2

Bringing Genomes to Life: The Use of
Genome-Scale In Silico Models
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Summary

Metabolic network reconstruction has become an established procedure
that allows the integration of different data types and provides a frame-
work to analyze and map high-throughput data, such as gene expression,
metabolomics, and fluxomics data. In this chapter, we discuss how to
reconstruct a metabolic network starting from a genome annotation.
Further experimental data, such as biochemical and physiological data,
are incorporated into the reconstruction, leading to a comprehensive,
accurate representation of the reconstructed organism, cell, or organelle.
Furthermore, we introduce the philosophy of constraint-based modeling,
which can be used to investigate network properties and metabolic capa-
bilities of the reconstructed system. Finally, we present two recent studies
that combine in silico analysis of an Eschirichia coli metabolic recon-
struction with experimental data. While the first study leads to novel
insight into E. coli’s metabolic and regulatory networks, the second pre-
sents a computational approach to metabolic engineering.

Key Words: Metabolism; reconstruction; constraint-based modeling;
in silico model; systems biology.

1. Introduction

Over the past two decades, advances in molecular biology, DN A sequenc-
ing, and other high-throughput methods have dramatically increased
the amount of information available for various model organisms. Sub-
sequently, there is a need for tools that enable the integration of this
steadily increasing amount of data into comprehensive frameworks to
generate new knowledge and formulate hypotheses about organisms and
cells. Network reconstructions of biological systems provide such frame-
works by defining links between the network components in a bottom-
to-top approach. Various types of “omics” data can be used to identify
the list of network components and their interactions. These network
reconstructions represent biochemically, genetically, and genomically
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Table 1. Organisms and network properties for which genome-scale
metabolic reconstructions have been generated.

ORFs SKI N¢ Nm Nk Ref

BACTERIA
Bacillus subtilis 4,225 48 614 637 754 19
Escherichia coli 4,405 551 904 625 931 20
720 438 627 21
Geobacter sulfurreducens 3,530 588 541 523 22
Haemophilus influenzae 1,775 8.9 296 343 488 23
400 451 461 24
Helicobacter pylori 1,632 13 341 485 476 25
291 340 388 26
Lactococcus lactis 2,310 358 422 621 27
Mannheimia succiniproducens 2,463 335 352 373 28
Staphylococcus aureus 2,702 16 619 571 641 29
Streptomyces coelicolor 8,042 0.13 700 500 700 30
ARCHAEA
Methanosacrcina barkerii 5,072 692 558 619 31
EUKARYA
Mus musculus 28,287 15.6 1,156 872 1,220 32
Saccharomyces cerevisiae 6,183 10.6 750 646 1,149 33

708 584 1,175 34

Listed is the number of open reading frames (ORF) of each organism, the number of
genes included in the reconstruction (Ng), as well as the number of metabolites (Ny;) and
reactions (Ng) in the metabolic network. The Species Knowledge Index (SKI) (1) is a
measure of the amount of scientific literature available for an organism. Adapted from
Reed (18).

(BIGG) structured databases that simultaneously integrate all com-
ponent data, and can be used to visualize and analyze further high-
throughput data, such as gene expression, metabolomics, and fluxomics
data.

There are at least three ways to represent BIGG databases: (i)
textual representation, which allows querying of its content; (ii) graphi-
cal representation, which allows the visualization of the network interac-
tions and their components; and (iii) mathematical representation,
which enables the usage of a growing number of analytical tools to
characterize and study the network properties. Several metabolic
reconstructions have been published recently, spanning all domains of
life (Table 1), and most of them are publicly available.

In this chapter, we will first define the general properties of a biological
system, and then learn to how to reconstruct metabolic networks. The
second part of the chapter will introduce the philosophy of constraint-
based modeling and highlight two recent research efforts that combined
experimental and computational methods. Although this chapter con-
centrates on metabolic reconstructions, networks of protein—protein
interactions, protein—-DNA interactions, gene regulation, and cell signal-
ing can be reconstructed using similar rules and techniques. The general
scope of this chapter is illustrated in Figure 1, which represents the main
process of “bringing genomes to life.”
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Figure 1. Bringing genomes to life. This figure illustrates the main outline of the
chapter and the general approach to network reconstruction and analysis. Start-
ing from the genome sequence, an initial component list of the network is
obtained. Using additional data such as biochemical and other omics data the
initial component list is refined as well as information about the links between
the network components. Once the network links, or reactions, are formulated,
the stoichiometric matrix can be constructed using the stoichiometric coefficients
that link the network components. The definition of the system boundaries trans-
forms a network reconstruction into a model of a biological system. Every
network reaction is elementary balanced and may obey further constraints (e.g.,
enzyme capacity). These constraints allow the identification of candidate network
solutions, which lie within the set of constraints. Different mathematical tools
can be used to study these allowable steady-state network states under various
aspects such as optimal growth, byproduct secretion and others.
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2. Properties of Biological Networks

In this section, we will discuss general properties of biological systems
and how these can be used to define a general scheme that describes
biological systems in the terms of the components and links of the
network.

2.1. General Properties of Biological Systems

The philosophy of network reconstruction and constraint-based model-
ing is based on the fact that there are general principles any biological
system has to obey. Because the interactions, or links, between network
components are chemical transformations, they are based on principles
derived from basic chemistry. First, in living systems, the prototypical
transformation is bilinear at the molecular level. This association involves
two compounds coming together to either be chemically transformed
through i) the breakage or formation of covalent bonds, as is typical for
metabolic reactions and reactions of the macromolecular synthesis,

X+Y < X-Y covalent bonds

or ii) two molecules associate together to form a complex that may be
held together by hydrogen bonds and/or other physical association forces
to form a complex, which has a different functionality from the individual
components:

X+Y < X:Y association of molecules.

An example of the latter association is the binding of a transcription
factor to DNA to form an activated transcription site that enables the
binding of the RNA polymerase.

Second, the reaction stoichiometry is fixed and described by integer
numbers counting the molecules that react and that are formed as
a consequence of the chemical reaction. Chemical transformations are
constrained by elemental and charge balancing, as well as other features.
The stoichiometry is invariant between organisms for the same reactions,
and it does not change with pressure, temperature, or other conditions.
Therefore, stoichiometry gives the primary topological properties of
a biochemical reaction network.

Third, all reactions inside a cell are governed by thermodynamics.
The relative rate of reactions, forward and backward, is therefore
fixed by basic thermodynamic properties. Unlike stoichiometry, thermo-
dynamic properties do change with physicochemical conditions, such
as pressure and temperature. In addition, the thermodynamic properties
of association between macromolecules can be changed, for example, by
altering the sequence of a protein or the base-pair sequence of a DNA-
binding site.

Fourth, in contrast to stoichiometry and thermodynamics, the absolute
rates of chemical reactions inside cells are evolutionarily malleable. Cells
can thus extensively manipulate the rates of reactions through changes
in their DNA sequence. Highly evolved enzymes are very specific in
catalyzing particular chemical transformations.
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These rules dictate that cells cannot form new links at will, and candi-
date links are constrained by the nature of covalent bonds and by the
thermodynamic nature of interacting macromolecular surfaces. All of
these are subject to the basic rules of chemistry and thermodynamics.
Furthermore, intracellular conditions restrict the activity of systems, such
as physicochemical conditions, spatiotemporal organization of cellular
components, and the quasicrystalline state of the cell.

2.2. Steady-State Networks

Biological systems exist in a steady state, rather than in equilibrium. In
a steady-state system, flow into a node is equal to flow out of a node.
Consequently, depletion or accumulation in a steady-state network is not
allowed, which means that a produced compound has to be consumed
by another reaction. If this is not the case, the corresponding compound
represents a network gap (or dead end), and its producing reaction is
called a blocked reaction because no flux through this reaction is
possible.

3. Reconstruction of Metabolic Networks

The genome annotation, or 1D annotation, provides the most compre-
hensive list of components in a biological network. In metabolic network
reconstructions, the genome annotation is used to identify all potential
gene products involved in the metabolism of an organism. By using more
types of information, such as biochemical, physiological, and phenotype
data, the interaction of these components will be defined. Subsequently,
we will refer to network reconstructions as 2D genome annotation
because the network links defined in the network reconstruction repre-
sent a second dimension to the 1D genome annotation.

3.1. Sources of Information

1D genome annotations are one of the most important information
sources for reconstructions because they provide the most comprehen-
sive list of network components. However, one has to keep in mind that
without biochemical or physiological verification, the 1D annotation is
merely a hypothesis.

The links in metabolic networks are the reactions carried out by meta-
bolic gene products. To assign cellular components with the metabolic
reactions, different information is required and provided by various
sources. Organism-specific and non—organism-specific databases contain
a vast amount of data regarding gene function and associated metabolic
activities. Especially valuable are organism-specific literature providing
information on the physiological and pathogenic properties of the organ-
ism, along with biochemical characterization of enzymes, gene essential-
ity, minimal medium requirements, and favorable growth environments.
Although biochemical data are used during the initial reconstruction
effort to define metabolic reactions, organism-specific information such
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as medium requirements and growth environment can be used to derive
transport reactions when not provided by the 1D genome annotations.
In addition, gene essentiality data can be used during the network evalu-
ation process to compare and validate the reconstruction. Physiological
data, such as medium composition, secretion products, and growth per-
formance, are also needed for the evaluation of the reconstruction and
can be found in primary literature or can be generated experimentally.
Phylogenetic data can substitute organism-specific information when a
particular organism is not well studied, but has a close relative that is. In
addition, cellular localization of enzymes can be found in studies that use
immunofluorescence or GFP-tagging for individual proteins to identify
their place of action. Alternatively, there are several algorithms pre-
dicting a protein’s compartmentalization based on localization signal
sequences.

Because some of these information sources are more reliable than
others, a confidence scoring system may be used to distinguish them.

3.2. How to Choose an Organism to Reconstruct

The amount of information available differs significantly from organism
to organism; therefore, the choice of organism to reconstruct is critical
for the quality of the final reconstruction. Because the genome annota-
tion serves as a first parts list in most reconstruction efforts, its avail-
ability and high quality are primary criteria. Furthermore, the quantity
of primary and review publications available for metabolism should be
considered. A good estimate of legacy data available for an organism can
be obtained with the Species Knowledge Index (SKI) (1). This SKI value
is a measure of the amount of scientific literature available for an organ-
ism, calculated as the number of abstracts per species in PubMed
(National Center for Biotechnology Information) divided by the number
of genes in the genome (see Table 1 for some SKI values of reconstructed
organisms). Finally, organism-specific databases maintained by experts
can be very valuable sources of information during the reconstruction
process.

3.3. Formulation of Model

The translation of a 1D genome annotation into a metabolic network
reconstruction can be done in a step-wise fashion by incorporating dif-
ferent types of data. First, relevant metabolic genes have to be identified
from the 1D annotation. The gene functions have to be translated
in elementary and charged balanced reactions. Next, the network is
assembled by considering each metabolic pathway separately and by
filling in missing reactions as necessary. When this first version of the
network reconstruction is finished, the reconstruction will be tested
in silico and compared with physiological data to ensure that it has the
same metabolic capabilities as the cell in vivo. This latter step might
identify further reactions that need to be included, whereas other ones
will be replaced or their directionality might be changed. It is important
to remember that the sequence-derived list of metabolic enzymes cannot
be assumed to be complete because of the large numbers of open reading
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Figure 2. The iterative process of network reconstruction. Normally, several
iterations of reconstruction are necessary to ensure quality and accuracy of the
reconstructed network. After an initial reconstruction, accounting for the main
components identified by the different sources of information, is obtained, the
reconstruction will be tested for its ability to produce certain metabolites such
as biomass precursors. Comparison with experimental data, like phenotypical
and physiological data, will help to identify any discrepancy between in silico and
in vivo properties. The iterative re-evaluation of legacy data and network proper-
ties will eventually lead to a refined reconstruction.

frames (ORFs) still having unassigned functions. The iterative process of
network reconstruction and evaluation will lead to further refinement of
reconstruction (Figure 2).

3.3.1. Defining Biochemical Reactions

The biochemical reaction carried out by a gene product can be deter-
mined in five steps (Figure 3). First, the substrate specificity has to be
determined because it can differ significantly between organisms. In
general, one can distinguish between two groups of enzymes based on
their substrate specificity. The first group of enzymes can only act on a
few highly similar substrates, whereas the second group recognizes a
class of compounds with similar functional groups; thus, the enzymes
have a broader substrate specificity. The substrate specificity of either
type of these enzymes may differ across organisms for primary metabo-
lites, as well as for coenzymes (such as NADH vs. NADPH and ATP vs.
GTP). Often, it is very difficult to derive this information solely from the
gene sequence because substrate- and coenzyme-binding sites might be
similar for related compounds.
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Once the metabolites and coenzymes of an enzyme are identified, the
charged molecular formula at a physiologically relevant pH has to be
calculated, as a second step. In general, a pH of 7.2 is used in the recon-
struction. However, the pH in some organelles can differ from the rest
of the cell, as is the case for peroxisomes, where the pH has been reported
to be between 6 and 8 (2,3). The pK, value for a given compound can be
used to determine its degree of protonation.

Third, the stoichiometry of the reaction needs to be specified. As in
basic chemistry, reactions need to be charge and mass balanced, which
may lead to the addition of protons and water.

The fourth step adds basic thermodynamic considerations to the
reaction, defining its reversibility. Biochemical characterization studies
will sometimes test the reversibility of enzyme reactions, but the direc-
tionality can differ between in vitro and in vivo environments because
of differences in temperature, pH, ionic strength, and metabolite
concentrations.

The fifth step requires reactions and proteins to be assigned to specific
cellular compartments. This task is relatively straightforward for

Fumarate Reductase
_—

Primary metabolites Coenzymes
First step Substrate specificity FUM succ MQNH, MQN
Second step  Neutral Formulae CH,0, C,H0, C.H,,0, C;H,,0,
Charged Formulae CH,0.> CH,0 CsH,,0,° C;,H,,0,°
Third step Stoichiometry 1FUM+1MQNH, ? 1SUCC+1MQN
Fourth ste Directionality 1FUM +1MQNH, “— 1SUCC +1MQN
Fifth step Localization 1 FUM [c] + 1 MQNH,[c] «—> 1 SUCC [c] + 1 MQN [c]
—-—
Prokaryotes: Eukaryotes:
- extracellular space - extracellular space - mitochondria
- cytoplasm - cytoplasm - peroxisome
- periplasm - periplasm - lysosome
- nucleus - vacuole

- Golgi apparatus
- endoplasmatic
reticulum

Figure 3. The five steps to formulate a biochemical reaction. The reaction carried
out by a metabolic gene product can be determined by the five depicted steps.
Here, we show the example of the fumarate reductase of E. coli, which converts
fumarate (FUM) into succinate (SUCC) using menaquinone (MQN) as electron
donor.
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prokaryotes, which do not exhibit compartmentalization, but becomes
challenging for eukaryotes, which may have up to 11 subcellular com-
partments (Figure 3). Incorrect assignment of the location of a reaction
can lead to additional gaps in the metabolic network and misrepresenta-
tion of the network properties. In the absence of experimental data,
proteins should be assumed to reside in the cytosol to reduce the number
of intracellular transport reactions, which are also often hypothetical and
therefore have a low confidence score.

3.3.2. Assembly of Metabolic Network Reconstruction

Once the network reactions are defined, the metabolic network can be
assembled in a step-wise fashion by starting with central metabolism,
which contains the fueling reactions for the cell, and moving on to the
biosynthesis of individual macromolecular building blocks (e.g., amino
acids, nucleotides, and lipids). The step-wise assembly of the network
facilitates the identification of missing steps within the pathway that were
not defined by the 1D annotation. Once well-defined metabolic pathways
are assembled, reactions can be added that do not fit into these pathways,
but are supported by the 1D annotation or biochemical studies. Such
enzymes might be involved in the utilization of other carbon sources or
connect different pathways.

3.3.3. Gap Analysis

Even genomes of well-studied organisms harbor genes of unknown
functions (e.g., 20% for E. coli). Subsequently, metabolic networks
constructed solely on genomic evidence often contain many network
gaps, so-called blocked reactions. Physiological data may help to deter-
mine whether a pathway is functional in the organism, and thus
may provide evidence of the missing reactions. This procedure is
called gap filling, and it is a crucial step in network reconstruction.
For example, if proline is a nonessential amino acid for an organism,
then the metabolic network should contain a complete proline bio-
synthesis pathway, even if some of the enzymes are not in the current
1D annotation. In contrast, if another amino acid, let’s say methionine,
is known to be required in the medium, then the network gap should not
be closed, even if only one gene is missing. In this case, filling the gap
would significantly change the phenotypical in silico behavior of the
reconstruction.

These examples show that physiological data of an organism provide
important evidence for improving, refining, and expanding the quality
and content of reconstructed networks. Reactions added to the network
at this stage should be assigned low confidence scores if there are no
genetic or biochemical data available to confirm them. Subsequently, for
each added reaction, putative genes can be identified using homology-
based and context-based computational techniques. Such added reac-
tions and putative assignments form a set of testable hypotheses that are
subject to further experimental investigation. Because the reconstructed
network integrates many different types of data available for an organ-
ism, its completeness also reflects the knowledge about the organism’s
metabolism. Remaining unsolved network gaps involving blocked reac-
tions or dead-end metabolites reflect these knowledge gaps.
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3.3.4. Evaluation of a Network Reconstruction

Network evaluation is a sequential process (Figure 3). First, the network
is examined to see if it can generate the precursor metabolites, such as
biomass components, and metabolites the organism is known to produce
or degrade. Second, network gaps have to be identified and metabolic
pathways may need to be completed based on physiological information.
Finally, the comparison of the network behavior with various experi-
mental observations, such as secretion products and gene essentiality,
will ensure similar properties and capabilities of the in silico metabolic
network and the biological system. This sequential, iterative process of
network evaluation is labor intensive, but it will ensure high accuracy
and quality by network adjustments, refinements, and expansions.

3.4. Automating Network Reconstruction

The manual reconstruction process is laborious and can take up to a year
for a typical bacterial genome, depending on the amount of literature
available. Hence, efforts have been undertaken to automate the recon-
struction process. Like most manually assembled reconstructions, most
automatic reconstruction efforts start from the annotation. For example,
Pathway Tools (4) is a program that can automate a network reconstruc-
tion using metabolic reactions associated with Enzyme Commision
numbers (5) and/or enzyme names from a 1D genome annotation. To
overcome missing annotations, Pathway Tools has the option to include
missing gene products and their reactions in a pathway if a significant
fraction of the other enzymes are functionally assigned to this pathway
in the genome annotation. As for the manually curated reconstruction,
the automated gap filling procedure has to be done with caution, as the
inclusion of reactions without confidence may alter the phenotypical
outcome of the reconstruction.

Although the automation of reconstruction is necessary on a larger
scale, the results of these informatics approaches are limited by the
quality of the information on which they operate. Therefore, automated
reconstructions need detailed evaluation to assure their accuracy and
quality. Frequent problems with these automated reconstructions involve
incorrect substrate specificity, reaction reversibility, cofactor usage,
treatment of enzyme subunits as separate enzymes, and missing reactions
with no assigned ORF. Although an initial list of genes and reactions
can be easily obtained by using the automated methods, a good recon-
struction of biological networks demands the understanding of pro-
perties and characteristics of the organism or the cell. Because the
number of experimentally verified gene products and reactions is limited
for most organisms, knowledge about the metabolic capabilities of the
organism is crucial.

4. Mathematical Characterization of Network Capabilities

In this section, we briefly illustrate the general philosophy of the con-
straint-based modeling approach that resulted in a growing number of
mathematical tools to interrogate a reconstructed network. The method
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relies primarily on network stoichiometry, and thus it is not necessary
to define kinetic rate constants and other parameters, which are difficult
or impossible to determine accurately in the laboratory. A more com-
prehensive description of the different tools can be found in Palsson’s
work (6) and in a recently published review (7).

4.1. Stoichiometric Representation of Network

The stoichiometric matrix, denoted as S, is formed by the stoichiometric
coefficients of the reactions that comprise a reaction network (Figure 1
and Figure 4). This matrix is organized such that every column corre-
sponds to a reaction, and every row corresponds to a compound. The
matrix entries are integers that correspond to the stoichiometric coeffi-
cients of the network reactions. Each column describes a reaction, which
is constrained by the rules of chemistry, such as elementary balancing.
Every row describes the reactions in which a compound participates, and
therefore how the reactions are interconnected.

Mathematically, the stoichiometric matrix, S, transforms the flux vector
v, which contains the reaction rates, into a vector that contains the time
derivatives of the concentrations. The stoichiometric matrix, thus con-
tains chemical and network information. Mathematically spoken, the
stoichiometric matrix S is a linear transformation of the flux vector,

v=(V, Vo, ..., Vi),
to a vector of time derivatives of the concentration vector,
X = (X1, Xa, . - - Xp),
as
dx/dt = S.v.

At steady state, there is no accumulation or depletion of metabolites
in a metabolic network, so the rate of production of each metabolite in
the network must equal its rate of consumption. This balance of fluxes
can be represented mathematically as

S.v=0.

Metabolic Network Stoichiometric Matrix Steady-State Flux Space

Fe* .
CO2H20 gle reaction

Pi H*

1
metabolite |77 0 0 1 0 0

— S=o;1:1-100-10 —

00010004

00004000

10001000
A60 e Y0,
Exchange reactions and S(metabolite,reaction) Sv=0
internal reactions are < y<
considered Vinin = V'S Vinax

Figure 4. Matrix representation of metabolic network.
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Bounds that further constrain the values of individual variables can
be identified, such as fluxes, concentrations, and kinetic constants. Upper
and lower limits can be applied to individual fluxes, such that

Vi,min < Vi < Vi,max'

For elementary (and irreversible) reactions, the lower bound is defined
as Vin = 0. Specific upper limits (v,,,,) that are based on enzyme capacity
measurements are generally imposed on reactions.

4.2. Reconstruction Versus Model

The network reconstruction represents the framework for a biological
model. The definition of systems boundaries provides the transition from
a network reconstruction to a model. These systems boundaries can be
drawn in various ways (Figure 5). Typically, the systems boundaries are
drawn around the cell, which is consistent with a physical entity, and the
resulting model can be used to investigate properties and capabilities of
the biological system. However, it might be useful to draw “virtual”
boundaries to segment the network into subsystems (e.g., nucleic acid
synthesis or fatty acid synthesis).

The “physical” systems boundaries are drawn to distinguish between
the inside metabolites of the cell to the outside metabolites and thus,
correspond to the cell membrane. Reactions that connect the cell and its
environment are called exchange reactions. These exchange reactions
allow the exchange of metabolites in and out of the cell boundaries.

Internal metabolites

Sint exch
S=
,,,,,,,,,,,,,,,,,,, e
I s I External metabolites
0 } ext
Internal reactions  External reactions
Sint Sexch Sext
5 1 5 1
! | X |
X4 X, } X4 Xy ! 1, ext! X4 Xy ! 2, ext
o—»0 ! 0 / (o3 ! v 0 i 0
v v
1 byt 1 i b, b, 1 i b,
e ] e ]
‘closed’ system ‘open’ system ‘closed’ system

Figure 5. Systems Boundaries. The network reactions are partitioned in internal
(int) and external (ext) reactions. The exchange fluxes are denoted by b; and
internal fluxes by v;.
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The stoichiometric matrix S (or S) can be partitioned such that there
are three fundamental subforms of S, i) the exchange stoichiometric
matrix (Sewn), Which does not consider external metabolites and only
contains the internal fluxes and the exchange fluxes with the environ-
ment; ii) the internal stoichiometric matrix (S;,), which considers the cell
a closed system; and iii) the external stoichiometric matrix (S.y), which
only contains external metabolites and exchange fluxes (Figure 5). These
different forms of S can be used to study topological properties of the
network. For example, S. is frequently used in pathway analysis
(extreme pathway analysis), whereas S;, is useful to define pools of
compounds that are conserved within the network (e.g., currency or
secondary metabolites such as ATP, NADH, and others).

4.3. Identification of Constraints

Cellular functions are limited by different types of constraints, which can
be grouped in four general categories: fundamental physicochemical,
spatial or topological, condition-dependent environmental, and regula-
tory or self-imposed constraints. Although the first two categories of
constraints are assumed to be independent from the environment, the
latter two may vary in the simulation.

4.3.1. Physicochemical Constraints

Many physicochemical constraints are found in a cell. These constraints
are inviolable and provide “hard” constraints on cell functions because
mass, energy, and momentum must be conserved. For example, the dif-
fusion rates of macromolecules inside a cell are generally slow because
the contents of a cell are densely packed and form a highly viscous envi-
ronment. Reaction rates are determined by local concentrations inside
the cell and are limited by mass transport beside their catalytic rates.
Furthermore, biochemical reactions can only proceed in the direction of
anegative free-energy change. Reactions with large negative free-energy
changes are generally irreversible. These physicochemical constraints are
normally considered when formulating the network reactions and their
directions.

4.3.2. Spatial Constraints

The cell content is highly crowded, which leads to topological, or spatial,
constraints that affect both the form and the function of biological
systems. For example, bacterial DNA is about 1,000 times longer than
the length of a cell. Thus, on one hand, the DNA must be tightly packed
in a cell without becoming entangled; however, on the other hand, the
DNA must also be accessible for transcription, which results in spatial-
temporary pattern. Therefore, two competing needs, which are the pack-
aging and the accessibility of the DNA, constrain the physical arrangement
of DNA in the cell. Incorporating these constraints is a significant chal-
lenge for systems biology.

4.3.3. Environmental Constraints

Environmental constraints on cells are time and condition dependent.
Nutrient availability, pH, temperature, osmolarity, and the availability of
electron acceptors are examples of such environmental constraints. This
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group of constraints is of fundamental importance for the quantitative
analysis of the capabilities and properties of organisms because it allows
determining their fitness, or phenotypical properties, under various
environmental settings. Because the performance of an organism varies
under different environmental conditions, data from various laboratories
can only be compared and integrated when the experimental conditions,
such as medium composition, are well documented. In contrast, labora-
tory experiments with undefined media composition are often of limited
use for quantitative in silico modeling.

4.3.4. Regulatory Constraints

Regulatory constraints differ from the three categories discussed above,
as they are self-imposed and subject to evolutionary change. For this
reason, these constraints may be referred to as regulatory constraints, in
contrast to hard physicochemical constraints and time-dependent envi-
ronmental constraints. On the basis of environmental conditions, regula-
tory constraints allow the cell to eliminate suboptimal phenotypic states.
Regulatory constraints are implemented by the cell in various ways,
including the amount of gene products made (transcriptional and trans-
lational regulation) and their activity (enzyme regulation).

4.4. Tools For Analyzing Network States

The analysis of an organism’s phenotypic functions on a genome scale
using constraint-based modeling has developed rapidly in recent years.
A plethora of steady-state flux analysis methods can be broadly classified
into the following categories: i) finding best or optimal states in the
allowable range; ii) investigating flux dependencies; iii) studying all
allowable states; iv) altering possible phenotypes as a consequence of
genetic variations; and v) defining and imposing further constraints. In
this section, we will discuss some of the numerous methods that have
been developed (Table 2). A more comprehensive list of methods can be
found in Price’s work (7).

4.4.1. Optimal or Best States

Mathematical tools, such as linear optimization, can be used to identify
metabolic network states that maximize a particular network function,
such as biomass, ATP production, or the production of a desired
secretion product. The objective function can be either a linear or non-
linear function. For linear functions, linear optimization or linear pro-
gramming (LP) can be used to calculate one optimal reaction network
state under the given set of constraints. Growth performance of an
organism can be assessed by calculating the optimal (growth) solution
under different medium conditions. Using visual tools, such as metabolic
maps, the optimal network state can be easily accessed and compared.
This mathematical tool has been widely used for the identification of
optimal network states for the objective function of interest. Interest-
ingly, for genome-scale networks in particular, there can be multiple
network states or flux distributions with the same optimal value of the
objective function; therefore the need for enumerating alternate optima
arises.
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Table 2. List of constraint-based modeling methods.

Analysis Applied metabolic
Method Ilustration networks References
Optimal solutions An Optimal Escherichia coli 35

=

Alternate Optima O Escherichia coli, human 8, 36, 37
cardiac myocyte
mitochondrion
OptKnock g == Koockou Escherichia coli 12, 38
el m— Wild type
Biomass Production
Sampling ‘ Red blood cell, 39, 42
&'& Helicobacter pylori,
}"‘V human cardiac myocyte
Vi mitochondrion

A myriad of analytical methods have arisen over recent years. The methods discussed in
this chapter are depicted in this table along with some metabolic networks that have been
applied to study network properties. Redrawn from Price (7).

4.4.2. Alternate Optima

Alternate optima are a set of flux distributions that represent equally
optimal network states given any particular objective function. The
number of such alternate optima varies depending on the size of the
metabolic network, the chosen objective function, and the environmental
conditions. In general, the larger and more interconnected the network,
the higher the number of alternate optimal phenotypes. A recursive
mixed-integer LP algorithm has been developed to exhaustively enumer-
ate all alternate optima (8). Genome-scale metabolic networks contain
several redundant pathways, which makes the enumeration of all optima
computationally challenging.

4.4.3. OptKnock

OptKnock is a bilevel optimization algorithm to computationally predict
gene deletion strategies for byproduct overproduction, such as succinate,
lactate, and amino acids. The OptKnock algorithm calculates solutions
that simultaneously optimize two objective functions, which are biomass
formation and secretion of a target metabolite. Multiple gene deletions
can be introduced in the metabolic network, such that the fluxes through
reactions of the target metabolite are optimally used, while reactions
leading to other byproducts from common precursors are deleted from
the network. The premise underlying this bilevel optimization algorithm
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is that overproduction of target metabolites can be achieved by altering
the structure of the metabolic network through gene deletions. With this
direct stoichiometric coupling of target metabolite production to biomass,
it is hypothesized that an increase in growth rate should concurrently
result in an increase in the target metabolite production rate.

4.4.4. Unbiased Modeling

In addition to the above listed examples of optimization-based methods,
non—-optimization-based techniques have also been developed to study
the full range of achievable metabolic network states that are provided
by the solution spaces. These methods enable the user to determine not
only the solutions selected by the statement of an objective, but all the
solutions in the space. The results are therefore not biased by a statement
of an objective, but indicate properties of the genome-scale network as
a whole. Uniform random sampling is one example of an unbiased
method. Here, the solution space is sampled by calculating uniform,
random points within the space. The content of a solution space can be
studied by the set of uniform random sampling of points within the space.
The sampling points describe candidate metabolic states that are in
agreement with the imposed constraints. The projection of the sampling
point into a 2D diagram results in a flux distribution for every reaction
in the network that can be understood as a probability distribution of
flux values for every reaction.

The methods described in this section have been successfully used
to characterize and investigate the network capabilities of numerous
genome-scale metabolic networks. Until recently, it has focused on the
steady-state flux distributions through a reconstructed network, but is now
being used to study all allowable concentration and kinetic states (9).

5. Two Sample Studies

In this section, we will highlight two studies that combined in silico
analysis and experimental data to gain new insight into the metabolism
of E. coli.

5.1. “Integrating High-throughput and Computational Data
Elucidates Bacterial Networks” (10) (Figure 6)

Regulatory constraints are used by cells to control the expression state
of genes, leading to distinct sets of expressed genes under different envi-
ronmental conditions. Assuming the expression state of a gene can be
only on or off (expressed or depressed), the regulation of genes can be
represented in the form of Boolean rules (on or off, 1 or 0).

For the purpose of this study, the regulatory rules for the metabolic
genes included in iJR904 (11) were created and incorporated based on
literature and databases. The resulting reconstruction, MC1010v1, was
the first integrated genome-scale in silico reconstruction of a transcrip-
tional regulatory and metabolic network. MC1010v1 accounted for 1,010
genes in E. coli, including 104 regulatory genes whose products, together
with other stimuli, regulate the expression of 479 of the 904 genes in the
reconstructed metabolic network.
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Figure 6. “Integrating high-throughput and computational data elucidates bac-
terial networks.” Top Panel: Comparison of high-throughput phenotyping array
data with the in silico predictions for the E. coli network, with (Reg) and without
(Met) regulatory constraints. Each case lists the results of the experimental data
(exp), metabolic model (met) and regulatory metabolic model (reg). “+”: pre-
dicted or observed growth, “—": no growth, and ‘n’: for cases involving a regula-
tory gene knockout not predictable by the metabolic model.

Bottom Panel: Metabolic and regulatory networks may be expanded by using
high-throughput phenotyping and gene expression data coupled with the predic-
tions of a computational model. The accuracy refers to the percentage of model
predictions that agreed with experimental data; the coverage indicates the
percentage of experimental changes predicted correctly by the model. Redrawn
from (10).

To determine the importance of regulatory rules on the predictive
potential of the metabolic reconstruction, both reconstructions, iJR904
(unregulated metabolic network) and MC1010v1 (regulated metabolic
network), were used to calculate in silico growth performance under
different medium conditions and to assess the outcome of gene deletion
to the growth performance. The in silico results were compared with the
outcomes of high-throughput growth phenotyping and gene expression
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experiments (Figure 6). Based on these results, several substrates and
knockout strains were found whose growth behavior did not match
predictions. Further investigation of these conditions and strains led to
the identification of five environmental conditions in which dominant,
yet uncharacterized, regulatory interactions actively contributed to the
observed growth phenotype. In addition, five environmental conditions
and eight knockout strains were identified that highlight uncharacterized
enzymes or noncanonical pathways and that are predicted to be used by
this study. Furthermore, the results indicated that some transcription
factors that were involved in the regulation differed from previously
reported data. These new rules were incorporated in the reconstruction
leading to a second version, MC1010v2, which could successfully predict
the outcome of high-throughput growth phenotyping and gene expres-
sion experiments.

The results of this study, and the iterative modification of the regula-
tory rules, led to two main observations. First, some of the results of the
knockout perturbation analysis are complex enough to make Boolean
rule formulation difficult. Second, many of these gene expression changes
involve complex interactions and indirect effects. Transcription factors
may be affected, for example, by the presence of fermentation byprod-
ucts or the buildup of internal metabolites. Such effects would be
extremely difficult to identify or account for without a computational
model.

This study showed that the reconciliation of high-throughput data sets
with genome-scale computational model predictions enables systematic
and effective identification of new components and interactions in micro-
bial biological networks.

5.2. “In Silico Design and Adaptive Evolution of Escherichia coli for
Production of Lactic Acid” (12) (Figure 7)

In this study, OptKnock was used to design candidate knockout mutations
in silico, which were subsequently analyzed and verified experimentally.
The overall goal was to create an E. coli mutant that could overproduce
lactic acid in minimal medium supplemented with glucose. In contrast,
E. coli wild type produces only traces of lactate under this medium con-
dition. Other studies already engineered lactate-overproducing E. coli
mutants; however, in this study it was shown how to use metabolic recon-
structions to successfully engineer stable mutants.

The most recent reconstruction of E. coli’s metabolism, iJR904 (11),
was used by the OptKnock algorithm to identify the possible solutions
that induce E. coli to secrete lactic acid as a byproduct during optimal
cellular growth. For this purpose single, double, triple, and quadruple
gene deletions were designed in silico and tested for bioptimal produc-
tion of lactic acid and growth yield. Based on these calculations, three
different designs for production of lactate were selected for experimental
verification: (i) pta-adhE double-deletion strain, (ii) pta-pfk double-
deletion strain, and (iii) pta-adhE-pfk-glk quadruple deletion strains
(pta, phosphate acetyltransferase; adhE, acetaldehyde dehydrogenase;
pfk, 6-phosphofructokinase; glk, glucokinase) (Figure 7).
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Figure 7. “In Silico Design and Adaptive Evolution of Escherichia coli for
Production of Lactic Acid.” A: schematic picture of the pathways in which the
gene deletions are involved. B: Strain design 1 (adhE",pta”). Top panel: growth
performance and lactate secretion at the beginning of adaptive evolution (day
0), in the middle (day 30) and at the end (day 60). The computational predictions
(lines) were done based on the glucose uptake rate (GUR) measured in the
deletion strain at the different time points. The bottom panel shows the byprod-
uct secretion rates for the mutant strain during the course of adaptive evolution.
It is easily visible that lactate becomes the main fraction of byproduct. Redrawn
from (12).

Predicted strain designs were constructed in vivo and evolved over
60d. Over this time period, the growth rates of constructed strains and
the byproduct secretion rates were monitored. By measuring these
growth rates and lactic acid secretion rates, as well as the glucose uptake
rates, the experimental phenotypes could be directly compared to the
computationally predicted possible solutions for each design. Both
the pta-adhE strains and the pta-pfk strains showed good agreement
with the computationally determined solution spaces. In all cases, the
byproduct secretion profiles stabilized after approximately 20d of adap-
tive evolution, with all strains showing sustained elevated lactic acid
titers throughout the course of adaptive evolution over the wild-type
strain.

The goal of this study was to experimentally test computationally
predicted strain designs calculated from a genome-scale metabolic model
using the OptKnock algorithm. For the generated designs, it was shown
that this combination of computational approaches can prospectively
and effectively calculate strain designs for lactic acid overproduction.
The long-term adaptive evolution experiments showed that: i) the com-
putationally predicted phenotypes are experimentally reproducible and
consistent; ii) the process of adaptive evolution leads to increased secre-
tion rates of a target metabolite and can lead to improved product titers;
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and iii) the generation of stable production strains can be achieved
through this method. Overall, all evolved strains exhibited secretion
profiles that supported the OptKnock hypotheses, in which the
metabolite overproduction was stoichiometrically coupled to biomass
generation.

6. Further Levels of Annotation

The majority of this chapter focused on the second dimension
of genome annotation that defines the network links between the
components given by the 1D annotation. In this section, we will briefly
look at the remaining two dimensions, i.e., space and time. Although
no reconstruction exists to date that considers these two additional
dimensions, further research will provide the basis, and thus enable such
reconstructions.

6.1. 3D Annotation: Spatial Position and Orientation

In the previous sections, we saw that the 1D annotation delivers
a list of genes and their functions, which can be translated into a table
of gene products and their known interactions (2D annotation). These
interaction networks must operate within the three dimensional struc-
ture of a cell. A growing number of studies indicate that both the genomic
location (i.e., the linear allelic address), as well as the spatial location
(i.e., the position of a gene within the cell) of a gene is important
in genome function (13). In addition, the growth phase of a cell influences
the geometrical, and therefore topological, organization of a genome.
An explicit link between the geometrical organization of the genome
and the expression level of individual genes has yet to be established.
However, log phase growth clearly requires many genes to be expressed
contemporaneously, which cannot be achieved with a condensed
chromosome.

6.1.1. 4D Annotation: Evolutionary Changes

Genomes can undergo short-term adaptive changes; thus, one can
think of a fourth dimension to the genome—time. Such changes can be
caused epigenetically or genetically, leading to modification in genome
function over time. Mechanisms and how they function during adapta-
tion have been studied for individual loci (such as arcB [14], mglD
[15], mglO [15], and glpR [16] in E. coli), but have not yet been elucidated
on a genome scale, with the exception of genome rearrangements.
It is becoming appreciated that the genome sequence we have are
“snap-shots” of a genome that is continually evolving. Thus, a more
detailed understanding of the plasticity and adaptation of genomes
on a genome scale is needed. The genetic basis for adaptation of genomes
may emerge from full genome resequencing, enabling us to fully deter-
mine all the sequence changes that occur in genomes. Furthermore,
resequencing may have the potential to provide insights into the mecha-
nisms and functions of these adaptive evolutionary changes of an entire
genome.
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7. Future Directions

The four dimensions of genome annotation are important for describing
and capturing the functional capabilities of a cell. A detailed, quality-
controlled, and quality-assessed process for genome-scale reconstruction
of metabolic networks (as an example of a 2D annotation) has developed
over the past 5-10 years (17,18). It is a laborious and detailed process
that involves the manual curation of a wide range of data types. Some-
what similar to sequence assembly and 1D genome annotation, this
process of 2D annotation is iterative, involving the successive addition
of more and more detailed data as they become available for a particular
organism. These high-quality reconstructions can be used as the basis for
computation of phenotypic traits, and they represent a key step in the
development of the burgeoning field of systems biology (6). The number
of organisms with publicly available genome-scale reconstructions con-
tinues to grow (Table 1).

Although the focus of this chapter was on metabolic networks, other
networks, such as protein interaction, signaling, and regulatory networks,
can be reconstructed in a similar manner. The nature of these networks
is often qualitative in nature; the description of its components and
their interactions may lack the biochemical details of metabolic recon-
structions. However, these networks abide by the same chemical laws
governing metabolic networks, such as conservation of mass and energy.
Thus, many of the reconstruction details presented in this chapter are
transferable to these networks if the details, such as stoichiometry,
are known.
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