Graph Theory and Matrix Approach
as a Decision-making Method

2.1 Introduction

A graph G = (V, E) consists of a set of objects V = {vy, v, ....} called vertices or
nodes, and another set E = {ej, e, ....}, of which the elements are called edges,
such that each edge e is identified with a pair of vertices. The vertices v; and v;
associated with edge e, are called the end vertices of e,. The most common
representation of a graph is by means of a diagram, in which the vertices are
represented by small points or circles, and each edge as a line segment joining its
end vertices.

The application of graph theory was known centuries ago, when the long-
standing problem of the Konigsberg bridge was solved by Leonhard Euler in 1736
by means of a graph. Since then, graph theory has proved its mettle in various
fields of science and technology such as physics, chemistry, mathematics,
communication science, computer technology, electrical engineering, sociology,
economics, operations research, linguistics, internet, etc. Graph theory has served
an important purpose in the modeling of systems, network analysis, functional
representation, conceptual modeling, diagnosis, etc. Graph theory is not only
effective in dealing with the structure (physical or abstract) of the system,
explicitly or implicitly, but also useful in handling problems of structural
relationship. The theory is intimately related to many branches of mathematics
including group theory, matrix theory, numerical analysis, probability, topology,
and combinatorics. The advanced theory of graphs and their applications are well
documented (Harary, 1985; Wilson and Watkins, 1990; Chen, 1997; Deo, 2000;
Jense and Gutin, 2000; Liu and Lai, 2001; Tutte, 2001; Pemmaraju and Skiena,
2003; Gross and Yellen, 2005; Biswal, 2005).

This chapter presents the details of graph theory and the matrix approach as a
decision-making method in the manufacturing environment. To demonstrate the
approach, an example of machinability evaluation of work materials for a given
machining operation is considered. Machinability is a measure of ease with which
a work material can satisfactorily be machined. The machinability aspect is of
considerable importance for the manufacturing engineer to know in advance, so
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that the processing can be planned in an efficient manner. The study can also be a
basis for cutting tool and cutting fluid performance evaluation, and machining
parameter optimization. In the process of product design, material selection is
important for realizing the design objective, and for reducing the production cost.
The machinability of engineering materials, owing to the marked influence on the
production cost, needs to be taken into account in the product design, although it
will not always be a criterion considered top priority in the process of material
selection. If there is a finite number of work materials from among which the best
material is to be chosen, and if each work material satisfies the required design and
functionality of the product, then the main criterion to choose the work material is
its operational performance during machining, i.e., machinability.

Machinability evaluation is based on the evaluation of certain economic and
technical objectives (e.g., higher production rate, low operational cost, good
product quality, etc.), which are the consequences of the machining operation on a
given work material. Machining process output variables (e.g., cutting tool life,
cutting tool wear, cutting forces, power consumption, processed surface finish,
processed dimensional accuracy, efc.) are nothing but the behavioral properties of
the work materials during machining operations in terms of economic and technical
consequences and are directly related to machining operations, and hence to
machinability. Thus, the machining process output variables are the pertinent and
most commonly accepted measures of machinability, and are also called pertinent
machinability attributes.

2.2 Machinability Attributes Digraph

A directed graph (or a digraph) is nothing but a graph with directed edges. A
machinability attributes digraph models the machinability attributes and their
interrelationship for a given machining operation. This digraph consists of nodes
and edges. A node {V;} represents presence or measure of an i-th machinability
attribute. The number of nodes considered is equal to the number of machinability
attributes considered for a given machining operation. The directed edge represents
the relative importance among the attributes. If node ‘i’ has a relative importance
over another anode ‘j’ in the machinability evaluation of work materials for the
given machining operation, then a directed edge or arrow is drawn from node i to
node j (i.e., ;). If j has relative importance over i, then the directed edge or arrow
is drawn from node j to node i (i.e., €;).

To demonstrate a machinability attributes digraph, an example of
machinability evaluation of work materials in cylindrical grinding operation is
considered. Grinding is a machining process of material removal in the form of
small chips by the mechanical action of abrasive particles bonded together in a
grinding wheel. In this operation, wheel wear is most important, so as to reduce the
cost of production. The wheel wear is measured in terms of a ratio known as
‘grinding ratio’, which is defined as the ratio of amount of work material removed
to the amount of wheel wear. Higher values of grinding ratio are desired for
economic reasons. Two components of the cutting force, namely, normal force and
tangential force, significantly affect the grinding process. Higher values of normal
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force increase the roughness of the processed surfaces, and the geometric and
dimensional inaccuracy of the processed parts. Tangential force affects the rating
of the motors driving the wheel and the work piece, and higher values of tangential
force mean increased power consumption. The grinding process imparts high-grade
surface finish and good dimensional accuracy to the job. However, the temperature
encountered in the grinding process is very high, and adversely affects the process.
So, every care is to be taken to reduce the grinding temperature. All these variables
described are the machining process output variables and are the pertinent
machinability attributes and these attributes refer to the performance of work
material during machining operations in terms of technical and economic
consequences, and can be used for objective comparison. A work material is said to
possess good machinability in cylindrical grinding operation if it offers higher
grinding ratio, and lower values of normal force, tangential force, surface
roughness, dimensional inaccuracy, and grinding temperature.

Based on the above discussion, the machinability attributes considered for the
cylindrical grinding operation are: grinding ratio (GR), normal force (NF),
tangential force (TF), surface finish (SF), dimensional accuracy of the produced
job (DA), and grinding temperature (GT). A machinability attributes digraph for
the cylindrical grinding operation is shown in Figure 2.1. As six machinability
attributes are considered here, there are six nodes in the machinability attributes
digraph with nodes 1, 2, 3, 4, 5, and 6 representing the machinability attributes GR,
NF, TF, SF, DA, and GT, respectively. The attribute GR is more important than the
other machinability attributes in cylindrical grinding. Every effort should be made
to increase the grinding ratio, as it greatly affects the cost of production. So,
directed edges are drawn for the attribute GR (i.e., node 1) to the other attributes
(i.e., nodes 2, 3, 4, 5, and 6). NF is more important than the attributes TF, SF, DA,
and GT in cylindrical grinding operation, as it affects the surface roughness, and
the geometric and dimensional accuracy of the processed parts. So, directed edges
are drawn from node 2, representing NF, to the nodes 3, 4, 5, and 6. SF is more
important than TF, so a directed edge is drawn from node 4 to node 3. DA is more
important than TF, so a directed edge is drawn from node 5 to node 3. GT is more
important than TF, SF, and DA in cylindrical grinding operation, so directed edges
are drawn from node 6 to the nodes 3, 4, and 5 representing TF, SF, and DA,
respectively.

A machinability attributes digraph gives a graphical representation of the
attributes and their relative importance for quick visual appraisal. As the number of
nodes and their interrelations increase, the digraph becomes more complex. In such
a case, the visual analysis of the digraph is expected to be difficult and complex.
To overcome this constraint, the digraph is represented in a matrix form.
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Figure 2.1. Machinability attributes digraph for the cylindrical grinding operation
(attributes: 1. grinding ratio, 2. normal force, 3. tangential force, 4. surface finish, 5.
dimensional accuracy, and 6. grinding temperature)

2.3 Matrix Representation of the Digraph

Matrix representation of the machinability attributes digraph gives one-to-one
representation. A matrix called the machinability attributes relative importance
matrix is defined. This is represented by a binary matrix (a;), where a;; represents
the relative importance between attributes i and j such that,
a; = 1, if the i-th machinability attribute is more important than the j-th
machinability attribute for a given machining operation
=0, otherwise.
It is noted that a; = 0 for all i, as an attribute can not have relative importance
over itself. The machinability attributes relative importance matrix (RIM) for the
machinability attributes digraph shown in Figure 2.1 is written as:

Attributes GR NF TF SF DA GT
GR [0 1 1 1 1 1]
NF 0 0 1 1 1 1

B= TF 0 0 0 0 0 0
SF 0 0 1 0 0 0
DA 0 0 1 0 0 0
GT 0 0 1 1 1 0

— 2.1)
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The machinability attributes relative importance matrix (RIM) is analogous to
the adjacency matrix in graph theory. It is noted from the RIM that all diagonal
elements have value 0 and all off-diagonal elements have value either 0 or 1. This
means that in this matrix only relative importance among the machinability
attributes is considered, and the measures of the machinability attributes is not
considered. To incorporate this, another matrix, called ‘characteristic machinability
attributes presence and relative importance matrix (CPRIM)’, is defined and this,
for the machinability attributes digraph of Figure 2.1, is written as C given by:

Attributes GR NF TF SF DA GT

GR [A -1 -1 -1 -1 -1
NF | 0 A -1 -1 -1 -1
C=[AIB]= TF | 0 0 A 0 0 0
SF 0 0 -1 A 0 0
DA | 0 0 -1 0 A 0
GT | 0 0 -1 -1 -1 A

— — 2

where I is an identity matrix, and A is a variable representing the measure of
the machinability attribute. Matrix C is analogous to the characteristic matrix in
graph theory. Referring to the matrix in Equation 2.2, it is noted that the value of
all diagonal elements is identical, ie., the presence or measure of each
machinability attribute is taken to be the same. In practice, this is not true. Also, the
relative importance of one machinability attribute over the other machinability
attribute, i.e., a;, may take any value other than the extreme value 0 or 1. Thus,
there is a need for considering a general attribute value representing attribute
presence or measure as well as relative importance value to develop a matrix
equation leading to a broad-based machinability evaluation. To consider these
aspects, another matrix, D, called ‘variable characteristic machinability attributes
presence and relative importance matrix (VCPRIM)’, is developed.

Attributes GR NF TF SF DA GT

GR A -an -a3 -a14 -as -ad16
NF 0 A, -3 -4 -5 -6
D =[E-F]= TF 0 0 A, 0 0 0
SF 0 0 -a43 A4 0 0
DA 0 0 -as3 0 A5 0
GT 0 0 -a63 -ag4 -ag5 A(,

— —1 23

where E is a diagonal matrix with diagonal element A; representing a variable
of presence or measure of the i-th machinablity attribute. If a machinability
attribute is excellent, then it is assigned a maximum value. If a machinability
attribute is not very significant, then it is assigned a minimum value. In general,
most of the machinability attributes are assigned intermediate values of the interval
scale, as attributes may be moderately present. These judgments are to be made
based on an appropriate test of the machinability attribute. In the absence of this
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test, a subjective value based on experience is assigned. F is a matrix of which the
off-diagonal elements are represented as ajj, instead of 1, wherever the i-th
machinability attribute has more relative importance than the j-th machinability
attribute.

It may be noted that the matrix VCPRIM considers the presence or measures
of the machinability attributes, and their relative importance for the given
machining operation. The characteristic multinomial of the matrix VCPRIM is
nothing but the determinant of the matrix VCPRIM, and may be written as:

det (D) = Al A2 A3 A4 A5 A6 (24)

Equation 2.4 contains only one term, i.e., A} A; Az A4 As Ag, which is a set of
six machinability attributes measures. It is evident that the relative importance
among the machinability attributes is not represented by this characteristic
multinomial. It is therefore necessary to look into the aspect of relative importance
representation in the machinability attributes digraph and its matrix to identify the
reasons. If the i-th machinablity attribute is more important than the j-th
machinability attribute, then a directed edge is drawn from i to j to represent this
relative importance. Similarly, if the j-th machinability attribute is more important
than the i-th machinability attribute, then a directed edge is drawn from j to i to
represent their relative importance. But if the i-th machinability attribute is less
important than the j-th machinability attribute, then no directed edge is drawn from
ito j, and vice versa. In that case, a;; (or a;;) becomes 0 in the matrix representation
of the digraph. This 0 causes many terms of the characteristic multinomial to
become 0 (as there are no relative importance loops in the corresponding
machinability attributes digraph), thus leading to the loss of a fair amount of
information useful during the machinability evaluation. Hence, the relative
importance between i, j and j, i is distributed on a scale 0 to L and is defined as:

i = L- ajj (25)

It means that a scale is adapted from 0 to L on which the relative importance
values are compared. If a; represents the relative importance of the i-th
machinability attribute over the j-th machinability attribute, then the relative
importance of the j-th machinability attribute over the i-th machinability attribute is
evaluated using Equation 2.5. The modified machinability attributes digraph
showing the presence or measures of the machinabilty attributes, and all the
possible relative importance among these is shown in Figure 2.2.
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Figure 2.2. Modified machinability attributes digraph for the cylindrical grinding operation
(attributes: 1. grinding ratio, 2. normal force, 3. tangential force, 4. surface finish, 5.
dimensional accuracy, and 6. grinding temperature)

The modified VCPRIM for this digraph for the cylindrical grinding operation
is represented as:

Attributes GR NF TF SF DA GT

GR A, - -a3 -a14 -5 -6
NF -] A, -a3 -4 -5 -2
G= TF -a3] -a32 A -a34 -a3s -a36
SF -a41 -a42 -a43 Ay -a4s -46
DA -as) -asn -as3 -as4 As -as6
GT -36] -a62 -363 -A64 -a65 Ag
— — (2.6)

where A; is the measure of the i-th machinability attribute represented by node
vi, and a;; the relative importance of the i-th machinability attribute over the j-th,
represented by the edge e;. The characteristic multinomial of this matrix G is
defined as ‘variable characteristic machinability function (VCF)’, and is written as
Equation 2.6.
6 5 6 3 4 5 6
det G)=ITA-Z X 2 X X X2 (ai)AdAARA,
i=1 =l j=i+1 k=1 I=k+1 m=l+1 n=m+1
k,l,m,n # pus
4 5 6 4 5 6
22X 2 2 X Y (%aant andai)AAnA,
=l j=itl k=j+1 =1 m=l+1 n=m+1

k,l,m,n # pus
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3 6 5 6 5 6
HX X X X 2 X (a3) (anak)AnAs
=1 j=itl k=i+l I=i+2 m=1 n=m+l
k,l,m,n # pus
3 5 6 6 5 6
22X X X 2 2 (@@ T aianagaji) AmAn]
=l j=itl k=itl I5j+1 m=1 n=m+l
k,l,m,n # pus
4 5 6 5 6 6
X X X X X 2 (@@t i) (Amam)A,
i=1 j=itl k=jtl =1 m=l+1 n=1
k,l,m,n # pus
2 s 6 6 6 6
-2 X X 2 X 2(aa@n@mdmiT Qimdmidikaia;i)An
i=1 jeit] k=itl l=it] m=j+l n=1
k,l,m,n # pus
305 6 6 5 6
+2 X 2 X 2 2Z(ajaxaud; T 212ndka;i) (mndnm)
i=] j=itl k=itl I5j+1 m=l n=mtl
k,l,m,n # pus
15 6 4 5 6
2 2 2 X2 2(a3)3k T 2ikakaji)(AmAmnanl T AndnmAml)
i=1 j=itl k=j+1 I=1 m=I+1 n=m+1
k,l,m,n # pus
1 6 3 6 5 6
'2 2 2 Z Z Z (aijaji) (aklalk) (amnanm)
i=1 j=it] k=itl I=it2 m=k+l n=k+2
k,l,m,n # pus
15 6 6 6 6
'2 Z 2 Z Z Z(aijajkaklalmamnani + ainanmamlalkakjaji)]
i=1 jeit] k=itl l=it] m=it] n=jHl
k,lm,n # pus
2.7

‘pus’ stands for ‘previously used subscripts’, i.e., in Equation 2.7, k, I, m and n
take those subscripts that are other than previously used subscripts. The
multinomial Equation 2.7 in symbolic form is a complete expression for the
considered cylindrical grinding operation, as it considers measures of the attributes
and all possible relative importance among the attributes. Mathematically, each
term is a product of six different matrix elements. If this function is interpreted
from a combinatorial point of view, it is found that different terms are the sets of
distinct diagonal elements (A;) and loops of off-diagonal elements of different sizes
(i.e., ajjdji, AijajkaAki, etc.).

The variable characteristic machinability function (VCF) contains terms
arranged in (6 + 1) groupings and these groupings represent the measures of
attributes and the relative importance loops. The first grouping represents the
measures of the machinability attributes. The second grouping is absent, as there is
no self-loop in the digraph. The third grouping contains 2-attribute relative
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importance loops and measures of four attributes. Each term of the fourth grouping
represents a set of a 3-attribute relative importance loop, or its pair, and measures
of three attributes. The fifth grouping contains two sub-groupings. Each term of the
first sub-grouping is a set of two 2-attribute relative importance loops and the
measures of two attributes. Each term of the second sub-grouping is a set of a 4-
attribute relative importance loop, or its pair, and the measures of two attributes.
The sixth grouping contains two sub-groupings. Each term of the first sub-
grouping is a set of a 3-attribute relative importance loop, or its pair, and a 2-
attribute relative importance loop and the measure of one attribute. Each term of
the second sub-grouping is a set of 5-attribute relative importance loop, or its pair,
and the measure of one attribute. The seventh grouping contains four sub-
groupings. Each term of the first sub-grouping is a set of a 4-attribute relative
importance loop, or its pair, and a 2-attribute relative importance loop. Each term
of the second sub-grouping is a set of a 3-attribute relative importance loop, or its
pair, and another 3-attribute relative importance loop, or its pair. Each term of the
third sub-grouping is a set of three 2-attribute relative importance loops. Each term
of the fourth sub-grouping is a set of a 6-attribute relative importance loop, or its
pair. After identifying these combinatorial terms, and by associating a proper
physical meaning with these, a new mathematical meaning of the multinomial is
obtained.

The variable characteristic machinability function is the characteristic of the
work material, and a powerful tool for machinability evaluation. However, a close
look at the multinomial reveals that its various characteristic coefficients carry both
positive and negative signs. The variable characteristic machinability function may
not be able to provide the total objective value, when the numerical values for A;
and aj are substituted in the multinomial, because some of the information is lost
by subtraction and addition operations in the determinant function. Considering
these factors, the ‘variable permanent machinability function (VPF)’ is defined.
This function is derived from a new matrix called the ‘machinability permanent
matrix’. The machinability permanent matrix, H, for the machinability attributes
digraph (Figure 2.2) is written as Equation 2.8.

Attributes GR NF TF SF DA GT

GR A ap a3 a4 as a6
NF A A, a3 A4 s A6
H= TF a3 a3z As 34 a3s 36
SF ayy az a3 Ay ays A6
DA as; as as3 asy As asg
GT g ag) ag3 I ags Ag

— —1 2.8

The permanent of H may be called the ‘variable permanent machinability
function (VPF)’.

6 5 6 3 4 5 6
per (H) = [ma+x > 2 ¥ X > (aijaji YJAAALA,
i=1 =l j=it1 k=1 I=k+1 m=l+1 n=m+1

k,l,m,n # pus
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4 5 6 4 5 6
2 2 X 2 2 2 (apant awdgai)AAnA,
=1 j=i+tl k=j+1 1=1 m=l+1 n=m+1
k,l,m,n # pus
3 6 5 6 5 6

HX X X X 2 X (33) (awan)AnA,
=1 j=itl k=i+l I=i+2 m=1 n=m+l
k,l,m,n # pus
3 s 6 6 5 6
2 X 2 2 2 X (aajawa t+ ajandgai) AnAsl
=l jeitl k=it b5+ mel n=mtl
k,l,m,n # pus
4 5 6 5 6 6
X X X X X 2 (@3a t i) (Amam)A,
i1 j=itl k=l =L mel o=l
k,l,m,n # pus
2 s 6 6 6 6
2 2 2 X 2 2(%3Ka0@imdmit AimAmanadkaji)Ag]
i1 et k=it = mel o=l
k,l,m,n # pus
305 6 6 5 6
2 2 2 X 2 Z(@3iana; T aidikaigaji) (Amndnm)
=1 jmitl k=it 15+ m=1 neme
k,,m,n # pus
I 5 6 4 5 &
2 2 2 X2 2(aa)dk T 2ikakaji)(AmAmnan T AndnmAml)
i1 j=i+1 k=j+l I=I m=l+] n=mtl
k,l,m,n # pus
1 6 3 6 5 6
+Z Z Z 2 Z Z (aijaji) (aklalk) (amnanm)
i1 =it keitl =2 me=k+l n=ke2
k,1,m,n # pus
1 5 6 6 6 6
+Z Z Z Z z Z(aijajkaklalmamnani + ainanmamlalkakjaji)]
i1 jeit] k=i+l =it me=iel njel

k,lm,n # pus

2.9)

It may be noted that the only difference between the VPF, i.e., per (H), and the
determinant polynomial det (G), i.e., VCF, is that the former does not carry
negative signs with its terms, while both positive and negative signs appear in the
latter. Comparing Equations 2.8 and 2.9, it is noted that each term of the grouping/
sub-grouping is the same in both cases, the only difference being in the signs of the
coefficients. Both the functions are basically the same, and have the same physical
meaning, except for the difference in signs. It may be mentioned that the
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permanent is a standard matrix function, and is used in combinatorial mathematics
(Marcus and Minc, 1965; Jurkat and Ryser, 1966; Nijenhuis and Wilf, 1975).

Use of the permanent concept in machinability evaluation will help in
representing machinability attributes of work materials as obtained from
combinatorial consideration. Application of the permanent concept will lead to a
better appreciation of machinability attributes of the work materials. Moreover,
using this, no negative sign will appear in the equation, and hence no information
will be lost.

The adjacency matrix, incidence matrix, characteristic matrix, etc., could also
be used for machinability evaluation, but these matrices have their own drawbacks.
The adjacency matrix makes no provision for parallel-directed edges in both
directions (i.e., relative importance in both directions), and the elements of the
matrix are either 0 or 1. On expanding the adjacency matrix, only some numbers
can be obtained that do not reveal much physical information associated with the
machinability attributes and their relative importance. The incidence matrix
contains the elements either 0 or 1, and it requires more computer storage than
needed for an adjacency matrix, as the number of edges is usually greater than the
number of nodes. Moreover, as the incidence matrix is a non-square matrix, its
further use for machinability evaluation is not possible. The characteristic matrix is
not an invariant of the system, as a new matrix can be obtained by changing the
labeling, but one matrix can be obtained from the other by proper permutations of
rows and columns. The characteristic multinomial or characteristic function, which
is nothing but the determinant of the characteristic matrix, contains both positive
and negative signs, and may not be able to provide the total objective value when
the numerical values for A; and aj; are substituted in the multinomial, because some
of the information is lost by subtraction and addition operations in the determinant
function, as explained above. Due to these reasons, researchers have used the
permanent function of a matrix, which does not contain any negative terms, and
thus provides the complete information without any loss (Gandhi et al., 1991;
Gandhi and Agrawal, 1992, 1994; Venkatasamy and Agrawal, 1996, 1997; Rao
and Gandhi, 2001, 2002a, 2002b; Rao, 2004, 2006a, 2006b, 2006¢, 2006d; Grover
et al., 2004; Rao and Padmanabhan, 2006).

In general, if there is M number of machinability attributes, and the relative
importance exists among all the machinability attributes, then the machinability
attributes matrix, J, for the considered machinability attributes digraph is written as
Equation 2.10.

Attributes 1 2 3 - - M
1 A ap a3 - - am
2 Ay Az azs - - arm
J= 3 a3; asz As - - am
M ami ame ams - - Anm

— —(2.10)
The VPF for this matrix J contains factorial M (M!) number of terms. In sigma
form, it is written as Equation 2.11.
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M M-1 M M
per (J) = H Ai +Z Z ......... z (aijaji)AkAlAmAnAo .. ...AtAM
i=1 =l j=itl M=t+1

.., M # pus
M-2 M-1 M

M
+z Z Z .......... Z (aijajkaki + aikakjaji)AlAmAnAO cee ..AtAM

=1 j=itl k=sjtl =1 M=t+l

k, ...,M#pus
M-3 M M-1 M M
+[z z Z Z ......... Z (aijaji) (aklalk )AmAnAo . ..AtAM
i=1 j=itl k=itl 1=i+2 M=t+1
k1, ...,M#pus
M-3  M-1 M M M
+z Z z z ......... z (aijajkaklah + aﬂalkakjaji)AmAnAo .. AtAM]
=1 j=itl k=it = M=t+1
k1, ..., M # pus
M-2 M-1 M M-1 M M
+ [Z 2 z Z Z ......... Z(aijajkaki + aikakjaji)(almaml)AnAo . ..AtAM
i=1 j=i+1  k=j+l 1=1 m=h+1 M=t+1
kLm, ..., M # pus
M-4 M-1 M M M M
+ Z Z Z Z z .......... Z(aijajkaklalmami + aimamlalkakjaji)AnAo. .. ..AtAM]
=1 j=itl k=i+l 1=+l m=j+1 M=t+1
kLm, ..., M # pus
M3 M-l M M M-1M M
HE 2 22 22X 2(ajajanag + aianayaj)(Amdnm)Ao. - ... AtAy
i=1 j=it+l k=i+1 I5j+1 m=1 n=m+1 M=t+1

kLm,n, ..., M # pus
M-5 M-1 M M-2 M-1M M
+2 222X X 2 (@358 + 2ikakj2ji) (AmAmndnl T AnAnmdm) Ao AAm
i=1 j=i+1 k=j+1 I=1 m=1+1 n=m+1 M=t+1
k,l,m,n, ..., M # pus
M-5 M M-3 M M-1 M M
SO DD D VD YD SN > (aja51) (aa) (Amn@nm) Ao - -...AAMm
i=1 j=i+l k=itl 1=i+2 m=k+1 n=k+2 M=t+l
klm,n, ..., M # pus
M-5M-1 M M M M M
+Z Z Z Z Z Zn-Z(aijajkaklalmamnani + ainanmamlalkakjaji)Ao- . AtAM)]
i=1 j=it+l k=i+1 I=i+1 m=i+1 n=j+1 M=t+1
klm,n, ..., M # pus

(2.11)

‘pus’ stands for ‘previously used subscripts’, i.e., in the Equation 2.11, k, 1, m,
n, ... , M take those subscripts that are other than previously used subscripts. The
VPF contains terms arranged in (M + 1) groups, and these groups represent the
measures of attributes and the relative importance loops. The first group represents
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the measures of M attributes. The second group is absent as there is no self-loop in
the digraph. The third group contains 2-attribute relative importance loops and
measures of (M-2) attributes. Each term of the fourth group represents a set of a 3-
attribute relative importance loop, or its pair, and measures of (M-3) attributes. The
fifth group contains two sub-groups. The terms of the first sub-group is a set of two
2-attribute relative importance loops and the measures of (M-4) attributes. Each
term of second sub-group is a set of a 4-attribute relative importance loop, or its
pair, and the measures of (M-4) attributes. The sixth group contains two sub-
groups. The terms of the first sub-group is a set of a 3-attribute relative importance
loop, or its pair, and 2-attribute relative importance loop and the measures of (M-5)
attributes. Each term of the second sub-group is a set of a S-attribute relative
importance loop, or its pair, and the measures of (M-5) attributes. Similarly other
terms of the equation are defined. Thus, the VPF fully characterizes the considered
machinability evaluation problem, as it contains all possible structural components
of the attributes and their relative importance. It may be mentioned that this
equation is nothing but the determinant of an M * M matrix but considering all the
terms as positive.

The computer program written in C'* language to calculate the permanent
function of a square matrix of M * M size is given in Appendix A.

2.4 Machinability Index

The machinability index is a measure of the ease with which a work material can
satisfactorily be machined in a given machining operation. The machinability
function defined above, i.e., Equation 2.11, contains measures of attributes and
their relative importance, and is hence appropriate, and can be used for evaluation
of the machinability index. As the machinability function contains only positive
terms, higher values of A; and a;; will result in increased value of the machinability
index. To calculate this index, the required information is the values of A; and ay.

The value of A; should preferably be obtained from a standard or specific test.
If such objective value is not available, then a ranked value judgment on a scale,
e.g., 0 to 1, is adapted. Table 2.1 represents the machinability attribute on a
subjective scale. It holds for a given machining operation, some of the A; will be
subjective, and the others objective. Moreover, these objective values will have
different units. It is therefore desirable to convert, or normalize, the objective
values of A; on the same scale as the subjective values, i.e., 0 to 1. If A; has range
A; and A;, the value 0 is assigned to the lowest range value A; and 1 is assigned to
the highest range value A;,. The other, intermediate value A; of the machinability
attribute is assigned a value in between 0 and 1, as per the following:

Ai= (Aii - An) / (Aiy - A) (2.12)

Equation 2.12 is applicable for general beneficial attributes only. A beneficial
attribute (e.g., grinding ratio) is one of which higher attribute value is more
desirable for the given machining operation. A non-beneficial attribute (e.g.,
normal force) is one of which the lower attribute value is desirable. Therefore, in
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the case of non-beneficial machinability attributes, the attribute value 0, on scale 0
to 1, is assigned to the highest range value A;,, and the value 1 is assigned to the
lower range value A;. The other intermediate value Aj; of the machinability
attribute is assigned a value in between 0 and 1, as per the following:

Ai= (A - Ai) / (A - Ay) (2.13)

Alternatively, the normalized value A; can be calculated by A;; /A;, in the case
of the beneficial attribute, and by A;; /A;; in the case of the non-beneficial attribute.
This alternative method is better than the method described by Equations 2.12 and
2.13 as it does not contain ‘0’ as the normalized attribute value, and hence no
information will be lost subsequently in machinability index calculation.

The relative importance between two attributes (i.e., a;) for a given machining
operation is also assigned value on the scale 0 to 1, and is arranged into six classes.
The relative importance implies that an attribute ‘i’ is compared with another
attribute ‘j’ in terms of relative importance for the given machining operation. The
relative importance between 1, j and j, i is distributed on the scale 0 to 1, and is
defined similarly to Equation 2.5 in which L is taken as 1. If a; represents the
relative importance of the i-th attribute over the j-th attribute, then the relative
importance of the j-th attribute over the i-th attribute is evaluated using Equation
2.5. For example, if the i-th attribute is slightly more important than the j-th
attribute, then a;; = 6 and a;; = 4.

Table 2.2 aids in assigning a; values based on the above. The relative
importance is expressed in six classes, which lead to minimization of subjectivity
while deciding the relative importance between machinability attributes.

Table 2.1. Value of attribute

Subjective measure of attribute Assigned value
Exceptionally low 0.0
Extremely low 0.1
Very low 0.2
Low 0.3
Below average 0.4
Average 0.5
Above average 0.6
High 0.7
Very high 0.8
Extremely high 0.9

Exceptionally high 1.0




Graph Theory and Matrix Approach 21

Table 2.2. Relative importance of attributes

Class description Relative importance
ajj = 1- ajj

Two attributes are equally important 0.5 0.5

One attribute is slightly more important over the other 0.6 0.4

One attribute is strongly more important over the other 0.7 0.3

One attribute is very strongly important over the other 0.8 0.2

One attribute is extremely important over the other 0.9 0.1

One attribute is exceptionally more important over the other 1.0 0.0

It may be mentioned that one may choose any scale, e.g.,0to 1,0to 5, 1 to 5,
0to 10, 1 to 10, 1 to 11, 0 to 50, 0 to 100, 1 to 100, 1 to 110, 0 to 1000, 1 to 1000,
or any other scale for A; and a;;. But the final ranking will not change, as these are
relative values. It is, however, desirable to choose a lower scale for A; and a; to
obtain a manageable value of machinability index. It may be further mentioned that
the scales adapted for A; and a;; can be independent of each other. Whenever the
machinability index is calculated for a work material, only the diagonal elements
will change, i.e., (A;), and the off-diagonal elements (a;;) remain the same.

The machinability index for each material is evaluated using Equation 2.11,
and substituting the value of A; and a;. The work materials are arranged in the
descending or ascending order of the machinability index to rank these for a given
machining operation. These are called the machinability ranking values of the work
materials for the given machining operation. The work material, for which the
value of machinability index is highest, is the best choice for the machining
operation considered. However, the final decision depends on factors such as cost,
availability, environmental constraints, economical constraints, political
constraints, efc. Compromise, however, should be made to select the work material
having the highest value of machinability index.

The next section describes the identification and comparison of work
materials.

2.5 Identification and Comparison of Work Materials
2.5.1 Identification of Work Materials

The variable permanent machinability function, i.e., Equation 2.11, is useful for the
identification and comparison of work materials for a given machining operation.
The number of terms in each grouping of the machinability function for all the
work materials for a given machining operation will be the same. However, their
values will be different. This aspect is used for the purpose. Let T;; represent the
total value of terms of the j-th sub-grouping of i-th grouping of the machinability
function. In case there is no sub-grouping, then Tj;; = Tj, i.e., total value of terms of
the i-th grouping. The identification set for a work material for the given
machining operation is:
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/Ti/Ty/ T3/ T4/ Ts;+Tsy/ Ter+Tea/ ... (2.14)
Two work materials can be compared using Equation 2.14.

2.5.2 Comparison of Work Materials

In general, two work materials are never identical from the performance (i.e.,
machinability) point of view. If two work materials are similar, then they must be
similar in performance, and vice versa. Comparison of two work materials is also
carried out by evaluating the coefficient of similarity/dissimilarity based on the
numerical value of the terms of the machinability function in its grouping/sub-
grouping. The coefficient of similarity/dissimilarity lies in the range 0 — 1. If two
work materials are of similar performance, then the coefficient of similarity is 1
and coefficient of dissimilarity is 0. In the same manner, if two work materials are
of dissimilar performance, then the coefficient of dissimilarity is 1 and coefficient
of similarity is 0. Based on performance dissimilarity, the coefficient of
dissimilarity for two work materials is proposed as Equation 2.15.

M-I M
Ca=(1/Q) ( izl j:ZiH\vij) (2.15)
M-1 M M-l M
where, Q = maximumof ) > Tjand ) > T
S =] =1 j=n

Tj and T’;; denote the values of the terms for the machinability function of the
two work materials under comparison, and y;; = | T; - T’ | . It may be noted that
the absolute difference between the values of the terms for the machinability
function of the two work materials is considered for proposing Cy. The coefficient
of similarity is proposed as:

Co=1-Cq (2.16)

Equations 2.15 and 2.16 are useful for comparing two work materials, based
upon their performance in a given machining operation. The coefficients of
similarity and dissimilarity, and the identification sets are also useful for work
materials documentation, and for easy storage and retrieval of the work materials
data for various machining operations.

Thus, graph theory and the matrix approach can be used as a decision-making
method for choosing an appropriate alternative work material from amongst the
given alternatives, based on machinability. The proposed method offers a general
procedure that can be used for any type of decision-making problem involving any
number of selection attributes and alternatives. The next section describes the
general methodology of graph theory and matrix approach as a decision-making
method.
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2.6 Methodology of GTMA as a Decision- making Method

The main steps are given below:

Step 1: Identify the pertinent attributes and the alternatives involved in the
decision-making problem under consideration. Obtain the values of the attributes
(Aj) and their relative importance (a;). An objective or subjective value, or its
range, may be assigned to each identified attribute as a limiting value or threshold
value for its acceptance for the considered decision-making problem. An
alternative with each of its selection attributes, meeting the acceptance value, may
be short-listed. After short-listing the alternatives, the main task in choosing the
alternative is to see how it serves the considered attributes.

Step 2:

1. Develop the attributes digraph considering the identified pertinent
attributes and their relative importance. The number of nodes shall be
equal to the number of attributes considered in Step 1 above. The edges
and their directions will be decided upon based on the interrelations
among the attributes (a;j). Refer to Section 2.2 for details.

2. Develop the attributes matrix for the attributes digraph. This will be the
M*M matrix with diagonal elements as A; and off-diagonal elements as
a;i. Refer to Section 2.3 for details.

3. Obtain the permanent function for the attributes matrix, on the lines of
Equation 2.11.

4. Substitute the values of A; and aj;j, obtained in step 1, in Equation 2.11
above to evaluate the index for the short-listed alternatives.

5. Arrange the alternatives in the descending order of the index. The
alternative having the highest value of index is the best choice for the
decision-making problem under consideration.

6. Obtain the identification set for each alternative, using Equation 2.14.
Refer to Section 2.5 for details.

7. Evaluate the coefficients of dissimilarity and similarity using Equations
2.15 and 2.16. List also the values of the coefficients for all possible
combinations.

8. Document the results for future analysis/reference.

Step 3: Take a final decision, keeping practical considerations in mind. All
possible constraints likely to be experienced by the user are looked into during this
stage. These include constraints such as: availability or assured supply,
management constraints, political constraints, economic constraints, environmental
constraints, etc. However, compromise may be made in favor of an alternative with
a higher index.

From the above, it is clear that the graph theory and matrix approach as a
decision-making method is relatively new, and offers a generic, simple, easy, and
convenient decision-making method that involves less computation. The method
lays emphasis on decision-making methodology, gives much attention to the issues
of identifying the attributes, and to associating the alternatives with the attributes,
etc. The method enables a more critical analysis and any number of objective and
subjective attributes can be considered. In the permanent procedure, even a small
variation in attributes leads to a significant difference in the selection index, and
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hence it is easy to rank the alternatives in the descending order, with clear-cut
difference in the selection index. Further, the proposed procedure not only provides
the analysis of alternatives, but also enables the visualization of various attributes
present and their interrelations, using graphical representation. The measures of the
attributes and their relative importance are used together to rank the alternatives,
and hence provides a better evaluation of the alternatives. The permanent concept
fully characterizes the considered selection problem, as it contains all possible
structural components of the attributes and their relative importance.

The decision-making capability of graph theory and the matrix approach can
be utilized for making decisions in the manufacturing environment, and Chapters
5-30 of this book present those details.

The next chapter gives an introduction to the multiple attribute decision-
making methods.
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