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Modelling of Hybrid Systems 

The purpose of this chapter is to discuss the modelling of hybrid systems and 
introduce a new modelling formalism called object-oriented differential predicate 
transition net, or simply OO-DPT net. This formalism is used in the modelling 
method presented in Chapter 3 and analysis method presented in Chapter 4. 
 

The modelling activity has a crucial role in the development of supervisory 
systems. The modelling formalism influences the way a problem is approached and 
how the solution is shaped. Once the modelling formalism has been chosen, it 
limits the available methods for analysis and fault detection. 

The new formalism presented in this chapter for the modelling of hybrid 
systems results from the application of the object-oriented (OO) paradigm to the 
differential predicate transition net. 

A differential predicate transition net defines an interface between differential 
equation systems and Petri nets. The former models the continuous dynamics of 
the hybrid system and the latter the discrete event-driven dynamics. The definition 
of differential predicate transition nets is based on predicate transition nets, which 
are high-level Petri nets. Both predicate transition nets and Petri nets are 
formalisms for discrete event dynamic system modelling. 

This chapter begins by justifying why differential predicate transition net was 
chosen as the starting point for the approach proposed here and why the OO 
paradigm is needed. Then, a brief introduction to Petri nets, predicate transition 
nets and differential predicate transition nets is presented.  

The idea of merging OO and Petri nets is not new. Many previous works have 
proposed the incorporation of OO paradigm into formalisms based on Petri nets. 
These works are briefly discussed. Their advantages and disadvantages are taken 
into consideration for the new hybrid system modelling formalism, the OO-DPT 
net (object-oriented differential predicate transition net). 
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2.1 The Choice of a Formalism 

Hybrid systems have been studied for more than a decade. In this time interval, a 
large number of hybrid system modelling formalisms have been proposed. A 
detailed review of all these formalisms is not presented. The references at the end 
of the book can be used for this purpose (Antsaklis and Koutsoukos, 2003), 
(Gueguen and Lefebvre, 2001), (Champagnat, 1998). 

Briefly, hybrid system modelling formalisms can be grouped into three classes. 
The first one comprises the extensions of continuous formalisms by the 
introduction of discrete variables, such as ordinary differential equations with 
Boolean variables. The second class comprehends discrete formalisms where new 
elements are introduced for representing the continuous dynamic, such as hybrid 
Petri net (Alla and David, 2004). It incorporates continuous places and transitions 
in order to model the dynamics of continuous flows. The third class of formalisms 
combine a continuous formalism, described by differential equation systems, with 
discrete ones, such as Petri nets or automata. Examples are hybrid automata and 
differential predicate transition nets. In both cases, an interface is defined for 
representing the interaction between continuous and discrete formalisms. 

Extensions of discrete formalisms tend to restrict the flexibility to model 
continuous dynamics. The opposite can also be stated about extensions of 
continuous formalisms. On the other hand, proposals that combine a continuous 
and a discrete formalism usually present a broader modelling power and flexibility, 
as compared to the first two classes (Gueguen and Lefebvre, 2001). Therefore, 
these are the only proposals considered for the purpose of this book. 

Among the approaches of this group, the formalisms derived from Petri nets are 
particularly considered because of their well-known advantages for representing 
process features such as concurrency, conflict, synchronisation and asynchronous 
behaviour.  

Basically, there are two proposals in the third class that adopt Petri nets to 
model the discrete dynamics, mixed Petri nets (Valentin-Roubinet, 2000) and 
differential predicate transition nets (Champagnat, 1998). However, neither 
formalism provides means for system decomposition or for a progressive 
modelling, making it difficult, if not impracticable, to model large complex 
systems. 

A possible solution to this problem is the introduction of OO paradigm into the 
one of the formalisms. The OO paradigm is presented and discussed in the 
beginning of Section 2.4. Basically, its main purpose is to structure the system 
decomposition and handle its complexity. Furthermore, the direct correspondence 
between the objects of the model and the real entities of the problem results in a 
great facility to modify, revise and maintain the models, improving model reuse.  

For this purpose, the differential predicate transition net is more suitable than 
the mixed Petri net, as it does not have global variables and the Petri net place 
capacity is not constrained to one token.  

In the next section, a brief introduction to Petri nets is presented. It is then 
followed by the description of predicate transition nets and differential predicate 
transition nets. 



 2 Modelling of Hybrid Systems 15 

2.2 Introduction to the Petri Net 

The Petri net (Murata, 1989) is a modelling formalism proposed by Carl Adam 
Petri in 1962 for modelling distributed systems. It was rapidly recognized as a 
promising formalism, due to its adequacy to represent a number of features of 
discrete event dynamic system behaviour. 

A Petri net is a directed, weighted, bipartite graph with two kinds of nodes: 
places1 and transitions. The arcs of a Petri net can either connect a place to a 
transition or a transition to a place. They can never connect two places or two 
transitions. The places of Petri net contain a positive integer number of tokens. The 
distribution of tokens over the Petri net places is called marking. When the 
behaviour of a system is modelled as a Petri net, the marking indicates the state of 
the system. 

An example of a Petri net is presented in Fig. 2.1. It models the behaviour of a 
manufacturing process. The system is composed of two buffers (Buffer 1 and 
Buffer 2) and one machine (Machine 1). Each place is associated with a local state 
of the system. The tokens in place p1 represent the parts in Buffer 1. Similarly, the 
tokens in p3 represent parts in Buffer 2. Places p2 and p4 model the state of 
Machine 1. If there is a token in p2, the machine is processing one part. However, 
when Machine 1 is idle, there is a token in p4. The marking illustrated in Fig. 2.1 
indicates that the system is currently with three parts in Buffer 1, one in Buffer 2 
and one being processed by Machine 1. 

p1

p2

t1

t2

p3

t3

t4

p4

4

Parts in Buffer 1

Parts in Buffer 2

Machine 1
processing one part Machine 1 idle

 
Fig. 2.1. Petri net of a manufacturing system  

Each transition of a Petri net is associated with an event of the system. In the case 
of the Petri net in Fig. 2.1, t1 represents the arrival of a new part in Buffer 1. 
Transition t2 is associated with the event of removing a part from Buffer 1 and 
beginning the process in Machine 1. Similarly, t3 models the moving from Machine 

                                                 
1 In this text, structural elements of Petri nets are printed in Arial type, such as place, 
transition, token and arc. 
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1 to Buffer 2. Transition t4 dispatches a batch of 4 parts from the manufacturing 
system. 

The system behaviour is simulated by the firing of transitions. A transition 
firing corresponds to the occurrence of an event. In the same way as an event 
affects the system state, when a transition fires, it modifies the Petri net marking.  

A transition fires only if it is enabled. The enabling of a transition depends on 
the number of tokens in its input places and the weight of the corresponding input 
arcs. An input arc is an arc that starts in a place (an input place) and finishes in a 
transition. Similarly, an output arc is an arc that starts in a transition and finishes in 
a place (an output place). The weight of the arc is the number written beside it. 
Usually, when the weight is omitted from the graphical view, it is unitary. In Fig. 
2.1, all the arcs weights are 1, with the exception of the arc from p3 to t4, which 
weighs 4. 

A transition is enabled if each input place has at least n tokens, where n is the 
weight of the corresponding input arc. If the transition is enabled, it may fire. When 
it fires, it removes tokens from the input places, and adds tokens to the output 
places. The number of tokens removed or added to each place is the weight of the 
arc that connects it to the transition. 

In the Petri net of Fig. 2.2 a) transition t1 and t3 are enabled. If transition t3 fires 
the new marking presented in Fig. 2.2 b) is reached and transition t1 and t2 are 
enabled. Other transitions may fire, simulating the system evolution. If the 
sequence t2, t3, t1, t2, t3 is fired, the marking of Fig. 2.2 c) is reached. As p4 has now 
4 tokens, transition t4 is enabled and may fire, leading to the marking of Fig. 2.2 d). 
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t3

t4

p4

4

Firing of t3
Firing of
t2, t1, t3, t2, t3 Firing of t4

a) b) c) d)  
Fig. 2.2. Petri net evolution 

The formal definition of Petri net is: 
 

Definition – A Petri net is a pair N=<S, M0>, where: 
• S is the Petri net structure defined by the 4-tuple <P, T, Pre, Pos>, where: 

- P = {p1, p2, p3, …, pm} is a finite set of places. 
- T = {t1, t2, t3, …, tn} is a finite set of transitions. 
- P ∩ T = Ø, P ∪ T ≠ Ø. 
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- Pre: P x T → N defines the input arcs of transitions (N is the set of 
natural numbers). 

- Pos: T x P → N defines the output arcs of transitions. 

• M0: P → N is the initial marking of the net. 

Pre and Pos can be represented as matrices where lines correspond to places 
and columns to transitions. The value of one element of the matrix is the weight of 
the arc that connects the corresponding place and transition. If it is zero, there is no 
arc. An example is presented in Fig. 2.3. 

p1

p2

t1

t2

p3

t3

t4

p4

4

0 1 0 0
0 0 1 0

Pr e
0 0 0 4
0 1 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1 0 0 0
0 1 0 0

Pos
0 0 1 0
0 0 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 
Fig. 2.3. Pre and Pos matrices of a Petri net 

The evolution of a Petri net can be computed by Petri net state equation: 

M = M0 – Pre.s + Pos.s 

M0 is the initial marking. s is a vector of dimension n, where n is the number of 
transitions in the Petri net. The value of s[i] is the number of firings of transition ti. 
M is the final marking. Fig. 2.4 applies the state equation to compute the final 
marking for the net of Fig 2.2 a) and the sequence of firings t3, t2, t1, t3, t2, t3, t4. 

0M M Pr e.s Pos.s

2 3 0 1 0 0 1 1 0 0 0 1
0 1 0 0 1 0 2 0 1 0 0 2

. .
0 1 0 0 0 4 3 0 0 1 0 3
1 0 0 1 0 0 1 0 0 1 0 1

= − +

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − +
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

Fig. 2.4. Petri net state equation 
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2.3 From the Petri Net to the Differential Predicate Transition 
Net 

Petri nets have been successfully applied to a number of real world problems in 
many domains. However, two main disadvantages have restricted their application 
for large, complex systems. 

The first one is that Petri net is not adequate to model data manipulation. Even 
for simple problems, the net structure becomes too complex, such as a net for 
comparing two integer numbers. The second disadvantage is that there is no 
hierarchy in Petri net and it is not possible to build the model of a large system as a 
composition of sub-models.  

Looking for a solution to these problems, many researchers proposed 
extensions of the Petri net formalisms. These extensions are known as high-level 
Petri nets. Among them are the coloured Petri net and the predicate transition net. 

In coloured Petri nets, the description power is enhanced by associating colours 
to tokens, places and transitions. Each token has a colour that makes it possible to 
distinguish it from tokens that have other colours. Each place has a set of colours 
that determines the colours of the tokens allowed in the place. Each transition has a 
set of colours that are different ways of firing the transition. Each element of the 
Pre and Pos matrices is no longer an integer number, but becomes a matrix itself. 
This matrix determines the colours of the tokens removed and added by the 
transition for each transition colour (way of firing the transition).  

In coloured Petri nets (Jensen, 1997), transitions can be considered rules of a 
propositional logic system, which is a logic system without variables. predicate 
transition net (Genrich, 1987) introduces the concept of variable. Each transition 
has additional enabling conditions specified as logical formulas with variables. 
Transitions are rules of a first order logic system, which is a logic system with 
variables. 

A simplified definition of the predicate transition net is presented here. 
 

Definition – A predicate transition net is a 3-tuple NPT = <S, A, M0>, where: 

• S is the Petri net structure defined by the 4-tuple <P, T, Pre, Pos>. 
• A is the annotation of the NPT, defined by the 4-tuple A=<X, Ax, Ac, Aa>, 

where: 

- X is a set of variables. 
- Ax associates a vector of X variables to each arc (as a simplification 

it is considered that the maximum arc weight is one). 
- Ac associates an enabling condition to each transition. The enabling 

condition uses the Ax variables of the transition input arcs. 
- Aa associates an action to each transition. The action defines the 

value of the Ax variables of the transition output arcs using the Ax 
variables of the transition input arcs.  

• M0 is the initial marking of the net. Each token is a vector of variables 
similar to the arc vectors. The initial marking defines the value of the token 
variables.  



 2 Modelling of Hybrid Systems 19 

In a predicate transition net, a transition is enabled (or not) for a specific set of 
tokens in its input places. If the arc variables are replaced by the values of the 
token variables and the enabling condition is true, then the transition is enabled. 
When enabled, a transition may fire. The transition action defines the values of the 
variables of the output arcs. These are the same values of the tokens generated in 
the output places by the transition firing.  

An example is presented in Fig. 2.5. The predicate transition net models the 
process of selecting a new piece to be stored in a box. The pieces available have 
different sizes, as well as the boxes. When the box arrives at the beginning of the 
process it already contains a piece. The new piece must be stored in the remaining 
space. The boxes available are represented by tokens in p2.The variable d is the 
size of the box, while r is the size of the piece that is already in the box at the 
beginning of the process. By firing transition t1, the box receives a new piece. The 
pieces available are modelled as tokens in p1, while the variable v is the size of the 
piece. The variable q is the space available in the box after receiving the new piece. 
The variables of the predicate transition net are, therefore, X = {r, v, d, q}, the arc 
vectors are Ax(p1,t1) = <v>, Ax(p2,t1) = <r, d>, Ax(t1,p3) = <q, d>. The condition of t1 
is Ac(t1): v+r<d and the action is Aa(t1): q=d-r-v. Considering the marking illustrated 
in Fig. 2.5, transition t1 is enabled for <v> = <2> and <r, d> = <3, 6>, but is not 
enabled for <v> = <5> and <r, d> = <3, 6> because the enabling condition is not 
true. 

Enabling condition:
Ac(t1): v+r<d

Action:
Aa(t1):q=d-v-r

p1

p3

t1

p2

< v > < r, d >

< q, d >

< 2 > < 5 > < 3, 6 >

p1

p3

t1

p2

< v > < r, d >

< q, d >

< 5 >

< 1, 6 >

Firing of t1

 

Fig. 2.5. Example of predicate transition net 

The use of variables in the predicate transition net motivates its application for 
hybrid system modelling, resulting in the definition of the differential predicate 
transition net. On a predicate transition net, the token variables can be modified 
only by the firing of a transition. On the other hand, token variables of a differential 
predicate transition net can be continuously modified. 

The basic idea of the differential predicate transition net is that each place 
models a different system configuration. It is associated with a set of differential 
equation systems that describes the continuous evolution of the token variables 
while the token is in that place. The continuous evolution is a function of the time 
(θ). 
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As for the predicate transition net, differential predicate transition net also has 
enabling conditions, called enabling functions. When a transition is enabled, it fires 
immediately. The firing of an enabled transition has priority over time evolution. 
Another element of the differential predicate transition net is the junction function. 
Junction functions are used to introduce discontinuities in the continuous variables 
and are similar to the actions of predicate transition net. 

The definition of differential predicate transition net is presented here. 
 

Definition – A differential predicate transition net is a 3-tuple NPT = <S, A, M0>, 
where: 

• S is the Petri net structure defined by the 4-tuple <P, T, Pre, Pos> and the 
maximum arc weight of 1. 

• A is the annotation of the NPT, defined by the 4-tuple A=<X, Ap, Ae, Aj, Af>, 
where: 

- X is a set of variables. 
- Ap associates a vector Xpi of the X variables with each place pi. 
- Ae associates an enabling function ei with each transition ti. The 

enabling function uses the variables of Ap of the transition input 
places. 

- Aj associates a junction function ji with each transition ti. 
- Af associates a differential equation system fi with each place pi. 

The variables of the differential equation system are the Ap 
variables of place pi.  

• M0 is the initial marking of the net. Each token is a vector of variables 
similar to the place vectors. The initial marking defines the value of the 
token variables at the time θ=0.  

 
An example of a differential predicate transition net is presented in Fig. 2.6. It 

models the process of filling bottles with water. The tokens in p1 model the bottles 
that are being filled. Each bottle must be filled with a specific amount of water, 
represented by the variable m. The variable v is the current weight of the bottle, 
which includes the glass weight (5) and the water weight (v-5). The rate of filling 
(1) is fixed and is the same for all bottles. The differential equation associated to p1 
models the variation of the bottle weight. The tokens in p2 model the available taps 
for closing the bottles. The firing of transition t1 represents the closing of a bottle 
that has been filled with the correct amount of water (m). The weight of the bottle 
after the firing of t1 includes also the weight of the tap (2). If there is no tap 
available when the bottle reaches the specified amount of water, then transition t2 
fires instead of t1. 



 2 Modelling of Hybrid Systems 21 

p1

p3

t1

p2

< 5, 10 > < 7, 20 >

Place variables:
Xp1: <v,m>
Xp3: <v>

Equation systems:
f1: dv/dt = 1

Enabling function:
e1: m = v-5
e2: v>m+5

Junction function:
j1: v = v+2

Time(θ)
evolution

a) θ = 0 b) θ = 10-

Transition
firing

c) θ = 10+

t2

p4

p1

p3

t1

p2

< 15, 10 > < 17, 20 >

t2

p4
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p3

t1

p2

< 17, 20 >

t2

p4

< 17 >

 
Fig. 2.6. Example of transition firing in a differential predicate transition net 

A desired feature for the differential predicate transition net is to use the value of a 
variable as an input parameter for the equation system of another place. This 
feature implies the introduction of additional elements because there can be more 
than one token in each place. An example would be to use the variable v of p1 as an 
input parameter for the equation system of p2, such as f2: dr/dt=v, where r is the 
variable associated to p2. In this case, the token in p2 must specify which token in 
p1 is being considered for solving f2. As a consequence, each token must have an 
identity.  

Another desirable feature for the differential predicate transition net is 
modularity. In order to model large systems, it must be possible to build a model 
by composing a set of sub-nets with well defined interfaces and interaction 
mechanisms.  

These problems lead to the introduction of the OO paradigm to the differential 
predicate transition net. However, there are many possible ways of combining OO 
and differential predicate transition net. In order to analyse the advantages and 
disadvantages of each option, the next section presents the main concepts of the 
OO paradigm and discusses previous works that merge Petri nets and OO. 

2.4 Petri Nets and the Object-oriented Paradigm 

The origins of the object-oriented paradigm dates back to the 60s’ when the 
concept of encapsulation was introduced, grouping data and operations into a 
single entity called object. Initially, the OO paradigm was used exclusively as a 
way of organizing and structuring computer programs. Lately in the 80s’, it begins 
to be used also for the conception and design of systems.  

The object-oriented paradigm states that a system is composed of a set of 
objects, which interact among themselves. An object is an entity that has attributes, 
behaviour, memory and identity (Booch, 1994), (Rumbaugh et al., 2004). The 
attributes represents the system data. The behaviour is composed of operations or 
methods. The memory, or state retention, means that the state of the object is not 
reinitialized each time it is accessed. The identity distinguishes an object from any 
other object of the system, even when they have the same attributes and behaviour. 
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Additionally to the concept of object, the pillars of the object-oriented 
paradigm include the concepts of encapsulation, classification and inheritance. 
Encapsulation states that an object is composed of a body (internal 
implementation) and an interface (represented by methods that allow other objects 
to act on its behaviour). The interface determines how the object may interact with 
other objects. The internal structure is hidden and guarantees that the external view 
of the object is independent from the internal implementation. The interface 
contains all the necessary information for starting a communication with the object. 
It is not necessary to know the details of internal implementation. 

The objects of a system are organized into classes. The classification groups 
objects that share the same attributes, operations, relationships and semantics into a 
single class. The objects of a class have the same behaviour and data structure. A 
class works as a model for the creation of new objects, which is called 
instantiation.  

Finally, inheritance provides the means for defining a class (frequently called 
child) starting from the definition of another class (frequently called parent). The 
child class automatically inherits all the methods and attributes of the parent class. 
The reuse provided by the inheritance is one of the main advantages of the object 
oriented paradigm. 

The combination of object-oriented paradigm and Petri nets is an extensively 
discussed issue in the literature. The works on this subject can be organized into 
three groups:  

• ‘Objects inside Petri nets’. The Petri net models a system from a global 
point of view. A token in the Petri net is an object. It is the instance of a 
class defined in an object-oriented programming language, such as C++, 
and has attributes and methods. When a transition fires, it executes a 
method of an object and changes the values of its attributes. It can also 
create new objects and destroy old ones. The HyNet (hybrid high-level 
Petri net) (Wieting, 1996) is an approach of this group that models hybrid 
systems. It is an extension of the THORN (timed hierarchical object-
related net) (Köster et al., 2001), a high level Petri net for discrete event 
dynamic systems.  

• ‘Petri net inside objects’. A system is composed of a collection of objects. 
A Petri net models the behaviour of each object. The Petri net marking 
shows the current state of the object. The methods provided by the object 
are associated with places. They compose the object interface and can be 
accessed by other objects. Following the OO paradigm, other places and 
transitions model the internal behaviour of the object and are encapsulated. 
If the object calls are statically defined, it is possible to build a global 
model of the system by merging all the object nets. The hybrid object net 
(Drath, 1998) is an example of this group for hybrid systems. An example 
for discrete event dynamic systems is the G-CPN (g-coloured Petri net) 
(Guerrero et al., 2001), which combines the coloured Petri net and the g-
net. 

• Mixed approaches. The third group combines the ideas of the first two. It 
creates a hierarchical structure inside the Petri net. The approaches in this 
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group aim at a complete integration of the object-oriented paradigm with 
Petri net, including features such as inheritance and polymorphism. From a 
global point of view, a system is modelled by the system net. A token in a 
system net is an object. The object behaviour is detailed in an object net. 
An example of object attribute is the marking of a place of the object net. 
The tokens in an object net can also be objects, and so on, creating a 
hierarchical organization. In this case, an object net is the system net from 
the point of view of its token (Valk, 1998). An approach that belongs to 
this group is the OPN (object Petri nets) (Lakos, 1995). 

The analysis of works in the three groups resulted in some important remarks 
that should be taken into account in the approach presented here concerning a new 
formalism merging OO and differential predicate transition nets. The first one 
regards the possibility of building a global model of the system. This is considered 
an important feature for simulation and analysis. When an inconsistency is detected 
during the model simulation, the visualisation of the global system behaviour helps 
the diagnosis. The second remark is about encapsulation. The definition of a 
formalism based on the OO paradigm should provide a clear definition of the 
object interfaces. Objects interact only through their interfaces, ensuring the 
integrity of the internal data and behaviour.  

Another important point is the definition of hierarchical structures. The use of 
sophisticated hierarchical mechanisms and rules, such as those used in the third 
group, may compromise the graphical meaning of the Petri net. They must be 
avoided unless their advantages compensate this strong drawback. 

2.5 The Object-oriented Differential Predicate Transition Net 

The remarks presented at the end of the previous section were the starting point for 
incorporating OO into differential predicate transition net. The resulting modelling 
tool is called object-oriented differential predicate transition net, or, shortly, OO-
DPT net. 

2.5.1 Modelling Classes and Objects 

The class and object concepts are the basis of the object-oriented paradigm. 
Therefore, they are the starting point for the definition of the OO-DPT net. A 
system is modelled by an OO-DPT net, which is composed of a set of OO-DPT 
sub-nets. Each OO-DPT sub-net is associated with a class and models the 
behaviour of the objects of that class. The marking of the OO-DPT sub-net 
indicates the current state of the objects of that class. 

 
Definition 1: An OO-DPT net is composed of a set of OO-DPT sub-nets: NOO-DPT = 
{C1, C2, …, Cn}. The subscript n is the number of the classes that composes the 
system model. 
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Example – Mixing System: The system of Fig. 2.7 is used to illustrate the OO-DPT 
net. Basically, the system mixes two substances S1 and S2 in tank Tk1. The on/off 
valves V1 and V2 regulate the amount of S1 and S2 that is discharged into the tank. 
The controller L1 executes the following sequence of steps: fill tank Tk1 with S1 
and S2, mix S1 and S2, and empty Tk1. The OO-DPT of this system is composed of 
three classes2: C1 – Valve, C2 – Tank and C3 – Controller. Each class is an OO-DPT 
sub-net. 

 
S2 S1 

V1 V2 

Tank Tk1 

Controller L1 
 

Fig. 2.7. Example of a mixing system 

The definition of an OO-DPT sub-net is based on the definition of the differential 
predicate transition net. The variables of a class Ci models the class attributes. 

 
Definition 2: Each OO-DPT sub-net is composed of a 3-tuple, Ci = <Ni, Ai, M0_i>, 
where: 

• Ni is a Petri net defined by the 4-tuple <Pi, Ti, Prei, Posi>, where the arcs 
have unitary weight: 

- Pi={p1_i, p2_i, p3_i, …, pm_i} is a finite set of places. 
- Ti={t1_i, t2_i, t3_i, …, tn_i} is a finite set of transitions. 
- Pi ∩ Ti = Ø, Pi ∪ Ti ≠ Ø. 
- Prei: Pi x Ti → (0,1). 
- Posi: Pi x Ti → (0,1). 

• Ai is the annotation of Ci, Ai=<Xi, Api, Aei, Aji, AFi>: 

- Xi is a set of variables (see Definition 5). 
- Api associates a sub-set Xpk_i of variables of Xi with each place pk_i 

(see Definition 4). 
- Aci associates an enabling function ek_i with each transition tk_i. The 

enabling function is a Boolean expression that has the variables of 
Xi as input parameters. 

- Aji associates a junction function jk_i with each transition tk_i. The 
junction function determines the values of the variables of Xi after 
the transition firing, Xi(θ+) = jk_i(Xi(θ-)) (θ+, θ- are time instants 
immediately before and after the firing of transition tk_i).  

                                                 
2 Class names are written in italic and object names are underlined. 
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- Afi associates with each place pk_i an equation system fk_i composed 
of a set of differential and/or algebraic equations. The variables of 
fk_i are the elements of Xpk_i, and the input parameters are the 
elements of Xi. 

• M0_i is the initial marking of the OO-DPT sub-net (see Definition 3). 

 
Example – mixing system: Fig. 2.8, Fig. 2.9 and Fig. 2.10 present the sub-nets of 
classes C1, C2 and C3 of the mixing system (Fig.2.7). Class C1 – Valve has two 
discrete states: open and closed. The variable q models the valve flow. Class C2 – 
Tank has three discrete states: stand-by, mixing and emptying. The variables Vol, 
qI1.1 and qI2.1 model the volume in tank and the incoming flows of S1 and S2. I1 and 
I2 are related to the class interface and are explained latter on. Class C3 – Controller 
models the sequence of activities for processing a batch. ME1 is the total amount of 
product in a batch. VolS1 and VolS2 are the volume of substances S1 and S2 in the 
tank. KθM is the time the batch must be mixed and θM is the time it has been mixed. 
pcE2 is the percentage of substance S1 in the mixture. Variables qI2.1, qI3.1 and VolI1.2 
are the incoming flows of S1 and S2 and the volume of product in the tank. E1, E2, 
I1, I2 and I3 are related to the C3 interface. 

 

 

p1_1 p2_1

t1_1

Closed Open
t2_1

Class variables:  
X1 = {q}; 

Place variables:  
Xp1_1 = ∅; Xp2_1 = ∅;

Enabling functions:  
e1_1, e2_1: ∅; 

Junction functions:  
j1_1: q = 10;  
j2_1: q = 0; 

Equation systems:  
f1_1, f2_1: ∅; 

C1 - Valve 

 
Fig. 2.8. Model of class C1 – Valve 

 

p1_2 p2_2

t1_2 

Stand-by Mixing 
t2_2 

t5_2 p3_2

Emptying 

t4_2

t3_2

Class variables:  
X2 = {Vol, I1, I2, qI1.1, qI2.1};  

Place variables:  
Xp1_2 = Vol; Xp2_2 = Vol; Xp3_2 = Vol;

Enabling functions:  
e1_2, e2_2, e4_2, e5_2: ∅;  
e3_2: Vol = 0; 

Junction functions:  
j1_2, j2_2, j3_2, j4_2, j5_2: ∅; 

Equation systems:  
f1_2, f2_2: dVol/dt= qI1.1+ qI2.1 
f3_2: dVol/dt= qI1.1+ qI2.1 - 20 

C2 - Tank 

 
Fig. 2.9. Model of class C2 – Tank 
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t2_3

Stand-by 
p1_3 t1_3 

t3_3

t4_3

t5_3

p2_3 p4_3

p3_3 p5_3

p6_3

p7_3

t6_3 t7_3p8_3 t8_3p9_3

Emptying Mixing 

Filling with S1 

Filling with S2 

Class variables: 
X3 = {θM, KθM, VolS1, VolS2, E1, E2, I1, I2, I3, 
 ME1, pcE2, VolI1.2, qI2.1, qI3.1}; 

Place variables: 
Xp1_3 = Xp2_3 = Xp3_3 = Xp6_3 = Xp7_3 = Xp9_3 =∅; 
Xp4_3 = VolS1; Xp5_3 = VolS2; Xp8_3 = θM; 

Enabling functions: 
e1_3, e2_3, e4_3, e5_3: ∅;  
e4_3: VolS1 = ME1*pcE2;  
e5_3: VolS2 = ME1*(1-pcE2);  
e7_3: θM = KθM;  
e8_3: VolI1.2 = 0; 

C3 - Controller 
Junction functions: 

j1_3, j4_3, j5_3, j7_3, j8_3: ∅ ;  
j2_3: VolS1 = 0;  
j3_3: VolS2 = 0;  
j6_3: θM = 0; 

Equation systems:  
f1_3, f2_3, f3_3, f6_3, f7_3, f9_3: ∅; 
f4_3: dVolS1/dθ = qI2.1 
f5_3: dVolS2/dθ = qI3.1 
f8_3: dθM/dθ = 1 

 
Fig. 2.10. Model of class C3 – Controller 

Once the classes and OO-DPT subnets have been specified, the next step is to 
define the set of objects of each class and their initial states. The objects of a class 
Ci are named O1.i, O2.i, …, On.i, where n is the number of objects of class Ci in the 
system. From the discrete point of view, the state of an object Ow.i is represented by 
one or more tokens in the sub-net of its class (mw.i). From the continuous point of 
view, it is modelled by an instantiation Xw.i of the variables Xi. 

The marking of the OO-DPT sub-net of a class is therefore the composition of 
the sub-markings that model the state of each object of that class.  

 
Definition 3: The marking of an OO-DPT sub-net is composed of a set of sub-
markings, Mi = {O1.i, O2.i, ..., On.i} that models the state of the objects of the class Ci: 

•  Ow.i is composed of a 2-tuple Ow.i = <Xw.i, mw.i>, where: 

- Xw.i is an instance of the set of variables Xi of the sub-net. 
- mw.i: P → (0,1) defines the tokens in the sub-net that models the 

state of the object from a discrete point of view3. 

 
It is important to highlight that Definition 3 imposes that a place contains at 

most one token of each object. An object cannot have two tokens in the same 
place. 

 

                                                 
3 The marking of a place can be addressed in one of the following ways: 
a) Specifying the number of tokens of all the places in the net, such as: m1.3 = 
{0,0,0,0,1,1,0,0,0}. 
b) Specifying the places that have one token: m1.3 = {p5_3,p6_3}. 
c) Specifying the number of token in a place: p5_3 = 1; p6_3 = 1. 
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Example – mixing system: The mixing system of Fig. 2.7 is composed of objects 
O1.1 – V1 and O2.1 – V2 of class C1 – Valve, O1.2 – Tk1 of class C2 – Tank and O1.3 – 
L1 of class C3 – Controller. A possible marking for these objects is presented in Fig. 
2.11. From the discrete point of view, the class markings are illustrated in Fig. 
2.12. 

 

O1.1 – V1 
 Instance of Variables: X1.1: q=0; 
 Petri net marking: m1.1 = {1,0}; 
 
O2.1 – V2 
 Instance of Variables: X2.1: q=10; 
 Petri net marking: m2.1 = {0,1}; 
 
O1.2 – Tk1 
 Instance of Variables: X1.2: Vol=20; I1 = 1; I2 = 2; qI1.1=0; qI2.1=10; 
 Petri net marking: m1.2 = {1,0,0}; 
 
O1.3 – L1 
 Instance of Variables: X1.3: KθM=10; θM=0; VolS1=10; VolS2=10; 
  E1=1; E2=2; I1=1; I2=1; I3=2; ME1=40; 
  pcE2=0.25; VolI1.2=20; qI2.1=0; qI3.1=10; 
 Petri net marking: m1.3 = {0,0,0,0,1,1,0,0,0};  

Fig. 2.11. Sub-markings of the objects of the mixing system 

 

p1_1 p2_1 
t1_1 

Closed Open 
t2_1 

C1 – Valve 

O1.1 – V1 

O2.1 – V2 

 

p1_2 p2_2

t1_2

Stand-by Mixing 
t2_2

t5_2 p3_2

Emptying 

t4_2

t3_2C2 – Tank 

O1.2 – Tk1 

 
 

t2_3

Stand-by 

p1_3 t1_3 

t3_3

t4_3

t5_3

p2_3 p4_3

p3_3 p5_3

p6_3

p7_3

t6_3 t7_3p8_3 t8_3p9_3

Emptying Mixing 

Filling with S1 

Filling with S2 

C3 – Controller 

O1.3 – L1 

 
Fig. 2.12. Sub-markings of the objects of the mixing system 

For each object Ow.i, only one place at a time defines the value of a variable of Xw.i. 
The initial sub-marking of Ow.i must be so that all the reachable sub-markings mw.i 
of Ow.i obeys the following restriction about the variables Xpk_i associated with each 
place pk of the class Ci. 
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Definition 4: If mw.i is a reachable sub-marking of an object Ow.i and {pa_i, pb_i} ⊂ 
mw.i, then Xpa_i ∩ Xpb_i = ∅. 

 
Example – mixing system: The possible sub-markings mw.i for the objects of the 
mixing system are illustrated in Fig. 2.13. All the sub-markings fulfil Definition 4. 
An example of inconsistent sub-marking for an object O2.2 of C2 would be m2.2 = {1, 
1, 0}. This marking does not comply with Definition 4 because Xp1_2 ∩ Xp2_1 = {Vol}. 
 

 

{1,0} {0,1}

t1_1 

t2_1 
{1,0,0} {0,1,0}

t1_2

t2_2

t5_2
{0,0,1}

t4_2

t3_2

Objects O1.1 and O2.1 
Objects O1.2

Object O1.3 

{1,0,0,0,0,0,0,0,0} 
t1_3 

{0,1,1,0,0,0,0,0,0}
t2_3

{0,0,1,1,0,0,0,0,0} 

t3_3

{0,1,0,0,1,0,0,0,0} 

t3_3 
{0,0,0,1,1,0,0,0,0}

t4_3 {0,0,1,0,0,1,0,0,0}

t2_3 

t5_3 {0,1,0,0,0,0,1,0,0} t2_3

{0,0,0,1,0,0,1,0,0} t4_3

t4_3 {0,0,0,0,1,1,0,0,0} t5_3

{0,0,0,0,0,1,1,0,0}

t3_3

t5_3

{0,0,0,0,0,0,0,1,0} 
t7_3 {0,0,0,0,0,0,0,0,1}

t6_3

t9_3

 
Fig. 2.13. Reachable markings for the objects of the mixing system 

The set of variables of a class is composed of constant parameters (Xco_i), internal 
variables (Xint_i), public variables (Xpb_i), image variables (Xim_i) and external 
variables (Xext_i). The value of constant parameters does not vary during the object 
life-time. However, two objects of the same class can have different values for the 
same constant parameter. External variables have their value defined by entities not 
modelled in the OO-DPT net. They are input signals of the model and are 
discussed in Section 2.5.3. The difference among internal, public and image 
variables are related to the communication between objects.  

Two objects can exchange data by sharing variables. Basically, the instances of 
internal variables (Xint_w.i) of an object Ow.i can only be read and written by the 
object itself. On the other hand, instances of public variables (Xpb_w.i) can be read 
but not written by other objects. If a second object Ov.z reads the value of a variable 
M of Xpb_w.i, then M will be part of Xim_v.z (image variables of Ov.z). It means that M 
must be specified in the set Xpb_i of class Ci as well as in the set Xim_z of class Cz.  
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However, the specification of Xpb_i and Xim_z is not sufficient for implementing 
variable sharing. It is necessary to specify the identity of the object that has the 
instantiation of the variable to be read. In other words, the object Ov.z must store 
the information that M must be read from Ow.i and not from any other object of 
class Ci. This information is recorded in a variable of Xz, such as In and when the 
variable M is listed in Xim_z, it is named as MIn.i. 

Definitions 5, 6 and 7 are the result of the previous discussion. 
 

Definition 5: The set of variables Xi of a class is composed of Xi = Xco_i ∪ Xint_i ∪ 
Xpb_i ∪ Xim_i ∪ Xext_i, where (Xext_i ∩ Xco_i) ∪ (Xext_i ∩ Xint_i) ∪ (Xext_i ∩ Xpb_i) ∪ (Xext_i 
∩ Xim_i) ∪ (Xco_i ∩ Xint_i) ∪ (Xco_i ∩ Xpb_i) ∪ (Xco_i ∩ Xim_i) ∪ (Xint_i ∩ Xpb_i) ∪ (Xint_i ∩ 
Xim_i) ∪ (Xpb_i ∩ Xim_i) = ∅. 

 
Definition 6: Each image variable of Xim_z of a class Cz is associated with a public 
variable of Xpb_i of a class Ci (i=z or i≠z):  

• Each variable of Xim_z is associated with a variable of Xz called In, where n 
is an integer number.  

• In specifies the object from which the value of the variable must be read. 
• The variable of Xim_z is called MIn.i, where M is the name of the variable in 

its original class (Ci). 
 

Definition 7: The set of variables Xpk_i of each place must be defined over Xint_i ∪ 
Xpb_i. 

 
Example – mixing system: Fig. 2.14 presents the set of variables Xco_i, Xint_i, Xpb_i, 
Xim_i and Xext_i for each class of the mixing system. Considering the variable values 
defined in Fig. 2.11 for O1.1 – V1, O2.1 – V2, O1.2 – Tk1 and O1.3 – L1, Fig. 2.15 
illustrates the sharing of variables among objects.  

C1 - Valve 
 Xco_1 = ∅; Xint_1 = ∅; Xpb_1 = {q}; Xim_1 = ∅; Xext_1 = ∅; 

C2 - Tank 
 Xco_2 = {I1, I2}; Xint_2 = ∅; Xpb_2 = {Vol}; Xim_2 = {qI1.1, qI2.1}; Xext_2 = ∅; 

C3 - Controller 
 Xco_3 = {KθM, E1, E2, I1, I2, I3}; Xint_3 = {θM, VolS1, VolS2}; Xpb_3 = ∅;  
 Xim_3 = {VolI1.2, qI2.1, qI3.1}; Xext_3 = {ME1, pcE2}; 

 
Fig. 2.14. Constant parameters, internal, public, image and external variables 

 
 

O2.1 - V1 
 

q 

O1.1 - V2 
 

q 

O1.2 - Tk1 
 

Vol 
qI1.1 
qI2.1 

O1.3 - L1 
 

VolI10.2 
qI2.1 
qI3.1 

 
Fig. 2.15. Variable sharing for the mixing system 
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2.5.2 Communication between Objects 

In the OO-DPT nets, two kinds of communication are possible among objects. The 
first one is the sharing of variables, which has already been presented. This kind of 
communication is considered ‘continuous’ because one object is continuously 
reading the value of a public variable of another object and updating the value of 
its own image variable. The second kind of communication is through method 
calls. It is considered a discrete interaction and it is modelled by the dynamic 
fusion of transitions.  

The discrete interface of an object is composed of two sets of transitions: the 
methods provided by the class and the methods used by the class. In case an Ov.z 
calls a method of another object Ow.i, the two objects communicate through the 
fusion of two transitions. One of them is a transition ta_i from the provided interface 
of class Ci. The other is a transition tb_z from the used interface of class Cz.  

 
Definition 8: The interface provided by a class Ci is composed of: 

• A set of public variables Xpb_i (Definition 5). 
• A set of transitions Tp_i, where Tp_i ⊂ Ti.  

 
Definition 9: The interface used by a class Ci is composed of: 

• A set of image variables Xim_i (Definitions 5 and 6). 
• A set of transitions Tu_i, where Tu_i ⊂ Ti and Tu_i ∩ Tp_i = ∅. 

 
As for the case of variable sharing, if an object Ov.z of class Cz calls the method 

ta_i of the class Ci, it must know which object of Ci will perform the method. A 
variable In of Cz stores this information and is associated with the method call. 
When both ta_i and tb_z are enabled, they fire as a single transition.  

 
Definition 10: Each transition of Tu_z of a class Cz is associated with a transition of 
Tp_i of a class Ci (i=z or i≠z).  

• Each transition of Tu_z is associated with a variable of Xz called In, where n 
is an integer number. 

• In specifies the object of class Ci that will perform the method requested. 

 
The graphical view of OO-DPT net differentiates transitions of Tu_i and Tp_i 

from internal transitions. Transitions of Tu_i (methods used by the class) are 
represented as black-filled bars, while transitions of Tp_i (methods provided by the 
class) are white-filled bars. 

 
Example – mixing system: Fig. 2.16, Fig. 2.17 and Fig. 2.18 present the interface of 
class C1, C2 and C3 of the mixing system (other elements such as equation systems, 
enabling functions and junction functions are omitted from the figures). The first 
step of the batch process is to fill the tank with the two substances S1 and S2. For 
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this purpose, class C3 must call the method t1_1 - Open valve provided by class C1 
for two different valves (identified by I2 and I3). These method calls are performed 
by t2_3 → t1_I2.1 and t3_3 → t1_I3.1. After filling the tank with the appropriated volume 
of S1 or S2, the two valves are closed by the method calls t4_3 → t2_I2.1 and t5_3 → 
t2_I3.1. The next step of the batch process is to turn on the mixer by calling method 
t6_3 → t1_I1.2. After the appropriate time, the mixer is turned off and the tank is 
emptied (method call t7_3 → t5_I1.2).  

 

p1_1 p2_1

t1_1

Closed Open

t2_1

Interface variables:  
 Xpb_1 = {q}; Xim_1 = ∅;  
Methods provided by the class: 
 Tp_1 = {t1_1; t2_1};  
 t1_1 – Open valve 
 t2_1 – Close valve 
Methods used by the class:  
 Tu_1 = ∅; 

C1 - Valve 

 
Fig. 2.16. Interface of class C1 – Valve 

 

p1_2 p2_2 
t1_2 

Stand-by Mixing 
t2_2 

t5_2 p3_2

Emptying

t4_2 

t3_2 
Interface variables:  
 Xpb_2 = {Vol}; Xim_2 = {qI1.1, qI2.1}; 
Methods provided by the class:  
 Tp_2 = {t1_2; t2_2; t4_2; t5_2}; 
 t1_2 – Start mixing 
 t2_2 – Stop mixing 
 t4_2 – Start emptying 
 t5_2 – Stop mixing and start emptying 
Methods used by the class:  
 Tu_2 = ∅;  

C2 - Tank 

 
Fig. 2.17. Interface of class C2 – Tank 

 

t2_3

p1_3 t1_3 

t3_3

t4_3

t5_3

p2_3 p4_3

p3_3 p5_3

p6_3

p7_3

t6_3 t7_3p8_3
t8_3 p9_3

Stand-by Emptying Mixing 

Filling with S1 

Filling with S2 

C3 - Controller 
Interface variables:  
 Xpb_3 = ∅;  
 Xim_3 = {VolI1.2, qI2.1, qI3.1}; 
Methods provided by the class:  
 Tp_3 = ∅; 

Methods used by the class:  
 Tu_3 = {t2_3; t3_3; t4_3; t5_3; t6_3}; 
 t2_3 → t1_I2.1– Open valve 
 t3_3 → t1_I3.1 – Open valve 
 t4_3 → t2_I2.1 – Close valve 
 t5_3 → t2_I3.1 – Close valve 
 t6_3 → t1_I1.2 – Start mixing 
 t7_3 → t5_I1.2 – Stop mixing and start emptying 

 
Fig. 2.18. Interface of class C3 – Controller 
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A method call tb_z → ta_In.i is performed when both transitions are enabled for a pair 
of objects. Considering two objects Ov.z and Ow.i, tb_z is enabled in Cz if for Ov.z , 
mv.z contains the input places of tb_z and the enabling function of tb_z is true for Xv.z. 
Similarly, ta_i is enabled in Ci if mw.i contains the input places of ta_i and the 
enabling function of ta_i is true for Xw.i. An additional condition for the firing is that 
the value of In in Xv.z must be In = w.  

 
Example – mixing system: The mixing system is in the state indicated in Fig. 2.19 
and Fig. 2.20, with the two valves opened (O1.1 – V1 and O2.1 – V2) and the 
controller (O1.3 – L1) indicating that the tank is being filled by S1 and S2. In this 
case, transition t2_1 is enabled for O1.1 and O2.1 in class C1. In class C2, t5_3 is not 
enabled because e5_3 is false for the values of VolS2, ME1 and pcE2 of O1.3. On the 
other hand, t4_3 is enabled because e4_3 is true. Variable I2 defines which object 
must perform the method t4_3 → t2_I2.1. In this case, I2=1, implying that t2_1 must fire 
using O1.1. As the additional condition for the method call is satisfied, both 
transitions t4_3 and t2_1 fire simultaneously as a single transition. The new state of 
the system is illustrated in Fig. 2.21 and Fig. 2.22. 

 

p1_1 p2_1

t1_1

t2_1

Closed Open

O1.1 – V1 
 q=10; 

C1 - Valve Class variables:  
Xpb_1 = {q}; 

Junction functions:  
j1_1: q = 10;  
j2_1: q = 0; 

Methods provided by the class:
 t1_1 – Open valve 
 t2_1 – Close valve O2.1 – V2

 q=10; 

 
Fig. 2.19. Mixing system before a method call – class C1 

If the execution of the method can be considered a single discrete event, then it is 
modelled by a fusion of two transitions as illustrated before. However, a method 
may be composed of a sequence of events or continuous activities. In this case, it is 
modelled by two fusions of two pairs of transitions. The first fusion is the method 
call (or request). The second fusion is the answer (or the confirmation that the 
method has been completed). What happens between the two fusions is the method 
implementation and is not available to the other objects. A method composed of 
two fusions is performed in the same way that two independent method calls. An 
example is presented in Fig. 2.23. The only distinction between a method of two 
fusions and two independent methods is that, in the first case, the object that calls 
the method (O1.z) must wait for its answer without imposing any other condition 
for the second transition fusion. It means that transition t2_z is not in conflict with 
other transition and has no enabling function. This restriction simplifies the 
analysis procedures.  
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t2_3

p1_3 t1_3 

t3_3

t4_3

t5_3

p2_3 p4_3

p3_3 p5_3

p6_3

p7_3

t6_3 t7_3p8_3
t8_3 p9_3

Stand-by Emptying Mixing 

Filling with S1 

Filling with S2 

C3 - Controller 
Class variables: 
 Xco_3 = {KθM, E1, E2, I1, I2, I3};  
 Xint_3 = {θM, VolS1, VolS2};  
 Xim_3 = {VolI1.2, qI2.1, qI3.1};  
 Xext_3 = {ME1, pcE2}; 
Place variables: 

Xp4_3 = VolS1; Xp5_3 = VolS2; Xp8_3 = θM; 
Enabling functions: 

e4_3: VolS1 = ME1*pcE2;  
e5_3: VolS2 = ME1*(1-pcE2);  
e7_3: θM = KθM; e8_3: VolI1.2 = 0; 

Junction functions:  
j2_3: VolS1 = 0; j3_3: VolS2 = 0; j6_3: θM = 0; 

Equation systems:  
f4_3: dVolS1/dθ = qI2.1 
f5_3: dVolS2/dθ = qI3.1 
f8_3: dθM/dθ = 1 

Methods used by the class:  
 t2_3 → t1_I2.1– Open valve 
 t3_3 → t1_I3.1 – Open valve 
 t4_3 → t2_I2.1 – Close valve 
 t5_3 → t2_I3.1 – Close valve 
 t6_3 → t1_I1.2 – Start mixing 
 t7_3 → t5_I1.2 – Stop mixing and  
  start emptying 

O1.3 – L1  
 KθM=10; θM=0; VolS1=10; VolS2=10; 
 E1=1; E2=2; I1=1; I2=1; I3=2; ME1=40; 
 pcE2=0.25; VolI1.2=20; qI1.1=10; qI2.1=10; 

 
Fig. 2.20. Mixing system before a method call – class C2 

 

p1_1 p2_1

t1_1

t2_1

Closed Open

O1.1 – V1 
 q=0; 

C1 - Valve Class variables:  
Xpb_1 = {q}; 

Junction functions:  
j1_1: q = 10;  
j2_1: q = 0; 

Methods provided by the class:
 t1_1 – Open valve 
 t2_1 – Close valve O2.1 – V2

 q=10; 
 

Fig. 2.21. Mixing system after a method call – class C1 

Another important point about method calls is the possibility of transmitting data. 
Following the previous definitions, an object accesses data of another object by 
sharing a variable in a continuous communication. However, when this shared 
variable is only used in a junction function, there is no need to constantly read its 
value. The value of the variable must be known only when the transition fires.  

In order to avoid unnecessary continuous communication, it is possible to 
transmit the value of a variable in a method call. When an object Ov.z calls a 
method of Ow.i, it can send the value of one or more public variables. The number 
of values to be transmitted is defined in the method signature.  
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t2_3

p1_3 t1_3 

t3_3

t4_3

t5_3

p2_3 p4_3

p3_3 p5_3

p6_3

p7_3

t6_3 t7_3p8_3
t8_3 p9_3

Stand-by Emptying Mixing 

Filling with S1 

Filling with S2 

C3 - Controller 
Class variables: 
 Xco_3 = {KθM, E1, E2, I1, I2, I3};  
 Xint_3 = {θM, VolS1, VolS2};  
 Xim_3 = {VolI1.2, qI2.1, qI3.1};  
 Xext_3 = {ME1, pcE2}; 
Place variables: 

Xp4_3 = VolS1; Xp5_3 = VolS2; Xp8_3 = θM; 
Enabling functions: 

e4_3: VolS1 = ME1*pcE2;  
e5_3: VolS2 = ME1*(1-pcE2);  
e7_3: θM = KθM; e8_3: VolI1.2 = 0; 

Junction functions:  
j2_3: VolS1 = 0; j3_3: VolS2 = 0; j6_3: θM = 0; 

Equation systems:  
f4_3: dVolS1/dθ = qI2.1 
f5_3: dVolS2/dθ = qI3.1 
f8_3: dθM/dθ = 1 

Methods used by the class:  
 t2_3 → t1_I2.1– Open valve 
 t3_3 → t1_I3.1 – Open valve 
 t4_3 → t2_I2.1 – Close valve 
 t5_3 → t2_I3.1 – Close valve 
 t6_3 → t1_I1.2 – Start mixing 
 t7_3 → t5_I1.2 – Stop mixing and  
  start emptying 

O1.3 – L1  
 KθM=10; θM=0; VolS1=10; VolS2=10; 
 E1=1; E2=2; I1=1; I2=1; I3=1; ME1=40; 
 pcE2=0.25; VolI1.2=20; qI1.1=0; qI2.1=10; 

 
Fig. 2.22. Mixing system after a method call – class C2 

Class Ci 
Methods provided by the class: 
 t1_i – Example (call) 
 t2_i – Example (answer) 

t1_ip1_i p2_i p3_it2_i p4_it3_i

t2_z p3_zt1_zp1_z p2_z

t4_i

O1.i 

t3_z

Class Cz 
Methods used by the class:  
 t1_z → t1_I1.i– Example (call) 
 t2_z → t4_I1.i – Example (answer) 

Class variables: 
 Xco_z = {I1};  

O1.z 
 I1=1; 

 
Fig. 2.23. Example of method call with two transition fusions 

Definition 11: A signature is defined for each transition tb_z of Tu_z of a class Cz, it 
contains a sub-set of variables Xpb_z that are transmitted in the method call.  
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Definition 12: A signature is defined for each transition ta_i of Tp_i of a class Ci, it 
contains a sub-set of variables Xi that will receive the values transmitted in the 
method call.  

 
An example of method call with the data transmission is presented in Fig. 2.24. 

When the method provided by t1_i is called, the value of w is used to calculate the 
new value of variables x and y. 

Class Ci 

Class variables: 
 Xint_i = {x, y};  
Methods provided by the class:
 t1_i {x, y} – Method 1 

t1_i p1_i p2_i t2_i

t1_z p1_z p2_z t3_z

Class Cz 

Class variables: 
 Xco_z = {I1}; Xpb_z = {w}; 
Methods used by the class:  
 t1_z → t1_I1.i {w, w+2} – Method 1

O1.i 
 x =3; y=5 

Class Ci 

Class variables: 
 Xint_i = {x, y};  
Methods provided by the class:
 t1_i {x, y} – Method 1 

t1_ip1_i p2_i t2_i

t1_zp1_z p2_z t3_z

Class Cz 

Class variables: 
 Xco_z = {I1}; Xpb_z = {w}; 
Methods used by the class:  
 t1_z → t1_I1.i {w, w+2} – Method 1

O1.i 
 x =2; y=4 

a) Before the firing of
t1_z → t1_I1.i 

b) After the firing of
t1_z → t1_I1.i 

O1.z 
 I1=1; w=2;

O1.z 
 I1=1; w=2;

 
Fig. 2.24. Example of method call with the transmission of parameters 

2.5.3 Communication with External Environment 

Differential predicate transition nets, as well as ordinary Petri nets and predicate 
transition nets, cannot represent the interaction among the modelled system and its 
environment. Anything that interferes in the system behaviour should be modelled 
as part of the Petri net – and therefore becomes part of the modelled system. 

However, when designing control systems, the explicit definition of the 
interface with external entities is a key issue. The external interface specifies the 
input signals that the control system receives from external entities. They make 
explicit how external entities interfere in the system behaviour. A typical example 
of external entity is the user of a system. The behaviour of a user is not known and 
therefore cannot be modelled. 

In the OO-DPT net, the interface with external entities is specified in a way 
similar to the interface with other objects. The value of a class variable may be set 
by an external entity and methods may be called by external entities. 
 
Definition 13: The interface of a class Ci with the external environment is 
composed of: 

• A set of external variables Xext_i (Definitions 5 and 6).  
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• Each variable of Xext_i is associated with a variable of Xi called En, where n 
is an integer number. En specifies the input signal that sets the value of the 
variable. The variable of Xext_i is called MEn, where M is a generic name. 

• A set of transitions Text_i that models the methods provided by the class to 
the external environment. Text_i ⊂ Ti and (Text_i ∩ Tp_i) ∪ (Text_i ∩ Tu_i) = ∅. 

 
When simulating the OO-DPT net, the evolution of the external variables and 

the external methods calls must be defined. The simulation is performed 
considering a specific behaviour of the external environment. However, the same 
restriction is not imposed for the formal verification of behaviour properties. Some 
properties do not depend on the behaviour of external entities. Typically, safety 
properties cannot depend on the behaviour of the environment. The system has to 
be safe in any case. 

 
Example – mixing system: The objects of class C3 – Controller are the only ones 
that interact with external entities (Fig. 2.25). As for the methods provided by a 
class to another class, the transitions of Text_i are represented by white-filled bars. 
External entities determine the size of a batch (ME1) and the percentage of S1 in the 
mixture (pcE2). Furthermore, the class makes available an external method for 
starting the production of a batch.  

 

t2_3

p1_3 t1_3 

t3_3

t4_3

t5_3

p2_3 p4_3

p3_3 p5_3

p6_3

p7_3

t6_3 t7_3p8_3 t8_3 p9_3
Stand-by Emptying Mixing 

Filling with S1 

Filling with S2 

C3 - Controller 
Interface variables:  
 Xext_3 = {ME1, pcE2}; 

External methods provided by the class: 
 Text_3 = {t1_3}; 
 t1_3 – Start a new batch  

 
Fig. 2.25. External interface of class C3 – Controller 

2.5.4 Unfolding the OO-DPT net 

The fusion of transitions presented in the previous section is dynamic. As a 
consequence, the structure of the underlying global Petri net changes in time. The 
method provided by a class Ci can be called by more than one class. In this case, 
the transition of Ci will be fused with different transitions of different classes, 
though not at the same time. An example is transition t1_1 of C1 – Valve of the 
mixing system. This transition merges with both transitions t2_3 and t3_3 of C3 – 
Controller.  

A dynamic structure is a significant disadvantage because the Petri net analysis 
techniques cannot be used to analyse the discrete behaviour of OO-DPT nets. This 
problem can be avoided by building an unfolded version of the OO-DPT net that 
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has a static structure. The unfolding of an OO-DPT net depends on the set of 
objects that compose the system. If the number of objects in a class varies, the 
structure of the unfolded OO-DPT will also change. As a consequence, the number 
of objects in the system must not change in time. The underlying Petri net of each 
class must be bounded, i.e., the number of tokens in each place must not exceed a 
finite number in any reachable marking of the net.  

The unfolding of the OO-DPT net is organized in 4 steps. 
 

Step 1: The sub-net of a class Ci must be duplicated the number of times equal to 
the number of the object instances of Ci. The sub-marking of each object defines 
that of each sub-net. The transitions tk_i and places pk_i of the sub-net of an object 
Ow.i are renamed tk_w.i and pk_w.i.  

 
Example – mixing system: The only class in the mixing system that has more than 
one object is class C1 – Valve. The sub-net of this class is duplicated and the sub-
marking of each object defines that of the corresponding sub-net (Fig. 2.26). All the 
sub-nets have their place and transition names changed in order to include the 
object name (Fig. 2.27 and Fig. 2.28). 

 

p1_1.1 p2_1.1

t1_1.1

t2_1.1

Closed Open

O1.1 – V1 
 q=0; 

p1_2.1 p2_2.1

t1_2.1

t2_2.1

Closed Open

O2.1 – V2
 q=10; 

 
Fig. 2.26. Step 1 – Unfolding procedure – O1.1 and O2.1 

 

p1_1.2 p2_1.2

t1_1.2

Stand-by Mixing

t2_1.2

t5_1.2 p3_1.2

Emptying

t4_1.2

t3_1.2

O1.2 – Tk1 
 Vol=20; I1 = 1; I2 = 2;  
 qI1.1=0; qI2.1=10; 

 
Fig. 2.27. Step 1 – Unfolding procedure – O1.2 
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t2_1.3

p1_1.3 t1_1.3 

t3_1.3

t4_1.3

t5_1.3

p2_1.3 p4_1.3

p3_1.3 p5_1.3

p6_1.3

p7_1.3

t6_1.3 t7_1.3p8_1.3
t8_1.3 p9_1.3

Stand-by Emptying Mixing 

Filling with S2 

O1.3 – L1  
 KθM=10; θM=0; VolS1=10; VolS2=10; 
 E1=1; E2=2; I1=1; I2=1; I3=2; ME1=40; 
 pcE2=0.25; VolI1.2=20; qI1.1=0; qI2.1=10; 

Filling with S1 

 
Fig. 2.28. Step 1 – Unfolding procedure – O1.3 

Step 2: In the net of an object Ov.z, a transition tb_v.z associated with a method call 
(tb_v.z → ta_In.i) is duplicated the number of times of the objects that provide the 
method (number of objects of class Ci). Each transition is named tb_v.z/a_w.i, where 
ta_v.z is the transition of an object Ov.z that provides the method. Each transition 
tb_v.z/a_w.i has an enabling function In = w. In is the variable of Ov.z that carries the 
identity of the object that must perform the method. 

 
Example – mixing system: The only object in the mixing system that calls methods 
is O1.3 – L1. The net of this object is presented in Fig. 2.29.  

 

t2_1.3/1_1.1

Stand by 
p1_1.3 t1_1.3 

p2_1.3 p4_1.3

p3_1.3 p5_1.3

p6_1.3

p7_1.3
t6_1.3/1_1.2

p8_1.3
t8_1.3 p9_1.3

Emptying Mixing

Filling with S1

Filling with S2

t2_1.3/1_2.1

t3_1.3/1_1.1

t3_1.3/1_2.1

t4_1.3/2_1.1

t4_1.3/2_2.1

t5_1.3/2_1.1

t5_1.3/2_2.1

t7_1.3/5_1.2

O1.3 – L1  
 KθM=10; θM=0; VolS1=10; VolS2=10; 
 E1=1; E2=2; I1=1; I2=1; I3=2; ME1=40; 
 pcE2=0.25; VolI1.2=20; qI1.1=0; qI2.1=10; 

 
Fig. 2.29. Step 2 – Unfolding procedure – O1.3 

Step 3: In the net of an object Ow.i, a transition ta_w.i associated with a method 
provided by the object is duplicated the number of times of the transitions of other 
objects that call the method. Each transition is named tb_v.z/a_w.i, where tb_v.z is the 
transition of an object Ov.z that calls the method. Methods that are not called by any 
object in the system are eliminated from the object sub-net. The model resulting 
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from this step has a static structure and the global net is obtained by fusing pair of 
transitions that have the same name.  

 
Example – mixing system: The objects that provide methods are O1.1 – V1, O2.1 – V2 
and O1.2 – Tk1. The net of these objects are presented in Fig. 2.30 and Fig. 2.31. 
Transitions t2_1.2 and t4_1.2 are eliminated because no object calls the methods 
provided by them. 

 
 

p1_2.1 p2_2.1

t3_1.3/1_2.1

t4_1.3/2_2.1

t2_1.3/1_2.1

t5_1.3/2_2.1

p1_1.1 p2_1.1

t3_1.3/1_1.1

t4_1.3/2_1.1

t2_1.3/1_1.1

t5_1.3/2_1.1

Closed Open

O1.1 – V1 
 q=0; 

Closed
Open

O2.1 – V1
 q=10; 

 
Fig. 2.30. Step 3 – Unfolding procedure – O1.1 and O2.1 

 

p1_1.2 p2_1.2

t6_1.3/1_1.2

Stand-by Mixing

t2_1.2

t7_1.3/5_1.2 p3_1.2

Emptying

t4_1.2

t3_1.2

O1.2 – Tk1 
 Vol=20; I1 = 1; I2 = 2;  
 qI1.1=0; qI2.1=10; 

 
Fig. 2.31. Step 3 – Unfolding procedure – O1.2 

Step 4: The last step is a simplification of the model resulting from Step 3 for the 
cases where the variables In associated with the method calls are constant 
parameters with known values. Supposing that the original transition tb_v.z of an 
object Ov.z was duplicated in Step 2, resulting in transitions tb_v.z/a_w.i and tb_v.z/a_m.i. 
If the variable In associated with the method call is a constant parameter with initial 
value In=m, then transition tb_v.z/a_w.i is never enabled, and therefore can be 
eliminated from both Ov.z and Ow.i. The same happens if In=w; in this case, tb_v.z/a_w.i 
is eliminated.  

 
Example – mixing system: The variables I1, I2 and I3 of O1.3 are constant parameters. 
Their initial values are I1=1, I2=1 and I3=2. As a consequence, transitions t2_1.3/1_2.1, 
t4_1.3/2_2.1, t3_1.3/1_1.1 and t5_1.3/2_1.1 may be eliminated because their enabling function 
will never be true (e2_1.3/1_2.1, e4_1.3/2_2.1: I2=2; e3_1.3/1_1.1, e5_1.3/2_1.1: I3=1). The final 
models of O1.1, O2.1 and O1.3 are presented in Fig 2.32 and Fig. 2.33. The sub-net of 
O1.2 is not modified in Step 4.  
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Fig. 2.32. Step 4 – Unfolding procedure – O1.1 and O2.1 
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 pcE2=0.25; VolI1.2=20; qI1.1=0; qI2.1=10; 

Filling with S1 

 
Fig. 2.33. Step 4 – Unfolding procedure – O1.3 

An important advantage of the simplification introduced in Step 4 is that if all the 
variables associated with method calls are constant parameters, then the dynamics 
of the system from a discrete point of view can be modelled by an ordinary Petri 
net (the underlying Petri net of the unfolded OO-DPT net). This feature is 
particularly interesting for analysis, as will be seen in Chapter 4.  

2.6 Final Remarks 

This chapter introduced the OO-DPT net, which is the result of incorporating the 
OO paradigm into the differential predicate transition net. The OO-DPT net has a 
modular structure and provides flexibility to model complex discrete and 
continuous dynamics. The OO-DPT net of a large-scale system is easily built by 
decomposing it into classes and objects.  

When the number of objects in the system is constant and known, the OO-DPT 
net can be unfolded into a net with fixed structure. The resulting net is safe (1-
bounded, which means that a place has at most one token). In this case, it is 
possible to use formal techniques of ordinary Petri net for the system analysis. 
Although this is a desirable feature for an OO-DPT net, it is not mandatory. When 
required, an OO-DPT net may incorporate the dynamic instantiation of objects 
(creation of objects during simulation). The choice between having a constant 
number of objects and using dynamic instantiation is up to the person that is 
building the model. If dynamic instantiation is chosen, the OO-DPT net cannot be 
unfolded and the only way of analysing the system behaviour is by simulation. 
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When the OO-DPT net is used for modelling productive systems, all the signals 
exchanged between the control system and the controlled object are specified, 
defining the interface of the control software. Moreover, the organization of the 
OO-DPT into classes and objects defines the architecture of the control software.  
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