Chapter 2

Classical Elasticity and Plasticity

2.1 Elasticity

Fung (1965) provides elegant definitions for the different forms of elasticity
theory, and we follow his terminology here. A material is said to be elastic if the
stress can be expressed as a single-valued function of the strain:

o = fi (&) (2-1)
where fij (Eij) is a second-order tensor-valued function of the strains. If
fi (Ez‘j ) is linear in €;;, then it can be written 6;; = f;; (Eij ) =djjx €k » where dijki

is a fourth-order tensor constant usually called the stiffness matrix: this is the
common case of linear elasticity. The incremental stress-strain relationship for
an elastic material is written

af [
G = Mg . (2.2)
aSkl
Alternatively, if the stress-strain relationship is originally expressed in incre-
mental form, the material is described as hypoelastic:
6= Fya (€425 ) @3
where ﬁ'jkl(sij’cij) is a fourth-order tensor valued function of the strains or

of the stresses, or even (rarely) of both. Note that we distinguish between
the fourth-order tensor function fijkl and the second-order tensor function

fij. If fijkl(gij’cij) is a constant, then the material is linear elastic and

fijkl(ﬁip Gz'j)=dijkl-
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Alternatively, if the stresses can be derived from a strain energy potential,
then the material is said to be hyperelastic:

o5 - af; (e3)

(2.4)
Eij
in which f (81-]-) is a scalar valued function of the strains. (Again note that we
distinguish the scalar function f from the two tensor functions f;; and fi;;).
It follows that
2
. 9f (e5)

- é (2.5)
Y 88,] aSkl K

If f(S,]) is a quadratic function of the strains, then the material is linear elas-

9% f(e:
tic, and M =d;y; -
aEij aSkl ]

Example 2.1 Linear Isotropic Elasticity

The following strain energy function can be used to express linear isotropic
elasticity in hyperelastic form:

[ i NP A (2.6)
6 2

where K is the isothermal bulk modulus and G is the shear modulus. Differ-
entiating the above' gives the elastic form,

d ,
Gij =£-fj.=f-ij(gij)=K8kk81'j+2Ggij (27)
y

Differentiating once more leads to the hyperelastic incremental form,

0 f

6ji =———¢&3 =d;ip € = K€1iS;i + 2GE; 2.8
ij des0e kI = ijki€kl kkOij ij (2.8)
from which one can derive
2G
dijkl = (K —?]8,-]-6,{1 + 2G6,-k6jl (2.9)

See table B.1 in Appendix B for some differentials of tensor functions.
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Comparison of Equations (2.1) and (2.4) reveals that every hyperelastic mate-

- o of (&) ,
rial is also elastic, with fij (Eij ) = . Conversely, however, an elastic mate-

0E..:

£

rial is hyperelastic only if f;; (Sij) is an integrable function of the strains.
Similarly, comparison of Equations (2.2) and (2.3) reveals that all elastic ma-

i (e3)
aEkl

not true, and a hypoelastic material is elastic only if fijkl(gij’ GU) can be ex-

terials are also hypoelastic, with ﬁjkl(ﬁij,ﬁij)= . Again, the converse is

pressed as an integrable function of the strains only.

Thus hypoelasticity is the most general form, followed by elasticity and hy-
perelasticity. This hierarchy is illustrated in Figure 2.1. What therefore are the
advantages of the more restrictive forms? The first advantage is the compactness
of the formulation. A hyperelastic material requires solely the definition of
a scalar function f (el]) for its complete specification. An elastic material re-

quires the definition of a second-order tensor function, and a hypoelastic mate-
rial requires a fourth-order tensor function.

The second advantage relates to the Laws of Thermodynamics. It is quite pos-
sible to specify an elastic or hypoelastic material so that, for a closed cycle of
stress (or of strain), the material either creates or destroys energy in each cycle.
This is clearly contrary to the First Law of Thermodynamics. Furthermore, for
a hypoelastic case, it is possible to specify a material for which a closed cycle of
stress does not necessarily result in a closed cycle of strain, thus contradicting
the notion of elasticity in its sense that it implies that no irrecoverable strains
occur over a cycle of stress.

Thus there are sound reasons why hyperelasticity should always be the pre-
ferred form of elasticity theory. In this book, we build on this concept to express
models for plastic materials, i. e. those that do display irrecoverable behaviour in
a way that is consistent with thermodynamics.

Hyperelastic

Hypoelastic

Figure 2.1. Classes of elasticity theory
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2.2 Basic Concepts of Plasticity Theory

Before moving on to the new formulation of plasticity theory that is the main
subject of this book, it is useful to present the conventional formulation of plas-
ticity theory. This serves as a basis for comparison for the approach presented in
later chapters.

The first and fundamental assumption of plasticity theory is that the strains
can be decomposed into additive elastic and plastic components:

e =@ yelp) (2.10)

el Y Y
The elastic strains El(je) can be specified by any of the means used for elasticity,
as discussed in Section 2.1. For the reasons described there, the hyperelastic
approach would of course be preferred. The changes of elastic strain are thus
solely related to changes in stress.

The plastic strains are of a different nature, and are defined in quite a differ-
ent way. The rules used to define the plastic strains have become well established
over many years, but they are based on empirical observation, first of metals and
later of many other materials. The concept of a yield surface is introduced. This

is a surface in stress space, defined through a yield function by f (Gij, .. ) =0.For
the time being, we shall just consider this as a function of the stresses, although

later we shall consider cases where it is also a function of other variables.
Changes in plastic strain can occur only if the stress point lies on the yield sur-

face, i.e. f (Gij) =0. If the stress point falls within the yield surface (which is

conventionally defined as the region where f (Gij)<0 ), then no plastic strain

increments occur, and the response is incrementally elastic. We refer to this
region as “within” the yield surface, even for the quite common cases where the
surface is not closed in stress space. Stress states outside the yield surface, i.e.

for which f (Gij ) >0, are not attainable.

Example 2.2 The von Mises Yield Surface

The von Mises yield surface 1is specified by the function
f (Gij ) = 0};0j; —2k* =0, where k is the yield stress in simple shear. In prin-
cipal stress space, the surface is a cylinder, centred on the space diagonal,

(o —02)2 +(o, —03)2 +(03 -0 )2 —%kz =0. In plane stress (0, =0), this

reduces to the ellipse 67 + 6,03 +03 —3k* =0. The strength in pure tension
(0,=03=0) is 0; =+/3k .
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It is important to note that the form of the yield function is not uniquely de-
fined. The same surface as defined in Example 2.2 could equally well be defined,

: . 7 GijCij
for instance, by any of the functions, f= 0iiCji —V2k=0, f :?—lz 0 or
2

7

f =%—1 =0. All define the same surface, but the functions take different
values at points that do not lie on f=0. Even the dimensionality of the func-
tions is different. The original expression in Example 2.2 had the dimension of
stress squared, the first of the alternatives given above has the dimension of
stress, and the other two are dimensionless. At this stage, we are unable to define
a “preferred” yield function, but later, in Chapter 13, we shall see that convex
analysis does allow us to select a preferred yield function (which we call the
canonical yield function). This happens to be in the last of the forms given
above.

When yield occurs at a particular point on the yield surface, it is found em-
pirically for many materials (at least to a first approximation) that the ratios
between the plastic strain components are fixed, irrespective of the stress incre-
ments. One way of defining this mathematically is to define a flow rule, in which
the ratio of strain increments is related directly to the stress state. This method
is sometimes used for models that involve just two dimensions of stress, but for
more complex cases, it becomes very cumbersome, and the ratios between the
strain increments are defined instead by a plastic potential, from which the flow
rule can be derived.

/7 6y =3k, 05 =0

Figure 2.2. The von Mises yield surface in plane stress
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The plastic potential, like the yield surface, is a function of the stresses and
other variables, and is usually written g(G,-j, .. ) =0. The direction of the plastic

strain increment is then defined as normal to the plastic potential:

E(P) }\‘ag(clj) (2.11)

i aGij

where A is a plastic multiplier which is as yet undetermined.
In metal plasticity, it is usual for the yield function f (Gij,...)=0 and the

plastic potential g(Gija-~)=0 to be identical functions. This choice is based

both on a wealth of empirical evidence and also on sound theoretical grounds
(see Section 2.5 ). This important case is called “associated flow” or “normality”
(in the sense that the plastic strain increments are normal to the yield surface,
and not in the sense that “normal” means that this represents the usual behav-
iour of materials). There are many advantages of theories that adopt associated
flow, sufficient that many practitioners go to elaborate means to avoid using
non-associated flow theories. However, for some materials, notably soils, the
empirical evidence for non-associated flow is so overwhelming that it is essential
to address this more complex case.

It is usual (although not essential) to define the plastic potential so that g=0
at the particular stress point at which the strain increment is required. This
means that (except for associated flow) it is necessary to introduce some addi-
tional dummy variables, say x, into the plastic potential, defined so that

g(cij, x) =0 at the particular stress point on the yield surface.

Note that we follow here the common notation in plasticity theory and use f
for the yield function and g for the plastic potential. Later in this book, we shall
need to use fand g for the Helmholtz and Gibbs free energies, as is common
practice in thermodynamics. We shall attempt to make the meaning of the vari-
ables clear whenever there is any danger of ambiguity.

The yield surface defines the possibility of plastic strain increments, and the
plastic potential then defines the ratios between the plastic strain increments;
but what remains to be defined is the magnitude of the plastic strains. It is in
this area that the greatest variety of ways of specifying plasticity models is found,
and it is not possible to present an approach that encompasses all the different
forms in the literature.

Apart from perfectly plastic materials (see Section 2.3 below), the magnitude
of plastic strain is defined by establishing a link between the plastic strains and
the expansion (or movement or contraction) of the yield surface. Probably the
most common approach is to define the yield surface so that it is a function of the
stresses and some hardening parameters &, which are usually scalars, but could

be tensors. Thus the yield surface is written f (Gij, )=0. The hardening pa-

rameters are, in turn, defined in terms of the plastic strains. The most common
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form is that the hardening parameters are simply functions of the plastic strains

§=<§(85-jp )) . In this case, the hardening parameters can be eliminated from the

formulation and the yield function simply expressed in the form f (Gij ’Egjp ) ) =0.

This form of hardening is called strain hardening.

An alternative is that, although the hardening parameters cannot be ex-
pressed as functions of the plastic strains, evolution equations can be defined for
the hardening parameters in terms of the plastic strain rates. The evolution
equations may also involve other variables, so that a rather general form is

§=§(Gij,sgf’),<§,é§f’)) (2.12)

(We hesitate to say that the above is the most general possible form because the
imagination of plasticity theorists in devising ever more complex approaches
seems almost boundless.) One important special case occurs when & is identified

with plastic work, in which case we can write &= Wwe) = O'ijégjp ). The term work
hardening is strictly applicable only to this case, although it is frequently applied
much more loosely to any hardening process.

To recapitulate, a strain hardening plasticity model can be completely defined

by the following assumptions:

e Decomposition of the strain into elastic and plastic components;

e Definition of the elastic strains, using, for instance, a hyperelastic law that
requires specification of a single scalar function;

e Definition of a yield surface f((jz-j,ggjp) ) =0;

e Definition of a plastic potential g((jij,gg]fv),x) =0.

Thus the model requires three scalar functions to be defined for its complete
specification. Unfortunately, many plasticity theories do not adhere to this sim-
ple pattern, and some adopt a series of ad hoc rules and assumptions. Not only
can this be confusing, but it also makes comparisons between competing theories
difficult. At worst, it can lead to theories that are not internally self-consistent.

2.3 Incremental Stiffness in Plasticity Models

For any constitutive model, one of the most important operations is derivation
of the incremental stress-strain relationship. For plasticity theories, the method
adopted is different for the special case of perfect plasticity. So we shall treat this
case first, before going on to the case of hardening plasticity.
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2.3.1 Perfect Plasticity

In perfect plasticity, the yield surface remains fixed in stress space, so there is no
hardening (or softening). Thus the yield surface is only a function of the stress

f (0,-]- ) =0. The plastic potential will have the form g(Gij, x) =0, where x are the

dummy variables introduced to satisfy the (not strictly necessary) condition that
g=0 at each stress point on the yield surface. The incremental stress-strain
relationship is obtained by combining the equations below.

The strain decomposition is written in incremental form:

g =0 yelp) (2.13)

j=% T

The elastic strain rates are defined by a stiffness matrix:

01] = dl]klggcel) (214)

Note that the above form can always be derived, irrespective of whether the
elastic strains are specified through hyperelasticity, elasticity, or hypoelasticity.

The yield surface is written in differential form, noting that during any proc-
ess in which the plastic strains are non-zero, not only is f=0, but also f=0.
This incremental form of the yield surface is usually referred to as the consis-
tency condition:

f——f’ij =0 (2.15)

Finally, we need the plastic strain rate ratio, obtained from the plastic potential:

(p) :}La_g
8l] acs,] (2.16)

Substituting (2.13) and (2.16) in (2.14) gives

. . . . og
G = d..klg(e) =di (Ekl _¢(P) ) =d; (gkl —7»—] (2.17)
y Rkl ] Kkl Yy ale
Combining Equations (2.15) and (2.17), we obtain
. o . of . og
=——6;=——d;1| &g —A=——|=0 2.1
f acij ij acij 1]kl[ kI ale (2.18)
which leads to the solution for the plastic multiplier A:
) )
gf"dijklgkl
N (2.19)
of 9%

9y P b,
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Equation (2.19) is then back-substituted in (2.17) to give
of

7dmnahéab ag

O =i~ o g | G o
90,, P17 90,
With some interchanging of the dummy subscripts, this can be rewritten

S =dl(j‘;£)ékl (2.21)

where dl(;}; ) is the elastic-plastic stiffness matrix defined as

dg o
(ep) ijab ~ oy b oy Akl

iy = dijkr = oF 4 m”ag (2.22)

Gl PA o5

Thus, given the specification of the elastic behaviour, the yield surface, and the
plastic potential, the incremental constitutive behaviour can be obtained by
applying a purely automatic process to obtain the incremental stress-strain rela-
tionship. This is important because no further ad hoc assumptions are neces-
sary. Note also that the derivation involves solely matrix manipulation and dif-
ferentiation. Both processes can be readily carried out using symbolic
manipulation packages.

Example 2.3 Von Mises Plasticity with Isotropic Elasticity

Using the yield surface as defined in Example 2.2, which is also the plastic
potential as the von Mises model uses associated flow, then

f=g=0jc} - ~2k?, so that Bf/acsl] 0g/do;; =2

IJ
From Example 2.1, dj;; = ( ]6 8y +2G3;;.5;; . Noting that for this
case, djji—— of ~—dyij = 4GGU , substitution in Equation (2.22) gives
ale 80 kl

2Go';0]

e ij Okl
d}}. ;5) _( js )1 +2G8y8 —JG (2.23)

pPq-y

which can be further simplified to

G,
dl(;g)—( - )6 6k1+2G61k8 k—ZGiijl (2.24)
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It is important to note that this stiffness matrix is singular, so that it cannot
be inverted to give a compliance matrix. This is a feature common to all perfect
plasticity models.

2.3.2 Hardening Plasticity
Incremental Response for Strain Hardening
For strain-hardening plasticity, Equations (2.13), (2.14), and (2.16) take the

same form, but because the yield surface is now also a function of the plastic
strains, the consistency condition takes the form

fo O o O l(p)
/=26, ° BSSJP) Tty =0 (229

Substituting the flow rule (2.16), we obtain

o of Og
= Ty} =0 2.26
f 801']- Gij + ag(.P) 301-]- ( )

ij

It is more convenient in this case to obtain the solution for A in terms of the
stress increment rather than the strain increment (as was used for perfect plas-
ticity):

of .
A=e T (2.27)
asgjp )
The quantity h= of 0g and we
aESJ‘D) acij
can write kzla—fc'sij or SSP )_19g o —2—6y; - The hardening modulus is not
i J hac Jo
Ojj Kkl

a defined parameter of the model, but is derived at a given stress point in terms
of the yield function and plastic potential. It is identically zero in a perfect plas-
ticity model.

The most convenient way to proceed is to use the elastic compliance matrix,

8(6) :Cijklo—kl (2.28)

Yy
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so that

. . (p) _ 1 dg af (2.29)
€ii =CijikiOk1 —€}; KOkl — 97 :
¥ Y b Z] ha aGk]

. . . . _ ep) . . . .
which leads immediately to ¢;; = c;(jkl)c 1> where the elastic-plastic compliance
matrix is

9g o

olep) _ L dg o Jo;; IOk (2.30)
ikl Ukl h 80 0o ki Ukl af ag
88%)”) aGmn

If the stiffness matrix is required, it can be obtained either by numerical in-
version of the compliance matrix, or by solving for the plastic multiplier, as
before, in terms of the strains. Starting with the consistency condition,

Py %’f

(2.31)

of . g of Og
= 4. - +A =0
aGi]' ljkl(gkl o, J ael(]f?) a(jij

the solution for A becomes

0 )
aidijklekl
2= Oj (2.32)

o, 9 | %2
acpq par afig,f) acsrs

The solution then proceeds exactly as for the perfectly plastic case, except that
this time d .(.ep ) takes the form
ijkl

) )
ijab ii mnkl
90 4 90 (2.33)

vy o | %
96 g Pars— 5:(p) 196,

rs

ep) _
dig'kz) =djji — {

Note that if Jf / as%’ ) = 0 then Equation (2.33) reduces to the result for per-

fect plasticity, (2.22). However, the equation for compliance, Equation (2.30),
becomes singular in the perfectly plastic case.
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Incremental Response for Work Hardening

Because of its historical importance, we set out here the particular case of work
hardening, but this section can be omitted and the reader can proceed to Sec-
tion 2.3.3. For work-hardening plasticity, Equations (2.13), (2.14), and (2.16)

again apply, but now we write the yield surface in the form f (GZJ,W( P) = 0),

7(P) —g.£(P).
where W'\¥) = ¢ g
The consistency condition takes the form,

c_ O O (p) 2.34
f 3o, GU+8W(p)W 0 (2.34)

Substituting the definition of the plastic work and the flow rule (2.16), we obtain

=Y -6+ f 6528 =0 (235)
so that
o
do;; 7
e S (2.36)
of dg
ow(p) ©i 90

(p)_1 g o
J haG ale

. of dg
is h=——"7~0;; ——.
awlp) Y 90,

and recalling that €; G > the hardening modulus in this case

The analysis proceeds exactly as for the strain hardening case, except that this
time

dg o
Sy _ . 1dg o 99 904 (2.37)
Cijkt = okl h 96 oy = it ¥ of 5 og
aw'r) " 96,
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The alternative analysis for the stiffness matrix starts with the consistency
condition,

(2.38)

of . og of dg
/T PO - Py .98 g
96, Ukl(gkl 064 J aw (p) i 90,

and the solution for A becomes
0 .
aGfudijklskl
- ij (2.39)
0 J 0
{ AV %J g

aqu pars aW(P 00 1

Again, the solution proceeds as before, and this time dlﬁ};) takes the form

o dg o
d.('ep) s — bab d6 4p 90y, ikt (2.40)
Wy ARE
{aqu pars ~ o @) Grs}acm

2.3.3 Isotropic Hardening

If, the yield surface expands (or contracts) but does not translate as plastic
straining occurs, then this is said to be isotropic hardening (or softening). This is
illustrated in Figure 2.3a for a simple one-dimensional material that hardens
linearly and isotropically with plastic strain. The material yields at A at a stress ¢,
and during plastic deformation AB, it hardens and the stress increases to ¢;. It is
then unloaded, and reverse yielding occurs at C when the stress is —c;. Further
hardening occurs on CD, so that, when the material is reloaded, the expansion of
the yield surface is such that the yield at E occurs above the original curve AB,
and further hardening occurs along EF.

Figure 2.3b illustrates isotropic hardening in two dimensions. The surface ex-
pands but does not change shape.
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Example 2.4 Von Mises Yield Surface with Isotropic Hardening

Consider a modification of the von Mises yield surface, as specified by the
function f(cij,égf))zcgjcgj—Z{k(egf))}z =0, where k(sgjp)) , the yield
stress in simple shear, is now a function of the plastic strain. A typical form
would be k=ky+h Sz-j(p )Ezj(p ) , which would result (for a straight strain

path) in linear hardening for 4 > 0, or softening for 4 < 0.

Such a model is, however, rather too simplistic in that if the material is
first strained plastically in one direction (and hardens) and then strained
plastically in the opposite direction, the plastic strain will reduce, and the
material will therefore soften. More realistically, hardening occurs on any
further plastic straining, irrespective of the direction. This more realistic
model can be achieved by defining a hardening parameter £ such that
2 _ [ P)er(p)
E=&"E;
rameter, k =k, + hE. This modification has no effect on the predicted re-

, and defining the strength in terms of this hardening pa-

sponse of straight initial loading paths, but models typical isotropic harden-
ing processes more realistically for more complex strain paths.

(a) (b)

Figure 2.3. Isotropic hardening: (a) stress-strain curve in one dimension; (b) change of size of
yield surface in two dimensions
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2.3.4 Kinematic Hardening

On the other hand, if the yield surface translates, but does not change size, as
plastic strain occurs, then this is said to be kinematic hardening. Figure 2.4a,
which should be contrasted with Figure 2.3a, shows the response of a simple
kinematic hardening material that hardens linearly with plastic strain. The load-
ing curve OAB is identical to that of isotropic hardening, but on unloading from
B, yield occurs at C’, such that the size of the elastic region is 2c (the stress at C’
therefore is ¢; —2c ). Hardening occurs on reverse loading C'D’, but on reload-
ing, yield occurs at E’, which falls on the original line AB, and the hardening
once again occurs along E'F’.

Figure 2.4b (which should be contrasted with Figure 2.3b) shows the transla-
tion of a yield surface for a kinematic hardening model in two dimensions.

(a) (b)

Figure 2.4. Kinematic hardening (a) stress-strain behaviour in one dimension; (b) translation of yield
surface in two dimensions

Example 2.5 Von Mises Yield Surface with Kinematic Hardening

Consider a modification of the von Mises yield surface, specified by the func-
tion f(cij,éij(P) ) = (Gl'-j -pj )(01'-]- -pj ) —2k? =0, where Pjj =Pj; (ﬁij(p) ) , called

the back stress, is a function of the plastic strain. A simple form would be

pij = hs’,-j(P ) , which would result (for a straight strain path) in linear harden-

ing. This hardening relationship could also be written j; = hégj(-p ) , so that the

translation of the yield surface is in the same direction as the direction of
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the plastic strain. This type of hardening is often referred to as Prager’s trans-
lation rule. Alternatively, one could write p;J = M(G;j —p;j), where W is a
scalar multiplier, so that the translation of the yield surface is in the same
direction as (G;j -pj ) This is often known as Ziegler’s translation rule. For

the special case of the von Mises type of yield surface with associated flow, the

two translation rules are identical: p;] = hg;]. =hAh ag, = 2hk(0;j - p;i )
ij

2.3.5 Discussion of Hardening Laws

It is impossible to distinguish between kinematic and isotropic hardening if one
considers only the plastic behaviour of materials during initial monotonic load-
ing, as illustrated by curves OAB in Figures 2.3a and 2.4a. It is during unloading
and subsequent reloading that the differences between the theories are exhib-
ited. During isotropic hardening, the elastic region changes its size but not
shape, whereas during pure kinematic hardening, it translates but does not
change size (Figure 2.3b and 2.4b). Some materials exhibit one type of behaviour
whilst others exhibit the other. For instance, the very successful “critical state”
family of models for the behaviour of soft clays uses isotropic hardening. In
these models, hardening is linked to volumetric strain rather than shear strain,
and this concept proves vitally important in modelling geotechnical materials.

On the other hand, an important extension of kinematic hardening (pursued
in detail in Chapter 7) allows the modelling of “Masing” type of hysteretic behav-
iour, and this proves realistic for many cyclic loading applications. Of course,
mixed forms of hardening, involving both expansion and translation of the yield
surface are also employed, for instance, in modelling the behaviour of soils under
complex loading paths. Further discussion of different types of hardening in
some more recent developments of plasticity theory is given in Chapter 6.

Finally, there is the possibility that the yield surface changes shape as well as
its size or location. Some advanced theories for soils employ yield surfaces
which change shape; see, for example, Whittle (1993).

2.4 Frictional Plasticity

We shall return later in Chapter 10 to the more realistic modelling of frictional
materials, but it is useful at this stage to introduce some of the simple concepts
of fricional plasticity, as this is the most important application in which non-
associated flow occurs. We consider a simple conceptual model in which a mate-
rial is subjected to a normal stress ¢ and a shear stress T, with corresponding
strains € and Y. If the material had a cohesive strength ¢ (independent of the
normal stress) and exhibited associated flow, we could write the yield surface
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and plastic potential as f =g = “L“ —c=0. It is straightforward to show that

(since dg/do = 0) this model involves plastic flow at constant volume.

Note that in the following discussion of friction, we maintain our usual con-
vention of tensile positive. Those readers more familiar with the compressive
positive terminology used in frictional problems in soil mechanics will need to
take special care.

The yield surface for a perfectly plastic frictional can be defined as

f=ld+u*o=0 (2.41)

where W is the apparent coefficient of internal friction. We note that for this
frictional material, the stress o will always be negative (i. e. compressive). Within
the yield surface, the stress-strain behaviour is elastic and could be written

=2 y=_ (2.42)

&(p) _ }ba_g q'{(P) = xa_g (2.43)

where g is the plastic potential, which we write in the form,
g=‘1‘+60—x=0 (2.44)

where B is a coefficient which we discuss below, and x is a constant chosen to
ensure that the plastic potential surface always passes through the current stress
state on the yield surface.

Clearly, if f = p*, then the yield surface and plastic potential are identical and
the flow rule (2.43) becomes associated. In this case, it follows from (2.43) that
&) =M=Ap* and ﬁ((p ) =S(7) [See the notation section for the definition of
the signum function S(x)]. The rate of plastic work is then determined as
W) = g&(P) 4 gy (P) =A*6+ATS(T)=A(U* o +[T
expression for the yield surface, we obtain W(P) =0 . Thus a “frictional” mate-
rial with associated flow is not frictional at all. It dissipates no work plastically!

Now consider plastic strains in more detail. It is simple to show from the flow

rule that é(p ) / 1'{(‘0 ) =BS(T) . Since ), is a positive multiplier, it also follows that

), and by substituting the

T and y(P) have the same sign, so that we can write é(P)/“'{(p) =l35(§'(‘0)) or

é(p ) =B‘Y(p )‘. For a positive value of f, the volumetric plastic strain is always

positive and the material dilates. The apparent “frictional” strength in an associ-
ated material is entirely due to this dilation. More realistically, p<u* and
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Figure 2.5. Frictional yield surface

wiP) =k(BG+|T|) =-Ac(u*—P) , which is positive because 6<0, so that plastic
work is dissipated in this case. The case f>u* would generally be disallowed
on “thermodynamic” grounds as this would involve negative plastic work. It is
common to identify plastic work with thermodynamic dissipation. We shall see
later in this book that this is in general an oversimplification, but in this in-
stance, the identification of plastic work with dissipation is correct.

For =0, f—:(p )= 0, and the material deforms at constant volume. The yield
surface and flow vectors for the general case are shown in Figure 2.5.

2.5 Restrictions on Plasticity Theories

In the discussion of frictional materials, we have just encountered the fact that
certain restrictions may be placed on parameters on “thermodynamic” grounds.
Two important restrictions on plasticity theories have been applied by many
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users in the past, and these are discussed below. Both bear a superficial similarity
to thermodynamic laws, and both lead to normality relationships, but neither
embodies any thermodynamic principles.

2.5.1 Drucker's Stability Postulate

Drucker (1951) proposed a “stability postulate” for plastically deforming mate-
rials. Although not a thermodynamic statement, it bears a passing resemblance
to the Second Law of Thermodynamics and is therefore referred to as a “quasi-
thermodynamic” postulate for classifying materials. It can be stated in a variety
of equivalent ways, but represents the idea that, if a material is in a given state of
stress and some “external agency” applies additional stresses, then “The work
done by the external agency on the displacements it produces must be positive
or zero” (Drucker, 1959). If the external agency applies a stress increment 36;;

that causes additional strains d¢;; >0. The

[/
product 86;;0¢;; is often called the second order work.

then the postulate is that 3c;;¢;;

In the one-dimensional case shown in Figure 2.6a, the postulate states that the
area ABC must be positive. Strain-softening behaviour is thus excluded. In the
one-dimensional case, a strain-softening material is mechanically unstable un-
der stress control, and this is linked to the identification of the postulate as
a “stability postulate”. Unfortunately, this has led to the interpretation that
a material which does not obey the postulate will exhibit mechanically unstable
behaviour. The obvious corollary is that a material which is mechanically stable
must therefore obey the postulate. The identification of the postulate with me-
chanical stability for the multidimensional case is, however, erroneous. The
conclusion that mechanically stable materials must obey Drucker’s postulate is
therefore equally erroneous.
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Figure 2.6. One-dimensional illustrations of (a,b) Drucker’s postulate and (c) Il'iushin’s postulate
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If the external agency first applies then removes the stress increment 3o;;,

such that the additional strain remaining after this stress cycle is 685.]-1) ) , then it
also follows from the postulate that 801-]'685-]? )>0. Thus in the one-dimensional
case shown in Figure 2.6b, the area ABD must be zero or positive.

We do not elaborate the proof here, but it can be shown that Drucker’s postu-
late leads to the requirement that the flow is associated for a conventional plas-
ticity model (i. e., that the yield surface and plastic potential are identical). Fur-
thermore, it follows that the yield surface for a multidimensional model must be
convex (or at least non-concave) in stress space. Strictly these results apply to
uncoupled materials, in which the elastic properties do not depend on plastic
strains. For coupled materials in which the elastic properties are changed by
plastic straining, the results are modified, but for realistic levels of coupling the
effects are rather minor.

Many advantages follow from the use of associated flow. For instance, for per-
fectly plastic materials with associated flow, it is possible to prove that (a)
a unique collapse load exists for any problem of proportionate loading and (b)
this collapse load can be bracketed by the Lower Bound Theorem and Upper
Bound Theorem. In numerical analysis, associated flow guarantees that the ma-
terial stiffness matrix is symmetrical, which has important benefits for the effi-
ciency and stability of numerical algorithms. Furthermore, for many materials
(notably metals), associated flow is an excellent approximation to the observed
behaviour. For all these reasons, it is understandable therefore why many practi-
tioners are reluctant to adopt models that depart from associated flow.

Frictional materials (soils), however, undoubtedly exhibit behaviour which
can only be described with any accuracy with non-associated flow. If a purely
frictional material with a constant angle of friction were to exhibit associated
flow, then it would dissipate no energy, which is clearly at variance with com-
mon sense. With some reluctance, therefore, we must seek more general theo-
ries, which can accommodate non-associated behaviour.

2.5.2 Il'iushin's Postulate of Plasticity

The “postulate of plasticity” proposed by II'iushin (1961) is similar to Drucker’s
postulate, but significantly it uses a cycle of strain rather than a cycle of stress. It
is simply stated as follows. Consider a cycle of strain which, to avoid complica-
tions from thermal strains, takes place at constant temperature. It is assumed
that the material is in equilibrium throughout, and that the strain (for a suffi-
ciently small region under consideration) is homogeneous. The material is said
to be plastic if, during the cycle, the total work done is positive, and is said to be
elastic if the work done is zero. The postulate excludes the possibility that the
work done might be negative. This is illustrated for the one-dimensional case in
Figure 2.6¢, where the postulate states that the area ABE must be non-negative.
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The postulate has certain advantages over Drucker’s statement because it uses
a strain cycle. Drucker’s statement depends on consideration of a cycle of stress,
which is not attainable in certain cases such as strain softening. On the other
hand, almost all materials can always be subjected to a strain cycle. The excep-
tions are rather unusual materials which exhibit “locking” behaviour (in the
one-dimensional case this involves a response in which an increase in stress
results in a decrease in strain). It may be in any case that such materials are no
more than conceptual oddities, and we have never encountered them. A more
significant limitation is I'iushin’s assumption that the strain is homogeneous. It
may well be that for some cases (e. . strain-softening behaviour), homogeneous
strain is not possible, and bifurcation must occur.

I'iushin’s postulate seems even more like a thermodynamic statement (and
specifically a restatement of the Second Law) than Drucker’s postulate, but again
it is not. A cycle of strain is not a true cycle in the thermodynamic sense because
the material is not necessarily returned to identically the same state at the end of
the cycle. The specific recognition that a cycle of strain would result in a change
of stress is an acknowledgment that the state of the material changes. In later
chapters, it will be seen that one interpretation of this is that a cycle of strain
may involve changes in the internal variables. I'iushin’s postulate is therefore
no more than a classifying postulate.

Even though it holds intuitive appeal - that a deformation cycle should in-
volve positive or zero work - it is possible to find materials (both real and con-
ceptual) that violate the postulate. Such materials would release energy during
a cycle of strain, and in so doing would change their state.

Iliushin showed that his postulate also leads to the requirement that, in
a conventionally expressed plasticity theory, the plastic strain increment vector
should be normal to the yield surface; in other words, the yield surface and plas-
tic potential are identical. Since many materials, notably soils, violate this condi-
tion, we must conclude on experimental grounds that II'iushin’s postulate is
overrestrictive, and in later chapters, we seek a broader, less restrictive frame-
work.
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