
Clustering Improves the Exploration of Graph
Mining Results

Edgar H. de Graaf, Joost N. Kok, and Walter A. Rosters

Leiden Institute of Advanced Computer Science,
Leiden University, The Netherlands

edegraafOl iacs .n l

A b s t r a c t . Mining frequent subgraphs is an area of research where we
have a given set of graphs, and where we seeirch for (connected) sub­
graphs contained in many of these graphs. Each graph can be seen as a
transaction, or as a molecule — as the techniques applied in this paper
are used in (bio)chemical analysis.
In this work we will discuss an application that enables the user to
further explore the results from a frequent subgraph mining algorithm.
Such an algorithm gives the frequent subgraphs, also referred to as
fragments, in the graphs in the dataset. Next to frequent subgraphs the
algorithm also provides a lattice that models sub- and supergraph rela­
tions among the fragments, which can be explored with our application.
The lattice can also be used to group fragments by means of clustering
algorithms, and the user can easily browse from group to group. The ap­
plication can also display only a selection of groups that occur in almost
the same set of molecules, or on the contrary in different molecules. This
allows one to see which patterns cover different or similar parts of the
dataset.

1 Introduction

Mining frequent pa t te rns is an impor tan t area of da t a mining where we discover
substructures t h a t occur often in (semi-)structured da ta . The research in this
work will be in the area of frequent subgraph mining. These frequent subgraphs
are connected vertex- and edge-labeled graphs t h a t are subgraphs of a given
set of graphs, tradit ionally also referred to as transactions, a t least minsupp (a
user-defined threshold) t imes. If a subgraph occurs at different positions in a
graph, it is counted only once. The example of Figure 1 shows a graph and two
of its subgraphs.

In this paper we will use results from frequent subgraph mining and we will
present methods for improved exploration by means of clustering, where co­
occurrences in the same transact ions are used in the distance measure. Grouping
pa t te rns with clustering makes it possible to browse from one pa t t e rn and its
corresponding group to another group close by. Or, depending on the preference
of the user, to groups occurring in a separate pa r t of the dataset .

Please use the following format when citing this chapter:

De Graaf, E. H., Kok, J. K., Kosters, W. A., 2007, in IFIP International Federation for Information Processing, Volume
247, Artificial Intelligence and Innovations 2007: From Theory to Applications, eds. Boukis, C, Pnevmatikakis, L.,
Polymenakos, L., (Boston: Springer), pp. 13-20.

14 Edgar H. de Graaf, Joost N. Kok, and Walter A. Kosters

Before explaining what is meant by lattice information we first need to
discuss child-parent relations in frequent subgraphs, also known as patterns.
Patterns are generated by extending smaller patterns with one extra edge. The
smaller pattern can be called a parent of the bigger pattern that it is extended
to. If we would draw all these relations, the drawing would be shaped like a
lattice, hence we call this data lattice information.

We further analyze frequent subgraphs and their corresponding lattice infor­
mation with difi"erent techniques in our framework LATTICE2SAR for mining
and analyzing frequent subgraph data. One of the techniques in this framework
is the analysis of graphs in which frequent subgraphs occur, via competitive neu­
ral networks as presented in [1]. Another important functionality is the browsing
of lattice information from parent to child and from one group of fragments to
another as presented here.

9 1 1 1 1 2 1
C ^ ^ C — ^ C — ^ - C — ^ C — ^ O C C ^ ^ C — ^ C

X \ h P |2 |l
C C N O O C

\ 2 2 /
\ 1 /

Fig. 1. An example of a possible graph (the amino acid Phenylalanine) in the molecule
dataset and two of its many (connected) subgraphs, also called patterns or fragments.

Our application area is the analysis of fragments (patterns) in molecule data.
The framework was originally made to handle (bio)chemical data. Obviously
molecules are stored in the form of graphs, the molecules can be viewed as
transactions (see Figure 1 for an example). However, the techniques presented
here are not particular to molecule data (we will also not discuss any chemical
or biological issues). For example one can extract user behavior from access logs
of a website. This behavior can be stored in the form of graphs and can as such
be analyzed with the techniques presented here.

The distance between patterns can be measured by calculating in how many
graphs (or molecules) only one of the two patterns occurs. If this never happens
then these patterns are very close to each other. If this is always the case, their
distance is very large. In both cases the user is interested to know the reason. In
our appHcation the chemist might want to know which different patterns seem
to occur in the same subgroup of effective medicines or on the other hand which
patterns occur in different subgroups of effective medicines. In this paper we
will present an approach to solve this problem that uses clustering. Furthermore
all occurrences for the frequent subgraphs will be discovered by a graph mining
algorithm and this occurrence information will be highly compressed before
storage. Because of this, requesting these occurrences will be costly.

We will define our techniques for browsing the lattice of fragments. To this
end, this paper makes the following contributions:
— An application will be introduced that integrates techniques that fa­
cilitate browsing of the lattice as provided by the frequent subgraph miner

Clustering Improves the Exploration of Graph Mining Results 15

(Section 2).
— We will use a distance measure based on the co-occurrence of frag­
ments to browse from one fragment group to another (Section 3 and Sec­
tion 4).
— We will give an algorithm for grouping very similar subgraphs using hi­
erarchical cluster methods and lattice information (Section 4).
— Finally through experiments we will take a closer look at runtime per­
formance of the grouping algorithm and discuss it (Section 5).

The algorithm for grouping was also used in [1], both papers discuss a com­
ponent of the same framework. However in this work groups are used diflFerently,
for fragment suggestion during browsing.

This research is related to research on clustering, in particular of molecules.
Also our work is related to frequent subgraph mining and frequent pattern
mining when lattices are discussed. In [8] Zaki et al. discuss different ways for
searching through the lattice and they propose the ECLAT algorithm.

Clustering in the area of biology is important because of the improved
overview it provides the user with. E.g., [4] Samsonova et al. discuss the use
of Self-Organizing Maps (SOMs) for clustering protein data. SOMs have been
used in a biological context many times, for example in [2, 3]. There is also
a relation with work done on hierarchical clustering in the biological context,
e.g., as presented in [5]. In some cases molecules are clustered via numeric data
describing each molecule; in [6] clustering such data is investigated.

Our package of mining techniques for molecules makes use of a graph miner
called GSPAN, introduced in [7] by Yan and Han. This implementation generates
the patterns organized as a lattice and a separate compressed file of occurrences
of the patterns in the graph set (molecules).

2 Exploring the Lattice

We propose a fragment exploration tool to explore fragments in a dataset of
molecules, the whole process is visualized in Figure 2. The application requires
both fragment and lattice information from the frequent subgraph miner. This
information is already extracted from the dataset when the application starts.
All this data is first read and an in-memory lattice structure is built, where each
node is a fragment. Occurrences are kept in a compressed format since the user
wants to view this data when required. Also this data is needed by our distance
measure which will be explained in Section 3; to make a distance matrix for
all fragments will probably cost too much memory. First we make groups using
information from the lattice only. Then we fill a matrix storing the distances
between groups, which is possible if we assume to have far less groups of similar
fragments.

After this process it is possible for the user to browse from fragment to
fragment by adding or removing possible edges, where an edge is possible if it
leads to a child or parent fragment. Figure 3 shows the current fragment in the

16 Edgar H. de Graaf, Joost N. Kok, and Walter A. Kosters

Distance
Matrix for

Groups

Fig. 2. The process of exploring the fragment lattice.

Fig, 3 . Fragment exploration with the possible ways of shrinking and extending.

center window. The user must select a molecule to which an edge should be
added. After an edge is selected one can select a possible extension, leading to a
child, from the right window. It is also possible to shrink the current fragment
towards a parent fragment, the possibilities are always shown in the left window.

The user can also j u m p to a fragment in a group tha t occurs either often
in the same molecules or almost never, so fragments in close by or distant

Clustering Improves the Exploration of Graph Mining Results 17

groups. Each molecule has a group and in Figure 4 it shows its group, and the
other fragments in that group, first. Then it lists all close by groups and their
corresponding fragments (here close by is defined as group-dist < 0.3, see also
Section 4). For every group it shows the distance, indicated with "dist", to the
group of the current fragment.

luroup: 35

Idist = 0.0

Ibroup: 22

idist = 0.239145...

1 Group: 36

idist = 0.246300...

89

187

10

- i .

474

"»
»,

- 8 .

~

«.
90

^
»a

"

^
129

,»

173

475 1 188 1 705 \

501 \ HI
yi

Fig. 4. Co-occurrence view for groups, showing all groups close by {group-dist < 0.3).

3 Distance Measure

The distance measure will compute how often frequent subgraphs occur in the
same graphs of the dataset. In the case of our working example it will show if
different fragments (frequent subgraphs) exist in the same molecules. Formally
we will define the distance measure in the following way (for graphs gi and 52)-

dist{gi,g2) = (1)
sup{gi) + sup{g2) ~ 2 • sup{gi A ^2) _ sup{gi) + sup{g2) - 2 - sup{gi Agf2)

sup{gi V 52) sup{gi) + sup{g2) - sup{gi A 52)

Here sup{g) is the number of times a (sub)graph g occurs in the set of graphs;
sup{gi A 52) gives the number of graphs (or transactions) with both subgraphs
and sup{gi V 52) gives the number of graphs with at least one of these sub­
graphs. The numerator of the dist measure computes the number of times the
two graphs do not occur together in one graph of the dataset. We divide by
sup{giWg2) to make the distance independent from the total occurrence, thereby
normalizing it. By reformulating we remove sup{gi V^2)? saving us access time
for the compressed dataset.

The distance measure satisfies the usual requirements, such as the triangular
inequality. Note that 0 < dist{gi^g2) < 1 and dist{gi^g2) = 1 <^ ^w{9i ^92) —
0, so gi and g2 have no common transactions in this case. If dist{gi^g2) = 0,
both subgraphs occur in the same transactions, but are not necessarily equal.

While computing the support for the graphs not all frequent subgraphs are
known and not all distances can be computed while running GSPAN.

4 Grouping Fragments

We will have to store the distance for all frequent subgraph combinations in
order to decide fragments at an interesting distance. If we have n frequent

18 Edgar H. de Graaf, Joost N. Kok, and Walter A. Kosters

subgraphs then storing the support for all n{n — l) /2 combinations might be
too much. However many frequent subgraphs often are very similar in both
structure and support and often there exists a parent-child relation.

Now we will propose a step where we group close subgraphs to reduce both
the number of distances to store and the exploration time by grouping redun­
dant graphs. We first define a distance grdist (Ci, C2) between groups (clusters)
Ci and C2 as the maximal dist between parent and child graphs in the two
groups. This can be calculated fast by traversing the lattice.

This distance has a special value —1 if there is no pair (pi,^2) with gi G
Ci and g2 G C2, such that they have a parent-child relation, otherwise the
maximum dist between such elements is used.

All information used to compute these distances can be retrieved from the
lattice information provided by the graph mining algorithm, when we focus on
the subgraph-supergraph pairs. This information is already there to discover
the frequent subgraphs, the only extra calculation is done when searching for
dist in this information.

Now we propose the GROUPFRAGMENTS algorithm that will organize close
subgraphs/supergraphs into groups. The groups will be organized in a set V.
The outline of our algorithm based on hierarchical clustering is the following:

initiahze V with sets of subgraphs of size 1 from the lattice
while V was changed or was initialized

Select Ci and C2 from V with minimal grdist (Ci,C2) > 0
if grdist{Ci,C2) < maxdist then

P = P u { C i U C 2 }
Remove Ci and C2 from V

GROUPFRAGMENTS

The parameter maxdist is a user-defined threshold giving the largest distance
allowed for two clusters to be joined.

Once the clusering has been done, we redefine the distance between groups as
the distance between a smallest graph of each of the two groups, representing the
most essential substructure of the group {size gives the number of vertices): for
gi G Ci and g2 G C2 with size{gi) = min{{size{g) \ g E Ci}) and size{g2) =
min{{size{g) \ g G C2}), we let group^dist{Ci, C2) = dist{gi,g2). So even if
grdist (Ci, C2) would give the special value —1, group-dist {Ci ^€2) will provide
a reasonable distance.

Now we allow the user to define which groups are interesting. These are
mostly extremes: close by or far away groups. So the set V of interesting
groups with a relation to group Cy^ will be: V' = {Cv\group-dist{Cuj,Cv) <
interest-miny group.dist {C^^Cy) > interest .max} ^ where interest.max defines
the largest distance of interest and interest.min the smallest. The user can now
browse fragments in these interesting groups.

Clustering Improves the Exploration of Graph Mining Results

5 Experimental Results

19

The experiments were done for three main reasons. Firs t of all we want to
show the development of runtime performance as maxdist decreases. Secondly
we want to show the effect of fragment size on the grouping algori thm with
the distance measure. Finally the effect of using a distance matrix for storing
distances between groups will be measured.

We make use of a molecule dataset , containing 4,069 molecules; from this
we extracted a lattice with the 1,229 most frequent subgraphs. All experiments
were performed on an Intel Pen t ium 4 64-bits 3.2 GHz machine with 3 GB
memory. As operat ing system Debian Linux 64-bits was used with kernel 2.6.8-
12-em64t-p4.

30000

25000

16000

10000

5000

\ \ \ \ \

\
\ '"'\

V ,

Grouping Only
With Disl Matrix Construction

Fig. 5. Runtime in ms for different Fig. 6. Runtime in ms for different frag-
maxdist settings and the influence of dis- ment set sizes {maxdist = 0.3), with
tance matrix construction. quadratic regression

Figure 5 shows how runt ime drops if we increase the maxdist threshold.
This is mainly caused by the decrease of groups and so the size of the distance
matr ix . However the use of a distance mat r ix will provide the necessary speedup
during exploration. Fur thermore we also see t h a t a low maxdist gives a large
runt ime due to a large distance matr ix . This seems to show tha t making groups
enables the application to store a distance mat r ix in memory and this allows
the application to faster find close by groups (so faster browsing). Note tha t in
practice we should store the distance matr ix , for each dataset , on the disk and
construct it only once.

In Figure 6 we see the runt ime for the grouping algori thm as the number of
fragments to be grouped increases. This runt ime depends on the distance mea­
sure and the grouping algorithm, and runt ime seems to increase polynomially.

6 Conclusions and Future Work

The application discussed in this work facilitates the exploration of fragments
extracted from a dataset of molecules. Wi th fragments we mean frequent sub­
graphs occurring in a dataset of graphs, the molecules.

20 Edgar H. de Graaf, Joost N. Kok, and Walter A. Kosters

We introduced two methods of browsing fragments. First ly one can browse
between parent and child by adding or removing edges from the fragments
(only if it leads to another existing fragment). Our second method of brows­
ing required us to first group fragments into groups of very similar fragments.
We consider a fragment to be similar to another one if they have a parent-
child relation and they occur in (almost) the same molecules. This allows the
(bio)chemist to quickly j u m p to fragments tha t are biologically more interesting
or cover a different subgroup of molecules.

Finally we discussed the runt ime performance of om: fragment grouping
algori thm with different settings. Results showed tha t the construction of a
distance matr ix , needed for fast browsing, takes the most t ime. Fur thermore
results suggested t ha t grouping improves the runt ime, since less (redundant)
distances are stored.

In the future we hope to include other innovative ways of browsing and
analyzing the latt ice of fragments, and we want to improve scalability where
possible.

A c k n o w l e d g m e n t s : This research is carried out within the Netherlands Orga­
nization for Scientific Research (NWO) MISTA Project (grant no. 612.066.304).
We thank Jeroen Kazius and Siegfried Nijssen for their help.

References

1. Graaf, E.H. de, Kok, J.N. and Kosters, W.A.: Visualization and Grouping of
Graph Patterns in Molecular Databases, Submitted.

2. Hanke, J., Beckmann, G., Bork, P. and Reich, J.G.: Self-Organizing Hierarchic
Networks for Pattern Recognition in Protein Sequences, Protein Science Journal
5 (1996), pp. 72-82.

3. Mahony, S., Hendrix, D., Smith, T.J. and Golden, A.: Self-Organizing Maps of
Position Weight Matrices for Motif Discovery in Biological Sequences, Artificial
Intelligence Review Journal 24 (2005), pp. 397-413.

4. Samsonova, E.V., Back, T., Kok, J.N. and IJzerman, A.P.: Reliable Hierarchical
Clustering with the Self-Organizing Map, in Proc. 6th International Symposium
on Intelligent Data Analysis (IDA 2005), LNCS 2810, pp. 385-396.

5. Uchiyama, I.: Hierarchical Clustering Algorithm for Comprehensive Orthologous-
Domain Classification in Multiple Genomes, Nucleic Acids Research Vol. 34, No.
2 (2006), pp. 647-658.

6. Xu, J., Zhang, Q. and Shih, C.K.: V-Cluster Algorithm: A New Algorithm for
Clustering Molecules Based Upon Numeric Data, Molecular Diversity 10 (2006),
pp. 463-478.

7. Yan, X. and Han, J.: gSpan: Graph-Based Substructure Pattern Mining. In Proc.
2002 IEEE International Conference on Data Mining (ICDM 2002), pp. 721-724.

8. Zaki, M., Parthasarathy, S., Ogihara, M. and Li, W.: New Algorithms for Fast
Discovery of Association Rules, in Proc. 3rd International Conference on Knowl­
edge Discovery and Data Mining (KDD 1997), pp. 283-296.

http://www.springer.com/978-0-387-74160-4

