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A Brief Introduction to the Protein Phosphatase Families

Tomas Mustelin

Summary
This chapter introduces the main families of protein phosphatases encoded by the

human genome and discusses their classification, overall structure, regulation, and physi-
ological functions in human health and diseases. The topics of redundancy, diversity,
and dynamic expression in individual cell types are briefly introduced, and the impor-
tance of technological approaches to phosphatase research is emphasized.
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1. Introduction
Protein phosphorylation is a fundamental mechanism for numerous impor-

tant aspects of eukaryote physiology, as well as human health and disease
(1–4). It has been estimated that at least one-third of cellular proteins contain
covalently bound phosphate. Among the many phospho-acceptor amino acids,
serine phosphorylation is the most prevalent, whereas tyrosine phosphoryla-
tion (5) stands out as a feature of higher eukaryotes, where it is used as a regu-
latory mechanism in cell-to-cell communication and functions that coordinate
the behavior of cell populations within these multicellular organisms (1). How-
ever, tyrosine phosphorylation has recently also been found in bacteria and
Archaea (6–8), the sequenced genomes of which usually contain several genes
for PTPs. Thus, tyrosine phosphorylation might have flourished in more recent
evolution, but its roots lay very far back. Bacterial genomes also contain Ser/
Thr phosphatases, but usually lack eukaryote-type protein kinases. Instead,
there are protein kinases of a different kind, which are not found in mammals.
Nevertheless, it seems that protein phosphorylation is not nearly as central a
regulatory mechanism in prokaryotes as it is in eukaryotes.
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With some very rare possible exceptions, protein phosphorylation is a
reversible posttranslational modification catalyzed by protein kinases and
reversed by protein phosphatases. Thus, the state of phosphorylation of a pro-
tein, at a given moment in time, is the net result of the opposing activities of the
relevant kinase(s) and phosphatase(s). A change in phosphorylation state can
be the result of a change in the activity (or access) of either enzyme. Particu-
larly in the realm of tyrosine phosphorylation, a general rule is that the balance
is skewed very far toward the dephosphorylated state: Most tyrosine phospho-
rylated proteins are phosphorylated to a stoichiometry of only a few percent
even under the most extreme inducing conditions and are often not phosphory-
lated at all under “resting” conditions. Thus, one could argue that phosphatases
are more important than kinases in setting the levels of protein phosphoryla-
tion and that they should be much better drug targets. Indeed, phosphatases
often play very specific, nonredundant, highly regulated, and very active roles
in many cellular processes (9–17). Phosphatases are also often “positive” com-
ponents of signaling events (18–20) and many phosphatase knockout mice have
unique and complex phenotypes (21–30). Finally, the completion of the human
genome has demonstrated that (1) there are more tyrosine phosphatases than
tyrosine kinases (3,31), (2) the possible number of Ser/Thr phosphatase holo-
enzymes, generated by a combinatorial mechanism, far exceeds the number of
all protein kinases (32), and (3) there are additional large families of protein
phosphatases, such as the haloacid dehalogenase (HAD) family, and possibly
others.

2. The Many Families of Protein Phosphatases
Based on structure, rather than function, the protein phosphatases can be

classified into several completely separate families (see Table 1) that do not
share any structural similarities and apparently evolved independently from
different ancestral folds. Naturally, we cannot exclude the possibility that some
of these folds may have evolved from one another at an ancient time beyond
the abilities of bioinformatics tools to resolve. It is important to note that this
newer structural classification overlaps, but does not coincide, with the older
classification of protein phosphatases by substrate specificity into Ser/Thr-
specific, Tyr-specific, and dual-specific phosphatases. Particularly, the so
called dual-specific phosphatases (DSPs) (3) include many enzymes that are
highly specific for Tyr, Ser, phosphoinositides, or mRNA. There are also
examples of “Ser/Thr phosphatases” that dephosphorylate Tyr and enzymes
that can dephosphorylate more than one type of substrate. Clearly, evolution
cares little for our desires for simplicity and classification. In fact, the many
solved crystal structures of protein phosphatases demonstrate that subtle alter-
ations in structure can drastically alter substrate specificity (e.g., from
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phosphoamino acid to phospholipid; see refs. 33 and 34) and that the same
substrate specificity can be achieved in many different ways.

The Ser/Thr phosphatases have been classified into three structurally distinct
families: (1) the PPM family of Mg2+-dependent phosphatases, including PP2C,
(2) the Mg2+-dependent FCP family, and (3) the PPP family, which is the largest
and contains the well-known enzymes PP1, PP2A, PP2B (calcineurin), PP5, and
many others (32). Altogether there are 25–30 genes for catalytic subunits of these
enzymes in the human genome. In addition, there are numerous regulatory sub-
units, which participate in the formation of heterodimeric or trimeric phosphatase
holoenzymes with unique substrate specificities, regulatory mechanisms, sub-
cellular locations, and physiological functions (32).

We defined PTPs as the proteins with structural homology to the catalytic
domains of any of the known enzymes with PTP activity, regardless of their
specificity (3). There are four evolutionary distinct families of such genes: the
class I, II, and III Cys-based PTPs, and the Asp-based phosphatases, exempli-
fied by the Eya (eyes absent) tyrosine phosphatases (14). These Asp-based
PTPs are part of the HAD family, which is now emerging as a very large pro-
tein family with representatives in plants (35), prokaryotes (36), and mammals

Table 1
Phosphatase Families

Phosphatase families Examples of members

1. PPM family PP2C
2. FCP family FCP
3. PPP family PP1, PP2A, calcineurin, PP5
4. HAD family (Asp-based) Eya, CTD, cronophin
5. Class I Cys-based PTPs

5.1. Classical PTPs
5.1.1. Transmembrane PTPs PTPα, CD45, CD148, IA-2, GLEPP1
5.1.2. NRPTPs PTP1B, TCPTP, SHP1, LYP, MEG2

5.2. DSPs or VH1-like PTPs
5.2.1. MKPs MKP1–5, MKP7, PAC1
5.2.2. Atypical DSPs VHR, PIR, Laforin, VHZ, STYX
5.2.3. Slingshots SSH1, SSH2, SSH3
5.2.4. PRLs PRL-1, PRL-2, PRL-3
5.2.5. CDC14s CDC14A, KAP, PTP9Q22
5.2.6. PTENs PTEN, TPIP, tensin, C1ten
5.2.7. Myotubularins MTM1, MTMR1—15

6. Class II Cys-based PTPs CDC25A, CDC25B, CDC25C
7. Class III Cys-based PTPs LMPTP
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and includes numerous enzymes with other than Tyr-specificity—indeed, with
a broader substrate spectrum than hydroxyl-containing amino acid residues in
proteins, such as phospholipids (37), sugars (38), nucleotides (39), and
epoxides (40). The protein phosphatases of the HAD family can be specific for
tyrosine (14) or serine, as in the case of the cofilin phosphatase chronophin
(41) and RNA polymerase C-terminal phosphatase (42). Several crystal struc-
tures of HAD family phosphatases have already been reported (43–46) and a
more definitive picture of this family is now emerging.

Class I Cys-based PTPs are structurally related to the first PTP PTP1B,
whose amino acid sequence was determined (47). There are at least 99 mem-
bers of this family in the human genome (3) and they can be further subclassi-
fied into the classical PTPs (receptorlike and nonreceptor), and the VH1-like
phosphatases, which contain the mitogen-activated protein (MAP) kinase phos-
phatase (MKPs), the atypical DSPs, the slingshots, the PRLs, the CDC14s, the
PTEN group, and the myotubularins. The two latter dephosphorylate inositol
phospholipids (48,49). Within all of these homologous phosphatases, it appears
that the atypical DSPs represent the evolutionary most ancient members of the
family. Genes with a high degree of similarity can be found across all king-
doms of life, including Archaea and plants (50). In contrast, the classical PTPs,
particularly the receptorlike group, seem to be more recent groups that have
flourished and diversified in multicellular organisms.

The class II Cys-based protein phosphatases comprise a small group of cell-
cycle regulators known as the CDC25 phosphatases. Although their catalytic
machinery is very similar to the class I enzymes, they are structurally unrelated
and, instead, bear considerable resemblance to bacterial rhodanese enzymes
(51), and are thought to have evolved relatively late in eukaryote evolution.
Interestingly, the MAP kinase phosphatases, which belong to the class I fam-
ily, have incorporated a catalytically inactive rhodaneselike domain, which
functions as a MAP kinase docking module (52). This creates a region of
homology between the CDC25s and the MAP kinases, which, however, is not
indicative of a common ancestry of their catalytic domains.

The class III Cys-based protein phosphatases are widely distributed in all
kingdoms of life and most bacteria have the genes for one or two such enzymes
in their genomes. In Escherichia coli, one such phosphatase regulates the tyro-
sine phosphorylation of a transmembrane tyrosine autokinase, which regulates
synthesis of polysaccharides of the bacterial capsule (53). In the Gram-negative
Bacillus subtilis, the two class III phosphatases YfkJ and YwlE have clearly
distinct properties and bacterial knockout strains have distinct phenotypes (54).
The human genome contains a single gene for a class III PTP, the low-Mr PTP
(LMPTP), which undergoes alternative splicing to yield two active and one
inactive isoforms. Although a polymorphism in this gene correlates with
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numerous common human diseases (4), the function of LMPTP has remained
obscure.

3. Single-Chain Multidomain Versus Single-Domain
Multi-Subunit Organization

As mentioned above, many PTPs are larger proteins with multiple modular
domains, whereas Ser/Thr phosphatases consist of catalytic polypeptides that
can associate with several different regulatory or targeting subunits, resulting
in numerous different holoenzymes. Thus, the end result is similar, but one
cannot help wondering why the strategies are so different. What are the advan-
tages of each strategy? Are single-chain multidomain enzymes more strictly
regulated? Does a combinatorial mechanism allow for more flexibility in cel-
lular responses? The completion of many genomic sequencing projects has
revealed that the number of PTP genes has increased during evolution, whereas
the number of Ser/Thr phosphatases has remained nearly constant. Instead, the
number of regulator/targeting subunits has increased sharply in eukaryote evo-
lution (17). Perhaps the large increase in protein phosphorylation during early
evolution outpaced the diversification of Ser/Thr phosphatase domains and,
instead paradoxically, led to a situation in which a few phosphatase catalytic
domains with broad substrate specificity fulfill the need better, as long as their
regulation and targeting is taken into account.

4. Regulation of Phosphatases
Both Ser/Thr phosphatases and PTPs seem to be regulated to a large extent

by similar mechanisms, which are also shared by protein kinases, namely by
protein–protein and protein–phospholipid interactions. Both targeting to sub-
strate-containing locations or complexes and direct allosteric modulation of
the catalytic domain/subunit seem to play important roles. Catalytic activation
is often accomplished by the removal of pseudosubstrate motifs or blocking
regulatory subunits/domains from the active site of the phosphatase as a result
of interaction of the holoenzyme with ligands or phospholipids. Another inter-
esting aspect of regulation is the abundance of catalytically inactive PTP
domains (approx 10% of all PTPs), which often partner with active PTPs and
perform crucial regulatory or targeting functions. Good examples of this is
provided by many receptorlike PTPs, which have two tandem catalytic domains
in their intracellular C-terminus. In most cases, the second domain has less
than 1% as much activity as the first (membrane-proximal) domain; in some
PTPs, the second domain does not even have the catalytic cysteine. Neverthe-
less, in many cases, the second domain is still crucial for the physiological
function of the phosphatase (55). Another striking example can be found within
the myotubularins: whereas many patients with the inherited nerve myelina-
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tion disease Charcot–Marie–Tooth syndrome type 4B have a debilitating mu-
tation in the class I Cys-based phosphatase myotubularin-related protein 2
(MTMR2) (56), a subset of patients were found to have a mutation in the cata-
lytically inactive phosphatase MTMR13 (57). In both cases, the disease is the
same, raising the question of how the loss of an inactive phosphatase can lead
to the same disease as the loss of an active phosphatase. The answer to this
puzzle was provided by the discovery that the two proteins form a heterodimer,
in which the catalytically inactive MTMR13 provides critical aid to the func-
tion of the active MTMR2.

Phosphatases are often phosphorylated themselves, suggesting that they are
also substrates for protein kinases and phosphatases and can be part of kinase
cascades, phosphatase cascades, or mixed cascades. Dephosphorylation of
phosphatases can occur by autocatalysis, but in some cases (e.g., VHR), the
phosphorylated residue is not accessible to the catalytic pocket of the same
molecule and therefore dephosphorylation must occur either in trans or by
another PTP. As with many other signaling molecules, tyrosine phosphoryla-
tion of phosphatases is typically of very low stoichiometry and difficult to
study. Nevertheless, there are a few examples where tyrosine phosphorylation
of a PTP is of regulatory importance, such as the cases of RPTPα (58), LMPTP
(59), VHR (60). Phosphotyrosine can also be found in dozens of other phos-
phatases, but is still in most cases of unknown physiological relevance.

5. How Many Phosphatase Are There in a Cell?
Although it has become increasingly apparent that phosphatases often have

a high degree of specificity and that there are so many phosphatase genes in the
human genome, the question of functional redundancy is still largely unre-
solved. It is probably prudent to assume that closely related phosphatases have
at least partly overlapping sets of substrates. There is some evidence for this,
for example, from mouse knockouts where the phenotype has been milder than
expected [e.g., MKP1 (61) or PEP (62)]. A more systematic analysis of redun-
dancy is complicated by issues of tissue expression profile, relative expression
levels, and differential regulation of expression during embryogenesis and
development. An alternative approach to study the question of redundancy is
to take a given cell and first ask how many of the existing phosphatase genes
are expressed in it and then study this set (e.g., by RNA interference). From
preliminary analysis carried out in our laboratory, it seems that each cell type
expresses a surprisingly large portion of the 107 PTP genes (the “PTPome”);
for example, monocytes and T-lymphocytes express at least 68 PTPs each,
whereas B-cells contain over 70. The set expressed in each cell type is unique
(albeit overlapping) both in terms of which PTPs are expressed and in their
relative expression levels. The entire set responds with both qualitative and
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quantitative changes to many external stimuli, cell activation, differentiation,
and so forth. Interestingly, each stimulus elicits a unique response and identi-
cal stimuli elicit somewhat different responses in different cells, even when
they are closely related. Finally, the PTP expression profile is somewhat dif-
ferent in identical cell types from different individuals. All of these levels of
complexity will need to be considered when studying the extent of possible
redundancy of phosphatases.

6. Protein Phosphatases and Human Disease
Whether phosphatases exhibit some overlaps in function or not, it is clear

that even subtle alterations in many of them can cause human disease (2,3). As
might be expected, loss of phosphatases has been reported in cancer: The list
contains over 30 different PTPs and loss can occur by genetic (e.g., chromo-
somal abnormalities, frame-shift mutations, or point mutations) or epigenetic
(e.g., promoter methylation or changes in transcription) mechanisms. More
interestingly, several phosphatases have been found to be overexpressed in
human malignancies, such as PRL3 in metastatic colon cancer (63).

Phosphatases are also implicated in inherited genetic diseases, including
Noonan syndrome (SHP2; 64), Lafora’s epilepsy (laforin; 65), muscle dystro-
phies (myotubularin; 66), and immunodeficiencies (CD45; 67,68), as well as
in autoimmune diabetes (LYP; 69–71, and PTPRN; 72) and other major auto-
immune diseases (LYP; 73–75), and myelodysplastic syndrome and acute
myeloblastic leukemia (SHP1; 76, and HePTP; 77,78). Also, PP2A has been
implicated in a monogenic disorder, Opitz BBB/G syndrome (79), which is
characterized by malformations of the ventral midline, as well as in tumorigen-
esis (80,81). Given the broad significance of protein phosphorylation and the
very limited studies performed so far, I predict that a very large number of
human health concerns will be found to involve a central role for protein phos-
phatases. I also predict that the pharmaceutical industry will become increas-
ingly interested in phosphatases as drug targets. In fact, this trend is already
evident (82–91).

7. Concluding Remarks
The mission of my laboratory is to make the scientific community more

familiar with the PTPs and their importance in human health and disease. We
strive to elucidate the molecular mechanisms of PTP function in normal as
well as pathological cellular processes and to explore the value of individual
PTPs as drug targets. Over the years, I have come to value the inclusion of
multiple phosphatases in each experiment and a more unbiased comparison of
enzymes, rather than a strict focus on a single one at a time. We often to ask
“Which phosphatase does this?” rather than “What does this phosphatase do?”
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This approach not only gives a better insight into questions of specificity vs
redundancy, but often reveals unexpected or novel functions. I believe that the
time has come to consider and analyze entire families of phosphatases.

This volume of Methods in Molecular Biology addresses a perceived ob-
stacle in phosphatase research: the notion that phosphatases are technically
difficult to study. Not so, there are numerous well-established techniques and
protocols, as well as an increasingly complete coverage of antibodies and plas-
mids, plus many new avenues, such as small-molecule inhibitors, activity-based
probes (92), and technologies for RNA interference and “substrate-trapping”
mutants. I hope that this volume of Methods in Molecular Biology will entice
more researchers to enter the field of protein phosphatases and will stimulate
work with the numerous enzymes that so far have received little attention.
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