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Summary

Metabolic network reconstruction has become an established procedure 
that allows the integration of different data types and provides a frame-
work to analyze and map high-throughput data, such as gene expression, 
metabolomics, and fl uxomics data. In this chapter, we discuss how to 
reconstruct a metabolic network starting from a genome annotation. 
Further experimental data, such as biochemical and physiological data, 
are incorporated into the reconstruction, leading to a comprehensive, 
accurate representation of the reconstructed organism, cell, or organelle. 
Furthermore, we introduce the philosophy of constraint-based modeling, 
which can be used to investigate network properties and metabolic capa-
bilities of the reconstructed system. Finally, we present two recent studies 
that combine in silico analysis of an Eschirichia coli metabolic recon-
struction with experimental data. While the fi rst study leads to novel 
insight into E. coli’s metabolic and regulatory networks, the second pre-
sents a computational approach to metabolic engineering.

Key Words: Metabolism; reconstruction; constraint-based modeling; 
in silico model; systems biology.

1. Introduction

Over the past two decades, advances in molecular biology, DNA sequenc-
ing, and other high-throughput methods have dramatically increased 
the amount of information available for various model organisms. Sub-
sequently, there is a need for tools that enable the integration of this 
steadily increasing amount of data into comprehensive frameworks to 
generate new knowledge and formulate hypotheses about organisms and 
cells. Network reconstructions of biological systems provide such frame-
works by defi ning links between the network components in a bottom-
to-top approach. Various types of “omics” data can be used to identify 
the list of network components and their interactions. These network 
reconstructions represent biochemically, genetically, and genomically 
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(BIGG) structured databases that simultaneously integrate all com-
ponent data, and can be used to visualize and analyze further high-
throughput data, such as gene expression, metabolomics, and fl uxomics 
data.

There are at least three ways to represent BIGG databases: (i) 
textual representation, which allows querying of its content; (ii) graphi-
cal representation, which allows the visualization of the network interac-
tions and their components; and (iii) mathematical representation, 
which enables the usage of a growing number of analytical tools to 
characterize and study the network properties. Several metabolic 
reconstructions have been published recently, spanning all domains of 
life (Table 1), and most of them are publicly available.

In this chapter, we will fi rst defi ne the general properties of a biological 
system, and then learn to how to reconstruct metabolic networks. The 
second part of the chapter will introduce the philosophy of constraint-
based modeling and highlight two recent research efforts that combined 
experimental and computational methods. Although this chapter con-
centrates on metabolic reconstructions, networks of protein–protein 
interactions, protein–DNA interactions, gene regulation, and cell signal-
ing can be reconstructed using similar rules and techniques. The general 
scope of this chapter is illustrated in Figure 1, which represents the main 
process of “bringing genomes to life.”

Table 1. Organisms and network properties for which genome-scale 
metabolic reconstructions have been generated.
 ORFs SKI NG NM NR Ref

BACTERIA
 Bacillus subtilis 4,225 4.8 614 637 754 19
 Escherichia coli 4,405 55.1 904 625 931 20
   720 438 627 21
 Geobacter sulfurreducens 3,530  588 541 523 22
 Haemophilus infl uenzae 1,775 8.9 296 343 488 23
   400 451 461 24
 Helicobacter pylori 1,632 13 341 485 476 25
   291 340 388 26
 Lactococcus lactis 2,310  358 422 621 27
 Mannheimia succiniproducens 2,463  335 352 373 28
 Staphylococcus aureus 2,702 16 619 571 641 29
 Streptomyces coelicolor 8,042 0.13 700 500 700 30

ARCHAEA
 Methanosacrcina barkerii 5,072  692 558 619 31

EUKARYA
 Mus musculus 28,287 15.6 1,156b 872 1,220 32
 Saccharomyces cerevisiae 6,183 10.6 750 646 1,149 33
   708 584 1,175 34
Listed is the number of open reading frames (ORF) of each organism, the number of 
genes included in the reconstruction (NG), as well as the number of metabolites (NM) and 
reactions (NR) in the metabolic network. The Species Knowledge Index (SKI) (1) is a 
measure of the amount of scientifi c literature available for an organism. Adapted from 
Reed (18).
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Figure 1. Bringing genomes to life. This fi gure illustrates the main outline of the 
chapter and the general approach to network reconstruction and analysis. Start-
ing from the genome sequence, an initial component list of the network is 
obtained. Using additional data such as biochemical and other omics data the 
initial component list is refi ned as well as information about the links between 
the network components. Once the network links, or reactions, are formulated, 
the stoichiometric matrix can be constructed using the stoichiometric coeffi cients 
that link the network components. The defi nition of the system boundaries trans-
forms a network reconstruction into a model of a biological system. Every 
network reaction is elementary balanced and may obey further constraints (e.g., 
enzyme capacity). These constraints allow the identifi cation of candidate network 
solutions, which lie within the set of constraints. Different mathematical tools 
can be used to study these allowable steady-state network states under various 
aspects such as optimal growth, byproduct secretion and others.
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2. Properties of Biological Networks

In this section, we will discuss general properties of biological systems 
and how these can be used to defi ne a general scheme that describes 
biological systems in the terms of the components and links of the 
network.

2.1. General Properties of Biological Systems

The philosophy of network reconstruction and constraint-based model-
ing is based on the fact that there are general principles any biological 
system has to obey. Because the interactions, or links, between network 
components are chemical transformations, they are based on principles 
derived from basic chemistry. First, in living systems, the prototypical 
transformation is bilinear at the molecular level. This association involves 
two compounds coming together to either be chemically transformed 
through i) the breakage or formation of covalent bonds, as is typical for 
metabolic reactions and reactions of the macromolecular synthesis,

X + Y ↔ X − Y covalent bonds

or ii) two molecules associate together to form a complex that may be 
held together by hydrogen bonds and/or other physical association forces 
to form a complex, which has a different functionality from the individual 
components:

X + Y ↔ X : Y association of molecules.

An example of the latter association is the binding of a transcription 
factor to DNA to form an activated transcription site that enables the 
binding of the RNA polymerase.

Second, the reaction stoichiometry is fi xed and described by integer 
numbers counting the molecules that react and that are formed as 
a consequence of the chemical reaction. Chemical transformations are 
constrained by elemental and charge balancing, as well as other features. 
The stoichiometry is invariant between organisms for the same reactions, 
and it does not change with pressure, temperature, or other conditions. 
Therefore, stoichiometry gives the primary topological properties of 
a biochemical reaction network.

Third, all reactions inside a cell are governed by thermodynamics. 
The relative rate of reactions, forward and backward, is therefore 
fi xed by basic thermodynamic properties. Unlike stoichiometry, thermo-
dynamic properties do change with physicochemical conditions, such 
as pressure and temperature. In addition, the thermodynamic properties 
of association between macromolecules can be changed, for example, by 
altering the sequence of a protein or the base-pair sequence of a DNA-
binding site.

Fourth, in contrast to stoichiometry and thermodynamics, the absolute 
rates of chemical reactions inside cells are evolutionarily malleable. Cells 
can thus extensively manipulate the rates of reactions through changes 
in their DNA sequence. Highly evolved enzymes are very specifi c in 
catalyzing particular chemical transformations.
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18 Thiele and Palsson

These rules dictate that cells cannot form new links at will, and candi-
date links are constrained by the nature of covalent bonds and by the 
thermodynamic nature of interacting macromolecular surfaces. All of 
these are subject to the basic rules of chemistry and thermodynamics. 
Furthermore, intracellular conditions restrict the activity of systems, such 
as physicochemical conditions, spatiotemporal organization of cellular 
components, and the quasicrystalline state of the cell.

2.2. Steady-State Networks

Biological systems exist in a steady state, rather than in equilibrium. In 
a steady-state system, fl ow into a node is equal to fl ow out of a node. 
Consequently, depletion or accumulation in a steady-state network is not 
allowed, which means that a produced compound has to be consumed 
by another reaction. If this is not the case, the corresponding compound 
represents a network gap (or dead end), and its producing reaction is 
called a blocked reaction because no fl ux through this reaction is 
possible.

3. Reconstruction of Metabolic Networks

The genome annotation, or 1D annotation, provides the most compre-
hensive list of components in a biological network. In metabolic network 
reconstructions, the genome annotation is used to identify all potential 
gene products involved in the metabolism of an organism. By using more 
types of information, such as biochemical, physiological, and phenotype 
data, the interaction of these components will be defi ned. Subsequently, 
we will refer to network reconstructions as 2D genome annotation 
because the network links defi ned in the network reconstruction repre-
sent a second dimension to the 1D genome annotation.

3.1. Sources of Information

1D genome annotations are one of the most important information 
sources for reconstructions because they provide the most comprehen-
sive list of network components. However, one has to keep in mind that 
without biochemical or physiological verifi cation, the 1D annotation is 
merely a hypothesis.

The links in metabolic networks are the reactions carried out by meta-
bolic gene products. To assign cellular components with the metabolic 
reactions, different information is required and provided by various 
sources. Organism-specifi c and non–organism-specifi c databases contain 
a vast amount of data regarding gene function and associated metabolic 
activities. Especially valuable are organism-specifi c literature providing 
information on the physiological and pathogenic properties of the organ-
ism, along with biochemical characterization of enzymes, gene essential-
ity, minimal medium requirements, and favorable growth environments. 
Although biochemical data are used during the initial reconstruction 
effort to defi ne metabolic reactions, organism-specifi c information such 
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as medium requirements and growth environment can be used to derive 
transport reactions when not provided by the 1D genome annotations. 
In addition, gene essentiality data can be used during the network evalu-
ation process to compare and validate the reconstruction. Physiological 
data, such as medium composition, secretion products, and growth per-
formance, are also needed for the evaluation of the reconstruction and 
can be found in primary literature or can be generated experimentally. 
Phylogenetic data can substitute organism-specifi c information when a 
particular organism is not well studied, but has a close relative that is. In 
addition, cellular localization of enzymes can be found in studies that use 
immunofl uorescence or GFP-tagging for individual proteins to identify 
their place of action. Alternatively, there are several algorithms pre-
dicting a protein’s compartmentalization based on localization signal 
sequences.

Because some of these information sources are more reliable than 
others, a confi dence scoring system may be used to distinguish them.

3.2. How to Choose an Organism to Reconstruct

The amount of information available differs signifi cantly from organism 
to organism; therefore, the choice of organism to reconstruct is critical 
for the quality of the fi nal reconstruction. Because the genome annota-
tion serves as a fi rst parts list in most reconstruction efforts, its avail-
ability and high quality are primary criteria. Furthermore, the quantity 
of primary and review publications available for metabolism should be 
considered. A good estimate of legacy data available for an organism can 
be obtained with the Species Knowledge Index (SKI) (1). This SKI value 
is a measure of the amount of scientifi c literature available for an organ-
ism, calculated as the number of abstracts per species in PubMed 
(National Center for Biotechnology Information) divided by the number 
of genes in the genome (see Table 1 for some SKI values of reconstructed 
organisms). Finally, organism-specifi c databases maintained by experts 
can be very valuable sources of information during the reconstruction 
process.

3.3. Formulation of Model

The translation of a 1D genome annotation into a metabolic network 
reconstruction can be done in a step-wise fashion by incorporating dif-
ferent types of data. First, relevant metabolic genes have to be identifi ed 
from the 1D annotation. The gene functions have to be translated 
in elementary and charged balanced reactions. Next, the network is 
assembled by considering each metabolic pathway separately and by 
fi lling in missing reactions as necessary. When this fi rst version of the 
network reconstruction is fi nished, the reconstruction will be tested 
in silico and compared with physiological data to ensure that it has the 
same metabolic capabilities as the cell in vivo. This latter step might 
identify further reactions that need to be included, whereas other ones 
will be replaced or their directionality might be changed. It is important 
to remember that the sequence-derived list of metabolic enzymes cannot 
be assumed to be complete because of the large numbers of open reading 
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frames (ORFs) still having unassigned functions. The iterative process of 
network reconstruction and evaluation will lead to further refi nement of 
reconstruction (Figure 2).

3.3.1. Defi ning Biochemical Reactions
The biochemical reaction carried out by a gene product can be deter-
mined in fi ve steps (Figure 3). First, the substrate specifi city has to be 
determined because it can differ signifi cantly between organisms. In 
general, one can distinguish between two groups of enzymes based on 
their substrate specifi city. The fi rst group of enzymes can only act on a 
few highly similar substrates, whereas the second group recognizes a 
class of compounds with similar functional groups; thus, the enzymes 
have a broader substrate specifi city. The substrate specifi city of either 
type of these enzymes may differ across organisms for primary metabo-
lites, as well as for coenzymes (such as NADH vs. NADPH and ATP vs. 
GTP). Often, it is very diffi cult to derive this information solely from the 
gene sequence because substrate- and coenzyme-binding sites might be 
similar for related compounds.
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Figure 2. The iterative process of network reconstruction. Normally, several 
iterations of reconstruction are necessary to ensure quality and accuracy of the 
reconstructed network. After an initial reconstruction, accounting for the main 
components identifi ed by the different sources of information, is obtained, the 
reconstruction will be tested for its ability to produce certain metabolites such 
as biomass precursors. Comparison with experimental data, like phenotypical 
and physiological data, will help to identify any discrepancy between in silico and 
in vivo properties. The iterative re-evaluation of legacy data and network proper-
ties will eventually lead to a refi ned reconstruction.
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Once the metabolites and coenzymes of an enzyme are identifi ed, the 
charged molecular formula at a physiologically relevant pH has to be 
calculated, as a second step. In general, a pH of 7.2 is used in the recon-
struction. However, the pH in some organelles can differ from the rest 
of the cell, as is the case for peroxisomes, where the pH has been reported 
to be between 6 and 8 (2,3). The pKa value for a given compound can be 
used to determine its degree of protonation.

Third, the stoichiometry of the reaction needs to be specifi ed. As in 
basic chemistry, reactions need to be charge and mass balanced, which 
may lead to the addition of protons and water.

The fourth step adds basic thermodynamic considerations to the 
reaction, defi ning its reversibility. Biochemical characterization studies 
will sometimes test the reversibility of enzyme reactions, but the direc-
tionality can differ between in vitro and in vivo environments because 
of differences in temperature, pH, ionic strength, and metabolite 
concentrations.

The fi fth step requires reactions and proteins to be assigned to specifi c 
cellular compartments. This task is relatively straightforward for 
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Figure 3. The fi ve steps to formulate a biochemical reaction. The reaction carried 
out by a metabolic gene product can be determined by the fi ve depicted steps. 
Here, we show the example of the fumarate reductase of E. coli, which converts 
fumarate (FUM) into succinate (SUCC) using menaquinone (MQN) as electron 
donor.
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prokaryotes, which do not exhibit compartmentalization, but becomes 
challenging for eukaryotes, which may have up to 11 subcellular com-
partments (Figure 3). Incorrect assignment of the location of a reaction 
can lead to additional gaps in the metabolic network and misrepresenta-
tion of the network properties. In the absence of experimental data, 
proteins should be assumed to reside in the cytosol to reduce the number 
of intracellular transport reactions, which are also often hypothetical and 
therefore have a low confi dence score.

3.3.2. Assembly of Metabolic Network Reconstruction
Once the network reactions are defi ned, the metabolic network can be 
assembled in a step-wise fashion by starting with central metabolism, 
which contains the fueling reactions for the cell, and moving on to the 
biosynthesis of individual macromolecular building blocks (e.g., amino 
acids, nucleotides, and lipids). The step-wise assembly of the network 
facilitates the identifi cation of missing steps within the pathway that were 
not defi ned by the 1D annotation. Once well-defi ned metabolic pathways 
are assembled, reactions can be added that do not fi t into these pathways, 
but are supported by the 1D annotation or biochemical studies. Such 
enzymes might be involved in the utilization of other carbon sources or 
connect different pathways.

3.3.3. Gap Analysis
Even genomes of well-studied organisms harbor genes of unknown 
functions (e.g., 20% for E. coli). Subsequently, metabolic networks 
constructed solely on genomic evidence often contain many network 
gaps, so-called blocked reactions. Physiological data may help to deter-
mine whether a pathway is functional in the organism, and thus 
may provide evidence of the missing reactions. This procedure is 
called gap fi lling, and it is a crucial step in network reconstruction. 
For example, if proline is a nonessential amino acid for an organism, 
then the metabolic network should contain a complete proline bio-
synthesis pathway, even if some of the enzymes are not in the current 
1D annotation. In contrast, if another amino acid, let’s say methionine, 
is known to be required in the medium, then the network gap should not 
be closed, even if only one gene is missing. In this case, fi lling the gap 
would signifi cantly change the phenotypical in silico behavior of the 
reconstruction.

These examples show that physiological data of an organism provide 
important evidence for improving, refi ning, and expanding the quality 
and content of reconstructed networks. Reactions added to the network 
at this stage should be assigned low confi dence scores if there are no 
genetic or biochemical data available to confi rm them. Subsequently, for 
each added reaction, putative genes can be identifi ed using homology-
based and context-based computational techniques. Such added reac-
tions and putative assignments form a set of testable hypotheses that are 
subject to further experimental investigation. Because the reconstructed 
network integrates many different types of data available for an organ-
ism, its completeness also refl ects the knowledge about the organism’s 
metabolism. Remaining unsolved network gaps involving blocked reac-
tions or dead-end metabolites refl ect these knowledge gaps.
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3.3.4. Evaluation of a Network Reconstruction
Network evaluation is a sequential process (Figure 3). First, the network 
is examined to see if it can generate the precursor metabolites, such as 
biomass components, and metabolites the organism is known to produce 
or degrade. Second, network gaps have to be identifi ed and metabolic 
pathways may need to be completed based on physiological information. 
Finally, the comparison of the network behavior with various experi-
mental observations, such as secretion products and gene essentiality, 
will ensure similar properties and capabilities of the in silico metabolic 
network and the biological system. This sequential, iterative process of 
network evaluation is labor intensive, but it will ensure high accuracy 
and quality by network adjustments, refi nements, and expansions.

3.4. Automating Network Reconstruction

The manual reconstruction process is laborious and can take up to a year 
for a typical bacterial genome, depending on the amount of literature 
available. Hence, efforts have been undertaken to automate the recon-
struction process. Like most manually assembled reconstructions, most 
automatic reconstruction efforts start from the annotation. For example, 
Pathway Tools (4) is a program that can automate a network reconstruc-
tion using metabolic reactions associated with Enzyme Commision 
numbers (5) and/or enzyme names from a 1D genome annotation. To 
overcome missing annotations, Pathway Tools has the option to include 
missing gene products and their reactions in a pathway if a signifi cant 
fraction of the other enzymes are functionally assigned to this pathway 
in the genome annotation. As for the manually curated reconstruction, 
the automated gap fi lling procedure has to be done with caution, as the 
inclusion of reactions without confi dence may alter the phenotypical 
outcome of the reconstruction.

Although the automation of reconstruction is necessary on a larger 
scale, the results of these informatics approaches are limited by the 
quality of the information on which they operate. Therefore, automated 
reconstructions need detailed evaluation to assure their accuracy and 
quality. Frequent problems with these automated reconstructions involve 
incorrect substrate specifi city, reaction reversibility, cofactor usage, 
treatment of enzyme subunits as separate enzymes, and missing reactions 
with no assigned ORF. Although an initial list of genes and reactions 
can be easily obtained by using the automated methods, a good recon-
struction of biological networks demands the understanding of pro-
perties and characteristics of the organism or the cell. Because the 
number of experimentally verifi ed gene products and reactions is limited 
for most organisms, knowledge about the metabolic capabilities of the 
organism is crucial.

4. Mathematical Characterization of Network Capabilities

In this section, we briefl y illustrate the general philosophy of the con-
straint-based modeling approach that resulted in a growing number of 
mathematical tools to interrogate a reconstructed network. The method 
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relies primarily on network stoichiometry, and thus it is not necessary 
to defi ne kinetic rate constants and other parameters, which are diffi cult 
or impossible to determine accurately in the laboratory. A more com-
prehensive description of the different tools can be found in Palsson’s 
work (6) and in a recently published review (7).

4.1. Stoichiometric Representation of Network

The stoichiometric matrix, denoted as S, is formed by the stoichiometric 
coeffi cients of the reactions that comprise a reaction network (Figure 1 
and Figure 4). This matrix is organized such that every column corre-
sponds to a reaction, and every row corresponds to a compound. The 
matrix entries are integers that correspond to the stoichiometric coeffi -
cients of the network reactions. Each column describes a reaction, which 
is constrained by the rules of chemistry, such as elementary balancing. 
Every row describes the reactions in which a compound participates, and 
therefore how the reactions are interconnected.

Mathematically, the stoichiometric matrix, S, transforms the fl ux vector 
v, which contains the reaction rates, into a vector that contains the time 
derivatives of the concentrations. The stoichiometric matrix, thus con-
tains chemical and network information. Mathematically spoken, the 
stoichiometric matrix S is a linear transformation of the fl ux vector,

v = (v1, v2,  .  .  .  , vn),

to a vector of time derivatives of the concentration vector,

x = (x1, x2,  .  .  .  xn),

as

dx/dt = S.v.

At steady state, there is no accumulation or depletion of metabolites 
in a metabolic network, so the rate of production of each metabolite in 
the network must equal its rate of consumption. This balance of fl uxes 
can be represented mathematically as

S.v = 0.
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Figure 4. Matrix representation of metabolic network.
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Bounds that further constrain the values of individual variables can 
be identifi ed, such as fl uxes, concentrations, and kinetic constants. Upper 
and lower limits can be applied to individual fl uxes, such that

vi,min ≤ vi ≤ vi,max.

For elementary (and irreversible) reactions, the lower bound is defi ned 
as vmin = 0. Specifi c upper limits (vmax) that are based on enzyme capacity 
measurements are generally imposed on reactions.

4.2. Reconstruction Versus Model

The network reconstruction represents the framework for a biological 
model. The defi nition of systems boundaries provides the transition from 
a network reconstruction to a model. These systems boundaries can be 
drawn in various ways (Figure 5). Typically, the systems boundaries are 
drawn around the cell, which is consistent with a physical entity, and the 
resulting model can be used to investigate properties and capabilities of 
the biological system. However, it might be useful to draw “virtual” 
boundaries to segment the network into subsystems (e.g., nucleic acid 
synthesis or fatty acid synthesis).

The “physical” systems boundaries are drawn to distinguish between 
the inside metabolites of the cell to the outside metabolites and thus, 
correspond to the cell membrane. Reactions that connect the cell and its 
environment are called exchange reactions. These exchange reactions 
allow the exchange of metabolites in and out of the cell boundaries.

x1 x2

v1

‘closed’ system

x1 x2

v1

‘open’ system

b1 b2

x1 x2

v1

‘closed’ system

b1 b2

X1, ext X2, ext

S =

Sint

Sint

Sexch

Sext

Sexch Sext

Internal metabolites

External metabolites

Internal reactions External reactions

0

Figure 5. Systems Boundaries. The network reactions are partitioned in internal 
(int) and external (ext) reactions. The exchange fl uxes are denoted by bi and 
internal fl uxes by vi.
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The stoichiometric matrix S (or Stot) can be partitioned such that there 
are three fundamental subforms of Stot: i) the exchange stoichiometric 
matrix (Sexch), which does not consider external metabolites and only 
contains the internal fl uxes and the exchange fl uxes with the environ-
ment; ii) the internal stoichiometric matrix (Sint), which considers the cell 
a closed system; and iii) the external stoichiometric matrix (Sext), which 
only contains external metabolites and exchange fl uxes (Figure 5). These 
different forms of S can be used to study topological properties of the 
network. For example, Sexch is frequently used in pathway analysis 
(extreme pathway analysis), whereas Sint is useful to defi ne pools of 
compounds that are conserved within the network (e.g., currency or 
secondary metabolites such as ATP, NADH, and others).

4.3. Identifi cation of Constraints

Cellular functions are limited by different types of constraints, which can 
be grouped in four general categories: fundamental physicochemical, 
spatial or topological, condition-dependent environmental, and regula-
tory or self-imposed constraints. Although the fi rst two categories of 
constraints are assumed to be independent from the environment, the 
latter two may vary in the simulation.

4.3.1. Physicochemical Constraints
Many physicochemical constraints are found in a cell. These constraints 
are inviolable and provide “hard” constraints on cell functions because 
mass, energy, and momentum must be conserved. For example, the dif-
fusion rates of macromolecules inside a cell are generally slow because 
the contents of a cell are densely packed and form a highly viscous envi-
ronment. Reaction rates are determined by local concentrations inside 
the cell and are limited by mass transport beside their catalytic rates. 
Furthermore, biochemical reactions can only proceed in the direction of 
a negative free-energy change. Reactions with large negative free-energy 
changes are generally irreversible. These physicochemical constraints are 
normally considered when formulating the network reactions and their 
directions.

4.3.2. Spatial Constraints
The cell content is highly crowded, which leads to topological, or spatial, 
constraints that affect both the form and the function of biological 
systems. For example, bacterial DNA is about 1,000 times longer than 
the length of a cell. Thus, on one hand, the DNA must be tightly packed 
in a cell without becoming entangled; however, on the other hand, the 
DNA must also be accessible for transcription, which results in spatial-
temporary pattern. Therefore, two competing needs, which are the pack-
aging and the accessibility of the DNA, constrain the physical arrangement 
of DNA in the cell. Incorporating these constraints is a signifi cant chal-
lenge for systems biology.

4.3.3. Environmental Constraints
Environmental constraints on cells are time and condition dependent. 
Nutrient availability, pH, temperature, osmolarity, and the availability of 
electron acceptors are examples of such environmental constraints. This 
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group of constraints is of fundamental importance for the quantitative 
analysis of the capabilities and properties of organisms because it allows 
determining their fi tness, or phenotypical properties, under various 
environmental settings. Because the performance of an organism varies 
under different environmental conditions, data from various laboratories 
can only be compared and integrated when the experimental conditions, 
such as medium composition, are well documented. In contrast, labora-
tory experiments with undefi ned media composition are often of limited 
use for quantitative in silico modeling.

4.3.4. Regulatory Constraints
Regulatory constraints differ from the three categories discussed above, 
as they are self-imposed and subject to evolutionary change. For this 
reason, these constraints may be referred to as regulatory constraints, in 
contrast to hard physicochemical constraints and time-dependent envi-
ronmental constraints. On the basis of environmental conditions, regula-
tory constraints allow the cell to eliminate suboptimal phenotypic states. 
Regulatory constraints are implemented by the cell in various ways, 
including the amount of gene products made (transcriptional and trans-
lational regulation) and their activity (enzyme regulation).

4.4. Tools For Analyzing Network States

The analysis of an organism’s phenotypic functions on a genome scale 
using constraint-based modeling has developed rapidly in recent years. 
A plethora of steady-state fl ux analysis methods can be broadly classifi ed 
into the following categories: i) fi nding best or optimal states in the 
allowable range; ii) investigating fl ux dependencies; iii) studying all 
allowable states; iv) altering possible phenotypes as a consequence of 
genetic variations; and v) defi ning and imposing further constraints. In 
this section, we will discuss some of the numerous methods that have 
been developed (Table 2). A more comprehensive list of methods can be 
found in Price’s work (7).

4.4.1. Optimal or Best States
Mathematical tools, such as linear optimization, can be used to identify 
metabolic network states that maximize a particular network function, 
such as biomass, ATP production, or the production of a desired 
secretion product. The objective function can be either a linear or non-
linear function. For linear functions, linear optimization or linear pro-
gramming (LP) can be used to calculate one optimal reaction network 
state under the given set of constraints. Growth performance of an 
organism can be assessed by calculating the optimal (growth) solution 
under different medium conditions. Using visual tools, such as metabolic 
maps, the optimal network state can be easily accessed and compared. 
This mathematical tool has been widely used for the identifi cation of 
optimal network states for the objective function of interest. Interest-
ingly, for genome-scale networks in particular, there can be multiple 
network states or fl ux distributions with the same optimal value of the 
objective function; therefore the need for enumerating alternate optima 
arises.

CIT_Ch02.indd   27CIT_Ch02.indd   27 5/22/2007   3:30:10 PM5/22/2007   3:30:10 PM



28 Thiele and Palsson

4.4.2. Alternate Optima
Alternate optima are a set of fl ux distributions that represent equally 
optimal network states given any particular objective function. The 
number of such alternate optima varies depending on the size of the 
metabolic network, the chosen objective function, and the environmental 
conditions. In general, the larger and more interconnected the network, 
the higher the number of alternate optimal phenotypes. A recursive 
mixed-integer LP algorithm has been developed to exhaustively enumer-
ate all alternate optima (8). Genome-scale metabolic networks contain 
several redundant pathways, which makes the enumeration of all optima 
computationally challenging.

4.4.3. OptKnock
OptKnock is a bilevel optimization algorithm to computationally predict 
gene deletion strategies for byproduct overproduction, such as succinate, 
lactate, and amino acids. The OptKnock algorithm calculates solutions 
that simultaneously optimize two objective functions, which are biomass 
formation and secretion of a target metabolite. Multiple gene deletions 
can be introduced in the metabolic network, such that the fl uxes through 
reactions of the target metabolite are optimally used, while reactions 
leading to other byproducts from common precursors are deleted from 
the network. The premise underlying this bilevel optimization algorithm 

Table 2. List of constraint-based modeling methods.
Analysis  Applied metabolic 
Method Illustration networks References

Optimal solutions  Escherichia coli 35

 

An Optimal
Solution

Alternate Optima  Escherichia coli, human 8, 36, 37
  cardiac myocyte
  mitochondrion

 

Equivalent
Optimal Solutions

OptKnock  Escherichia coli 12, 38

 Biomass Production

M
et

ab
ol

it
e 

P
ro

du
ct

io
n

Knockout

Biomass Production

M
et

ab
ol

it
e 

P
ro

du
ct
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n

Knockout

Wild type

Sampling  Red blood cell,  39, 42
  Helicobacter pylori, 
  human cardiac myocyte

  

mitochondrion

A myriad of analytical methods have arisen over recent years. The methods discussed in 
this chapter are depicted in this table along with some metabolic networks that have been 
applied to study network properties. Redrawn from Price (7).
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is that overproduction of target metabolites can be achieved by altering 
the structure of the metabolic network through gene deletions. With this 
direct stoichiometric coupling of target metabolite production to biomass, 
it is hypothesized that an increase in growth rate should concurrently 
result in an increase in the target metabolite production rate.

4.4.4. Unbiased Modeling
In addition to the above listed examples of optimization-based methods, 
non–optimization-based techniques have also been developed to study 
the full range of achievable metabolic network states that are provided 
by the solution spaces. These methods enable the user to determine not 
only the solutions selected by the statement of an objective, but all the 
solutions in the space. The results are therefore not biased by a statement 
of an objective, but indicate properties of the genome-scale network as 
a whole. Uniform random sampling is one example of an unbiased 
method. Here, the solution space is sampled by calculating uniform, 
random points within the space. The content of a solution space can be 
studied by the set of uniform random sampling of points within the space. 
The sampling points describe candidate metabolic states that are in 
agreement with the imposed constraints. The projection of the sampling 
point into a 2D diagram results in a fl ux distribution for every reaction 
in the network that can be understood as a probability distribution of 
fl ux values for every reaction.

The methods described in this section have been successfully used 
to characterize and investigate the network capabilities of numerous 
genome-scale metabolic networks. Until recently, it has focused on the 
steady-state fl ux distributions through a reconstructed network, but is now 
being used to study all allowable concentration and kinetic states (9).

5. Two Sample Studies

In this section, we will highlight two studies that combined in silico 
analysis and experimental data to gain new insight into the metabolism 
of E. coli.

5.1. “Integrating High-throughput and Computational Data 
Elucidates Bacterial Networks” (10) (Figure 6)

Regulatory constraints are used by cells to control the expression state 
of genes, leading to distinct sets of expressed genes under different envi-
ronmental conditions. Assuming the expression state of a gene can be 
only on or off (expressed or depressed), the regulation of genes can be 
represented in the form of Boolean rules (on or off, 1 or 0).

For the purpose of this study, the regulatory rules for the metabolic 
genes included in iJR904 (11) were created and incorporated based on 
literature and databases. The resulting reconstruction, MC1010v1, was 
the fi rst integrated genome-scale in silico reconstruction of a transcrip-
tional regulatory and metabolic network. MC1010v1 accounted for 1,010 
genes in E. coli, including 104 regulatory genes whose products, together 
with other stimuli, regulate the expression of 479 of the 904 genes in the 
reconstructed metabolic network.
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To determine the importance of regulatory rules on the predictive 
potential of the metabolic reconstruction, both reconstructions, iJR904 
(unregulated metabolic network) and MC1010v1 (regulated metabolic 
network), were used to calculate in silico growth performance under 
different medium conditions and to assess the outcome of gene deletion 
to the growth performance. The in silico results were compared with the 
outcomes of high-throughput growth phenotyping and gene expression 
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Figure 6. “Integrating high-throughput and computational data elucidates bac-
terial networks.” Top Panel: Comparison of high-throughput phenotyping array 
data with the in silico predictions for the E. coli network, with (Reg) and without 
(Met) regulatory constraints. Each case lists the results of the experimental data 
(exp), metabolic model (met) and regulatory metabolic model (reg). “+”: pre-
dicted or observed growth, “−”: no growth, and ‘n’: for cases involving a regula-
tory gene knockout not predictable by the metabolic model.
Bottom Panel: Metabolic and regulatory networks may be expanded by using 
high-throughput phenotyping and gene expression data coupled with the predic-
tions of a computational model. The accuracy refers to the percentage of model 
predictions that agreed with experimental data; the coverage indicates the 
percentage of experimental changes predicted correctly by the model. Redrawn 
from (10).
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experiments (Figure 6). Based on these results, several substrates and 
knockout strains were found whose growth behavior did not match 
predictions. Further investigation of these conditions and strains led to 
the identifi cation of fi ve environmental conditions in which dominant, 
yet uncharacterized, regulatory interactions actively contributed to the 
observed growth phenotype. In addition, fi ve environmental conditions 
and eight knockout strains were identifi ed that highlight uncharacterized 
enzymes or noncanonical pathways and that are predicted to be used by 
this study. Furthermore, the results indicated that some transcription 
factors that were involved in the regulation differed from previously 
reported data. These new rules were incorporated in the reconstruction 
leading to a second version, MC1010v2, which could successfully predict 
the outcome of high-throughput growth phenotyping and gene expres-
sion experiments.

The results of this study, and the iterative modifi cation of the regula-
tory rules, led to two main observations. First, some of the results of the 
knockout perturbation analysis are complex enough to make Boolean 
rule formulation diffi cult. Second, many of these gene expression changes 
involve complex interactions and indirect effects. Transcription factors 
may be affected, for example, by the presence of fermentation byprod-
ucts or the buildup of internal metabolites. Such effects would be 
extremely diffi cult to identify or account for without a computational 
model.

This study showed that the reconciliation of high-throughput data sets 
with genome-scale computational model predictions enables systematic 
and effective identifi cation of new components and interactions in micro-
bial biological networks.

5.2. “In Silico Design and Adaptive Evolution of Escherichia coli for 
Production of Lactic Acid” (12) (Figure 7)

In this study, OptKnock was used to design candidate knockout mutations 
in silico, which were subsequently analyzed and verifi ed experi mentally. 
The overall goal was to create an E. coli mutant that could overproduce 
lactic acid in minimal medium supplemented with glucose. In contrast, 
E. coli wild type produces only traces of lactate under this medium con-
dition. Other studies already engineered lactate-overproducing E. coli 
mutants; however, in this study it was shown how to use metabolic recon-
structions to successfully engineer stable mutants.

The most recent reconstruction of E. coli’s metabolism, iJR904 (11), 
was used by the OptKnock algorithm to identify the possible solutions 
that induce E. coli to secrete lactic acid as a byproduct during optimal 
cellular growth. For this purpose single, double, triple, and quadruple 
gene deletions were designed in silico and tested for bioptimal produc-
tion of lactic acid and growth yield. Based on these calculations, three 
different designs for production of lactate were selected for experimental 
verifi cation: (i) pta-adhE double-deletion strain, (ii) pta-pfk double-
deletion strain, and (iii) pta-adhE-pfk-glk quadruple deletion strains 
(pta, phosphate acetyltransferase; adhE, acetaldehyde dehydrogenase; 
pfk, 6-phosphofructokinase; glk, glucokinase) (Figure 7).
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Predicted strain designs were constructed in vivo and evolved over 
60 d. Over this time period, the growth rates of constructed strains and 
the byproduct secretion rates were monitored. By measuring these 
growth rates and lactic acid secretion rates, as well as the glucose uptake 
rates, the experimental phenotypes could be directly compared to the 
computationally predicted possible solutions for each design. Both 
the pta-adhE strains and the pta-pfk strains showed good agreement 
with the computationally determined solution spaces. In all cases, the 
byproduct secretion profi les stabilized after approximately 20 d of adap-
tive evolution, with all strains showing sustained elevated lactic acid 
titers throughout the course of adaptive evolution over the wild-type 
strain.

The goal of this study was to experimentally test computationally 
predicted strain designs calculated from a genome-scale metabolic model 
using the OptKnock algorithm. For the generated designs, it was shown 
that this combination of computational approaches can prospectively 
and effectively calculate strain designs for lactic acid overproduction. 
The long-term adaptive evolution experiments showed that: i) the com-
putationally predicted phenotypes are experimentally reproducible and 
consistent; ii) the process of adaptive evolution leads to increased secre-
tion rates of a target metabolite and can lead to improved product titers; 
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Figure 7. “In Silico Design and Adaptive Evolution of Escherichia coli for 
Production of Lactic Acid.” A: schematic picture of the pathways in which the 
gene deletions are involved. B: Strain design 1 (adhE−,pta−). Top panel: growth 
performance and lactate secretion at the beginning of adaptive evolution (day 
0), in the middle (day 30) and at the end (day 60). The computational predictions 
(lines) were done based on the glucose uptake rate (GUR) measured in the 
deletion strain at the different time points. The bottom panel shows the byprod-
uct secretion rates for the mutant strain during the course of adaptive evolution. 
It is easily visible that lactate becomes the main fraction of byproduct. Redrawn 
from (12).
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and iii) the generation of stable production strains can be achieved 
through this method. Overall, all evolved strains exhibited secretion 
profi les that supported the OptKnock hypotheses, in which the 
metabolite overproduction was stoichiometrically coupled to biomass 
generation.

6. Further Levels of Annotation

The majority of this chapter focused on the second dimension 
of genome annotation that defi nes the network links between the 
components given by the 1D annotation. In this section, we will briefl y 
look at the remaining two dimensions, i.e., space and time. Although 
no reconstruction exists to date that considers these two additional 
dimensions, further research will provide the basis, and thus enable such 
reconstructions.

6.1. 3D Annotation: Spatial Position and Orientation

In the previous sections, we saw that the 1D annotation delivers 
a list of genes and their functions, which can be translated into a table 
of gene products and their known interactions (2D annotation). These 
interaction networks must operate within the three dimensional struc-
ture of a cell. A growing number of studies indicate that both the genomic 
location (i.e., the linear allelic address), as well as the spatial location 
(i.e., the position of a gene within the cell) of a gene is important 
in genome function (13). In addition, the growth phase of a cell infl uences 
the geometrical, and therefore topological, organization of a genome. 
An explicit link between the geometrical organization of the genome 
and the expression level of individual genes has yet to be established. 
However, log phase growth clearly requires many genes to be expressed 
contemporaneously, which cannot be achieved with a condensed 
chromosome.

6.1.1. 4D Annotation: Evolutionary Changes
Genomes can undergo short-term adaptive changes; thus, one can 
think of a fourth dimension to the genome—time. Such changes can be 
caused epigenetically or genetically, leading to modifi cation in genome 
function over time. Mechanisms and how they function during adapta-
tion have been studied for individual loci (such as arcB [14], mglD 
[15], mglO [15], and glpR [16] in E. coli), but have not yet been elucidated 
on a genome scale, with the exception of genome rearrangements. 
It is becoming appreciated that the genome sequence we have are 
“snap-shots” of a genome that is continually evolving. Thus, a more 
detailed understanding of the plasticity and adaptation of genomes 
on a genome scale is needed. The genetic basis for adaptation of genomes 
may emerge from full genome resequencing, enabling us to fully deter-
mine all the sequence changes that occur in genomes. Furthermore, 
resequencing may have the potential to provide insights into the mecha-
nisms and functions of these adaptive evolutionary changes of an entire 
genome.
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7. Future Directions

The four dimensions of genome annotation are important for describing 
and capturing the functional capabilities of a cell. A detailed, quality-
controlled, and quality-assessed process for genome-scale reconstruction 
of metabolic networks (as an example of a 2D annotation) has developed 
over the past 5–10 years (17,18). It is a laborious and detailed process 
that involves the manual curation of a wide range of data types. Some-
what similar to sequence assembly and 1D genome annotation, this 
process of 2D annotation is iterative, involving the successive addition 
of more and more detailed data as they become available for a particular 
organism. These high-quality reconstructions can be used as the basis for 
computation of phenotypic traits, and they represent a key step in the 
development of the burgeoning fi eld of systems biology (6). The number 
of organisms with publicly available genome-scale reconstructions con-
tinues to grow (Table 1).

Although the focus of this chapter was on metabolic networks, other 
networks, such as protein interaction, signaling, and regulatory networks, 
can be reconstructed in a similar manner. The nature of these networks 
is often qualitative in nature; the description of its components and 
their interactions may lack the biochemical details of metabolic recon-
structions. However, these networks abide by the same chemical laws 
governing metabolic networks, such as conservation of mass and energy. 
Thus, many of the reconstruction details presented in this chapter are 
transferable to these networks if the details, such as stoichiometry, 
are known.
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