
2

Modelling of Hybrid Systems

The purpose of this chapter is to discuss the modelling of hybrid systems and
introduce a new modelling formalism called object-oriented differential predicate
transition net, or simply OO-DPT net. This formalism is used in the modelling
method presented in Chapter 3 and analysis method presented in Chapter 4.

The modelling activity has a crucial role in the development of supervisory
systems. The modelling formalism influences the way a problem is approached and
how the solution is shaped. Once the modelling formalism has been chosen, it
limits the available methods for analysis and fault detection.

The new formalism presented in this chapter for the modelling of hybrid
systems results from the application of the object-oriented (OO) paradigm to the
differential predicate transition net.

A differential predicate transition net defines an interface between differential
equation systems and Petri nets. The former models the continuous dynamics of
the hybrid system and the latter the discrete event-driven dynamics. The definition
of differential predicate transition nets is based on predicate transition nets, which
are high-level Petri nets. Both predicate transition nets and Petri nets are
formalisms for discrete event dynamic system modelling.

This chapter begins by justifying why differential predicate transition net was
chosen as the starting point for the approach proposed here and why the OO
paradigm is needed. Then, a brief introduction to Petri nets, predicate transition
nets and differential predicate transition nets is presented.

The idea of merging OO and Petri nets is not new. Many previous works have
proposed the incorporation of OO paradigm into formalisms based on Petri nets.
These works are briefly discussed. Their advantages and disadvantages are taken
into consideration for the new hybrid system modelling formalism, the OO-DPT
net (object-oriented differential predicate transition net).

14 Modelling and Analysis of Hybrid Supervisory Systems

2.1 The Choice of a Formalism

Hybrid systems have been studied for more than a decade. In this time interval, a
large number of hybrid system modelling formalisms have been proposed. A
detailed review of all these formalisms is not presented. The references at the end
of the book can be used for this purpose (Antsaklis and Koutsoukos, 2003),
(Gueguen and Lefebvre, 2001), (Champagnat, 1998).

Briefly, hybrid system modelling formalisms can be grouped into three classes.
The first one comprises the extensions of continuous formalisms by the
introduction of discrete variables, such as ordinary differential equations with
Boolean variables. The second class comprehends discrete formalisms where new
elements are introduced for representing the continuous dynamic, such as hybrid
Petri net (Alla and David, 2004). It incorporates continuous places and transitions
in order to model the dynamics of continuous flows. The third class of formalisms
combine a continuous formalism, described by differential equation systems, with
discrete ones, such as Petri nets or automata. Examples are hybrid automata and
differential predicate transition nets. In both cases, an interface is defined for
representing the interaction between continuous and discrete formalisms.

Extensions of discrete formalisms tend to restrict the flexibility to model
continuous dynamics. The opposite can also be stated about extensions of
continuous formalisms. On the other hand, proposals that combine a continuous
and a discrete formalism usually present a broader modelling power and flexibility,
as compared to the first two classes (Gueguen and Lefebvre, 2001). Therefore,
these are the only proposals considered for the purpose of this book.

Among the approaches of this group, the formalisms derived from Petri nets are
particularly considered because of their well-known advantages for representing
process features such as concurrency, conflict, synchronisation and asynchronous
behaviour.

Basically, there are two proposals in the third class that adopt Petri nets to
model the discrete dynamics, mixed Petri nets (Valentin-Roubinet, 2000) and
differential predicate transition nets (Champagnat, 1998). However, neither
formalism provides means for system decomposition or for a progressive
modelling, making it difficult, if not impracticable, to model large complex
systems.

A possible solution to this problem is the introduction of OO paradigm into the
one of the formalisms. The OO paradigm is presented and discussed in the
beginning of Section 2.4. Basically, its main purpose is to structure the system
decomposition and handle its complexity. Furthermore, the direct correspondence
between the objects of the model and the real entities of the problem results in a
great facility to modify, revise and maintain the models, improving model reuse.

For this purpose, the differential predicate transition net is more suitable than
the mixed Petri net, as it does not have global variables and the Petri net place
capacity is not constrained to one token.

In the next section, a brief introduction to Petri nets is presented. It is then
followed by the description of predicate transition nets and differential predicate
transition nets.

 2 Modelling of Hybrid Systems 15

2.2 Introduction to the Petri Net

The Petri net (Murata, 1989) is a modelling formalism proposed by Carl Adam
Petri in 1962 for modelling distributed systems. It was rapidly recognized as a
promising formalism, due to its adequacy to represent a number of features of
discrete event dynamic system behaviour.

A Petri net is a directed, weighted, bipartite graph with two kinds of nodes:
places1 and transitions. The arcs of a Petri net can either connect a place to a
transition or a transition to a place. They can never connect two places or two
transitions. The places of Petri net contain a positive integer number of tokens. The
distribution of tokens over the Petri net places is called marking. When the
behaviour of a system is modelled as a Petri net, the marking indicates the state of
the system.

An example of a Petri net is presented in Fig. 2.1. It models the behaviour of a
manufacturing process. The system is composed of two buffers (Buffer 1 and
Buffer 2) and one machine (Machine 1). Each place is associated with a local state
of the system. The tokens in place p1 represent the parts in Buffer 1. Similarly, the
tokens in p3 represent parts in Buffer 2. Places p2 and p4 model the state of
Machine 1. If there is a token in p2, the machine is processing one part. However,
when Machine 1 is idle, there is a token in p4. The marking illustrated in Fig. 2.1
indicates that the system is currently with three parts in Buffer 1, one in Buffer 2
and one being processed by Machine 1.

p1

p2

t1

t2

p3

t3

t4

p4

4

Parts in Buffer 1

Parts in Buffer 2

Machine 1
processing one part Machine 1 idle

Fig. 2.1. Petri net of a manufacturing system

Each transition of a Petri net is associated with an event of the system. In the case
of the Petri net in Fig. 2.1, t1 represents the arrival of a new part in Buffer 1.
Transition t2 is associated with the event of removing a part from Buffer 1 and
beginning the process in Machine 1. Similarly, t3 models the moving from Machine

1 In this text, structural elements of Petri nets are printed in Arial type, such as place,
transition, token and arc.

16 Modelling and Analysis of Hybrid Supervisory Systems

1 to Buffer 2. Transition t4 dispatches a batch of 4 parts from the manufacturing
system.

The system behaviour is simulated by the firing of transitions. A transition
firing corresponds to the occurrence of an event. In the same way as an event
affects the system state, when a transition fires, it modifies the Petri net marking.

A transition fires only if it is enabled. The enabling of a transition depends on
the number of tokens in its input places and the weight of the corresponding input
arcs. An input arc is an arc that starts in a place (an input place) and finishes in a
transition. Similarly, an output arc is an arc that starts in a transition and finishes in
a place (an output place). The weight of the arc is the number written beside it.
Usually, when the weight is omitted from the graphical view, it is unitary. In Fig.
2.1, all the arcs weights are 1, with the exception of the arc from p3 to t4, which
weighs 4.

A transition is enabled if each input place has at least n tokens, where n is the
weight of the corresponding input arc. If the transition is enabled, it may fire. When
it fires, it removes tokens from the input places, and adds tokens to the output
places. The number of tokens removed or added to each place is the weight of the
arc that connects it to the transition.

In the Petri net of Fig. 2.2 a) transition t1 and t3 are enabled. If transition t3 fires
the new marking presented in Fig. 2.2 b) is reached and transition t1 and t2 are
enabled. Other transitions may fire, simulating the system evolution. If the
sequence t2, t3, t1, t2, t3 is fired, the marking of Fig. 2.2 c) is reached. As p4 has now
4 tokens, transition t4 is enabled and may fire, leading to the marking of Fig. 2.2 d).

p1

p2

t1

t2

p3

t3

t4

p4

4

p1

p2

t1

t2

p3

t3

t4

p4

4

p1

p2

t1

t2

p3

t3

t4

p4

4

p1

p2

t1

t2

p3

t3

t4

p4

4

Firing of t3
Firing of
t2, t1, t3, t2, t3 Firing of t4

a) b) c) d)
Fig. 2.2. Petri net evolution

The formal definition of Petri net is:

Definition – A Petri net is a pair N=<S, M0>, where:
• S is the Petri net structure defined by the 4-tuple <P, T, Pre, Pos>, where:

- P = {p1, p2, p3, …, pm} is a finite set of places.
- T = {t1, t2, t3, …, tn} is a finite set of transitions.
- P ∩ T = Ø, P ∪ T ≠ Ø.

 2 Modelling of Hybrid Systems 17

- Pre: P x T → N defines the input arcs of transitions (N is the set of
natural numbers).

- Pos: T x P → N defines the output arcs of transitions.

• M0: P → N is the initial marking of the net.

Pre and Pos can be represented as matrices where lines correspond to places
and columns to transitions. The value of one element of the matrix is the weight of
the arc that connects the corresponding place and transition. If it is zero, there is no
arc. An example is presented in Fig. 2.3.

p1

p2

t1

t2

p3

t3

t4

p4

4

0 1 0 0
0 0 1 0

Pr e
0 0 0 4
0 1 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1 0 0 0
0 1 0 0

Pos
0 0 1 0
0 0 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Fig. 2.3. Pre and Pos matrices of a Petri net

The evolution of a Petri net can be computed by Petri net state equation:

M = M0 – Pre.s + Pos.s

M0 is the initial marking. s is a vector of dimension n, where n is the number of
transitions in the Petri net. The value of s[i] is the number of firings of transition ti.
M is the final marking. Fig. 2.4 applies the state equation to compute the final
marking for the net of Fig 2.2 a) and the sequence of firings t3, t2, t1, t3, t2, t3, t4.

0M M Pr e.s Pos.s

2 3 0 1 0 0 1 1 0 0 0 1
0 1 0 0 1 0 2 0 1 0 0 2

. .
0 1 0 0 0 4 3 0 0 1 0 3
1 0 0 1 0 0 1 0 0 1 0 1

= − +

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − +
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Fig. 2.4. Petri net state equation

18 Modelling and Analysis of Hybrid Supervisory Systems

2.3 From the Petri Net to the Differential Predicate Transition
Net

Petri nets have been successfully applied to a number of real world problems in
many domains. However, two main disadvantages have restricted their application
for large, complex systems.

The first one is that Petri net is not adequate to model data manipulation. Even
for simple problems, the net structure becomes too complex, such as a net for
comparing two integer numbers. The second disadvantage is that there is no
hierarchy in Petri net and it is not possible to build the model of a large system as a
composition of sub-models.

Looking for a solution to these problems, many researchers proposed
extensions of the Petri net formalisms. These extensions are known as high-level
Petri nets. Among them are the coloured Petri net and the predicate transition net.

In coloured Petri nets, the description power is enhanced by associating colours
to tokens, places and transitions. Each token has a colour that makes it possible to
distinguish it from tokens that have other colours. Each place has a set of colours
that determines the colours of the tokens allowed in the place. Each transition has a
set of colours that are different ways of firing the transition. Each element of the
Pre and Pos matrices is no longer an integer number, but becomes a matrix itself.
This matrix determines the colours of the tokens removed and added by the
transition for each transition colour (way of firing the transition).

In coloured Petri nets (Jensen, 1997), transitions can be considered rules of a
propositional logic system, which is a logic system without variables. predicate
transition net (Genrich, 1987) introduces the concept of variable. Each transition
has additional enabling conditions specified as logical formulas with variables.
Transitions are rules of a first order logic system, which is a logic system with
variables.

A simplified definition of the predicate transition net is presented here.

Definition – A predicate transition net is a 3-tuple NPT = <S, A, M0>, where:

• S is the Petri net structure defined by the 4-tuple <P, T, Pre, Pos>.
• A is the annotation of the NPT, defined by the 4-tuple A=<X, Ax, Ac, Aa>,

where:

- X is a set of variables.
- Ax associates a vector of X variables to each arc (as a simplification

it is considered that the maximum arc weight is one).
- Ac associates an enabling condition to each transition. The enabling

condition uses the Ax variables of the transition input arcs.
- Aa associates an action to each transition. The action defines the

value of the Ax variables of the transition output arcs using the Ax
variables of the transition input arcs.

• M0 is the initial marking of the net. Each token is a vector of variables
similar to the arc vectors. The initial marking defines the value of the token
variables.

 2 Modelling of Hybrid Systems 19

In a predicate transition net, a transition is enabled (or not) for a specific set of
tokens in its input places. If the arc variables are replaced by the values of the
token variables and the enabling condition is true, then the transition is enabled.
When enabled, a transition may fire. The transition action defines the values of the
variables of the output arcs. These are the same values of the tokens generated in
the output places by the transition firing.

An example is presented in Fig. 2.5. The predicate transition net models the
process of selecting a new piece to be stored in a box. The pieces available have
different sizes, as well as the boxes. When the box arrives at the beginning of the
process it already contains a piece. The new piece must be stored in the remaining
space. The boxes available are represented by tokens in p2.The variable d is the
size of the box, while r is the size of the piece that is already in the box at the
beginning of the process. By firing transition t1, the box receives a new piece. The
pieces available are modelled as tokens in p1, while the variable v is the size of the
piece. The variable q is the space available in the box after receiving the new piece.
The variables of the predicate transition net are, therefore, X = {r, v, d, q}, the arc
vectors are Ax(p1,t1) = <v>, Ax(p2,t1) = <r, d>, Ax(t1,p3) = <q, d>. The condition of t1
is Ac(t1): v+r<d and the action is Aa(t1): q=d-r-v. Considering the marking illustrated
in Fig. 2.5, transition t1 is enabled for <v> = <2> and <r, d> = <3, 6>, but is not
enabled for <v> = <5> and <r, d> = <3, 6> because the enabling condition is not
true.

Enabling condition:
Ac(t1): v+r<d

Action:
Aa(t1):q=d-v-r

p1

p3

t1

p2

< v > < r, d >

< q, d >

< 2 > < 5 > < 3, 6 >

p1

p3

t1

p2

< v > < r, d >

< q, d >

< 5 >

< 1, 6 >

Firing of t1

Fig. 2.5. Example of predicate transition net

The use of variables in the predicate transition net motivates its application for
hybrid system modelling, resulting in the definition of the differential predicate
transition net. On a predicate transition net, the token variables can be modified
only by the firing of a transition. On the other hand, token variables of a differential
predicate transition net can be continuously modified.

The basic idea of the differential predicate transition net is that each place
models a different system configuration. It is associated with a set of differential
equation systems that describes the continuous evolution of the token variables
while the token is in that place. The continuous evolution is a function of the time
(θ).

20 Modelling and Analysis of Hybrid Supervisory Systems

As for the predicate transition net, differential predicate transition net also has
enabling conditions, called enabling functions. When a transition is enabled, it fires
immediately. The firing of an enabled transition has priority over time evolution.
Another element of the differential predicate transition net is the junction function.
Junction functions are used to introduce discontinuities in the continuous variables
and are similar to the actions of predicate transition net.

The definition of differential predicate transition net is presented here.

Definition – A differential predicate transition net is a 3-tuple NPT = <S, A, M0>,
where:

• S is the Petri net structure defined by the 4-tuple <P, T, Pre, Pos> and the
maximum arc weight of 1.

• A is the annotation of the NPT, defined by the 4-tuple A=<X, Ap, Ae, Aj, Af>,
where:

- X is a set of variables.
- Ap associates a vector Xpi of the X variables with each place pi.
- Ae associates an enabling function ei with each transition ti. The

enabling function uses the variables of Ap of the transition input
places.

- Aj associates a junction function ji with each transition ti.
- Af associates a differential equation system fi with each place pi.

The variables of the differential equation system are the Ap
variables of place pi.

• M0 is the initial marking of the net. Each token is a vector of variables
similar to the place vectors. The initial marking defines the value of the
token variables at the time θ=0.

An example of a differential predicate transition net is presented in Fig. 2.6. It

models the process of filling bottles with water. The tokens in p1 model the bottles
that are being filled. Each bottle must be filled with a specific amount of water,
represented by the variable m. The variable v is the current weight of the bottle,
which includes the glass weight (5) and the water weight (v-5). The rate of filling
(1) is fixed and is the same for all bottles. The differential equation associated to p1
models the variation of the bottle weight. The tokens in p2 model the available taps
for closing the bottles. The firing of transition t1 represents the closing of a bottle
that has been filled with the correct amount of water (m). The weight of the bottle
after the firing of t1 includes also the weight of the tap (2). If there is no tap
available when the bottle reaches the specified amount of water, then transition t2
fires instead of t1.

 2 Modelling of Hybrid Systems 21

p1

p3

t1

p2

< 5, 10 > < 7, 20 >

Place variables:
Xp1: <v,m>
Xp3: <v>

Equation systems:
f1: dv/dt = 1

Enabling function:
e1: m = v-5
e2: v>m+5

Junction function:
j1: v = v+2

Time(θ)
evolution

a) θ = 0 b) θ = 10-

Transition
firing

c) θ = 10+

t2

p4

p1

p3

t1

p2

< 15, 10 > < 17, 20 >

t2

p4

p1

p3

t1

p2

< 17, 20 >

t2

p4

< 17 >

Fig. 2.6. Example of transition firing in a differential predicate transition net

A desired feature for the differential predicate transition net is to use the value of a
variable as an input parameter for the equation system of another place. This
feature implies the introduction of additional elements because there can be more
than one token in each place. An example would be to use the variable v of p1 as an
input parameter for the equation system of p2, such as f2: dr/dt=v, where r is the
variable associated to p2. In this case, the token in p2 must specify which token in
p1 is being considered for solving f2. As a consequence, each token must have an
identity.

Another desirable feature for the differential predicate transition net is
modularity. In order to model large systems, it must be possible to build a model
by composing a set of sub-nets with well defined interfaces and interaction
mechanisms.

These problems lead to the introduction of the OO paradigm to the differential
predicate transition net. However, there are many possible ways of combining OO
and differential predicate transition net. In order to analyse the advantages and
disadvantages of each option, the next section presents the main concepts of the
OO paradigm and discusses previous works that merge Petri nets and OO.

2.4 Petri Nets and the Object-oriented Paradigm

The origins of the object-oriented paradigm dates back to the 60s’ when the
concept of encapsulation was introduced, grouping data and operations into a
single entity called object. Initially, the OO paradigm was used exclusively as a
way of organizing and structuring computer programs. Lately in the 80s’, it begins
to be used also for the conception and design of systems.

The object-oriented paradigm states that a system is composed of a set of
objects, which interact among themselves. An object is an entity that has attributes,
behaviour, memory and identity (Booch, 1994), (Rumbaugh et al., 2004). The
attributes represents the system data. The behaviour is composed of operations or
methods. The memory, or state retention, means that the state of the object is not
reinitialized each time it is accessed. The identity distinguishes an object from any
other object of the system, even when they have the same attributes and behaviour.

22 Modelling and Analysis of Hybrid Supervisory Systems

Additionally to the concept of object, the pillars of the object-oriented
paradigm include the concepts of encapsulation, classification and inheritance.
Encapsulation states that an object is composed of a body (internal
implementation) and an interface (represented by methods that allow other objects
to act on its behaviour). The interface determines how the object may interact with
other objects. The internal structure is hidden and guarantees that the external view
of the object is independent from the internal implementation. The interface
contains all the necessary information for starting a communication with the object.
It is not necessary to know the details of internal implementation.

The objects of a system are organized into classes. The classification groups
objects that share the same attributes, operations, relationships and semantics into a
single class. The objects of a class have the same behaviour and data structure. A
class works as a model for the creation of new objects, which is called
instantiation.

Finally, inheritance provides the means for defining a class (frequently called
child) starting from the definition of another class (frequently called parent). The
child class automatically inherits all the methods and attributes of the parent class.
The reuse provided by the inheritance is one of the main advantages of the object
oriented paradigm.

The combination of object-oriented paradigm and Petri nets is an extensively
discussed issue in the literature. The works on this subject can be organized into
three groups:

• ‘Objects inside Petri nets’. The Petri net models a system from a global
point of view. A token in the Petri net is an object. It is the instance of a
class defined in an object-oriented programming language, such as C++,
and has attributes and methods. When a transition fires, it executes a
method of an object and changes the values of its attributes. It can also
create new objects and destroy old ones. The HyNet (hybrid high-level
Petri net) (Wieting, 1996) is an approach of this group that models hybrid
systems. It is an extension of the THORN (timed hierarchical object-
related net) (Köster et al., 2001), a high level Petri net for discrete event
dynamic systems.

• ‘Petri net inside objects’. A system is composed of a collection of objects.
A Petri net models the behaviour of each object. The Petri net marking
shows the current state of the object. The methods provided by the object
are associated with places. They compose the object interface and can be
accessed by other objects. Following the OO paradigm, other places and
transitions model the internal behaviour of the object and are encapsulated.
If the object calls are statically defined, it is possible to build a global
model of the system by merging all the object nets. The hybrid object net
(Drath, 1998) is an example of this group for hybrid systems. An example
for discrete event dynamic systems is the G-CPN (g-coloured Petri net)
(Guerrero et al., 2001), which combines the coloured Petri net and the g-
net.

• Mixed approaches. The third group combines the ideas of the first two. It
creates a hierarchical structure inside the Petri net. The approaches in this

 2 Modelling of Hybrid Systems 23

group aim at a complete integration of the object-oriented paradigm with
Petri net, including features such as inheritance and polymorphism. From a
global point of view, a system is modelled by the system net. A token in a
system net is an object. The object behaviour is detailed in an object net.
An example of object attribute is the marking of a place of the object net.
The tokens in an object net can also be objects, and so on, creating a
hierarchical organization. In this case, an object net is the system net from
the point of view of its token (Valk, 1998). An approach that belongs to
this group is the OPN (object Petri nets) (Lakos, 1995).

The analysis of works in the three groups resulted in some important remarks
that should be taken into account in the approach presented here concerning a new
formalism merging OO and differential predicate transition nets. The first one
regards the possibility of building a global model of the system. This is considered
an important feature for simulation and analysis. When an inconsistency is detected
during the model simulation, the visualisation of the global system behaviour helps
the diagnosis. The second remark is about encapsulation. The definition of a
formalism based on the OO paradigm should provide a clear definition of the
object interfaces. Objects interact only through their interfaces, ensuring the
integrity of the internal data and behaviour.

Another important point is the definition of hierarchical structures. The use of
sophisticated hierarchical mechanisms and rules, such as those used in the third
group, may compromise the graphical meaning of the Petri net. They must be
avoided unless their advantages compensate this strong drawback.

2.5 The Object-oriented Differential Predicate Transition Net

The remarks presented at the end of the previous section were the starting point for
incorporating OO into differential predicate transition net. The resulting modelling
tool is called object-oriented differential predicate transition net, or, shortly, OO-
DPT net.

2.5.1 Modelling Classes and Objects

The class and object concepts are the basis of the object-oriented paradigm.
Therefore, they are the starting point for the definition of the OO-DPT net. A
system is modelled by an OO-DPT net, which is composed of a set of OO-DPT
sub-nets. Each OO-DPT sub-net is associated with a class and models the
behaviour of the objects of that class. The marking of the OO-DPT sub-net
indicates the current state of the objects of that class.

Definition 1: An OO-DPT net is composed of a set of OO-DPT sub-nets: NOO-DPT =
{C1, C2, …, Cn}. The subscript n is the number of the classes that composes the
system model.

24 Modelling and Analysis of Hybrid Supervisory Systems

Example – Mixing System: The system of Fig. 2.7 is used to illustrate the OO-DPT
net. Basically, the system mixes two substances S1 and S2 in tank Tk1. The on/off
valves V1 and V2 regulate the amount of S1 and S2 that is discharged into the tank.
The controller L1 executes the following sequence of steps: fill tank Tk1 with S1
and S2, mix S1 and S2, and empty Tk1. The OO-DPT of this system is composed of
three classes2: C1 – Valve, C2 – Tank and C3 – Controller. Each class is an OO-DPT
sub-net.

S2 S1

V1 V2

Tank Tk1

Controller L1

Fig. 2.7. Example of a mixing system

The definition of an OO-DPT sub-net is based on the definition of the differential
predicate transition net. The variables of a class Ci models the class attributes.

Definition 2: Each OO-DPT sub-net is composed of a 3-tuple, Ci = <Ni, Ai, M0_i>,
where:

• Ni is a Petri net defined by the 4-tuple <Pi, Ti, Prei, Posi>, where the arcs
have unitary weight:

- Pi={p1_i, p2_i, p3_i, …, pm_i} is a finite set of places.
- Ti={t1_i, t2_i, t3_i, …, tn_i} is a finite set of transitions.
- Pi ∩ Ti = Ø, Pi ∪ Ti ≠ Ø.
- Prei: Pi x Ti → (0,1).
- Posi: Pi x Ti → (0,1).

• Ai is the annotation of Ci, Ai=<Xi, Api, Aei, Aji, AFi>:

- Xi is a set of variables (see Definition 5).
- Api associates a sub-set Xpk_i of variables of Xi with each place pk_i

(see Definition 4).
- Aci associates an enabling function ek_i with each transition tk_i. The

enabling function is a Boolean expression that has the variables of
Xi as input parameters.

- Aji associates a junction function jk_i with each transition tk_i. The
junction function determines the values of the variables of Xi after
the transition firing, Xi(θ+) = jk_i(Xi(θ-)) (θ+, θ- are time instants
immediately before and after the firing of transition tk_i).

2 Class names are written in italic and object names are underlined.

 2 Modelling of Hybrid Systems 25

- Afi associates with each place pk_i an equation system fk_i composed
of a set of differential and/or algebraic equations. The variables of
fk_i are the elements of Xpk_i, and the input parameters are the
elements of Xi.

• M0_i is the initial marking of the OO-DPT sub-net (see Definition 3).

Example – mixing system: Fig. 2.8, Fig. 2.9 and Fig. 2.10 present the sub-nets of
classes C1, C2 and C3 of the mixing system (Fig.2.7). Class C1 – Valve has two
discrete states: open and closed. The variable q models the valve flow. Class C2 –
Tank has three discrete states: stand-by, mixing and emptying. The variables Vol,
qI1.1 and qI2.1 model the volume in tank and the incoming flows of S1 and S2. I1 and
I2 are related to the class interface and are explained latter on. Class C3 – Controller
models the sequence of activities for processing a batch. ME1 is the total amount of
product in a batch. VolS1 and VolS2 are the volume of substances S1 and S2 in the
tank. KθM is the time the batch must be mixed and θM is the time it has been mixed.
pcE2 is the percentage of substance S1 in the mixture. Variables qI2.1, qI3.1 and VolI1.2
are the incoming flows of S1 and S2 and the volume of product in the tank. E1, E2,
I1, I2 and I3 are related to the C3 interface.

p1_1 p2_1

t1_1

Closed Open
t2_1

Class variables:
X1 = {q};

Place variables:
Xp1_1 = ∅; Xp2_1 = ∅;

Enabling functions:
e1_1, e2_1: ∅;

Junction functions:
j1_1: q = 10;
j2_1: q = 0;

Equation systems:
f1_1, f2_1: ∅;

C1 - Valve

Fig. 2.8. Model of class C1 – Valve

p1_2 p2_2

t1_2

Stand-by Mixing
t2_2

t5_2 p3_2

Emptying

t4_2

t3_2

Class variables:
X2 = {Vol, I1, I2, qI1.1, qI2.1};

Place variables:
Xp1_2 = Vol; Xp2_2 = Vol; Xp3_2 = Vol;

Enabling functions:
e1_2, e2_2, e4_2, e5_2: ∅;
e3_2: Vol = 0;

Junction functions:
j1_2, j2_2, j3_2, j4_2, j5_2: ∅;

Equation systems:
f1_2, f2_2: dVol/dt= qI1.1+ qI2.1
f3_2: dVol/dt= qI1.1+ qI2.1 - 20

C2 - Tank

Fig. 2.9. Model of class C2 – Tank

26 Modelling and Analysis of Hybrid Supervisory Systems

t2_3

Stand-by
p1_3 t1_3

t3_3

t4_3

t5_3

p2_3 p4_3

p3_3 p5_3

p6_3

p7_3

t6_3 t7_3p8_3 t8_3p9_3

Emptying Mixing

Filling with S1

Filling with S2

Class variables:
X3 = {θM, KθM, VolS1, VolS2, E1, E2, I1, I2, I3,
 ME1, pcE2, VolI1.2, qI2.1, qI3.1};

Place variables:
Xp1_3 = Xp2_3 = Xp3_3 = Xp6_3 = Xp7_3 = Xp9_3 =∅;
Xp4_3 = VolS1; Xp5_3 = VolS2; Xp8_3 = θM;

Enabling functions:
e1_3, e2_3, e4_3, e5_3: ∅;
e4_3: VolS1 = ME1*pcE2;
e5_3: VolS2 = ME1*(1-pcE2);
e7_3: θM = KθM;
e8_3: VolI1.2 = 0;

C3 - Controller
Junction functions:

j1_3, j4_3, j5_3, j7_3, j8_3: ∅ ;
j2_3: VolS1 = 0;
j3_3: VolS2 = 0;
j6_3: θM = 0;

Equation systems:
f1_3, f2_3, f3_3, f6_3, f7_3, f9_3: ∅;
f4_3: dVolS1/dθ = qI2.1
f5_3: dVolS2/dθ = qI3.1
f8_3: dθM/dθ = 1

Fig. 2.10. Model of class C3 – Controller

Once the classes and OO-DPT subnets have been specified, the next step is to
define the set of objects of each class and their initial states. The objects of a class
Ci are named O1.i, O2.i, …, On.i, where n is the number of objects of class Ci in the
system. From the discrete point of view, the state of an object Ow.i is represented by
one or more tokens in the sub-net of its class (mw.i). From the continuous point of
view, it is modelled by an instantiation Xw.i of the variables Xi.

The marking of the OO-DPT sub-net of a class is therefore the composition of
the sub-markings that model the state of each object of that class.

Definition 3: The marking of an OO-DPT sub-net is composed of a set of sub-
markings, Mi = {O1.i, O2.i, ..., On.i} that models the state of the objects of the class Ci:

• Ow.i is composed of a 2-tuple Ow.i = <Xw.i, mw.i>, where:

- Xw.i is an instance of the set of variables Xi of the sub-net.
- mw.i: P → (0,1) defines the tokens in the sub-net that models the

state of the object from a discrete point of view3.

It is important to highlight that Definition 3 imposes that a place contains at

most one token of each object. An object cannot have two tokens in the same
place.

3 The marking of a place can be addressed in one of the following ways:
a) Specifying the number of tokens of all the places in the net, such as: m1.3 =
{0,0,0,0,1,1,0,0,0}.
b) Specifying the places that have one token: m1.3 = {p5_3,p6_3}.
c) Specifying the number of token in a place: p5_3 = 1; p6_3 = 1.

 2 Modelling of Hybrid Systems 27

Example – mixing system: The mixing system of Fig. 2.7 is composed of objects
O1.1 – V1 and O2.1 – V2 of class C1 – Valve, O1.2 – Tk1 of class C2 – Tank and O1.3 –
L1 of class C3 – Controller. A possible marking for these objects is presented in Fig.
2.11. From the discrete point of view, the class markings are illustrated in Fig.
2.12.

O1.1 – V1
 Instance of Variables: X1.1: q=0;
 Petri net marking: m1.1 = {1,0};

O2.1 – V2
 Instance of Variables: X2.1: q=10;
 Petri net marking: m2.1 = {0,1};

O1.2 – Tk1
 Instance of Variables: X1.2: Vol=20; I1 = 1; I2 = 2; qI1.1=0; qI2.1=10;
 Petri net marking: m1.2 = {1,0,0};

O1.3 – L1
 Instance of Variables: X1.3: KθM=10; θM=0; VolS1=10; VolS2=10;
 E1=1; E2=2; I1=1; I2=1; I3=2; ME1=40;
 pcE2=0.25; VolI1.2=20; qI2.1=0; qI3.1=10;
 Petri net marking: m1.3 = {0,0,0,0,1,1,0,0,0};

Fig. 2.11. Sub-markings of the objects of the mixing system

p1_1 p2_1
t1_1

Closed Open
t2_1

C1 – Valve

O1.1 – V1

O2.1 – V2

p1_2 p2_2

t1_2

Stand-by Mixing
t2_2

t5_2 p3_2

Emptying

t4_2

t3_2C2 – Tank

O1.2 – Tk1

t2_3

Stand-by

p1_3 t1_3

t3_3

t4_3

t5_3

p2_3 p4_3

p3_3 p5_3

p6_3

p7_3

t6_3 t7_3p8_3 t8_3p9_3

Emptying Mixing

Filling with S1

Filling with S2

C3 – Controller

O1.3 – L1

Fig. 2.12. Sub-markings of the objects of the mixing system

For each object Ow.i, only one place at a time defines the value of a variable of Xw.i.
The initial sub-marking of Ow.i must be so that all the reachable sub-markings mw.i
of Ow.i obeys the following restriction about the variables Xpk_i associated with each
place pk of the class Ci.

28 Modelling and Analysis of Hybrid Supervisory Systems

Definition 4: If mw.i is a reachable sub-marking of an object Ow.i and {pa_i, pb_i} ⊂
mw.i, then Xpa_i ∩ Xpb_i = ∅.

Example – mixing system: The possible sub-markings mw.i for the objects of the
mixing system are illustrated in Fig. 2.13. All the sub-markings fulfil Definition 4.
An example of inconsistent sub-marking for an object O2.2 of C2 would be m2.2 = {1,
1, 0}. This marking does not comply with Definition 4 because Xp1_2 ∩ Xp2_1 = {Vol}.

{1,0} {0,1}

t1_1

t2_1
{1,0,0} {0,1,0}

t1_2

t2_2

t5_2
{0,0,1}

t4_2

t3_2

Objects O1.1 and O2.1
Objects O1.2

Object O1.3

{1,0,0,0,0,0,0,0,0}
t1_3

{0,1,1,0,0,0,0,0,0}
t2_3

{0,0,1,1,0,0,0,0,0}

t3_3

{0,1,0,0,1,0,0,0,0}

t3_3
{0,0,0,1,1,0,0,0,0}

t4_3 {0,0,1,0,0,1,0,0,0}

t2_3

t5_3 {0,1,0,0,0,0,1,0,0} t2_3

{0,0,0,1,0,0,1,0,0} t4_3

t4_3 {0,0,0,0,1,1,0,0,0} t5_3

{0,0,0,0,0,1,1,0,0}

t3_3

t5_3

{0,0,0,0,0,0,0,1,0}
t7_3 {0,0,0,0,0,0,0,0,1}

t6_3

t9_3

Fig. 2.13. Reachable markings for the objects of the mixing system

The set of variables of a class is composed of constant parameters (Xco_i), internal
variables (Xint_i), public variables (Xpb_i), image variables (Xim_i) and external
variables (Xext_i). The value of constant parameters does not vary during the object
life-time. However, two objects of the same class can have different values for the
same constant parameter. External variables have their value defined by entities not
modelled in the OO-DPT net. They are input signals of the model and are
discussed in Section 2.5.3. The difference among internal, public and image
variables are related to the communication between objects.

Two objects can exchange data by sharing variables. Basically, the instances of
internal variables (Xint_w.i) of an object Ow.i can only be read and written by the
object itself. On the other hand, instances of public variables (Xpb_w.i) can be read
but not written by other objects. If a second object Ov.z reads the value of a variable
M of Xpb_w.i, then M will be part of Xim_v.z (image variables of Ov.z). It means that M
must be specified in the set Xpb_i of class Ci as well as in the set Xim_z of class Cz.

 2 Modelling of Hybrid Systems 29

However, the specification of Xpb_i and Xim_z is not sufficient for implementing
variable sharing. It is necessary to specify the identity of the object that has the
instantiation of the variable to be read. In other words, the object Ov.z must store
the information that M must be read from Ow.i and not from any other object of
class Ci. This information is recorded in a variable of Xz, such as In and when the
variable M is listed in Xim_z, it is named as MIn.i.

Definitions 5, 6 and 7 are the result of the previous discussion.

Definition 5: The set of variables Xi of a class is composed of Xi = Xco_i ∪ Xint_i ∪
Xpb_i ∪ Xim_i ∪ Xext_i, where (Xext_i ∩ Xco_i) ∪ (Xext_i ∩ Xint_i) ∪ (Xext_i ∩ Xpb_i) ∪ (Xext_i
∩ Xim_i) ∪ (Xco_i ∩ Xint_i) ∪ (Xco_i ∩ Xpb_i) ∪ (Xco_i ∩ Xim_i) ∪ (Xint_i ∩ Xpb_i) ∪ (Xint_i ∩
Xim_i) ∪ (Xpb_i ∩ Xim_i) = ∅.

Definition 6: Each image variable of Xim_z of a class Cz is associated with a public
variable of Xpb_i of a class Ci (i=z or i≠z):

• Each variable of Xim_z is associated with a variable of Xz called In, where n
is an integer number.

• In specifies the object from which the value of the variable must be read.
• The variable of Xim_z is called MIn.i, where M is the name of the variable in

its original class (Ci).

Definition 7: The set of variables Xpk_i of each place must be defined over Xint_i ∪
Xpb_i.

Example – mixing system: Fig. 2.14 presents the set of variables Xco_i, Xint_i, Xpb_i,
Xim_i and Xext_i for each class of the mixing system. Considering the variable values
defined in Fig. 2.11 for O1.1 – V1, O2.1 – V2, O1.2 – Tk1 and O1.3 – L1, Fig. 2.15
illustrates the sharing of variables among objects.

C1 - Valve
 Xco_1 = ∅; Xint_1 = ∅; Xpb_1 = {q}; Xim_1 = ∅; Xext_1 = ∅;

C2 - Tank
 Xco_2 = {I1, I2}; Xint_2 = ∅; Xpb_2 = {Vol}; Xim_2 = {qI1.1, qI2.1}; Xext_2 = ∅;

C3 - Controller
 Xco_3 = {KθM, E1, E2, I1, I2, I3}; Xint_3 = {θM, VolS1, VolS2}; Xpb_3 = ∅;
 Xim_3 = {VolI1.2, qI2.1, qI3.1}; Xext_3 = {ME1, pcE2};

Fig. 2.14. Constant parameters, internal, public, image and external variables

O2.1 - V1

q

O1.1 - V2

q

O1.2 - Tk1

Vol
qI1.1
qI2.1

O1.3 - L1

VolI10.2
qI2.1
qI3.1

Fig. 2.15. Variable sharing for the mixing system

30 Modelling and Analysis of Hybrid Supervisory Systems

2.5.2 Communication between Objects

In the OO-DPT nets, two kinds of communication are possible among objects. The
first one is the sharing of variables, which has already been presented. This kind of
communication is considered ‘continuous’ because one object is continuously
reading the value of a public variable of another object and updating the value of
its own image variable. The second kind of communication is through method
calls. It is considered a discrete interaction and it is modelled by the dynamic
fusion of transitions.

The discrete interface of an object is composed of two sets of transitions: the
methods provided by the class and the methods used by the class. In case an Ov.z
calls a method of another object Ow.i, the two objects communicate through the
fusion of two transitions. One of them is a transition ta_i from the provided interface
of class Ci. The other is a transition tb_z from the used interface of class Cz.

Definition 8: The interface provided by a class Ci is composed of:

• A set of public variables Xpb_i (Definition 5).
• A set of transitions Tp_i, where Tp_i ⊂ Ti.

Definition 9: The interface used by a class Ci is composed of:

• A set of image variables Xim_i (Definitions 5 and 6).
• A set of transitions Tu_i, where Tu_i ⊂ Ti and Tu_i ∩ Tp_i = ∅.

As for the case of variable sharing, if an object Ov.z of class Cz calls the method

ta_i of the class Ci, it must know which object of Ci will perform the method. A
variable In of Cz stores this information and is associated with the method call.
When both ta_i and tb_z are enabled, they fire as a single transition.

Definition 10: Each transition of Tu_z of a class Cz is associated with a transition of
Tp_i of a class Ci (i=z or i≠z).

• Each transition of Tu_z is associated with a variable of Xz called In, where n
is an integer number.

• In specifies the object of class Ci that will perform the method requested.

The graphical view of OO-DPT net differentiates transitions of Tu_i and Tp_i

from internal transitions. Transitions of Tu_i (methods used by the class) are
represented as black-filled bars, while transitions of Tp_i (methods provided by the
class) are white-filled bars.

Example – mixing system: Fig. 2.16, Fig. 2.17 and Fig. 2.18 present the interface of
class C1, C2 and C3 of the mixing system (other elements such as equation systems,
enabling functions and junction functions are omitted from the figures). The first
step of the batch process is to fill the tank with the two substances S1 and S2. For

 2 Modelling of Hybrid Systems 31

this purpose, class C3 must call the method t1_1 - Open valve provided by class C1
for two different valves (identified by I2 and I3). These method calls are performed
by t2_3 → t1_I2.1 and t3_3 → t1_I3.1. After filling the tank with the appropriated volume
of S1 or S2, the two valves are closed by the method calls t4_3 → t2_I2.1 and t5_3 →
t2_I3.1. The next step of the batch process is to turn on the mixer by calling method
t6_3 → t1_I1.2. After the appropriate time, the mixer is turned off and the tank is
emptied (method call t7_3 → t5_I1.2).

p1_1 p2_1

t1_1

Closed Open

t2_1

Interface variables:
 Xpb_1 = {q}; Xim_1 = ∅;
Methods provided by the class:
 Tp_1 = {t1_1; t2_1};
 t1_1 – Open valve
 t2_1 – Close valve
Methods used by the class:
 Tu_1 = ∅;

C1 - Valve

Fig. 2.16. Interface of class C1 – Valve

p1_2 p2_2
t1_2

Stand-by Mixing
t2_2

t5_2 p3_2

Emptying

t4_2

t3_2
Interface variables:
 Xpb_2 = {Vol}; Xim_2 = {qI1.1, qI2.1};
Methods provided by the class:
 Tp_2 = {t1_2; t2_2; t4_2; t5_2};
 t1_2 – Start mixing
 t2_2 – Stop mixing
 t4_2 – Start emptying
 t5_2 – Stop mixing and start emptying
Methods used by the class:
 Tu_2 = ∅;

C2 - Tank

Fig. 2.17. Interface of class C2 – Tank

t2_3

p1_3 t1_3

t3_3

t4_3

t5_3

p2_3 p4_3

p3_3 p5_3

p6_3

p7_3

t6_3 t7_3p8_3
t8_3 p9_3

Stand-by Emptying Mixing

Filling with S1

Filling with S2

C3 - Controller
Interface variables:
 Xpb_3 = ∅;
 Xim_3 = {VolI1.2, qI2.1, qI3.1};
Methods provided by the class:
 Tp_3 = ∅;

Methods used by the class:
 Tu_3 = {t2_3; t3_3; t4_3; t5_3; t6_3};
 t2_3 → t1_I2.1– Open valve
 t3_3 → t1_I3.1 – Open valve
 t4_3 → t2_I2.1 – Close valve
 t5_3 → t2_I3.1 – Close valve
 t6_3 → t1_I1.2 – Start mixing
 t7_3 → t5_I1.2 – Stop mixing and start emptying

Fig. 2.18. Interface of class C3 – Controller

32 Modelling and Analysis of Hybrid Supervisory Systems

A method call tb_z → ta_In.i is performed when both transitions are enabled for a pair
of objects. Considering two objects Ov.z and Ow.i, tb_z is enabled in Cz if for Ov.z ,
mv.z contains the input places of tb_z and the enabling function of tb_z is true for Xv.z.
Similarly, ta_i is enabled in Ci if mw.i contains the input places of ta_i and the
enabling function of ta_i is true for Xw.i. An additional condition for the firing is that
the value of In in Xv.z must be In = w.

Example – mixing system: The mixing system is in the state indicated in Fig. 2.19
and Fig. 2.20, with the two valves opened (O1.1 – V1 and O2.1 – V2) and the
controller (O1.3 – L1) indicating that the tank is being filled by S1 and S2. In this
case, transition t2_1 is enabled for O1.1 and O2.1 in class C1. In class C2, t5_3 is not
enabled because e5_3 is false for the values of VolS2, ME1 and pcE2 of O1.3. On the
other hand, t4_3 is enabled because e4_3 is true. Variable I2 defines which object
must perform the method t4_3 → t2_I2.1. In this case, I2=1, implying that t2_1 must fire
using O1.1. As the additional condition for the method call is satisfied, both
transitions t4_3 and t2_1 fire simultaneously as a single transition. The new state of
the system is illustrated in Fig. 2.21 and Fig. 2.22.

p1_1 p2_1

t1_1

t2_1

Closed Open

O1.1 – V1
 q=10;

C1 - Valve Class variables:
Xpb_1 = {q};

Junction functions:
j1_1: q = 10;
j2_1: q = 0;

Methods provided by the class:
 t1_1 – Open valve
 t2_1 – Close valve O2.1 – V2

 q=10;

Fig. 2.19. Mixing system before a method call – class C1

If the execution of the method can be considered a single discrete event, then it is
modelled by a fusion of two transitions as illustrated before. However, a method
may be composed of a sequence of events or continuous activities. In this case, it is
modelled by two fusions of two pairs of transitions. The first fusion is the method
call (or request). The second fusion is the answer (or the confirmation that the
method has been completed). What happens between the two fusions is the method
implementation and is not available to the other objects. A method composed of
two fusions is performed in the same way that two independent method calls. An
example is presented in Fig. 2.23. The only distinction between a method of two
fusions and two independent methods is that, in the first case, the object that calls
the method (O1.z) must wait for its answer without imposing any other condition
for the second transition fusion. It means that transition t2_z is not in conflict with
other transition and has no enabling function. This restriction simplifies the
analysis procedures.

 2 Modelling of Hybrid Systems 33

t2_3

p1_3 t1_3

t3_3

t4_3

t5_3

p2_3 p4_3

p3_3 p5_3

p6_3

p7_3

t6_3 t7_3p8_3
t8_3 p9_3

Stand-by Emptying Mixing

Filling with S1

Filling with S2

C3 - Controller
Class variables:
 Xco_3 = {KθM, E1, E2, I1, I2, I3};
 Xint_3 = {θM, VolS1, VolS2};
 Xim_3 = {VolI1.2, qI2.1, qI3.1};
 Xext_3 = {ME1, pcE2};
Place variables:

Xp4_3 = VolS1; Xp5_3 = VolS2; Xp8_3 = θM;
Enabling functions:

e4_3: VolS1 = ME1*pcE2;
e5_3: VolS2 = ME1*(1-pcE2);
e7_3: θM = KθM; e8_3: VolI1.2 = 0;

Junction functions:
j2_3: VolS1 = 0; j3_3: VolS2 = 0; j6_3: θM = 0;

Equation systems:
f4_3: dVolS1/dθ = qI2.1
f5_3: dVolS2/dθ = qI3.1
f8_3: dθM/dθ = 1

Methods used by the class:
 t2_3 → t1_I2.1– Open valve
 t3_3 → t1_I3.1 – Open valve
 t4_3 → t2_I2.1 – Close valve
 t5_3 → t2_I3.1 – Close valve
 t6_3 → t1_I1.2 – Start mixing
 t7_3 → t5_I1.2 – Stop mixing and
 start emptying

O1.3 – L1
 KθM=10; θM=0; VolS1=10; VolS2=10;
 E1=1; E2=2; I1=1; I2=1; I3=2; ME1=40;
 pcE2=0.25; VolI1.2=20; qI1.1=10; qI2.1=10;

Fig. 2.20. Mixing system before a method call – class C2

p1_1 p2_1

t1_1

t2_1

Closed Open

O1.1 – V1
 q=0;

C1 - Valve Class variables:
Xpb_1 = {q};

Junction functions:
j1_1: q = 10;
j2_1: q = 0;

Methods provided by the class:
 t1_1 – Open valve
 t2_1 – Close valve O2.1 – V2

 q=10;

Fig. 2.21. Mixing system after a method call – class C1

Another important point about method calls is the possibility of transmitting data.
Following the previous definitions, an object accesses data of another object by
sharing a variable in a continuous communication. However, when this shared
variable is only used in a junction function, there is no need to constantly read its
value. The value of the variable must be known only when the transition fires.

In order to avoid unnecessary continuous communication, it is possible to
transmit the value of a variable in a method call. When an object Ov.z calls a
method of Ow.i, it can send the value of one or more public variables. The number
of values to be transmitted is defined in the method signature.

34 Modelling and Analysis of Hybrid Supervisory Systems

t2_3

p1_3 t1_3

t3_3

t4_3

t5_3

p2_3 p4_3

p3_3 p5_3

p6_3

p7_3

t6_3 t7_3p8_3
t8_3 p9_3

Stand-by Emptying Mixing

Filling with S1

Filling with S2

C3 - Controller
Class variables:
 Xco_3 = {KθM, E1, E2, I1, I2, I3};
 Xint_3 = {θM, VolS1, VolS2};
 Xim_3 = {VolI1.2, qI2.1, qI3.1};
 Xext_3 = {ME1, pcE2};
Place variables:

Xp4_3 = VolS1; Xp5_3 = VolS2; Xp8_3 = θM;
Enabling functions:

e4_3: VolS1 = ME1*pcE2;
e5_3: VolS2 = ME1*(1-pcE2);
e7_3: θM = KθM; e8_3: VolI1.2 = 0;

Junction functions:
j2_3: VolS1 = 0; j3_3: VolS2 = 0; j6_3: θM = 0;

Equation systems:
f4_3: dVolS1/dθ = qI2.1
f5_3: dVolS2/dθ = qI3.1
f8_3: dθM/dθ = 1

Methods used by the class:
 t2_3 → t1_I2.1– Open valve
 t3_3 → t1_I3.1 – Open valve
 t4_3 → t2_I2.1 – Close valve
 t5_3 → t2_I3.1 – Close valve
 t6_3 → t1_I1.2 – Start mixing
 t7_3 → t5_I1.2 – Stop mixing and
 start emptying

O1.3 – L1
 KθM=10; θM=0; VolS1=10; VolS2=10;
 E1=1; E2=2; I1=1; I2=1; I3=1; ME1=40;
 pcE2=0.25; VolI1.2=20; qI1.1=0; qI2.1=10;

Fig. 2.22. Mixing system after a method call – class C2

Class Ci
Methods provided by the class:
 t1_i – Example (call)
 t2_i – Example (answer)

t1_ip1_i p2_i p3_it2_i p4_it3_i

t2_z p3_zt1_zp1_z p2_z

t4_i

O1.i

t3_z

Class Cz
Methods used by the class:
 t1_z → t1_I1.i– Example (call)
 t2_z → t4_I1.i – Example (answer)

Class variables:
 Xco_z = {I1};

O1.z
 I1=1;

Fig. 2.23. Example of method call with two transition fusions

Definition 11: A signature is defined for each transition tb_z of Tu_z of a class Cz, it
contains a sub-set of variables Xpb_z that are transmitted in the method call.

 2 Modelling of Hybrid Systems 35

Definition 12: A signature is defined for each transition ta_i of Tp_i of a class Ci, it
contains a sub-set of variables Xi that will receive the values transmitted in the
method call.

An example of method call with the data transmission is presented in Fig. 2.24.

When the method provided by t1_i is called, the value of w is used to calculate the
new value of variables x and y.

Class Ci

Class variables:
 Xint_i = {x, y};
Methods provided by the class:
 t1_i {x, y} – Method 1

t1_i p1_i p2_i t2_i

t1_z p1_z p2_z t3_z

Class Cz

Class variables:
 Xco_z = {I1}; Xpb_z = {w};
Methods used by the class:
 t1_z → t1_I1.i {w, w+2} – Method 1

O1.i
 x =3; y=5

Class Ci

Class variables:
 Xint_i = {x, y};
Methods provided by the class:
 t1_i {x, y} – Method 1

t1_ip1_i p2_i t2_i

t1_zp1_z p2_z t3_z

Class Cz

Class variables:
 Xco_z = {I1}; Xpb_z = {w};
Methods used by the class:
 t1_z → t1_I1.i {w, w+2} – Method 1

O1.i
 x =2; y=4

a) Before the firing of
t1_z → t1_I1.i

b) After the firing of
t1_z → t1_I1.i

O1.z
 I1=1; w=2;

O1.z
 I1=1; w=2;

Fig. 2.24. Example of method call with the transmission of parameters

2.5.3 Communication with External Environment

Differential predicate transition nets, as well as ordinary Petri nets and predicate
transition nets, cannot represent the interaction among the modelled system and its
environment. Anything that interferes in the system behaviour should be modelled
as part of the Petri net – and therefore becomes part of the modelled system.

However, when designing control systems, the explicit definition of the
interface with external entities is a key issue. The external interface specifies the
input signals that the control system receives from external entities. They make
explicit how external entities interfere in the system behaviour. A typical example
of external entity is the user of a system. The behaviour of a user is not known and
therefore cannot be modelled.

In the OO-DPT net, the interface with external entities is specified in a way
similar to the interface with other objects. The value of a class variable may be set
by an external entity and methods may be called by external entities.

Definition 13: The interface of a class Ci with the external environment is
composed of:

• A set of external variables Xext_i (Definitions 5 and 6).

36 Modelling and Analysis of Hybrid Supervisory Systems

• Each variable of Xext_i is associated with a variable of Xi called En, where n
is an integer number. En specifies the input signal that sets the value of the
variable. The variable of Xext_i is called MEn, where M is a generic name.

• A set of transitions Text_i that models the methods provided by the class to
the external environment. Text_i ⊂ Ti and (Text_i ∩ Tp_i) ∪ (Text_i ∩ Tu_i) = ∅.

When simulating the OO-DPT net, the evolution of the external variables and

the external methods calls must be defined. The simulation is performed
considering a specific behaviour of the external environment. However, the same
restriction is not imposed for the formal verification of behaviour properties. Some
properties do not depend on the behaviour of external entities. Typically, safety
properties cannot depend on the behaviour of the environment. The system has to
be safe in any case.

Example – mixing system: The objects of class C3 – Controller are the only ones
that interact with external entities (Fig. 2.25). As for the methods provided by a
class to another class, the transitions of Text_i are represented by white-filled bars.
External entities determine the size of a batch (ME1) and the percentage of S1 in the
mixture (pcE2). Furthermore, the class makes available an external method for
starting the production of a batch.

t2_3

p1_3 t1_3

t3_3

t4_3

t5_3

p2_3 p4_3

p3_3 p5_3

p6_3

p7_3

t6_3 t7_3p8_3 t8_3 p9_3
Stand-by Emptying Mixing

Filling with S1

Filling with S2

C3 - Controller
Interface variables:
 Xext_3 = {ME1, pcE2};

External methods provided by the class:
 Text_3 = {t1_3};
 t1_3 – Start a new batch

Fig. 2.25. External interface of class C3 – Controller

2.5.4 Unfolding the OO-DPT net

The fusion of transitions presented in the previous section is dynamic. As a
consequence, the structure of the underlying global Petri net changes in time. The
method provided by a class Ci can be called by more than one class. In this case,
the transition of Ci will be fused with different transitions of different classes,
though not at the same time. An example is transition t1_1 of C1 – Valve of the
mixing system. This transition merges with both transitions t2_3 and t3_3 of C3 –
Controller.

A dynamic structure is a significant disadvantage because the Petri net analysis
techniques cannot be used to analyse the discrete behaviour of OO-DPT nets. This
problem can be avoided by building an unfolded version of the OO-DPT net that

 2 Modelling of Hybrid Systems 37

has a static structure. The unfolding of an OO-DPT net depends on the set of
objects that compose the system. If the number of objects in a class varies, the
structure of the unfolded OO-DPT will also change. As a consequence, the number
of objects in the system must not change in time. The underlying Petri net of each
class must be bounded, i.e., the number of tokens in each place must not exceed a
finite number in any reachable marking of the net.

The unfolding of the OO-DPT net is organized in 4 steps.

Step 1: The sub-net of a class Ci must be duplicated the number of times equal to
the number of the object instances of Ci. The sub-marking of each object defines
that of each sub-net. The transitions tk_i and places pk_i of the sub-net of an object
Ow.i are renamed tk_w.i and pk_w.i.

Example – mixing system: The only class in the mixing system that has more than
one object is class C1 – Valve. The sub-net of this class is duplicated and the sub-
marking of each object defines that of the corresponding sub-net (Fig. 2.26). All the
sub-nets have their place and transition names changed in order to include the
object name (Fig. 2.27 and Fig. 2.28).

p1_1.1 p2_1.1

t1_1.1

t2_1.1

Closed Open

O1.1 – V1
 q=0;

p1_2.1 p2_2.1

t1_2.1

t2_2.1

Closed Open

O2.1 – V2
 q=10;

Fig. 2.26. Step 1 – Unfolding procedure – O1.1 and O2.1

p1_1.2 p2_1.2

t1_1.2

Stand-by Mixing

t2_1.2

t5_1.2 p3_1.2

Emptying

t4_1.2

t3_1.2

O1.2 – Tk1
 Vol=20; I1 = 1; I2 = 2;
 qI1.1=0; qI2.1=10;

Fig. 2.27. Step 1 – Unfolding procedure – O1.2

38 Modelling and Analysis of Hybrid Supervisory Systems

t2_1.3

p1_1.3 t1_1.3

t3_1.3

t4_1.3

t5_1.3

p2_1.3 p4_1.3

p3_1.3 p5_1.3

p6_1.3

p7_1.3

t6_1.3 t7_1.3p8_1.3
t8_1.3 p9_1.3

Stand-by Emptying Mixing

Filling with S2

O1.3 – L1
 KθM=10; θM=0; VolS1=10; VolS2=10;
 E1=1; E2=2; I1=1; I2=1; I3=2; ME1=40;
 pcE2=0.25; VolI1.2=20; qI1.1=0; qI2.1=10;

Filling with S1

Fig. 2.28. Step 1 – Unfolding procedure – O1.3

Step 2: In the net of an object Ov.z, a transition tb_v.z associated with a method call
(tb_v.z → ta_In.i) is duplicated the number of times of the objects that provide the
method (number of objects of class Ci). Each transition is named tb_v.z/a_w.i, where
ta_v.z is the transition of an object Ov.z that provides the method. Each transition
tb_v.z/a_w.i has an enabling function In = w. In is the variable of Ov.z that carries the
identity of the object that must perform the method.

Example – mixing system: The only object in the mixing system that calls methods
is O1.3 – L1. The net of this object is presented in Fig. 2.29.

t2_1.3/1_1.1

Stand by
p1_1.3 t1_1.3

p2_1.3 p4_1.3

p3_1.3 p5_1.3

p6_1.3

p7_1.3
t6_1.3/1_1.2

p8_1.3
t8_1.3 p9_1.3

Emptying Mixing

Filling with S1

Filling with S2

t2_1.3/1_2.1

t3_1.3/1_1.1

t3_1.3/1_2.1

t4_1.3/2_1.1

t4_1.3/2_2.1

t5_1.3/2_1.1

t5_1.3/2_2.1

t7_1.3/5_1.2

O1.3 – L1
 KθM=10; θM=0; VolS1=10; VolS2=10;
 E1=1; E2=2; I1=1; I2=1; I3=2; ME1=40;
 pcE2=0.25; VolI1.2=20; qI1.1=0; qI2.1=10;

Fig. 2.29. Step 2 – Unfolding procedure – O1.3

Step 3: In the net of an object Ow.i, a transition ta_w.i associated with a method
provided by the object is duplicated the number of times of the transitions of other
objects that call the method. Each transition is named tb_v.z/a_w.i, where tb_v.z is the
transition of an object Ov.z that calls the method. Methods that are not called by any
object in the system are eliminated from the object sub-net. The model resulting

 2 Modelling of Hybrid Systems 39

from this step has a static structure and the global net is obtained by fusing pair of
transitions that have the same name.

Example – mixing system: The objects that provide methods are O1.1 – V1, O2.1 – V2
and O1.2 – Tk1. The net of these objects are presented in Fig. 2.30 and Fig. 2.31.
Transitions t2_1.2 and t4_1.2 are eliminated because no object calls the methods
provided by them.

p1_2.1 p2_2.1

t3_1.3/1_2.1

t4_1.3/2_2.1

t2_1.3/1_2.1

t5_1.3/2_2.1

p1_1.1 p2_1.1

t3_1.3/1_1.1

t4_1.3/2_1.1

t2_1.3/1_1.1

t5_1.3/2_1.1

Closed Open

O1.1 – V1
 q=0;

Closed
Open

O2.1 – V1
 q=10;

Fig. 2.30. Step 3 – Unfolding procedure – O1.1 and O2.1

p1_1.2 p2_1.2

t6_1.3/1_1.2

Stand-by Mixing

t2_1.2

t7_1.3/5_1.2 p3_1.2

Emptying

t4_1.2

t3_1.2

O1.2 – Tk1
 Vol=20; I1 = 1; I2 = 2;
 qI1.1=0; qI2.1=10;

Fig. 2.31. Step 3 – Unfolding procedure – O1.2

Step 4: The last step is a simplification of the model resulting from Step 3 for the
cases where the variables In associated with the method calls are constant
parameters with known values. Supposing that the original transition tb_v.z of an
object Ov.z was duplicated in Step 2, resulting in transitions tb_v.z/a_w.i and tb_v.z/a_m.i.
If the variable In associated with the method call is a constant parameter with initial
value In=m, then transition tb_v.z/a_w.i is never enabled, and therefore can be
eliminated from both Ov.z and Ow.i. The same happens if In=w; in this case, tb_v.z/a_w.i
is eliminated.

Example – mixing system: The variables I1, I2 and I3 of O1.3 are constant parameters.
Their initial values are I1=1, I2=1 and I3=2. As a consequence, transitions t2_1.3/1_2.1,
t4_1.3/2_2.1, t3_1.3/1_1.1 and t5_1.3/2_1.1 may be eliminated because their enabling function
will never be true (e2_1.3/1_2.1, e4_1.3/2_2.1: I2=2; e3_1.3/1_1.1, e5_1.3/2_1.1: I3=1). The final
models of O1.1, O2.1 and O1.3 are presented in Fig 2.32 and Fig. 2.33. The sub-net of
O1.2 is not modified in Step 4.

40 Modelling and Analysis of Hybrid Supervisory Systems

p1_1.1 p2_1.1

t2_1.3/1_1.1

Closed Open

O1.1 – V1
 q=0;

p1_2.1 p2_2.1

Closed Open

O2.1 – V2
 q=10;

t4_1.3/2_1.1

t3_1.3/1_2.1

t5_1.3/2_2.1

Fig. 2.32. Step 4 – Unfolding procedure – O1.1 and O2.1

t2_1.3/1_1.1

p1_1.3 t1_1.3

t3_1.3/1_2.1

t4_1.3/2_1.1

t5_1.3/2_2.1

p2_1.3 p4_1.3

p3_1.3 p5_1.3

p6_1.3

p7_1.3

t6_1.3/1_1.2 t7_1.3/5_1.2p8_1.3
t8_1.3 p9_1.3

Stand-by Emptying Mixing

Filling with S2

O1.3 – L1
 KθM=10; θM=0; VolS1=10; VolS2=10;
 E1=1; E2=2; I1=1; I2=1; I3=2; ME1=40;
 pcE2=0.25; VolI1.2=20; qI1.1=0; qI2.1=10;

Filling with S1

Fig. 2.33. Step 4 – Unfolding procedure – O1.3

An important advantage of the simplification introduced in Step 4 is that if all the
variables associated with method calls are constant parameters, then the dynamics
of the system from a discrete point of view can be modelled by an ordinary Petri
net (the underlying Petri net of the unfolded OO-DPT net). This feature is
particularly interesting for analysis, as will be seen in Chapter 4.

2.6 Final Remarks

This chapter introduced the OO-DPT net, which is the result of incorporating the
OO paradigm into the differential predicate transition net. The OO-DPT net has a
modular structure and provides flexibility to model complex discrete and
continuous dynamics. The OO-DPT net of a large-scale system is easily built by
decomposing it into classes and objects.

When the number of objects in the system is constant and known, the OO-DPT
net can be unfolded into a net with fixed structure. The resulting net is safe (1-
bounded, which means that a place has at most one token). In this case, it is
possible to use formal techniques of ordinary Petri net for the system analysis.
Although this is a desirable feature for an OO-DPT net, it is not mandatory. When
required, an OO-DPT net may incorporate the dynamic instantiation of objects
(creation of objects during simulation). The choice between having a constant
number of objects and using dynamic instantiation is up to the person that is
building the model. If dynamic instantiation is chosen, the OO-DPT net cannot be
unfolded and the only way of analysing the system behaviour is by simulation.

 2 Modelling of Hybrid Systems 41

When the OO-DPT net is used for modelling productive systems, all the signals
exchanged between the control system and the controlled object are specified,
defining the interface of the control software. Moreover, the organization of the
OO-DPT into classes and objects defines the architecture of the control software.

http://www.springer.com/978-1-84628-650-6

