

∫ ∫∫∫
∞

−
∞

−−−++
q

qq

q

dDDfqDhdDDfDqwbdDDmqfdDDmDf
00

)()()())(()()( -wq}.(2.59) 

The first term in the objective function, E[ym]= ∫∫
∞

+
q

q

dDDmqfdDDmDf )()(
0

, 

represents income from selling y product units; the second, E[b(w)x+]= 

∫ −
q

dDDfDqwb
0

)())(( , represents income from selling leftover goods at 

the end of the period; the third, E[h-x-]= ∫
∞

− −
q

dDDfqDh )()( , represents 

losses due to an inventory shortage; while the last term, wq, is the amount 
paid to the supplier for purchasing q units of product. As discussed earlier, 
there is a maximum wholesale price, wM, that the supplier can charge so 
that the retailer will still continue to buy products. Taking this into account 

The supplier’s problem 

w
max Js(q,w)= 

w
max (w-c)q-E[b(w)x+]  (2.60) 

s.t. 

The retailer’s problem 

ciated costs, b(w)x  at the supplier’s site while at the retailer’s site it is an 

we formulate the supplier’s problem. 



c ≤ w ≤ wM. 

selling q products at margin w-c, while the second, E[b(w)x+] is the pay-
ment for the returned leftovers to the supplier. To simplify the problem, we 
here assume that leftovers are salvaged at a negligible price rather than 

sum of two objective functions (2.59) and (2.60) which results in a func-
tion independent of the wholesale price, w. 

The centralized problem 

q
max J(q)= 

q
max {E[ym - h-x-]-cq}  (2.61) 

s.t. 
x=q-d, q ≥ 0. 

Note that since w and b represent transfers within the supply chain, system-
wide profit does not depend on them.  

System-wide optimal solution 

Applying conditional expectation to (2.61) and the first-order optimality 
condition, we find that 

=
∂

∂
q
qJ )( cdDDfhdDDmfqmqfqmqf

qq

−−+− ∫∫
∞

−
∞

)()()()( =0, 

which results in 

F(q*)= 
−

−

+
−+

hm
chm .   (2.62) 

Since this result differs from (2.33) by only h+ set at zero, the objective 
function in (2.61) is strictly concave under the same assumptions. Simi-
larly, the service level in the centralized supply chain with a buyback con-
tract is 

α =
−

−

+
−+

hm
chm ,   (2.63) 

This is different from α =
+−

−

++
−+
hhm
chm  of the traditional newsvendor 

problem only because of our assumption that surplus products are salvaged 
at a negligible price rather than stored at the supplier’s site.  

The first term (w-c)q in (2.60) represents the supplier’s income from 

stored at the supplier’s site. The centralized problem is then based on the 
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Game analysis 

Consider now a decentralized supply chain characterized by non-cooperative 
firms and assume that both players make their decisions simultaneously. 
The supplier chooses the wholesale price w and thereby buyback b(w) 
price while the retailer selects the order quantity, q. The supplier then  
delivers the products and buys back leftovers.  

find wM=m+h-, so that if w ≤ wM, then 

F(q)= 
)(wbhm

whm
−+

−+
−

−

.                               (2.64)  

from (2.64), the following result. 

Proposition 2.10. In vertical competition, if the supplier makes a profit, 
i.e., w>c, a buyback contract induces increased retail orders and an im-
proved customer service level compared to that obtained in the corres-
ponding stocking game.  
Proof: To prove this proposition, compare the optimal orders with the non-
cooperative buyback option 

F(q)= 
)(wbhm

whm
−+

−+
−

−

, 

and without the buyback option  

F(q)= 
+−

−

++
−+

hhm
whm .                                         

From Proposition 2.10 we conclude that the buyback contract has a  
coordinating effect on the supply chain. Moreover, comparing (2.62) and 
(2.64), we observe that in contrast to the stocking game, with buyback con-
tracts, i.e., b(c)>0, when setting w=c, the retailer orders even more than the 
system-wide optimal quantity since there is less risk of overestimating  
demands. In such a case, the supplier has only losses due to buying back 
leftover products. Thus, the supplier can select w>c so that the retailer’s 
non-cooperative order will be equal to the system-wide optimal order 
quantity. This coordinating choice will be discussed below after analyzing 
possible equilibria. 

 

 

 

 

Using the first-order optimality conditions for the retailer’s problem, we 

Since the retailer’s objective function is strictly concave, we conclude 



Equilibrium  

Let us first consider the case of 0)(
>

∂
∂

w
wb , 0)(

2

2

>
∂

∂
w

wb  and assume that 

b(w) is chosen such that 
w

lim Js(q,w)= ∞− , i.e., the solution set is compact. 

objective function Js(q,w)=(w-c)q-E[b(w)x+]=(w-c)q ∫ −−
q

dDDfDqwb
0

)())(( ,  
 

0)()()(),(

0

=−
∂

∂
−=

∂
∂

∫
q

s dDDfDq
w
wbq

w
wqJ

.   (2.65) 

Verifying the second-order optimality condition, we also find 

0)()()(),(

0
2

2

2

2

<−
∂

∂
−=

∂
∂

∫
q

s dDDfDq
w

wb
w

wqJ
.  (2.66) 

Since the functions of both supplier and retailer are strictly concave and 
the solution space is compact, we readily conclude that a Nash equilibrium 
exists (see, for example, Basar and Olsder 1999). 

Proposition 2.11. The pair (wn,qn), such that  

0)()()(

0

=−
∂

∂
− ∫

nq
n

n
n dDDfDq

w
wbq , F(qn)= 

)( n

n

wbhm
whm

−+
−+

−

−

 

   

An interesting case arises when b(w) is a linear function of w. In such a 
case, similar to the traditional stocking game, Js(q,w) depends linearly on 
w, i.e., the supplier would set the wholesale price as high as possible. 
Unlike the stocking game, this situation does not lead to no-business under 
a buyback contract. Indeed, by setting w close to but less than wM, the sup-
plier may still be able to induce the retailer to order the desired quantity by 
properly choosing a function b*=b*(w). In fact, this strategy leads to per-
fect coordination regardless of the fact whether the supplier is the Stackel-
berg leader or the decision is made simultaneously. This is because under 
any wholesale price w, b*=b*(w) would ensure the same response from 
the retailer by increasing w the supplier increases his profit. Thus, this time 
we find the greater the wholesale price, the greater the supplier’s profit 
while the order quantity remains the same. 

Then the Nash equilibrium can be found by differentiating the supplier’s 

option.  
constitutes a Nash equilibrium of the inventory game under a buyback 
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Let 0)(
>

∂
∂

w
wb , 0)(

2

2

>
∂

∂
w

wb  and the demand be characterized by the uni-

form distribution,  

⎪⎩

⎪
⎨
⎧ ≤≤

=
otherwise 0,

;0for  ,1
)(

AD
ADf  and 

A
aaF =)( , 0 ≤ a ≤ A. 

Then using (2.64), we find  

A
wbhm

whmq n

n
n

))(( −+
−+

=
−

−

. 

Substituting into (2.65) we have 

2)(
)(

)(

2
A

wbhm
whm

w
wbA

wbhm
whm

n

nn

n

n

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

−+
∂

∂
−

−+
−+

−

−

−

−

=0. 

Rearranging this last equation we obtain 

0
2
1

)(
)(1

)(
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+

−+
∂

∂
−

−+
−+

−

−

−

−

n

nn

n

n

wbhm
whm

w
wbA

wbhm
whm . 

Since wn=wM=m+h- results in no order at all, the Nash equilibrium is found 
by  

0
2
1

)(
)(1 =

−+
−+

∂
∂

−
−

−

n

nn

wbhm
whm

w
wb . 

If for example, b(w)=α+βw2, and the buyback price does not exceed the 
maximum price, α+β[wM]2<m+h-, then we have a unique Nash equilibrium 

)1(1
−+

−=
hm

wn α
β

, A
whm

whmq n

n
n

2][βα −−+
−+

=
−

−

. 

On the other hand, the system-wide optimal order is 

q*= 
−

−

+
−+

hm
chm A.     

Coordination 

As discussed in previous sections, discounting, for example, a two-part tariff 
is one tool which provides coordination by inducing a non-cooperative  
solution to tend to the system-wide optimum.  

In this section we show that buyback contacts provide an efficient 
means for coordinating vertically competing supply chain participants. 
Specifically, when b(w) is a linear function of w, the supplier’s objective  
 

Example 2.12 



function depends linearly on w. This implies that it is optimal for the sup-
plier to set the wholesale price as high as possible. However, unlike the 
traditional stocking game, this situation does not lead to no orders if the 
supplier chooses b*=b*(w) as described below.  

Let the best retailer's response q defined by (2.64) be identical to the 
system-wide optimal solution q* defined by (2.62), 

−

−

+
−+

hm
chm =

)(* wbhm
whm

−+
−+

−

−

.   (2.67) 

From (2.67) we conclude that if 

( )
chm

cwhmwb
−+

−
+=

−
−)(* ,   (2.68) 

  then q=q* for any w<wM. Thus, if b*(w) is set according to (2.68), the sup-
plier can maximize his profit by choosing w very close to wM. This would 
leave the retailer still ordering a system-wide optimal quantity which 
would perfectly coordinate the supply chain. This result is independent of 
the fact whether the supplier first sets w and b*(w) (as Stackelberg leader) 
or whether decisions on w and q are made simultaneously (Nash strategy) 
if function b*(w) is known to the retailer. 

Example 2.13 

Let the demand be characterized by an exponential distribution, i.e., 

⎪⎩

⎪
⎨
⎧ ≥

=
−

otherwise 0,

;0for  ,
)(

De
Df

Dλλ
 and aeaF λ−−= 1)( , a ≥ 0 

q is identical to the system-wide optimal solution q*, that is, b*(w) is  
determined by (2.68). Then the equilibrium wholesale and buyback prices 
are 

w=wM-ε=m+h--ε and ( ) )1()(*
chm

hmwb
−+

−+= −
− ε , 

where ε is a small number and the equilibrium order quantity is  

q= 
c

hm −+ln1
λ

. 

ciated with uncertain demands and the greater the share of the overall sup-
ply chain profit that the supplier gains on account of the retailer. When ε is 
very small, the retailer returns all unsold products at almost the same 
wholesale price he purchased them. He therefore has no risk at all in case 
the demand realization will be lower than the quantity stocked.  

Note that the smaller the ε, the greater the supplier’s share of the risk asso-
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and b*=b*(w) be chosen by the supplier so that the best retailer’s response 
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Similar to the buyback option, this modification of the stocking game 
arises when the supplier is willing to mitigate the risk the retailer incurs 
with respect to the uncertainty of customer demands. Specifically, similar 
to a buyback contract, the supplier may agree to have an inventory surplus 
at the end of the selling season. In contrast to the buyback contract, this 
surplus is due to an option which is offered to the retailer. The option  
allows the retailer to issue an urgent or fast order, to be shipped immedi-

ately, at a predetermined option price, m>u(w)>w, 0)(
≥

∂
∂

w
wu , close to the 

end of the selling season. The retailer will exercise this option only if  
customer demand exceeds his inventories. It is this difference between the 

option purchase covers. If the supplier is unable to satisfy such a backor-
der, he will compensate the retailer for his loss. Thus, under this type of 
contract, the supplier assumes the customer service level at the retailer’s 
site by mitigating the retailer’s backlog costs. We assume that the system 
parameters are such that the supplier’s order qs exceeds the retailer’s order 
qr, qr<qs (an exact requirement for this to hold is stated in Proposition 
2.13) which ensures an inventory game between the retailer and supplier. 
Furthermore, we assume that the wholesale price and the retailer’s margin 
are fixed and the supplier cost is negligible unless it is an urgent order. 
This enables us to focus solely on the inventory game where the supplier 
and retailer have to choose a quantity to order. To draw an analogy with 
our previous analysis, we allow the wholesales price to change when coor-
dination aspects are discussed.  

rq
max Jr(qr,qs)= 

rq
max {E[my+(m- u(w))xr

- - hr
+xr

+- hr
-xs

-] - wqr}, (2.69) 

s.t. 
xr=qrd, 

xs=qs – qr– xr
-, 

qr ≥ 0, 
where xr

+=max{0, xr}, xr
- =max{0, -xr} and y=min{d, qr}, 

r
the end of a period prior to an urgent order when realization, D, of random 
demand d is already known; xr

+ 

of the period; xr
- is the retailer's inventory shortage prior to an urgent  

order; the urgent quantity ordered by the retailer for immediate shipment,  
 

2.4.2  THE INVENTORY GAME WITH A PURCHASING OPTION 

The retailer’s problem 

retailer’s backorder and the supplier’s inventory level which the retailer’s 

In this single-period formulation, x  is the retailer’s inventory level by 

is the retailer’s inventory surplus at the end 



hr
+, hr are the retailer’s inventory holding and shortage costs respectively; 

and qr is the quantity ordered by the retailer at the beginning of the period 
and shipped by the end of the period. If the supplier does not have enough 
products to ship, then a purchase option implies that the supplier covers the 

unsold product.  
Applying conditional expectation to (2.69), the objective function trans-

forms into 

rq
max Jr(qr,qs)=

rq
max {

∫∫∫∫ −−−−++ +
∞∞ r

rr

r q

rr
q

r
q

r

q

dDDfDqhdDDfqDwumdDDfmqdDDmDf
00

)()()()))((()()(  

∫
∞

− −−−
sq

rsr wqdDDfqDh )()( }.  (2.70) 

The first term in the objective function, E[ym]= ∫∫
∞

+
r

r

q
r

q

dDDfmqdDDmDf )()(
0

, 

represents the income from selling y=min{d,qr} product units; the second, 

E[(m-u(w))xr
-] = ∫

∞

−−
rq

r dDDfqDwum )()))((( , represents the income from 

backlog at the end of the period; the third and the fourth, E[hr
+xr

+]= 

∫ −+
rq

rr dDDfDqh
0

)()( , E[hrxs]= ∫
∞

− −
sq

sr dDDfqDh )()( , are the surplus and 

shortage costs; and the last term, wqr, is the amount paid to the supplier for 
a regular order.  

sq
max Js(qr,qs)= 

sq
max {wqr +E[(u(w)-c)(xr

- - xs
-) - (m- u(w)) xs

-- hs
+xs

+]}, (2.71) 

s.t. 
xs=qs - qr - xr, 

xr=qr - d, 
qs ≥ 0, 

xs
+=max{0, xs}, xs=max{0, -xs}, 

 
 
 

The supplier’s problem 
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difference between the retailer’s margin and the option price m-u(w) for 
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where xs is the supplier’s inventory level by the end of period after an  
urgent order; qs is the quantity ordered by the supplier at the beginning of the 
period and shipped in time for reshipment from the supplier to the retailer 
by the end of the period; u(w) is the option price; hs

+ is the supplier’s  
inventory holding cost; and c is the cost of processing the urgent order.  

After simple manipulations with (2.71)  
Js(qr,qs)= wqr +E[(u(w)-c)xr - (m-c)xs

- - hs
+xs

+] 
and determining expectation, we have 

∫∫

∫∫

−−−

−−−−−−+=

++

∞∞
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r
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q
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q

q
ss

q
s

q
rrsrs

dDDfqqhdDDfDqh

dDDfqDcmdDDfqDcwuwqqqJ
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)())(()())()((),(

 (2.72) 

The first term in the objective function, wqr, is the income from selling qr 

products; the second, E[(u(w)-c)xr]= ∫
∞

−−
rq

r dDDfqDcwu )())()(( , represents 

income from the optional order; the third, E[(m-c)xs] = ∫
∞

−−
sq

s dDDfqDcm )())(( , 

represents the compensation paid by the supplier for the part of the  
optional order which the supplier is unable to deliver (i.e., this is the sup-

plier’s shortage cost); and the last term, E[hs
+xs

+]= ∫ −+
s

r

q

q
ss dDDfDqh )()(  

∫ −+ +
rq

rss dDDfqqh
0

)()( , is the inventory surplus cost incurred by the sup-

plier.  
The centralized problem is based on the sum of two of the objective 

functions (2.69) and (2.71). 

The centralized problem 

sr qq ,
max J(qr,qs)= 

sr qq ,
max {E[my+(m-c)(xr

- - xs
-) - hr

+xr
+ - hs

+xs
+ - hr

-xs
-]} (2.73) 

s.t. 
xs=qs - qr - xr, 

xr=qr - d, 
qr ≥ 0, qs ≥ 0. 

Note that since w, u(w) and (m-c)xs
- represent transfers within the supply 

chain, the system-wide profit does not depend on w, u(w) and is reduced 



by (m-c)xs
- to account only for the satisfied part (xr

-- xs
-) of the optional  

(urgent) order. Applying conditional expectation to (2.73) we have explicitly, 
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∫
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∞

− −−
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sr dDDfqDh )()(  
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0

)()( ∫ −− +
s

r

q

q
ss dDDfDqh )()( ∫ −− +

rq

rss dDDfqqh
0

)()( . 

System-wide optimal solution 

The first-order optimality condition with respect to qr results in 

=
∂

∂

r

sr

q
qqJ ),(

∫
∞

rq

dDDcf )( )()()(
0

rrss

q

r qfqqhdDDfh
r

−+− ++∫
)()( rrss qfqqh −− + =0. 

Thus, the system-wide unique optimal order quantity of the supplier is 

++
=

r
r hc

cqF *)( .   (2.74) 

Similarly, the first-order optimality condition with respect to qs yields,  

=
∂

∂

s

sr

q
qqJ ),(

))(1)(( sqFcm −− ))()(( rss qFqFh −− + )( rs qFh+− +

))(1( sr qFh −− =0. 

−+

−

++−
+−

=
rs

r
s hhcm

hcm
qF *)( .   (2.75) 

Furthermore, since the first derivative in one of the variables is inde-
pendent of the other variable, the corresponding Hessian is negative defi-
nite and this newsvendor type of the objective function is strictly concave 
in both decision variables.  
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Thus, the system-wide unique optimal supplier’s order is 
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Game analysis 

Consider now a decentralized supply chain characterized by non-cooperative 
firms and assume that both players make their decisions simultaneously. 
After the retailer and supplier choose their orders qr and qs , the supplier 
delivers qr units as a regular order and (xr

- - xs
-) as an urgent order as well 

as covers the retailer for losses if the urgent order does saturate the  
demand, xs

-.  

function (2.70) we find 

=
∂

∂

r

sr

q
qqJ ),(

∫∫∫ +
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−−−+−
r

rr

q

r
qq

rrrr dDDfhdDDfwumdDDmfqfmqqfmq
0

)()())(()()()( -w= 

= 0)())(1))((())(1( =−−−−−− + wqFhqFwumqFm rrrr , 
that is,  

++
−

=
r

r hwu
wwuqF

)(
)()( .   (2.76) 

Equation (2.76) represents a unique, newsvendor-type, optimal solution. 
As long as our assumption u(w)<m holds, the regular order is independent 

r
-

the purchasing option causes a shortage which depends on the supplier’s 

objective function (2.72), 

=
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∂

s
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q
qqJ ),(

∫∫∫ ++
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q
s

q
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0

)()()()( = 

= )())()(())(1)(( rsrsss qFhqFqFhqFcm ++ −−−−− =0 
that is,  

++−
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=
s

s hcm
cmqF )( .    (2.77) 

r
-

equilibrium order is system-wide optimal if hr
- is negligible.  

However, if hr
->0, then qs

*>qs. 
 
 
 
 
 

order quantity rather than on the retailer’s decision.  
To determine the Nash equilibrium, we next differentiate the supplier’s 

This solution is unique and identical to (2.75) if h =0, that is, the supplier’s 

of the retailer’s margin. Shortage cost h  is not a part of this equation since 

Applying the first-order optimality condition to the retailer’s objective 



Equilibrium 

It is easy to verify that the second derivative with respect to the supplier’s 

strictly concave. Thus, imposing our assumption, qr ≤ qs, we readily conclude 
with the following statement. 

Proposition 2.12. Let ≥
+−

−
+
shcm

cm
++

−

rhwu
wwu

)(
)( . The pair (qr

n,qs
n), such that  
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n
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)()(  and 

++−
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=
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n
s hcm

cmqF )(  

constitutes a unique Nash equilibrium of the inventory game under a pur-
chasing option.    

Since c<u(w)<m, then we can assume that u(w)-w ≤ c. If this condition 

holds, then 
++

=
r

r hc
cqF *)( >
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−

=
r

n
r hwu

wwuqF
)(
)()(  which, of course, is not a 

new discovery. In contrast to previous results, the total order also includes 

r
-

s
-

++−
−

=
s

s hcm
cmqF )(  

determines the service level in the supply chain with a purchasing option. 
We thus conclude with the following property: 

Proposition 2.13. Let ≥
+−

−
+
shcm

cm
++

−

rhwu
wwu

)(
)( . In vertical competition, if u(w)-

w ≤ c, a contract with a purchasing option induces lower order quantities 
from the retailer and supplier as well as a lower service level than the sys-
tem-wide optimal solution.   

r
n ) and without (qr) purchas-

ing option (see the stocking game in Section 2.3.2), we conclude that 

++
−

=
r

n
r hwu

wwuqF
)(
)()( <F(qr)= +−

−

++
−+

rr

r

hhm
whm , 

as u(w)<m. 

Proposition 2.14. Let ≥
+−

−
+
shcm

cm
++

−

rhwu
wwu

)(
)( . In vertical competition, a 

contract with a purchasing option induces a lower regular order quantity 
by the retailer compared to the contract without a purchasing option, 
while the service level depends on hs

+.  

From Proposition 2.14, it follows that unless the supplier’s inventory 
holding cost is too high, a contract with a purchasing option improves the 
service level, but the regular order quantity decreases. This is expected,  
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urgent order, x -x , while the supplier’s inventory level, 

Next, comparing the retailer’s order with  (q

order quantity is negative and the supplier’s objective function is also 



2.4 INVENTORY COMPETITION WITH RISK SHARING      115 

since, given the possibility of an urgent order, it is beneficial for the retailer 
to reduce the regular order and wait for demand to realize and only then 
increase profit by an urgent purchase if the demand exceeds the regular order 
stock. Note that since the urgent order is random, xr

- - xs
-, and always non-

negative, it means that  

 E[xr
- - xs

-]= ∫
∞

−
rq

r dDDfqD )()( - ∫
∞

−
sq

s dDDfqD )()( , (2.78) 

is not zero and thus the overall quantity ordered by the retailer is greater 
than that of a regular order. Moreover, the regular order quantity can be  
increased since a contract with a purchasing option allows efficient coordi-
nation by the proper choice of the option price, u(w). These results are 
demonstrated in the following example. 

Let the demand be characterized by the uniform distribution,  
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Then using Proposition 2.12, we find the Nash equilibrium 
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The centralized solution is  
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The average urgent order is thus, 
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Example 2.14 

while the total average retailer’s order is 



Coordination 

Coordination under a purchasing option is similar to buyback contacts 
where a proper choice of the buyback price, b(w), induces the retailer to 
choose a system-wide optimal order quantity. Specifically, if the supplier 
chooses the option price u(w) as a linear function of w, u*(w), so that  

++
−

rhwu
wwu

)(*
)(* =

++ rhc
c , 

and thus 

+

+

+

+
−

+
+

=

r

r

r

hc
c

hc
ch

w
wu

1
)(* ,   (2.79) 

then qr
n=qr*. Moreover, since u*(w) is chosen as a linear function of w, the 

supplier, as is the case with the buyback contacts, can increase the whole-
sale price very close to its maximum level and thus gain most of the supply  
 chain profit while still having the retailer order the system-wide optimal 
quantity. The overall game will, however, become perfectly coordinated 

performance.  
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