

Emergent System for Information Retrieval1

Răzvan-Dorel CIOARGĂ, Mihai V. MICEA, Bogdan CIUBOTARU,
Vladimir CREŢU, Dan CHICIUDEAN

“Politehnica” University of Timisoara
Computer & Software Engineering Department

2, Vasile Parvan Blvd., 300223 Timisoara, Romania
razvan.cioarga@cs.upt.ro, mihai.micea@cs.upt.ro,

bogdan.ciubotaru@cs.upt.ro, vladimir.cretu@cs.upt.ro,
dan.chiciudean@cs.upt.ro

Abstract. Stand alone as well as distributed web crawlers employ high
performance, sophisticated algorithms which, on the other hand, require a high
degree of computational power. They also use complex interprocess
communication techniques (multithreading, shared memory, etc). As opposed
to the distributed web crawlers, the ERRIE crawler system presented in this
paper displays emergent behavior by employing extremely simple algorithms
that are very efficient when dealing with a large number of entities but are
unpredictable and nondeterministic. The paper discusses the ERRIE web
crawler system alongside with a comparison between it and a common, stand-
alone web crawling application called WIRE.

1 Introduction

The evolution of information systems and of the World Wide Web, combined with
the change of perspective, from the static content to the dynamic content of the WEB
2.0 paradigm, generate an extraordinary need of storing, retrieving, indexing Internet
data. In this context, extremely powerful search engines like Google, AltaVista or
Yahoo use specialized software applications called web crawlers.

The web crawler is an automated software application which browses the World
Wide Web in a methodical manner. The Internet search engines use web crawling as
a means of providing up-to-date information regarding the queries that have been
posted by their users. The web bots, as the web crawlers are often called, are usually
used to make local copies of the web pages that were visited; the local copies may be
processed later by the search engines. Sometimes the crawlers can be used for
retrieving specific information from the Internet, such as e-mail addresses which are

1 Supported partly by a research grant of excellence from the Romanian Ministry of Education

and Research: CEEX -ET-07/2006–2008.

410 Răzvan-Dorel CIOARGĂ, Mihai V. MICEA, Bogdan CIUBOTARU,
Vladimir CREŢU, Dan CHICIUDEAN

used for spam. Either the commercial web crawlers, or the open-source web
crawlers, make use of special distributed systems algorithms requiring at least a large
amount of computational power. There are some crawlers which have been specially
designed to employ collaborative techniques.

Our current research focuses on developing methodologies and algorithms to
solve problems related to distributed embedded systems and collaborative
environments by using emergent behavior patterns.

This paper introduces a web crawler called ERRIE (Emergent Retriever of
Information) that can index specific information from the World Wide Web. It is
based on a custom-designed algorithm which applies emergent behavior patterns
derived from the study of communication systems inside ant colonies, and of the
pheromone-based communication and interaction. This bot can also be customized to
retrieve information from any other electronic data storage facility.

A comparison between ERRIE and a similar, relatively commonly used web
crawler called WIRE (Web Information Retrieval Environment) is also presented
along with some of the most interesting results regarding their performances.

2 Web Crawling

A web crawler or a web bot is an autonomous program that downloads web pages
from the World Wide Web with the purposes of: storing, backing up the pages, or
indexing the web page content for later searches [1-4]. The crawler downloads the
web page and parses it for valid links (either hyperlinks, like the ones contained
inside the <a> html tag, or for other types of links, like the ones contained inside
html tags such as <script>, <div> or). Then, the bot extracts those links
and repeats the process described here for all the extracted links. This algorithm is
usually repeated until there are no more valid links.

A conventional web crawler has a number of problems. It is very limited by its
resources, either disk space and/or network bandwidth. For all of the billion
interconnected web pages a web crawler faces the problem of recurring links.
Usually, the more popular the web pages, the more they are referred to by an ever
growing number of other pages (this is exactly what popularity means in some
concepts). As a result, the web crawler is bound to extract some links that have
already been processed. A usual improvement of the conventional web crawler is to
store all the visited links and compare the newly extracted links against this
collection to use only the unvisited links [2]. As the number of links grows, it is
important to develop faster searches (web crawlers being used by big search engines
like google.com or yahoo.com, are known to handle millions of links).

Usually, a web crawler has some degree of multithreading or multiprocessing
(e.g. each newly found link is placed on a queue and processed by a different thread
of the crawler application until the maximum number of threads is reached). Some
web bots are developed using concepts from the distributed systems field: each bot
runs on a different machine or processor, each crawler handles a number of different
links; the web bots use some kind of intercommunication specific to distributed
systems for synchronization purposes.

Emergent System for Information Retrieval 411

Common commercial web crawlers such as the Google Crawler [5], PolyBot [6]
or WebFountain [7], or common open-source web crawlers such as the GNU Wget,
HTTrack or WIRE [8], face complex problems when dealing with multiprocess
systems. Some of these problems have been solved by simpler, lighter collaborative
crawlers, such as Ubicrawler, which do not have a central “overseer” process but
make use of the multi-agent paradigm. In their case, problems specific to the multi-
agent systems can be solved by applying a more natural way of system distribution
by using emergent behavior patterns.

3 The WIRE Bot

The WIRE project has been created by the Center for Web Research [8] as a tool for
information retrieval designed to be used on the World Wide Web. The project is
currently composed of a very configurable web crawler and a simple format for
storing the retrieved data, and some supplementary tools needed to extract
information stored in the repository: statistics, reports etc.

The WIRE Web Crawler is an open-source library of highly scalable and
configurable code (via a global XML configuration file), which also provides some
analysis features for the stored information. It is composed of four main entities: the
Seeder, the Harvester, the Gatherer and the Manager [8] (see Fig. 1).

Seeder GathererManager Harvester

Document
collection

Link
collection

Initial
seeds

Private
harvester
repository

Batches of documents

Pre-allocate documents

Compute
score,
determine
the batches

Retreive
URLs

Download pages
Extract
URLs

Save URLsWIRE
Repository

Seeder GathererManager Harvester

Document
collection

Link
collection

Initial
seeds

Private
harvester
repository

Batches of documents

Pre-allocate documents

Compute
score,
determine
the batches

Retreive
URLs

Download pages
Extract
URLs

Save URLsWIRE
Repository

Fig. 1. WIRE system.

Each of these entities is an autonomously executed program. They communicate
with each other by saving all their data in a specific folder on the hard drive, inside
the WIRE repository. The entire structure of the repository is automatically created
by the WIRE project; in addition, it also pre-allocates disk space for future
documents. Each application saves its data inside its own specific folder; when
needed, each application reads data from the other application folders.

412 Răzvan-Dorel CIOARGĂ, Mihai V. MICEA, Bogdan CIUBOTARU,
Vladimir CREŢU, Dan CHICIUDEAN

4 eBML – Emergent Behavioral Language

Emergence is the process by which complex behavior patterns are formed starting
from extremely simple rules [9]. The new field of emergent behavior is mainly based
on the study of the natural world in order to retrieve simple natural algorithms that
can be applied in other fields of interest. The simplicity of these patterns and the
interaction between them can solve some of the most important problems in a large
variety of domains, ranging from intelligent sensor networks and robotic collectives,
to data mining and efficient information storage and retrieval.

The Emergent Behavioral Modeling Language or eBML [10] is loosely based on
UML (Unified Modeling Language). The eBML is a formal language, allowing
various constructs from Boolean guards to conditional execution, loops etc. It has a
visual representation using the principles of state diagrams and a text representation.
The representations are interchangeable; the text representation is mainly used for
behavioral modeling while the visual representation is used as a presentation layer
for the text representation. A special interpreter application is under development for
the eBML. It will be able to parse a text file that contains the text representation and
to generate code for a specific target. This means that a user can input the emergent
behavior algorithms into a text file using eBML and then compile the text file into an
executable code which can be loaded on a specific microcontroller/ microprocessor
platform.

Being derived from UML, eBML presents similar formal constructs. Each eBML
script starts with the keywords behavior is and must end with end behavior.
Similarly, the eBML diagram must have a START and an END statement. The base
construct of eBML is the activity. An activity represents an operation, a function
call, a step in business process logic or an entire business process logic. Constucts
such as go(forward) and avoid(obstacle, direction) are activities. Similar
to UML, eBML also has some special types of activities: the “black hole” activity
has transitions leading to it but has no transitions leading away from it; a “miracle”
activity has only transitions leading away from it and no transitions leading to it.

Another construct of eBML is the decision point which represents points of
division in the normal flow of the behavior. These decision points should reflect the
previous activity as they do not have any significant label attached to them, or some
condition as the flow chart decision points have. Multiple transitions with associated
guards can leave from each decision point. Transitions are the constructs that appear
between activities or between activities and decision points. In the visual
representation of eBML, each transition is represented by an arrow which indicates
the flow from one construct to another. In the text representation of eBML,
transitions are not actually represented but are implied by the order of the
instructions and commands.

The final basic construct of eBML is the guard which represents a condition
which is associated with a transition; the transition can be traversed only when that
condition is true. There are some constraints regarding decision points and guards.
First, each transition that starts from a decision point must have a guard associated
with it. All the guards associated with transitions that leave from a decision point
must not overlap (the guards T ≤ 1 and T ≥ 1 overlap and there is a confusion as to

Emergent System for Information Retrieval 413

which transition should be traversed when T = 1). All the guards starting from a
decision point must form a complete set over the possible results (the guards T < 1
and T > 1 do not form a complete set and there is a confusion regarding which
transition should be traversed when T = 1, if any). Some transitions do not have an
associated guard. These transitions are always traversed as the absence of an
associated guard is equivalent to the presence of the “true” guard.

5 ERRIE (Emergent Retriever of Information)

As opposed to the existing distributed web crawlers, which require high
computational power and use complex interprocess communication techniques, the
ERRIE crawler system has been designed based on emergent behavior concepts by
employing extremely simple algorithms that are very efficient when dealing with
large number of entities. ERRIE implements a communication algorithm based on
the concept of pheromones from the ant colonies.

The pheromone exchange is one of the most used ways of communication in
emergent natural systems. Ant colonies are a very important example of a
decentralized system that has a pheromone based communication [11]. Individual
ants have a local image of the whole system, based on the pheromone exchange
between them and the ants they meet. By extracting information from the
pheromones, the ants determine the behavior of the neighboring ants and thus
determine their own role without establishing any dialogues or any other type of
negotiation. Pheromone-based communication is semi-reliable because the chemical
messages continue to be transmitted even after the source of the message ceases to
exist. The loss of individual messages has no importance. This type of
communication is unidirectional; the pheromone trails are created by the ants for
other ants to follow. There is no duplex communication; a pair of simplex messages
is used instead, but they might not be correlated as part of a conversation [11].

The ERRIE algorithm introduces the MySQL Server with a MySQL database as
a support for communication. The MySQL database offers support for indexing and
full-text searches that are needed when retrieving links and are useful to prevent the
recurrence of the already visited links (the table that stores the data has UNIQUE
columns that prevent the insertion of identical data). Every access to the database is
transactional (transactions are fully supported by the MySQL server) thus enabling
concurrent accesses to the stored data.

The algorithm uses the persistence layer offered by the MySQL server in a way
similar to the pheromone based communication described above. Every ERRIE bot
leaves a mark, similar to a pheromone trail as it saves information in the database. As
in the case of pheromones, these marks are very persistent; the information is stored
in the database and it is not likely to disappear from there without some external user
intervention. The data from the MySQL database is of different types (saved links or
saved web pages) indicating different things, just as the pheromones have in the case
of ant colonies. The communication between ERRIE bots takes place only through
the MySQL database and, as such, it is a simplex communication. Just like simple
real life ants, each ERRIE bot has only a local, very limited view of its environment

414 Răzvan-Dorel CIOARGĂ, Mihai V. MICEA, Bogdan CIUBOTARU,
Vladimir CREŢU, Dan CHICIUDEAN

(just the pages it has currently downloaded, that are being stored in the database).
The global view of the environment is clear only to an external observer.

MySQL server
And database

Errie bot Errie bot Errie bot

Errie bot

Errie bot

URLs table Web
pages table

MySQL server
And database

Errie bot Errie bot Errie bot

Errie bot

Errie bot

URLs table Web
pages table

Fig. 2. ERRIE system architecture (left) and ERRIE bot class diagram (right).

The use of the open-source database server, MySQL (which provides good
performance and reliability), as a communication environment and as a persistence
layer, makes the intercommunication between the ERRIE bots to have similar
attributes as pheromone based communication: semi-reliability, no data duplication,
synchronization provided by external means (the ERRIE bots do not require special
means of synchronization because this is done at the transaction level by the MySQL
server). The following code presents the ERRIE bot algorithm based on the eBML
language. This algorithm (execution cycle) describes the behavior of a single ERRIE
bot as it crawls the World Wide Web.

behavior is
 retrieve top X unvisited links from repository
 download pages
 save pages to database
 extract URLs from pages
 save links to databse
end behavior

6 Experimental Results

A series of experiments have been conducted to evaluate the operation of the ERRIE
system and to compare its performance to those of other web crawlers, including the
WIRE bot described in a previous section.

The WIRE web crawler is extremely predictable, as it runs in cycles that are very
well defined. The only amount of uncertainty has been introduced inherently by the

Emergent System for Information Retrieval 415

actual extracting of links from the web pages, as the number and type of links found
in each web page is extremely unpredictable. To have similar inputs for all the
experiments, the initial seeds have been set to the same value and a standard 100
KBps Internet line has been used in all the cases. The experiment conducted for the
WIRE system is used as a baseline for the other experiments.

The WIRE system has been fed with initial seeds containing a large number of
URLs. Then, the web crawler was started. As it runs in cycles, the number of
recorded links was retrieved after each cycle (see Fig. 3, left). After approximately
24 full cycles, the WIRE system reaches a total number of 1.1 million pages
downloaded in 2.21 millions seconds (more than 25 days).

On the other hand, a series of experiments have been performed to evaluate how
the ERRIE system behaves on various configurations but using the same initial
environment as in the case of WIRE system. Similarly to the WIRE experiment, the
ERRIE system was configured to run for 24 full cycles (see the eBML code in the
previous section).

0
1.000
2.000
3.000
4.000
5.000
6.000
7.000
8.000

Cycle
 0

Cycle
 2

Cycle
 4

Cycle
 6

Cycle
 8

Cycle
 10

Cycle
 12

Cycle
 14

Cycle
 16

Cycle
 18

Cycle
 20

Cycle Number

Nu
m

be
r o

f d
ow

nl
oa

de
d

pa
ge

s

0

2.000

4.000

6.000

8.000

10.000

12.000

14.000

16.000

1 2 3 4 5 6 7 8 9 10 15 20 25 30 35 40 45 50 100

Number of Errie bots

Nu
m

be
r

of
 d

ow
nl

oa
d

pa
ge

s

Fig. 3. The number of downloaded web pages by the WIRE System (left) and by a varying
number of ERRIE bots (right).

The right half of Fig. 4 shows the results of a combination of two different
experiments: both the number of ERRIE bots and the number of retrieved links are
varied.

0,000

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

1 2 3 4 5 6 7 8 9 10 15 20 25 30 35 40 45 50 100

Number of ERRIE bots

Ti
m

e
(in

 s
ec

on
ds

)

1 3 5 7 9 11 13 15 17 19
S1

S7

S13
0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,000,000-1,200,000
800,000-1,000,000
600,000-800,000
400,000-600,000
200,000-400,000
0-200,000

Fig. 4. The time needed to download 1.1 mil. web pages by a variable number of ERRIE bots
(left), and the number of download pages (Oz) by the number of ERRIE crawlers (Ox), for a
varying limit of retrieved links per crawler (Oy) (right).

416 Răzvan-Dorel CIOARGĂ, Mihai V. MICEA, Bogdan CIUBOTARU,
Vladimir CREŢU, Dan CHICIUDEAN

The results of the experiments conducted show that the ERRIE system is more

efficient when working with a relatively small number of ERRIE bots that retrieve a
relatively small number of links from the MySQL database. This situation is depicted
in dark grey in Fig. 4 The dark grey area in the figure shows the level of compromise
in terms of the ratio of required / available network bandwidth with respect to the
number of links retrieved from the database: one can either (a) browse through 100
websites by using 100 crawlers that browse 1 site each, or (b) by using 1 web crawler
that browses the 100 sites, or (c) by using 10 web crawlers that browse 10 sites each.
In terms of efficiency, the latter situation is the most suitable.

7 Conclusions

This paper introduces a new, emergent type of web crawler, ERRIE, which makes
use of the full-text search and indexing capabilities of the MySQL database server
while implementing emergent behavior principles derived from the pheromone-
based communication in ant colonies. The main advantages of the ERRIE crawler
are its simplicity of design and operation, as well as its efficiency.

A comparison between the emergent crawler and a common, open-source web
bot has also been presented in this article, along with some of the most interesting
results obtained from an extensive set of experiments which have been conducted to
evaluate their performance. A compromise was made in order to make emergent web
crawling more efficient, showing that when applying emergent algorithms, the most
effective solution is to use middle values for both the number of crawlers and the
number of links retrieved from the database.

In data retrieval applications, where multithread techniques are common, the use
of emergent patterns retrieved from pheromone-based communications is very
suitable, due to the efficiency of the interactions between simple entities, as
compared to the resource-consuming exchanges employed in normal distributed
systems.

The ERRIE system described here is an open-ended project, which can be
customized to retrieve information from any other electronic data storage facility.

References

[1] M. Craven, D. DiPasquo, D. Freitag, A. McCallum, T. M., K. Nigan, and S. Slattery,
Learning to Construct Knowledge Bases From the World Wide Web, Artificial
Intelligence, 118(1–2), 69–113 (2000).

[2] C. C. Aggarwal, F. Al-Garawi, and P. S. Yu, Intelligent Crawling on the World Wide
Web With Arbitrary Predicates, in Proc. 10th Intl. Conf. on World Wide Web, 2001, pp.
96-105.

[3] S. Chakrabarti, M. van den Burg, and B. Dom, Focused Crawling: A New Approach to
Topic-Specific Web Resource Discovery”, in Proc. 8th Intl. Conf. on World Wide Web,
1999, pp. 545–562.

[4] J. Cho, Crawling the Web: Discovery and Maintenance of Large-Scale Web Data, PhD
thesis, Stanford University, 2001.

Emergent System for Information Retrieval 417

[5] S. Brin, and L. Page, The Anatomy of a Large-Scale Hypertextual Web Search Engine,
in Proc. 7th Intl. Conf. on World Wide Web, 1998, pp. 107-117.

[6] V. Shkapenyuk, and T. Suel, Design and Implementation of a High-Performance
Distributed Web Crawler, in Proc. 18th Intl. Conf. on Data Engineering, 2002, pp. 357.

[7] J. Edwards, K. McCurley and J. Tomlin, Adaptive Model of Optimizing Performance of
an Incremental Web Crawler, in Proc. 10th Intl. Conf. on World Wide Web, 2001, pp.
106-113.

[8] C. Castillo, and R. Baeza-Yates, WIRE: An Open Source Web Information Retrieval
Environment, in Wshop. on Open Source Web Information Retrieval, 2005.

[9] V. Maniezzo, L. M. Gambardella, and F. de Luigi, Ant Colony Optimization: New
Optimization Techniques in Engineering, Springer-Verlag Berlin, 2004, pp. 101-117.

[10] R. Cioarga, B. Ciubotaru, D. Chiciudean, M. V. Micea, V. Cretu, and V. Groza,
Emergent Behavioral Modeling Language in Obstacle Avoidance, in Proc. 24th IEEE
Instrum. and Meas. Technol. Conf., IMTC 2007, Warsaw, Poland, May 2007.

[11] R. J. Anthony, Natural Inspiration for Self-Adaptive Systems, in Proc. 15th Intl. Wshop.
on Database and Expert Systems Applications, 2004, pp. 732-736.

418 Răzvan-Dorel CIOARGĂ, Mihai V. MICEA, Bogdan CIUBOTARU,
Vladimir CREŢU, Dan CHICIUDEAN

http://www.springer.com/978-0-387-74160-4

