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Modelling of Hybrid Systems

The purpose of this chapter is to discuss the modelling of hybrid systems and
introduce a new modelling formalism called object-oriented differential predicate
transition net, or simply OO-DPT net. This formalism is used in the modelling
method presented in Chapter 3 and analysis method presented in Chapter 4.

The modelling activity has a crucial role in the development of supervisory
systems. The modelling formalism influences the way a problem is approached and
how the solution is shaped. Once the modelling formalism has been chosen, it
limits the available methods for analysis and fault detection.

The new formalism presented in this chapter for the modelling of hybrid
systems results from the application of the object-oriented (OO) paradigm to the
differential predicate transition net.

A differential predicate transition net defines an interface between differential
equation systems and Petri nets. The former models the continuous dynamics of
the hybrid system and the latter the discrete event-driven dynamics. The definition
of differential predicate transition nets is based on predicate transition nets, which
are high-level Petri nets. Both predicate transition nets and Petri nets are
formalisms for discrete event dynamic system modelling.

This chapter begins by justifying why differential predicate transition net was
chosen as the starting point for the approach proposed here and why the OO
paradigm is needed. Then, a brief introduction to Petri nets, predicate transition
nets and differential predicate transition nets is presented.

The idea of merging OO and Petri nets is not new. Many previous works have
proposed the incorporation of OO paradigm into formalisms based on Petri nets.
These works are briefly discussed. Their advantages and disadvantages are taken
into consideration for the new hybrid system modelling formalism, the OO-DPT
net (object-oriented differential predicate transition net).
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2.1 The Choice of a Formalism

Hybrid systems have been studied for more than a decade. In this time interval, a
large number of hybrid system modelling formalisms have been proposed. A
detailed review of all these formalisms is not presented. The references at the end
of the book can be used for this purpose (Antsaklis and Koutsoukos, 2003),
(Gueguen and Lefebvre, 2001), (Champagnat, 1998).

Briefly, hybrid system modelling formalisms can be grouped into three classes.
The first one comprises the extensions of continuous formalisms by the
introduction of discrete variables, such as ordinary differential equations with
Boolean variables. The second class comprehends discrete formalisms where new
elements are introduced for representing the continuous dynamic, such as hybrid
Petri net (Alla and David, 2004). It incorporates continuous places and transitions
in order to model the dynamics of continuous flows. The third class of formalisms
combine a continuous formalism, described by differential equation systems, with
discrete ones, such as Petri nets or automata. Examples are hybrid automata and
differential predicate transition nets. In both cases, an interface is defined for
representing the interaction between continuous and discrete formalisms.

Extensions of discrete formalisms tend to restrict the flexibility to model
continuous dynamics. The opposite can also be stated about extensions of
continuous formalisms. On the other hand, proposals that combine a continuous
and a discrete formalism usually present a broader modelling power and flexibility,
as compared to the first two classes (Gueguen and Lefebvre, 2001). Therefore,
these are the only proposals considered for the purpose of this book.

Among the approaches of this group, the formalisms derived from Petri nets are
particularly considered because of their well-known advantages for representing
process features such as concurrency, conflict, synchronisation and asynchronous
behaviour.

Basically, there are two proposals in the third class that adopt Petri nets to
model the discrete dynamics, mixed Petri nets (Valentin-Roubinet, 2000) and
differential predicate transition nets (Champagnat, 1998). However, neither
formalism provides means for system decomposition or for a progressive
modelling, making it difficult, if not impracticable, to model large complex
systems.

A possible solution to this problem is the introduction of OO paradigm into the
one of the formalisms. The OO paradigm is presented and discussed in the
beginning of Section 2.4. Basically, its main purpose is to structure the system
decomposition and handle its complexity. Furthermore, the direct correspondence
between the objects of the model and the real entities of the problem results in a
great facility to modify, revise and maintain the models, improving model reuse.

For this purpose, the differential predicate transition net is more suitable than
the mixed Petri net, as it does not have global variables and the Petri net place
capacity is not constrained to one token.

In the next section, a brief introduction to Petri nets is presented. It is then
followed by the description of predicate transition nets and differential predicate
transition nets.
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2.2 Introduction to the Petri Net

The Petri net (Murata, 1989) is a modelling formalism proposed by Carl Adam
Petri in 1962 for modelling distributed systems. It was rapidly recognized as a
promising formalism, due to its adequacy to represent a number of features of
discrete event dynamic system behaviour.

A Petri net is a directed, weighted, bipartite graph with two kinds of nodes:
places’ and transitions. The arcs of a Petri net can either connect a place to a
transition or a transition to a place. They can never connect two places or two
transitions. The places of Petri net contain a positive integer number of tokens. The
distribution of tokens over the Petri net places is called marking. When the
behaviour of a system is modelled as a Petri net, the marking indicates the state of
the system.

An example of a Petri net is presented in Fig. 2.1. It models the behaviour of a
manufacturing process. The system is composed of two buffers (Buffer 1 and
Buffer 2) and one machine (Machine 1). Each place is associated with a local state
of the system. The tokens in place p; represent the parts in Buffer 1. Similarly, the
tokens in ps represent parts in Buffer 2. Places p. and ps model the state of
Machine 1. If there is a token in py, the machine is processing one part. However,
when Machine 1 is idle, there is a token in ps. The marking illustrated in Fig. 2.1
indicates that the system is currently with three parts in Buffer 1, one in Buffer 2
and one being processed by Machine 1.

Machine 1 idle

Fig. 2.1. Petri net of a manufacturing system

Each transition of a Petri net is associated with an event of the system. In the case
of the Petri net in Fig. 2.1, t; represents the arrival of a new part in Buffer 1.
Transition t, is associated with the event of removing a part from Buffer 1 and
beginning the process in Machine 1. Similarly, t; models the moving from Machine

"' In this text, structural elements of Petri nets are printed in Arial type, such as place,
transition, token and arc.
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1 to Buffer 2. Transition ts dispatches a batch of 4 parts from the manufacturing
system.

The system behaviour is simulated by the firing of transitions. A transition
firing corresponds to the occurrence of an event. In the same way as an event
affects the system state, when a transition fires, it modifies the Petri net marking.

A ftransition fires only if it is enabled. The enabling of a transition depends on
the number of tokens in its input places and the weight of the corresponding input
arcs. An input arc is an arc that starts in a place (an input place) and finishes in a
transition. Similarly, an output arc is an arc that starts in a transition and finishes in
a place (an output place). The weight of the arc is the number written beside it.
Usually, when the weight is omitted from the graphical view, it is unitary. In Fig.
2.1, all the arcs weights are 1, with the exception of the arc from ps to t4, which
weighs 4.

A transition is enabled if each input place has at least n tokens, where n is the
weight of the corresponding input arc. If the transition is enabled, it may fire. When
it fires, it removes tokens from the input places, and adds tokens to the output
places. The number of tokens removed or added to each place is the weight of the
arc that connects it to the transition.

In the Petri net of Fig. 2.2 a) transition t; and t3 are enabled. If transition t3 fires
the new marking presented in Fig. 2.2 b) is reached and transition t; and t; are
enabled. Other transitions may fire, simulating the system evolution. If the
sequence t, t3, t1, to, t3 is fired, the marking of Fig. 2.2 ¢) is reached. As ps has now
4 tokens, transition t4 is enabled and may fire, leading to the marking of Fig. 2.2 d).

bty b b

a) b) c) d)

Fig. 2.2. Petri net evolution
The formal definition of Petri net is:

Definition — A Petri net is a pair N=<S, Mo>, where:
e S s the Petri net structure defined by the 4-tuple <P, T, Pre, Pos>, where:

- P={p1, p2, p3, ..., Pm} is a finite set of places.
- T={ty, ta, t3, ..., t,} is a finite set of transitions.
- PnT=0,PUuT=z=0@.
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- Pre: P x T — N defines the input arcs of transitions (N is the set of
natural numbers).
- Pos: T x P — N defines the output arcs of transitions.

e  Mo: P — N is the initial marking of the net.

Pre and Pos can be represented as matrices where lines correspond to places
and columns to transitions. The value of one element of the matrix is the weight of
the arc that connects the corresponding place and transition. If it is zero, there is no
arc. An example is presented in Fig. 2.3.

0100
Pro|0 010
000 4
01 0 0]
10 0 0]
Pos_|0 100
0010
0 0 1 0]

Fig. 2.3. Pre and Pos matrices of a Petri net

The evolution of a Petri net can be computed by Petri net state equation:
M = Mo — Pre.s + Pos.s

Mo is the initial marking. s is a vector of dimension n, where n is the number of
transitions in the Petri net. The value of s[i] is the number of firings of transition t;.
M is the final marking. Fig. 2.4 applies the state equation to compute the final
marking for the net of Fig 2.2 a) and the sequence of firings ts, to, ti, t3, to, t3, ta.

M=M,-Pres+Poss

+

o O ~ O
- a O O
o O O o
_ W N -~

1
0
0
0

A O o =~
o o = O
o M O O
_ W N -

Fig. 2.4. Petri net state equation
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2.3 From the Petri Net to the Differential Predicate Transition
Net

Petri nets have been successfully applied to a number of real world problems in
many domains. However, two main disadvantages have restricted their application
for large, complex systems.

The first one is that Petri net is not adequate to model data manipulation. Even
for simple problems, the net structure becomes too complex, such as a net for
comparing two integer numbers. The second disadvantage is that there is no
hierarchy in Petri net and it is not possible to build the model of a large system as a
composition of sub-models.

Looking for a solution to these problems, many researchers proposed
extensions of the Petri net formalisms. These extensions are known as high-level
Petri nets. Among them are the coloured Petri net and the predicate transition net.

In coloured Petri nets, the description power is enhanced by associating colours
to tokens, places and transitions. Each token has a colour that makes it possible to
distinguish it from tokens that have other colours. Each place has a set of colours
that determines the colours of the tokens allowed in the place. Each transition has a
set of colours that are different ways of firing the transition. Each element of the
Pre and Pos matrices is no longer an integer number, but becomes a matrix itself.
This matrix determines the colours of the tokens removed and added by the
transition for each transition colour (way of firing the transition).

In coloured Petri nets (Jensen, 1997), transitions can be considered rules of a
propositional logic system, which is a logic system without variables. predicate
transition net (Genrich, 1987) introduces the concept of variable. Each transition
has additional enabling conditions specified as logical formulas with variables.
Transitions are rules of a first order logic system, which is a logic system with
variables.

A simplified definition of the predicate transition net is presented here.

Definition — A predicate transition net is a 3-tuple Npr = <S, A, Mo>, where:

e Sis the Petri net structure defined by the 4-tuple <P, T, Pre, Pos>.
e A is the annotation of the Npr, defined by the 4-tuple A=<X, A4, Ac, As>,
where:

- Xis aset of variables.

- Axassociates a vector of X variables to each arc (as a simplification
it is considered that the maximum arc weight is one).

- Ac associates an enabling condition to each transition. The enabling
condition uses the A, variables of the transition input arcs.

- A, associates an action to each transition. The action defines the
value of the A variables of the transition output arcs using the A«
variables of the transition input arcs.

e My is the initial marking of the net. Each token is a vector of variables
similar to the arc vectors. The initial marking defines the value of the token
variables.
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In a predicate transition net, a transition is enabled (or not) for a specific set of
tokens in its input places. If the arc variables are replaced by the values of the
token variables and the enabling condition is true, then the transition is enabled.
When enabled, a transition may fire. The transition action defines the values of the
variables of the output arcs. These are the same values of the tokens generated in
the output places by the transition firing.

An example is presented in Fig. 2.5. The predicate transition net models the
process of selecting a new piece to be stored in a box. The pieces available have
different sizes, as well as the boxes. When the box arrives at the beginning of the
process it already contains a piece. The new piece must be stored in the remaining
space. The boxes available are represented by tokens in p,.The variable d is the
size of the box, while r is the size of the piece that is already in the box at the
beginning of the process. By firing transition ti, the box receives a new piece. The
pieces available are modelled as tokens in p1, while the variable v is the size of the
piece. The variable q is the space available in the box after receiving the new piece.
The variables of the predicate transition net are, therefore, X = {r, v, d, q}, the arc
vectors are Ax(p1,t1) = <v>, Ax(pa,t1) = <r, d>, A«(t1,p3) = <q, d>. The condition of t
is Ac(t1): v+r<d and the action is Aa(t1): g=d-r-v. Considering the marking illustrated
in Fig. 2.5, transition t; is enabled for <v> = <2> and <r, d> = <3, 6>, but is not
enabled for <v> = <5> and <r, d> = <3, 6> because the enabling condition is not
true.

Enabling condition: <2> <5> <3,6>
A(t,): v+r<d A

Action:
A,(t,):q=d-v-r

Firing of t,

——

Fig. 2.5. Example of predicate transition net

The use of variables in the predicate transition net motivates its application for
hybrid system modelling, resulting in the definition of the differential predicate
transition net. On a predicate transition net, the token variables can be modified
only by the firing of a transition. On the other hand, token variables of a differential
predicate transition net can be continuously modified.

The basic idea of the differential predicate transition net is that each place
models a different system configuration. It is associated with a set of differential
equation systems that describes the continuous evolution of the token variables
while the token is in that place. The continuous evolution is a function of the time

(0).



20 Modelling and Analysis of Hybrid Supervisory Systems

As for the predicate transition net, differential predicate transition net also has
enabling conditions, called enabling functions. When a transition is enabled, it fires
immediately. The firing of an enabled transition has priority over time evolution.
Another element of the differential predicate transition net is the junction function.
Junction functions are used to introduce discontinuities in the continuous variables
and are similar to the actions of predicate transition net.

The definition of differential predicate transition net is presented here.

Definition — A differential predicate transition net is a 3-tuple Npt = <S, A, Mg>,
where:

e S is the Petri net structure defined by the 4-tuple <P, T, Pre, Pos> and the
maximum arc weight of 1.

e As the annotation of the Npr, defined by the 4-tuple A=<X, Ap, Ae, Aj, A,
where:

- Xisaset of variables.

- Apassociates a vector X of the X variables with each place pi.

- Ac associates an enabling function e; with each transition ti. The
enabling function uses the variables of A, of the transition input
places.

- Ajassociates a junction function ji with each transition t;.

- As associates a differential equation system fi with each place pi.
The variables of the differential equation system are the Ap
variables of place pi.

e My is the initial marking of the net. Each token is a vector of variables
similar to the place vectors. The initial marking defines the value of the
token variables at the time 06=0.

An example of a differential predicate transition net is presented in Fig. 2.6. It
models the process of filling bottles with water. The tokens in p; model the bottles
that are being filled. Each bottle must be filled with a specific amount of water,
represented by the variable m. The variable v is the current weight of the bottle,
which includes the glass weight (5) and the water weight (v-5). The rate of filling
(1) is fixed and is the same for all bottles. The differential equation associated to p-
models the variation of the bottle weight. The tokens in p, model the available taps
for closing the bottles. The firing of transition t; represents the closing of a bottle
that has been filled with the correct amount of water (m). The weight of the bottle
after the firing of t; includes also the weight of the tap (2). If there is no tap
available when the bottle reaches the specified amount of water, then transition t,
fires instead of t1.
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<5,10> <7/,20> <15,1(\)><1/7,20> <17,20 >

Place variables:
Xm: <v,m>
Kot <v>

P4 P, P4 P, Py Py
Time(0) Transition

Equation systems: evolution firing

f,rdvidt =1

Enabling function:

e, m=v-5

e, v>m+5 < 17;>‘

(O (Om (s (O o ()

2)0=0 b) 0 =10 ) 0=10"

Junction function:
Jpv=v2

Fig. 2.6. Example of transition firing in a differential predicate transition net

A desired feature for the differential predicate transition net is to use the value of a
variable as an input parameter for the equation system of another place. This
feature implies the introduction of additional elements because there can be more
than one token in each place. An example would be to use the variable v of p; as an
input parameter for the equation system of p., such as f: dr/dt=v, where r is the
variable associated to p,. In this case, the token in p, must specify which token in
p1 is being considered for solving f,. As a consequence, each token must have an
identity.

Another desirable feature for the differential predicate transition net is
modularity. In order to model large systems, it must be possible to build a model
by composing a set of sub-nets with well defined interfaces and interaction
mechanisms.

These problems lead to the introduction of the OO paradigm to the differential
predicate transition net. However, there are many possible ways of combining OO
and differential predicate transition net. In order to analyse the advantages and
disadvantages of each option, the next section presents the main concepts of the
OO paradigm and discusses previous works that merge Petri nets and OO.

2.4 Petri Nets and the Object-oriented Paradigm

The origins of the object-oriented paradigm dates back to the 60s’ when the
concept of encapsulation was introduced, grouping data and operations into a
single entity called object. Initially, the OO paradigm was used exclusively as a
way of organizing and structuring computer programs. Lately in the 80s’, it begins
to be used also for the conception and design of systems.

The object-oriented paradigm states that a system is composed of a set of
objects, which interact among themselves. An object is an entity that has attributes,
behaviour, memory and identity (Booch, 1994), (Rumbaugh et al., 2004). The
attributes represents the system data. The behaviour is composed of operations or
methods. The memory, or state retention, means that the state of the object is not
reinitialized each time it is accessed. The identity distinguishes an object from any
other object of the system, even when they have the same attributes and behaviour.
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Additionally to the concept of object, the pillars of the object-oriented
paradigm include the concepts of encapsulation, classification and inheritance.
Encapsulation states that an object is composed of a body (internal
implementation) and an interface (represented by methods that allow other objects
to act on its behaviour). The interface determines how the object may interact with
other objects. The internal structure is hidden and guarantees that the external view
of the object is independent from the internal implementation. The interface
contains all the necessary information for starting a communication with the object.
It is not necessary to know the details of internal implementation.

The objects of a system are organized into classes. The classification groups
objects that share the same attributes, operations, relationships and semantics into a
single class. The objects of a class have the same behaviour and data structure. A
class works as a model for the creation of new objects, which is called
instantiation.

Finally, inheritance provides the means for defining a class (frequently called
child) starting from the definition of another class (frequently called parent). The
child class automatically inherits all the methods and attributes of the parent class.
The reuse provided by the inheritance is one of the main advantages of the object
oriented paradigm.

The combination of object-oriented paradigm and Petri nets is an extensively
discussed issue in the literature. The works on this subject can be organized into
three groups:

e ‘Objects inside Petri nets’. The Petri net models a system from a global
point of view. A token in the Petri net is an object. It is the instance of a
class defined in an object-oriented programming language, such as C++,
and has attributes and methods. When a transition fires, it executes a
method of an object and changes the values of its attributes. It can also
create new objects and destroy old ones. The HyNet (hybrid high-level
Petri net) (Wieting, 1996) is an approach of this group that models hybrid
systems. It is an extension of the THORN (timed hierarchical object-
related net) (Koster et al., 2001), a high level Petri net for discrete event
dynamic systems.

e  ‘Petri net inside objects’. A system is composed of a collection of objects.
A Petri net models the behaviour of each object. The Petri net marking
shows the current state of the object. The methods provided by the object
are associated with places. They compose the object interface and can be
accessed by other objects. Following the OO paradigm, other places and
transitions model the internal behaviour of the object and are encapsulated.
If the object calls are statically defined, it is possible to build a global
model of the system by merging all the object nets. The hybrid object net
(Drath, 1998) is an example of this group for hybrid systems. An example
for discrete event dynamic systems is the G-CPN (g-coloured Petri net)
(Guerrero et al., 2001), which combines the coloured Petri net and the g-
net.

e Mixed approaches. The third group combines the ideas of the first two. It
creates a hierarchical structure inside the Petri net. The approaches in this
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group aim at a complete integration of the object-oriented paradigm with
Petri net, including features such as inheritance and polymorphism. From a
global point of view, a system is modelled by the system net. A token in a
system net is an object. The object behaviour is detailed in an object net.
An example of object attribute is the marking of a place of the object net.
The tokens in an object net can also be objects, and so on, creating a
hierarchical organization. In this case, an object net is the system net from
the point of view of its token (Valk, 1998). An approach that belongs to
this group is the OPN (object Petri nets) (Lakos, 1995).

The analysis of works in the three groups resulted in some important remarks
that should be taken into account in the approach presented here concerning a new
formalism merging OO and differential predicate transition nets. The first one
regards the possibility of building a global model of the system. This is considered
an important feature for simulation and analysis. When an inconsistency is detected
during the model simulation, the visualisation of the global system behaviour helps
the diagnosis. The second remark is about encapsulation. The definition of a
formalism based on the OO paradigm should provide a clear definition of the
object interfaces. Objects interact only through their interfaces, ensuring the
integrity of the internal data and behaviour.

Another important point is the definition of hierarchical structures. The use of
sophisticated hierarchical mechanisms and rules, such as those used in the third
group, may compromise the graphical meaning of the Petri net. They must be
avoided unless their advantages compensate this strong drawback.

2.5 The Object-oriented Differential Predicate Transition Net

The remarks presented at the end of the previous section were the starting point for
incorporating OO into differential predicate transition net. The resulting modelling
tool is called object-oriented differential predicate transition net, or, shortly, OO-
DPT net.

2.5.1 Modelling Classes and Objects

The class and object concepts are the basis of the object-oriented paradigm.
Therefore, they are the starting point for the definition of the OO-DPT net. A
system is modelled by an OO-DPT net, which is composed of a set of OO-DPT
sub-nets. Each OO-DPT sub-net is associated with a class and models the
behaviour of the objects of that class. The marking of the OO-DPT sub-net
indicates the current state of the objects of that class.

Definition 1: An OO-DPT net is composed of a set of OO-DPT sub-nets: Noo-opt =
{C41, Co, ..., Cq}. The subscript n is the number of the classes that composes the
system model.
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Example — Mixing System: The system of Fig. 2.7 is used to illustrate the OO-DPT
net. Basically, the system mixes two substances S; and S, in tank Tk;. The on/off
valves V; and V, regulate the amount of S; and S, that is discharged into the tank.
The controller L; executes the following sequence of steps: fill tank Tk; with S,
and S,, mix S; and S,, and empty Tk;. The OO-DPT of this system is composed of
three classes’: Cq — Valve, C, — Tank and Cs — Controller. Each class is an OO-DPT
sub-net.

Vi

Si
-

[]
-4 Controller L4

Fig. 2.7. Example of a mixing system

The definition of an OO-DPT sub-net is based on the definition of the differential
predicate transition net. The variables of a class C; models the class attributes.

Definition 2: Each OO-DPT sub-net is composed of a 3-tuple, C; = <N;, A;, Mo >,
where:

e N;is a Petri net defined by the 4-tuple <P;, Ti, Pre;, Pos;>, where the arcs
have unitary weight:

- P& p1, p2i, pa, ---, Pm_iy is a finite set of places.
- Tttt .., th ) is a finite set of transitions.
- PiﬁTizg,PiUTiig.

- Prei PixTi— (0,1).

- POSiZ Pi X Ti —> (0,1)

e A is the annotation of C;, A=<X;, Api, Aei, Aji, Ar>:

- Xis a set of variables (see Definition 5).

- Ayiassociates a sub-set Xy ; of variables of X; with each place py
(see Definition 4).

- Ag associates an enabling function ey ; with each transition tc ;. The
enabling function is a Boolean expression that has the variables of
Xi as input parameters.

- Aj associates a junction function j ; with each transition tc .. The
junction function determines the values of the variables of X; after
the transition firing, Xi(0%) = j i(X(0)) (0", 0 are time instants
immediately before and after the firing of transition t ;).

% Class names are written in italic and object names are underlined.
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- Aj associates with each place px ; an equation system fi ; composed
of a set of differential and/or algebraic equations. The variables of
fi i are the elements of Xy, and the input parameters are the
elements of X;.

e Mo is the initial marking of the OO-DPT sub-net (see Definition 3).

Example — mixing system: Fig. 2.8, Fig. 2.9 and Fig. 2.10 present the sub-nets of
classes C1, C, and C;z of the mixing system (Fig.2.7). Class C1 — Valve has two
discrete states: open and closed. The variable g models the valve flow. Class C, —
Tank has three discrete states: stand-by, mixing and emptying. The variables Vol,
gi1.1 and qi2.1 model the volume in tank and the incoming flows of S; and S,. 11 and
I, are related to the class interface and are explained latter on. Class Cs — Controller
models the sequence of activities for processing a batch. Mg4 is the total amount of
product in a batch. Volss and Volsy are the volume of substances S; and S, in the
tank. Kgm is the time the batch must be mixed and Oy is the time it has been mixed.
pce2 is the percentage of substance S; in the mixture. Variables qi2.1, qiz.1 and Vol 2
are the incoming flows of S; and S, and the volume of product in the tank. E4, E,
l1, Iz and I3 are related to the Cs interface.

7" Cy- Valve Class variables:
X1 ={q}

Place variables:
Xpu =; Xpz,1 =;

Enabling functions:
e, €19,

Junction functions:
jirq=10;
j2.1:9=0;

Equation systems:

\ fi1,f2.11 05 ’

______________________________

Semmmmee e

’,Cz - Tank Class variables:
t3 2 Xo ={Vol, l1, Iz, Qir.1, Qiz1};
Place variables:

Xp1_2 = Vol; X2 2 = Vol; Xpz 2 = Vol;
Enabling functions:

€1 2, €2, €4 2, €5 2. J;

e3: Vol =0;
Junction functions:
P12 ¥ - P32 11721 jz,zy J'3,2, J'A,zy J'5,23 9,
Equation systems:

fi_2, f2 o dVol/dt= qi1.1+ Qi
Emptying fa 2: dVol/dt= qi1.1+ Q2.1 - 20

Stand-by Mixing

Fig. 2.9. Model of class C, — Tank
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id Cs - Controller “
! Class variables: Junction functions: \
! X3 ={0m, Kom, VOIs1, Volsz, Eq, Bz, b, b, b, 13, Ja_s, J5.3, j7.3, 8.3 J; H
! Me1, pcez, Vol 2, Qe.1, Qs.1}; j2_3: Vols1 = 0; :
1 Place variables: ja_3: Vols2 = 0; y
' Xp1_3 = Xp2.3 = Xp3 3 = Xpe3 = Xp7.3 = Xpo_3 3J;  Jo_3: Om=0; H
: Xpa_3 =V0ls1; Xos_3 =Vo0lsz; Xps_3 = Om; Equation systems: H
! Enabling functions: fi3,f23,f33,f63,f73,fos3:D; H
! €1.3,€23,€43,6853.J; f43: dVols1/dO = qe.1 H
| €4 3: Vols1 = Me1*pcez; s 3: dVols2/d6 = qp.1 H
! es_3: Vols2 = Mer*(1-pee); fa5: dOWdO = 1 :
H e7.3: Om = Kowy H
I essVole=0; Filling with S }
: P2_3 s pss s pes E
]

| Stand-by Mixing Emptying H
! o3 pas ts 3 E
]

! Filling with Sz \
! t33 ps5 13 H
] ]
] ]
] ]
Y 1]
‘\ /I

S - " " - - - P34

Fig. 2.10. Model of class C; — Controller

Once the classes and OO-DPT subnets have been specified, the next step is to
define the set of objects of each class and their initial states. The objects of a class
Ci are named Oy, O2j, ..., Onj, where n is the number of objects of class C; in the
system. From the discrete point of view, the state of an object Oy is represented by
one or more tokens in the sub-net of its class (mw.). From the continuous point of
view, it is modelled by an instantiation X,; of the variables X;.

The marking of the OO-DPT sub-net of a class is therefore the composition of
the sub-markings that model the state of each object of that class.

Definition 3: The marking of an OO-DPT sub-net is composed of a set of sub-
markings, Mi = {O1,, O2j, ..., On.} that models the state of the objects of the class Ci:

e  Oy,is composed of a 2-tuple Oy = <Xy, myi>, where:

- Xw.iis an instance of the set of variables X; of the sub-net.
- my;i P — (0,1) defines the tokens in the sub-net that models the
state of the object from a discrete point of view”.

It is important to highlight that Definition 3 imposes that a place contains at
most one token of each object. An object cannot have two tokens in the same
place.

3 The marking of a place can be addressed in one of the following ways:

a) Specifying the number of tokens of all the places in the net, such as: my3 =
{0,0,0,0,1,1,0,0,0}.

b) Specifying the places that have one token: my; = {ps 3,ps 3}-

¢) Specifying the number of token in a place: ps 3= 1; ps 3 = 1.
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Example — mixing system: The mixing system of Fig. 2.7 is composed of objects
0O4.1 — V4 and Oz1 — V3 of class C1 — Valve, O12 — Tk4 of class C, — Tank and O43 —
L, of class Cs — Controller. A possible marking for these objects is presented in Fig.
2.11. From the discrete point of view, the class markings are illustrated in Fig.
2.12.

O11— h
Instance of Variables: X 1: q=0;
Petri net marking: m4 = {1,0};

021-Vs
Instance of Variables: X, 1: q=10;
Petri net marking: m.4 = {0,1};

O12—Tky
Instance of Variables: X1 ,: Vol=20; |5 = 1; I, = 2; q;1.1=0; q24=10;
Petri net marking: m, = {1,0,0};

OLB_Li
Instance of Variables: X 3: Ksu=10; 84=0; Vols1=10; Vols,=10;
Es=1; E2=2; 11=1; 12=1; 15=2; Mg1=40;
pce2=0.25; Vol;12=20; qi21=0; qi3.1=10;
Petri net marking: m; 5 = {0,0,0,0,1,1,0,0,0};

Fig. 2.11. Sub-markings of the objects of the mixing system

Filling with S;
) tts pss s pes

Mixing Emptying

Stand-by

P13 tis tas

Ps_3 trs

Pg_3

Filling with S,
ta3 Pss ts 3

,-------------------\

Fig. 2.12. Sub-markings of the objects of the mixing system

For each object Owi, only one place at a time defines the value of a variable of Xy
The initial sub-marking of O, must be so that all the reachable sub-markings my,;
of Ow.i obeys the following restriction about the variables Xy« i associated with each
place px of the class Ci.
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Definition 4: If m,; is a reachable sub-marking of an object Oy and {pa_j, po_i}
Muw.i, then Xpa_i @) Xpb_i = .

Example — mixing system: The possible sub-markings my; for the objects of the
mixing system are illustrated in Fig. 2.13. All the sub-markings fulfil Definition 4.
An example of inconsistent sub-marking for an object Oz 2 of C, would be my2 = {1,
1, 0}. This marking does not comply with Definition 4 because Xp1 2 N Xp2 1 = {Vol}.

000 L2010 52 001
to

e

Object O1.3

tis
{1,0,0,0,0,0,0,0,0} =— {0,1,1,0,0,0,0,0,0}

ts|ltes

L 14/7{0,0,1 ,0,0,1,0,0,0 tss
{0,0,1,1,0,0,0,0,0}
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1 1
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4, 1000110000 {0,0,0,0,0,1,1,0,0}

ts 3

(0,0,0,1,0,0,1,0,0)4 )
- 6_3
%(01 0,0,0,0,1 00)4’

L {0,1,0,0,1,0,0,0,0}

Fig. 2.13. Reachable markings for the objects of the mixing system

The set of variables of a class is composed of constant parameters (Xco _j), internal
variables (Xinij), public variables (Xpo_ i), image variables (Xim ;) and external
variables (Xext i). The value of constant parameters does not vary during the object
life-time. However, two objects of the same class can have different values for the
same constant parameter. External variables have their value defined by entities not
modelled in the OO-DPT net. They are input signals of the model and are
discussed in Section 2.5.3. The difference among internal, public and image
variables are related to the communication between objects.

Two objects can exchange data by sharing variables. Basically, the instances of
internal variables (Xint w.) of an object Owi can only be read and written by the
object itself. On the other hand, instances of public variables (Xp»_w.i) can be read
but not written by other objects. If a second object O, , reads the value of a variable
M of Xpu_w.i, then M will be part of Xim_v., (image variables of O, ). It means that M
must be specified in the set Xpy_j of class Cj as well as in the set Xim_, of class C..
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However, the specification of Xpp j and Xin  is not sufficient for implementing
variable sharing. It is necessary to specify the identity of the object that has the
instantiation of the variable to be read. In other words, the object O,, must store
the information that M must be read from O and not from any other object of
class C;. This information is recorded in a variable of X, such as I, and when the
variable M is listed in Xim , it is named as Min.

Definitions 5, 6 and 7 are the result of the previous discussion.

Definition 5: The set of variables X of a class is composed of Xi = Xgo i U Xint i U
Xpbii o Ximfi o Xextﬁi, where (Xextii M Xcoii) o (Xextii (@ Xintﬁi) o (Xextii M Xpbii) o (Xextii
N Xim_i) YU (Xeo_i N Xinti) W (Xeo_i N Xpb_i) W (Xeo_i N Xim_i) W (Xinti N Xpb_i) W (Xint_j N
Xim_i) U (Xpb_i N Xim_i) = D.

Definition 6: Each image variable of Xim_, of a class C; is associated with a public
variable of Xy i of a class Cj (i=z or i#z):

e  Each variable of Xim ; is associated with a variable of X, called I, where n
is an integer number.

e |, specifies the object from which the value of the variable must be read.

e The variable of Xim_ is called Min;, where M is the name of the variable in
its original class (C;).

Definition 7: The set of variables Xg ; of each place must be defined over Xint ;j U
Xob_i-

Example — mixing system: Fig. 2.14 presents the set of variables Xco i, Xint i, Xpb_i»
Xim i and Xext ; for each class of the mixing system. Considering the variable values
defined in Flg 2.11 for 01,1 - yl, 02,1 - Mg, 0142 - Hl and 0143 - Ll, Flg 2.15
illustrates the sharing of variables among objects.

C1 - Valve
Xco_1 = Xin(_1 =, Xpb_1 = {Q}! Xim_1 = xext_1 =;
C, - Tank

Xcog = {|1, |2}; Xian =J; Xpb} = {V0|}; Xim72 = {CI\M, CI\2.1}; xexLZ =,

Cs - Controller
Xeo 3 = {Kem, En, E2, l1, l2, Is}; Xint_s = {Om, Vols1, Volsz}; Xon 3 = G5
Xim 3 = {VOoli1.2, Qi2.1, Qi3.1}; Xext 3 = {Me1, pCe2};

Fig. 2.14. Constant parameters, internal, public, image and external variables

P112.1

_________

Fig. 2.15. Variable sharing for the mixing system
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2.5.2 Communication between Objects

In the OO-DPT nets, two kinds of communication are possible among objects. The
first one is the sharing of variables, which has already been presented. This kind of
communication is considered ‘continuous’ because one object is continuously
reading the value of a public variable of another object and updating the value of
its own image variable. The second kind of communication is through method
calls. It is considered a discrete interaction and it is modelled by the dynamic
fusion of transitions.

The discrete interface of an object is composed of two sets of transitions: the
methods provided by the class and the methods used by the class. In case an O,
calls a method of another object Oy, the two objects communicate through the
fusion of two transitions. One of them is a transition t,_; from the provided interface
of class Ci. The other is a transition t,_, from the used interface of class C,.

Definition 8: The interface provided by a class C; is composed of:

e A set of public variables Xg, i (Definition 5).
e A setof transitions T, j, where Tp i = T..

Definition 9: The interface used by a class C; is composed of:

e A set of image variables Xin_i (Definitions 5 and 6).
e A setof transitions Ty j, where Ty ic Tiand T, i n Tp i = &.

As for the case of variable sharing, if an object O, of class C, calls the method
ta_j of the class Cj, it must know which object of C; will perform the method. A
variable |, of C, stores this information and is associated with the method call.
When both t, ; and t, , are enabled, they fire as a single transition.

Definition 10: Each transition of Ty , of a class C; is associated with a transition of
T, i of a class Ci (i=z or i#z).

e  Each transition of T, ; is associated with a variable of X, called In, where n
is an integer number.
e |, specifies the object of class C; that will perform the method requested.

The graphical view of OO-DPT net differentiates transitions of T, and Ty
from internal transitions. Transitions of T, ; (methods used by the class) are
represented as black-filled bars, while transitions of T, ; (methods provided by the
class) are white-filled bars.

Example — mixing system: Fig. 2.16, Fig. 2.17 and Fig. 2.18 present the interface of
class C1, C2 and Cs3 of the mixing system (other elements such as equation systems,
enabling functions and junction functions are omitted from the figures). The first
step of the batch process is to fill the tank with the two substances S; and S,. For
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this purpose, class Cs must call the method t1 1 - Open valve provided by class Cy
for two different valves (identified by I, and l3). These method calls are performed
by t2 3 — t1 2.1 and t3 3 — t1 13.1. After filling the tank with the appropriated volume
of Sy or S,, the two valves are closed by the method calls t4 3 — t> o1 and ts 3 —
t2 13.1. The next step of the batch process is to turn on the mixer by calling method
ts 3 — t1 112. After the appropriate time, the mixer is turned off and the tank is
emptied (method call t7 3 — t5 11.2).

Interface variables: N
Xoo_1 = {a}; Xim 1 = ;
Methods provided by the class:
To1={ti_1; o)
t_1 — Open valve
t,_1 — Close valve
Methods used by the class:
To1=0;

)
Interface variables: E
Xob_2 = {VOI}; Xim 2 = {Qi1.1, Qi2.1}; '
Methods provided by the class: H
To 2= {ti 2 t2 2; t4 2; t5 2}; |

t1_2 — Start mixing '

t2 o — Stop mixing '
’ '

)

)

)

)

L}

:

)

)

'

t4_» — Start emptying

ts_2 — Stop mixing and start emptying
Methods used by the class:

Ti2=0;

T Controller T T T T T T T I T TTImmmmmmm ™
Interface variables: Methods used by the class:
Xop_3 = O Tus={t2.3; t3.3; ta3; ts 3; t6_3};
Xim_3 = {Vol12, Qi2.1, Qiz.1}; t2 3 = t_z.1+— Open valve
Methods provided by the class: ts 3 > t1_3.1 — Open valve
Tos=0; ts_ 3 = to 2.1 — Close valve

ts_3 > to 3.1 — Close valve
ts_s — t1_in.2 — Start mixing
t7_3 — ts_in.2 — Stop mixing and start emptying

Filling with S;

Stand-by Mixing Emptying

tes  pgg t73 pgs tes

Filling with S

tss Ps 3

Fig. 2.18. Interface of class C3— Controller



32 Modelling and Analysis of Hybrid Supervisory Systems

A method call t, ; — t5 in; is performed when both transitions are enabled for a pair
of objects. Considering two objects Oy, and Owi, t, - is enabled in C, if for O, ,
my.; contains the input places of t, , and the enabling function of t,, ; is true for Xy ..
Similarly, ts; is enabled in C; if m,,; contains the input places of t.; and the
enabling function of t, ; is true for Xw.i. An additional condition for the firing is that
the value of |, in X, must be |, = w.

Example — mixing system: The mixing system is in the state indicated in Fig. 2.19
and Fig. 2.20, with the two valves opened (O11 — V4 and O24 — V2) and the
controller (O3 — L1) indicating that the tank is being filled by S; and S,. In this
case, transition t, 1 is enabled for O11 and Oy in class Cy. In class Co, ts 3 is not
enabled because es 3 is false for the values of Volsz, Mg1 and pcez of Oq3. On the
other hand, t4 3 is enabled because ey4 3 is true. Variable |, defines which object
must perform the method t4 3 — t2 12.1. In this case, I=1, implying that t, 1 must fire
using Oq4. As the additional condition for the method call is satisfied, both
transitions t4 3 and t, 1 fire simultaneously as a single transition. The new state of
the system is illustrated in Fig. 2.21 and Fig. 2.22.

/" Ci-Vale Class variables: S
ta Xpo_1 = {a};
Closed =  Open Junction functions:
P11 P2_1 ji.1:q=10;
j2119=0;

Methods provided by the class:
5 t1_1 — Open valve
O21-V2 to 1 — Close valve

Fig. 2.19. Mixing system before a method call — class C,

If the execution of the method can be considered a single discrete event, then it is
modelled by a fusion of two transitions as illustrated before. However, a method
may be composed of a sequence of events or continuous activities. In this case, it is
modelled by two fusions of two pairs of transitions. The first fusion is the method
call (or request). The second fusion is the answer (or the confirmation that the
method has been completed). What happens between the two fusions is the method
implementation and is not available to the other objects. A method composed of
two fusions is performed in the same way that two independent method calls. An
example is presented in Fig. 2.23. The only distinction between a method of two
fusions and two independent methods is that, in the first case, the object that calls
the method (O1,) must wait for its answer without imposing any other condition
for the second transition fusion. It means that transition t, , is not in conflict with
other transition and has no enabling function. This restriction simplifies the
analysis procedures.
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Fd Cs - Controller N
1 Class variables: Equation systems: \
. Xeo_3 = {Kom, E1, Ez, 14, Iz, Is}; f4_s: dVols1/dO = Q2.4 H
' Xint_3 = {Om, VOls1, Volsa2}; fs_3: dVols2/dO = Qi3 1 H
H Xim 3 = {Voli1.2, 2.1, Qiz.1}; fg 3: dOW/dO = 1 !
! Xext_3 = {Me1, pce2}; Methods used by the class: !
! Place variables: t2_3 = ti_1— Open valve !
' XpA7.3 = V0|s1§ Xps_3 = VOlsz; Xps_3 = Owm; ts 3 —> t 3.1 — Open valve '
! Enabling functlons*: t4 3 > t2 21 — Close valve H
! s Vols; = Mei"poey; ts 3 — tp 5.1 — Close valve ]
' €5 31 Volsz = Meq*(1-pce2); ts 3 — t_i12 — Start mixing H
! €7_3: O = Kow; Cs_s! Volii2 = 0; t7 3 — ts_112 — Stop mixing and !
: Julnct'lon fun_ctlt?r?s. ' . start emptying '
H j2_3: Volsy = 0; ja_3: Volsz = 0; js_3: Om = 0; H
' 1
! Filling with S H
L} t t4 )
: P23 2.3 P43 3 Ps_3 :
1 Stand-by Mixing Emptying H
! te 3 Pe 3 73 pos tas !
' | '
: 1
H ts 3 H
) )
' L}
) )
1 1
) )
] ]
) )
' i )
; Or3-Ly i
! Kow=10; 6y=0; Vols1=10; Vols,=10; '
' Eq1=1; E2=2; |1=1; 12=1; 13=2; Mg4=40; '
\ pCe2=0.25; Voli12=20; qir.1=10; qi2.1=10; h
\ ,

Class variables: M
Xoo 1 = {q};
Junction functions:
j1.1:q=10;
j21:q=0;
Methods provided by the class:
t_s — Open valve
t, 1 — Close valve

Fig. 2.21. Mixing system after a method call — class C4

Another important point about method calls is the possibility of transmitting data.
Following the previous definitions, an object accesses data of another object by
sharing a variable in a continuous communication. However, when this shared
variable is only used in a junction function, there is no need to constantly read its
value. The value of the variable must be known only when the transition fires.

In order to avoid unnecessary continuous communication, it is possible to
transmit the value of a variable in a method call. When an object O,, calls a
method of Oy, it can send the value of one or more public variables. The number
of values to be transmitted is defined in the method signature.
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e Cs - Controller N
Class variables: Equation systems:
Xeo_3 = {Kom, E1, Ez, 14, Iz, Is}; f4_3: dVols1/d0 = Q2.4
Xint_3 = {Om, VoOls1, Volsz}; f5_3: dVols2/d0 = Qi34
Xim 3 = {Voli12, Q2.1, Qu3.1}; fg_3: dOwm/dO = 1
Xext_3 = {Me1, pce2}; Methods used by the class:
Place variables: t2_3 = ti_21— Open valve
Xpa_3 = VOls1; Xps_3 = Volsz; Xps_3 = Om; ts_s = t1_3.1 — Open valve
Enabling functions: ty 3 > tp o1 — Close valve
€43 Volst = Meq*peez; ts s > t, 151 — Close valve
€s_3: Volsz = Me1*(1-pee); ts 3 — t_n2 — Start mixing
€7_3: Om = Kow; €531 Voli2 = 0; t7 3 — ts_11.2 — Stop mixing and
Junction functions: b B start emptying

J2_3: Vols1 = 0; ja_3: Volsz = 0; je_3: Om = 0;

Filling with S;
P23 ts Pa_3 tis Ps_3

Mixing Emptying

Stand-by
63  pgs 73 pos tes

Filling with S

tis  psg 5.3

O13—L1
Kom=10; 04=0; Vols1=10; Vols,=10;
Es=1; E2=2; 11=1; 1;=1; 13=1; Mg1=40;
pCe2=0.25; Voli12=20; qi1.1=0; g241=10;

/ Class C \‘-
i Methods provided by the class: H
H t1 i — Example (call) !
H t, | — Example (answer) '
H )
i O !
! piis P2 i Pa 3 P4 t )
: )
‘\\ I'
. Class C, N |
| Class variables: Methods used by the class: !
H Xeoz = {l1}; t1 ; = t1 1~ Example (call) '
, to » = ts 11i— Example (answer) 1
- - ]

i :
! prz tiz Pz otz ps ti, !
)

o No= Nom SN
] .. !
1 - H
H O12 hH
- )

\\ h=1; J

Fig. 2.23. Example of method call with two transition fusions

Definition 11: A signature is defined for each transition t,_, of T, , of a class C, it
contains a sub-set of variables X;_ that are transmitted in the method call.
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Definition 12: A signature is defined for each transition ta ; of Ty ; of a class C;, it
contains a sub-set of variables X; that will receive the values transmitted in the
method call.

An example of method call with the data transmission is presented in Fig. 2.24.
When the method provided by t4 ; is called, the value of w is used to calculate the
new value of variables x and y.

Class C; Oni

Class variables:
Xinti = {X, ¥}

Methods provided by the class:
t_i {x, y} — Method 1

Class variables:
Xint_i = {X, Y}

Methods provided by the class:
t_i {x, y} — Method 1

i

Class variables: Class variables:
Xeo_z = {l}; Xop_z = {w}; i Xoo_z = {l1}; Xon_2 = {W};
Methods used by the class: ::Methods used by the class:
\ ti_z — ti_wi {w, w+2} — Method 1 1\ ti_z = ti_ii {w, w+2} — Method 1

~

________________________________________________

a) Before the firing of b) After the firing of
tz—tni tz >t ni

Fig. 2.24. Example of method call with the transmission of parameters

2.5.3 Communication with External Environment

Differential predicate transition nets, as well as ordinary Petri nets and predicate
transition nets, cannot represent the interaction among the modelled system and its
environment. Anything that interferes in the system behaviour should be modelled
as part of the Petri net — and therefore becomes part of the modelled system.

However, when designing control systems, the explicit definition of the
interface with external entities is a key issue. The external interface specifies the
input signals that the control system receives from external entities. They make
explicit how external entities interfere in the system behaviour. A typical example
of external entity is the user of a system. The behaviour of a user is not known and
therefore cannot be modelled.

In the OO-DPT net, the interface with external entities is specified in a way
similar to the interface with other objects. The value of a class variable may be set
by an external entity and methods may be called by external entities.

Definition 13: The interface of a class C; with the external environment is
composed of:

e A set of external variables Xex ;i (Definitions 5 and 6).
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e Each variable of Xey ; is associated with a variable of X; called E,, where n
is an integer number. E, specifies the input signal that sets the value of the
variable. The variable of Xex i is called Men, where M is a generic name.

e A set of transitions Tex i that models the methods provided by the class to
the external environment. Tex i < Tiand (Tex i N Tpi) U (Tex i Tu i) = .

When simulating the OO-DPT net, the evolution of the external variables and
the external methods calls must be defined. The simulation is performed
considering a specific behaviour of the external environment. However, the same
restriction is not imposed for the formal verification of behaviour properties. Some
properties do not depend on the behaviour of external entities. Typically, safety
properties cannot depend on the behaviour of the environment. The system has to
be safe in any case.

Example — mixing system: The objects of class Csz — Controller are the only ones
that interact with external entities (Fig. 2.25). As for the methods provided by a
class to another class, the transitions of Tex i are represented by white-filled bars.
External entities determine the size of a batch (Mg1) and the percentage of S; in the
mixture (pcez2). Furthermore, the class makes available an external method for
starting the production of a batch.

Cs - Controller

Interface variables: External methods provided by the class:
Xext_3 = {Me1, pCe2}; Text 3 = {t1_3};
t1_s — Start a new batch
Filling with Sy

p2_3 t2.3 P4_3 tas Ps_3

Stand-by
P13 tis

Mixing Emptying
63 pgs 73 pos 83

Filling with Sz

33 ts 3

P L L L L LT
P

Fig. 2.25. External interface of class C3 — Controller

2.5.4 Unfolding the OO-DPT net

The fusion of transitions presented in the previous section is dynamic. As a
consequence, the structure of the underlying global Petri net changes in time. The
method provided by a class C; can be called by more than one class. In this case,
the transition of C; will be fused with different transitions of different classes,
though not at the same time. An example is transition t; 1 of Cy — Valve of the
mixing system. This transition merges with both transitions t, 3 and t3 3 of C3 —
Controller.

A dynamic structure is a significant disadvantage because the Petri net analysis
techniques cannot be used to analyse the discrete behaviour of OO-DPT nets. This
problem can be avoided by building an unfolded version of the OO-DPT net that
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has a static structure. The unfolding of an OO-DPT net depends on the set of
objects that compose the system. If the number of objects in a class varies, the
structure of the unfolded OO-DPT will also change. As a consequence, the number
of objects in the system must not change in time. The underlying Petri net of each
class must be bounded, i.e., the number of tokens in each place must not exceed a
finite number in any reachable marking of the net.

The unfolding of the OO-DPT net is organized in 4 steps.

Step I: The sub-net of a class Ci must be duplicated the number of times equal to
the number of the object instances of Ci. The sub-marking of each object defines
that of each sub-net. The transitions tx ; and places py i of the sub-net of an object
Ow, are renamed ti_w.iand pk_w.i.

Example — mixing system: The only class in the mixing system that has more than
one object is class C1 — Valve. The sub-net of this class is duplicated and the sub-
marking of each object defines that of the corresponding sub-net (Fig. 2.26). All the
sub-nets have their place and transition names changed in order to include the
object name (Fig. 2.27 and Fig. 2.28).

_______________________________

O12—Tk;
Vol=20; Iy =1; 1, =2;
911.1=0; Q12.4=10;

\
1
1
1
1
1
]
1
1
1
1
1
1
1
'
1
1
1
1
1
1
1
1
]
1
1
]

Fig. 2.27. Step 1 — Unfolding procedure — O,
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"O1s-Ls
Kom=10; 64=0; Vols1=10; Vols,=10;
Eq1=1; E2=2; 11=1; 12=1; 13=2; Mg1=40;
pCe2=0.25; Voli12=20; qi1.1=0; gi21=10;

P13 t1s pass ti1s peis

Mixing Emptying
Filling with S t1s  pgis 713 Poas fais

Filling with S,
Ps_13 ts 13 Ps5_13 ts13 P7_13,

pi1s ft3

]
1
1
1
1
1
1
1
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1
| Stand-by
1
1
1
1
1
1
]
1
1
1
1
1
1

Fig. 2.28. Step 1 — Unfolding procedure — O 3

Step 2: In the net of an object O, ., a transition t, v, associated with a method call
(to_vz = ta_ni) is duplicated the number of times of the objects that provide the
method (number of objects of class Ci). Each transition is named ty_v.za wi, Where
tavz is the transition of an object O, that provides the method. Each transition
to_v.za_wi has an enabling function I, = w. |, is the variable of O, that carries the
identity of the object that must perform the method.

Example — mixing system: The only object in the mixing system that calls methods
is O13 — L. The net of this object is presented in Fig. 2.29.

O13—Ls
Kow=10; 6=0; Vols1=10; Vols,=10;
Ei=1; E2=2; 11=1; 1:=1; 15=2; Mg4=40;
pce2=0.25; Vol112=20; qi1.1=0; qi21=10;

13114 U 13214

Stand by

P13 tiqa

Mixing
Ps_1.3

Emptying
Py 1.3

t2 131 24 Y 13224 ts 13

3131114 t5 132 14

te 131 12 t7 1355 12

ts_1.312 2.1

14
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
]
1
1
1
1
1
1
1
1
1
1
1
1
1
1
! ts 131 21
1

N e e e e e e e e e e e e

Fig. 2.29. Step 2 — Unfolding procedure — O 3

Step 3: In the net of an object Oy, a transition t, w; associated with a method
provided by the object is duplicated the number of times of the transitions of other
objects that call the method. Each transition is named tp vz wi, Where tp v, is the
transition of an object Oy that calls the method. Methods that are not called by any
object in the system are eliminated from the object sub-net. The model resulting
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from this step has a static structure and the global net is obtained by fusing pair of
transitions that have the same name.

Example — mixing system: The objects that provide methods are O1.1 — Vi, O21— V2
and Oq2 — Tks. The net of these objects are presented in Fig. 2.30 and Fig. 2.31.
Transitions t 12 and t4 12 are eliminated because no object calls the methods
provided by them.

o

_____________________

O12—Tkg
Vol=20; Iy =1; 1, =2;
Gi1.1=0; 9124=10;

t6 13112

P22 lrtasi2

P3_12

)
1
1
1
1
1
1
1
1
1
1
1
1
1
]
1
1
1
1
1
1
1
'
1
1
1
]

_______________________________

Fig. 2.31. Step 3 — Unfolding procedure — O,

Step 4: The last step is a simplification of the model resulting from Step 3 for the
cases where the variables |, associated with the method calls are constant
parameters with known values. Supposing that the original transition t, v, of an
object Oy, was duplicated in Step 2, resulting in transitions ty vza wi and to_yvza_m.i.
If the variable I, associated with the method call is a constant parameter with initial
value l,=m, then transition t, vza wi iS never enabled, and therefore can be
eliminated from both O, and Oy,. The same happens if l,=w; in this case, ty v.za w.i
is eliminated.

Example — mixing system: The variables |4, | and I3 of O3 are constant parameters.
Their initial values are 11=1, I,=1 and I3=2. As a consequence, transitions t> 1311 2.1,
t4 1312 21, t3_1.31_1.1 and ts_1.32_ 1.1 may be eliminated because their enabling function
will never be true (€2 131_21, €4_1.32_2.1: 12=2; €3_1.3/1_1.1, €5_1322_1.1: [3=1). The final
models of O1.1, Oz.1 and O 3 are presented in Fig 2.32 and Fig. 2.33. The sub-net of
012 is not modified in Step 4.
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q=0; t2 13111 u g=10; t3_1.31_21

\ t 132,14 R t5 13221 s
. .

................................................................

E1=1; E2=2; 11=1; 12=1; 15=2; Me1=40;
pCe2=0.25; Voli12=20; qi1.1=0; gi21=10;
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Filling with S; {o_13/112 pg 15 1713512 Pg 13

Filling with S,
Ps 13 ts_131_21 Ps 13 5.132.21p7 45

piis fta

]
1
1
1
1
1
1
1
i
]
| Stand-by
1
1
1
1
1
1
1
1
1
1
1
1
1

Fig. 2.33. Step 4 — Unfolding procedure — O 3

An important advantage of the simplification introduced in Step 4 is that if all the
variables associated with method calls are constant parameters, then the dynamics
of the system from a discrete point of view can be modelled by an ordinary Petri
net (the underlying Petri net of the unfolded OO-DPT net). This feature is
particularly interesting for analysis, as will be seen in Chapter 4.

2.6 Final Remarks

This chapter introduced the OO-DPT net, which is the result of incorporating the
0O paradigm into the differential predicate transition net. The OO-DPT net has a
modular structure and provides flexibility to model complex discrete and
continuous dynamics. The OO-DPT net of a large-scale system is easily built by
decomposing it into classes and objects.

When the number of objects in the system is constant and known, the OO-DPT
net can be unfolded into a net with fixed structure. The resulting net is safe (1-
bounded, which means that a place has at most one token). In this case, it is
possible to use formal techniques of ordinary Petri net for the system analysis.
Although this is a desirable feature for an OO-DPT net, it is not mandatory. When
required, an OO-DPT net may incorporate the dynamic instantiation of objects
(creation of objects during simulation). The choice between having a constant
number of objects and using dynamic instantiation is up to the person that is
building the model. If dynamic instantiation is chosen, the OO-DPT net cannot be
unfolded and the only way of analysing the system behaviour is by simulation.
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When the OO-DPT net is used for modelling productive systems, all the signals
exchanged between the control system and the controlled object are specified,
defining the interface of the control software. Moreover, the organization of the
OO-DPT into classes and objects defines the architecture of the control software.
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