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__________________________________________________________________ 
 
Graph Theory and Matrix Approach 
as a Decision- aking Method 
 
 
 
 
 
 
 
 
 
 
2.1 Introduction 
 
A graph G = (V, E) consists of a set of objects V = {v1, v2, ….} called vertices or 
nodes, and another set E = {e1, e2, ….}, of which the elements are called edges, 
such that each edge ek is identified with a pair of vertices. The vertices vi and vj 
associated with edge ek are called the end vertices of ek. The most common 
representation of a graph is by means of a diagram, in which the vertices are 
represented by small points or circles, and each edge as a line segment joining its 
end vertices. 

The application of graph theory was known centuries ago, when the long-
standing problem of the Konigsberg bridge was solved by Leonhard Euler in 1736 
by means of a graph. Since then, graph theory has proved its mettle in various 
fields of science and technology such as physics, chemistry, mathematics, 
communication science, computer technology, electrical engineering, sociology, 
economics, operations research, linguistics, internet, etc. Graph theory has served 
an important purpose in the modeling of systems, network analysis, functional 
representation, conceptual modeling, diagnosis, etc. Graph theory is not only 
effective in dealing with the structure (physical or abstract) of the system, 
explicitly or implicitly, but also useful in handling problems of structural 
relationship. The theory is intimately related to many branches of mathematics 
including group theory, matrix theory, numerical analysis, probability, topology, 
and combinatorics. The advanced theory of graphs and their applications are well 
documented (Harary, 1985; Wilson and Watkins, 1990; Chen, 1997; Deo, 2000; 
Jense and Gutin, 2000; Liu and Lai, 2001; Tutte, 2001; Pemmaraju and Skiena, 
2003; Gross and Yellen, 2005; Biswal, 2005).  

This chapter presents the details of graph theory and the matrix approach as a 
decision-making method in the manufacturing environment. To demonstrate the 
approach, an example of machinability evaluation of work materials for a given 
machining operation is considered. Machinability is a measure of ease with which 
a work material can satisfactorily be machined. The machinability aspect is of 
considerable importance for the manufacturing engineer to know in advance, so 
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that the processing can be planned in an efficient manner. The study can also be a 
basis for cutting tool and cutting fluid performance evaluation, and machining 
parameter optimization. In the process of product design, material selection is 
important for realizing the design objective, and for reducing the production cost. 
The machinability of engineering materials, owing to the marked influence on the 
production cost, needs to be taken into account in the product design, although it 
will not always be a criterion considered top priority in the process of material 
selection. If there is a finite number of work materials from among which the best 
material is to be chosen, and if each work material satisfies the required design and 
functionality of the product, then the main criterion to choose the work material is 
its operational performance during machining, i.e., machinability. 

Machinability evaluation is based on the evaluation of certain economic and 
technical objectives (e.g., higher production rate, low operational cost, good 
product quality, etc.), which are the consequences of the machining operation on a 
given work material. Machining process output variables (e.g., cutting tool life, 
cutting tool wear, cutting forces, power consumption, processed surface finish, 
processed dimensional accuracy, etc.) are nothing but the behavioral properties of 
the work materials during machining operations in terms of economic and technical 
consequences and are directly related to machining operations, and hence to 
machinability. Thus, the machining process output variables are the pertinent and 
most commonly accepted measures of machinability, and are also called pertinent 
machinability attributes. 
 
 
2.2 Machinability Attributes Digraph 
 
A directed graph (or a digraph) is nothing but a graph with directed edges. A 
machinability attributes digraph models the machinability attributes and their 
interrelationship for a given machining operation. This digraph consists of nodes 
and edges. A node {Vi} represents presence or measure of an i-th machinability 
attribute. The number of nodes considered is equal to the number of machinability 
attributes considered for a given machining operation. The directed edge represents 
the relative importance among the attributes. If node ‘i’ has a relative importance 
over another anode ‘j’ in the machinability evaluation of work materials for the 
given machining operation, then a directed edge or arrow is drawn from node i to 
node j (i.e., eij). If j has relative importance over i, then the directed edge or arrow 
is drawn from node j to node i (i.e., eji).  

To demonstrate a machinability attributes digraph, an example of 
machinability evaluation of work materials in cylindrical grinding operation is 
considered. Grinding is a machining process of material removal in the form of 
small chips by the mechanical action of abrasive particles bonded together in a 
grinding wheel. In this operation, wheel wear is most important, so as to reduce the 
cost of production. The wheel wear is measured in terms of a ratio known as 
‘grinding ratio’, which is defined as the ratio of amount of work material removed 
to the amount of wheel wear. Higher values of grinding ratio are desired for 
economic reasons. Two components of the cutting force, namely, normal force and 
tangential force, significantly affect the grinding process. Higher values of normal 
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force increase the roughness of the processed surfaces, and the geometric and 
dimensional inaccuracy of the processed parts. Tangential force affects the rating 
of the motors driving the wheel and the work piece, and higher values of tangential 
force mean increased power consumption. The grinding process imparts high-grade 
surface finish and good dimensional accuracy to the job. However, the temperature 
encountered in the grinding process is very high, and adversely affects the process. 
So, every care is to be taken to reduce the grinding temperature. All these variables 
described are the machining process output variables and are the pertinent 
machinability attributes and these attributes refer to the performance of work 
material during machining operations in terms of technical and economic 
consequences, and can be used for objective comparison. A work material is said to 
possess good machinability in cylindrical grinding operation if it offers higher 
grinding ratio, and lower values of normal force, tangential force, surface 
roughness, dimensional inaccuracy, and grinding temperature.  

Based on the above discussion, the machinability attributes considered for the 
cylindrical grinding operation are: grinding ratio (GR), normal force (NF), 
tangential force (TF), surface finish (SF), dimensional accuracy of the produced 
job (DA), and grinding temperature (GT). A machinability attributes digraph for 
the cylindrical grinding operation is shown in Figure 2.1. As six machinability 
attributes are considered here, there are six nodes in the machinability attributes 
digraph with nodes 1, 2, 3, 4, 5, and 6 representing the machinability attributes GR, 
NF, TF, SF, DA, and GT, respectively. The attribute GR is more important than the 
other machinability attributes in cylindrical grinding. Every effort should be made 
to increase the grinding ratio, as it greatly affects the cost of production. So, 
directed edges are drawn for the attribute GR (i.e., node 1) to the other attributes 
(i.e., nodes 2, 3, 4, 5, and 6). NF is more important than the attributes TF, SF, DA, 
and GT in cylindrical grinding operation, as it affects the surface roughness, and 
the geometric and dimensional accuracy of the processed parts. So, directed edges 
are drawn from node 2, representing NF, to the nodes 3, 4, 5, and 6. SF is more 
important than TF, so a directed edge is drawn from node 4 to node 3. DA is more 
important than TF, so a directed edge is drawn from node 5 to node 3. GT is more 
important than TF, SF, and DA in cylindrical grinding operation, so directed edges 
are drawn from node 6 to the nodes 3, 4, and 5 representing TF, SF, and DA, 
respectively. 

A machinability attributes digraph gives a graphical representation of the 
attributes and their relative importance for quick visual appraisal. As the number of 
nodes and their interrelations increase, the digraph becomes more complex. In such 
a case, the visual analysis of the digraph is expected to be difficult and complex. 
To overcome this constraint, the digraph is represented in a matrix form. 
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Figure 2.1. Machinability attributes digraph for the cylindrical grinding operation 
(attributes: 1. grinding ratio, 2. normal force, 3. tangential force, 4. surface finish, 5. 
dimensional accuracy, and 6. grinding temperature) 
 

 
2.3 Matrix Representation of the Digraph 
 
Matrix representation of the machinability attributes digraph gives one-to-one 
representation. A matrix called the machinability attributes relative importance 
matrix is defined. This is represented by a binary matrix (aij), where aij

 represents 
the relative importance between attributes i and j such that,  

aij 
 = 1,  if the i-th machinability attribute is more important than the j-th 

machinability attribute for a given machining operation 
         = 0, otherwise. 

It is noted that aii = 0 for all i, as an attribute can not have relative importance 
over itself. The machinability attributes relative importance matrix (RIM) for the 
machinability attributes digraph shown in Figure 2.1 is written as: 

 
Attributes      GR NF TF SF DA GT 

        GR        0 1 1 1 1 1 
        NF      0 0 1 1 1 1 
B = TF    0 0 0 0 0 0  
             SF   0 0 1 0 0 0 
             DA       0 0 1 0 0 0 
           GT    0 0 1 1 1 0   
                                                                                                                              (2.1) 



Graph Theory and Matrix Approach        11 

The machinability attributes relative importance matrix (RIM) is analogous to 
the adjacency matrix in graph theory. It is noted from the RIM that all diagonal 
elements have value 0 and all off-diagonal elements have value either 0 or 1. This 
means that in this matrix only relative importance among the machinability 
attributes is considered, and the measures of the machinability attributes is not 
considered. To incorporate this, another matrix, called ‘characteristic machinability 
attributes presence and relative importance matrix (CPRIM)’, is defined and this, 
for the machinability attributes digraph of Figure 2.1, is written as C given by:  

 
         Attributes        GR NF TF SF DA GT 
              GR        A -1 -1 -1 -1 -1 
              NF      0 A  -1 -1 -1 -1 
C = [AI-B] = TF    0 0 A  0 0 0  
              SF   0 0 -1 A  0 0 
              DA       0 0 -1 0 A  0 
              GT    0 0 -1 -1 -1 A    
                                                                                                                (2.2) 

 
where I is an identity matrix, and A is a variable representing the measure of 

the machinability attribute. Matrix C is analogous to the characteristic matrix in 
graph theory. Referring to the matrix in Equation 2.2, it is noted that the value of 
all diagonal elements is identical, i.e., the presence or measure of each 
machinability attribute is taken to be the same. In practice, this is not true. Also, the 
relative importance of one machinability attribute over the other machinability 
attribute, i.e., aij, may take any value other than the extreme value 0 or 1. Thus, 
there is a need for considering a general attribute value representing attribute 
presence or measure as well as relative importance value to develop a matrix 
equation leading to a broad-based machinability evaluation. To consider these 
aspects, another matrix, D, called ‘variable characteristic machinability attributes 
presence and relative importance matrix (VCPRIM)’, is developed.  

 
         Attributes        GR NF TF SF DA GT 
              GR        A1 -a12 -a13 -a14 -a15 -a16 
              NF      0 A2  -a23 -a24 -a25 -a26 
D = [E-F] = TF    0 0 A3  0 0 0  
              SF   0 0 -a43 A4  0 0 
              DA       0 0 -a53 0 A5  0 
              GT    0 0 -a63 -a64 -a65 A6    
                                                                                                                (2.3) 
 

where E is a diagonal matrix with diagonal element Ai representing a variable 
of presence or measure of the i-th machinablity attribute. If a machinability 
attribute is excellent, then it is assigned a maximum value. If a machinability 
attribute is not very significant, then it is assigned a minimum value. In general, 
most of the machinability attributes are assigned intermediate values of the interval 
scale, as attributes may be moderately present. These judgments are to be made 
based on an appropriate test of the machinability attribute. In the absence of this 
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test, a subjective value based on experience is assigned. F is a matrix of which the 
off-diagonal elements are represented as aij, instead of 1, wherever the i-th 
machinability attribute has more relative importance than the j-th machinability 
attribute. 

It may be noted that the matrix VCPRIM considers the presence or measures 
of the machinability attributes, and their relative importance for the given 
machining operation. The characteristic multinomial of the matrix VCPRIM is 
nothing but the determinant of the matrix VCPRIM, and may be written as:  

 
det (D) = A1 A2 A3 A4 A5 A6                                                                                 (2.4) 

 
Equation 2.4 contains only one term, i.e., A1 A2 A3 A4 A5 A6, which is a set of 

six machinability attributes measures. It is evident that the relative importance 
among the machinability attributes is not represented by this characteristic 
multinomial. It is therefore necessary to look into the aspect of relative importance 
representation in the machinability attributes digraph and its matrix to identify the 
reasons. If the i-th machinablity attribute is more important than the j-th 
machinability attribute, then a directed edge is drawn from i to j to represent this 
relative importance. Similarly, if the j-th machinability attribute is more important 
than the i-th machinability attribute, then a directed edge is drawn from j to i to 
represent their relative importance. But if the i-th machinability attribute is less 
important than the j-th machinability attribute, then no directed edge is drawn from 
i to j, and vice versa. In that case, aij (or aji) becomes 0 in the matrix representation 
of the digraph. This 0 causes many terms of the characteristic multinomial to 
become 0 (as there are no relative importance loops in the corresponding 
machinability attributes digraph), thus leading to the loss of a fair amount of 
information useful during the machinability evaluation. Hence, the relative 
importance between i, j and j, i is distributed on a scale 0 to L and is defined as:  

 
aji

  = L - aij
                                                                                                             (2.5) 

 
It means that a scale is adapted from 0 to L on which the relative importance 

values are compared. If aij
 represents the relative importance of the i-th 

machinability attribute over the j-th machinability attribute, then the relative 
importance of the j-th machinability attribute over the i-th machinability attribute is 
evaluated using Equation 2.5. The modified machinability attributes digraph 
showing the presence or measures of the machinabilty attributes, and all the 
possible relative importance among these is shown in Figure 2.2.  
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Figure 2.2. Modified machinability attributes digraph for the cylindrical grinding operation 
(attributes: 1. grinding ratio, 2. normal force, 3. tangential force, 4. surface finish, 5. 
dimensional accuracy, and 6. grinding temperature) 
 

The modified VCPRIM for this digraph for the cylindrical grinding operation 
is represented as: 

 
           Attributes        GR NF TF SF DA GT 
              GR        A1 -a12 -a13 -a14 -a15 -a16 
              NF      -a21 A2  -a23 -a24 -a25 -a26 
  G = TF    -a31 -a32 A3  -a34 -a35 -a36  
              SF   -a41 -a42 -a43 A4  -a45 -a46 
              DA       -a51 -a52 -a53 -a54 A5  -a56 
         GT    -a61 -a62 -a63 -a64 -a65 A6    
                                                                                                                (2.6) 
        
       where Ai is the measure of the i-th machinability attribute represented by node 
vi, and aij the relative importance of the i-th machinability attribute over the j-th, 
represented by the edge eij. The characteristic multinomial of this matrix G is 
defined as ‘variable characteristic machinability function (VCF)’, and is written as 
Equation 2.6. 
                          6              5         6         3         4          5            6 

det (G) = ∏ Ai -∑    ∑     ∑    ∑     ∑      ∑    (aijaji )AkAlAmAn 

                       i =1           i=1    j=i+1   k=1   l=k+1  m=l+1  n=m+1                                                            
k,l,m,n ≠ pus 

               4         5         6          4           5          6                 
            -∑     ∑     ∑     ∑     ∑     ∑   (aijajkaki + aikakjaji)AlAmAn 

                    i=1    j=i+1  k=j+1     l=1     m=l+1  n=m+1                                                                            
 k,l,m,n ≠ pus 
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                         3         6         5          6           5         6 
            +[∑    ∑     ∑     ∑     ∑     ∑   (aijaji) (aklalk )AmAn 

                       i=1    j=i+1  k=i+1  l=i+2      m=1    n=m+1                                                             
k,l,m,n ≠ pus 

               3           5            6          6        5      6 
            -∑      ∑       ∑     ∑    ∑   ∑ (aijajkaklali + ailalkakjaji)AmAn] 
             i=1    j=i+1       k=i+1  l=j+1  m=1   n=m+1                                                                                                                           

k,l,m,n ≠ pus 
                 4          5          6         5       6          6 
            + [∑     ∑     ∑     ∑   ∑     ∑ (aijajkaki + aikakjaji) (almaml)An 
                 i=1   j=i+1     k=j+1   l=1    m=l+1  n=1                                                                                                                   

k,l,m,n ≠ pus 
               2        5          6          6         6          6 
            - ∑    ∑    ∑     ∑     ∑     ∑ (aijajkaklalmami+ aimamlalkakjaji)An]  
                     i=1    j=i+1  k=i+1  l=i+1  m=j+1   n=1                                                                                                                                                        

k,l,m,n ≠ pus 
                           3         5         6            6          5         6 
            + [∑    ∑     ∑      ∑     ∑    ∑(aijajkaklali + ailalkakjaji) (amnanm) 
                 i=1    j=i+1    k=i+1  l=j+1   m=1   n=m+1   

  k,l,m,n ≠ pus 
                        1        5          6        4      5          6 
             + ∑    ∑    ∑    ∑  ∑     ∑(aijajkaki + aikakjaji)(almamnanl + alnanmaml)  
                       i=1  j=i+1   k=j+1    l=1  m=l+1  n=m+1 

k,l,m,n ≠ pus 
                        1       6          3         6           5              6 
             -∑   ∑      ∑    ∑      ∑       ∑ (aijaji) (aklalk ) (amnanm ) 

                       i=1  j=i+1  k=i+1    l=i+2   m=k+1   n=k+2                                                             
k,l,m,n ≠ pus 

               1        5          6          6           6          6 
             -∑    ∑     ∑     ∑     ∑     ∑(aijajkaklalmamnani + ainanmamlalkakjaji)] 
               i=1   j=i+1  k=i+1  l=i+1   m=i+1 n=j+1 

 k,l,m,n ≠ pus 
                                                                                                                              (2.7) 

‘pus’ stands for ‘previously used subscripts’, i.e., in Equation 2.7, k, l, m and n 
take those subscripts that are other than previously used subscripts. The 
multinomial Equation 2.7 in symbolic form is a complete expression for the 
considered cylindrical grinding operation, as it considers measures of the attributes 
and all possible relative importance among the attributes. Mathematically, each 
term is a product of six different matrix elements. If this function is interpreted 
from a combinatorial point of view, it is found that different terms are the sets of 
distinct diagonal elements (Ai) and loops of off-diagonal elements of different sizes 
(i.e., aijaji, aijajkaki, etc.). 

The variable characteristic machinability function (VCF) contains terms 
arranged in (6 + 1) groupings and these groupings represent the measures of 
attributes and the relative importance loops. The first grouping represents the 
measures of the machinability attributes. The second grouping is absent, as there is 
no self-loop in the digraph. The third grouping contains 2-attribute relative 
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importance loops and measures of four attributes. Each term of the fourth grouping 
represents a set of a 3-attribute relative importance loop, or its pair, and measures 
of three attributes. The fifth grouping contains two sub-groupings. Each term of the 
first sub-grouping is a set of two 2-attribute relative importance loops and the 
measures of two attributes. Each term of the second sub-grouping is a set of a 4-
attribute relative importance loop, or its pair, and the measures of two attributes. 
The sixth grouping contains two sub-groupings. Each term of the first sub-
grouping is a set of a 3-attribute relative importance loop, or its pair, and a 2- 
attribute relative importance loop and the measure of one attribute. Each term of 
the second sub-grouping is a set of 5-attribute relative importance loop, or its pair, 
and the measure of one attribute. The seventh grouping contains four sub-
groupings. Each term of the first sub-grouping is a set of a 4-attribute relative 
importance loop, or its pair, and a 2-attribute relative importance loop. Each term 
of the second sub-grouping is a set of a 3-attribute relative importance loop, or its 
pair, and another 3-attribute relative importance loop, or its pair. Each term of the 
third sub-grouping is a set of three 2-attribute relative importance loops. Each term 
of the fourth sub-grouping is a set of a 6-attribute relative importance loop, or its 
pair. After identifying these combinatorial terms, and by associating a proper 
physical meaning with these, a new mathematical meaning of the multinomial is 
obtained. 

The variable characteristic machinability function is the characteristic of the 
work material, and a powerful tool for machinability evaluation. However, a close 
look at the multinomial reveals that its various characteristic coefficients carry both 
positive and negative signs. The variable characteristic machinability function may 
not be able to provide the total objective value, when the numerical values for Ai

 

and aij
 are substituted in the multinomial, because some of the information is lost 

by subtraction and addition operations in the determinant function. Considering 
these factors, the ‘variable permanent machinability function (VPF)’ is defined. 
This function is derived from a new matrix called the ‘machinability permanent 
matrix’. The machinability permanent matrix, H, for the machinability attributes 
digraph (Figure 2.2) is written as Equation 2.8. 

 
     Attributes        GR NF TF SF DA GT 

              GR        A1 a12 a13 a14 a15 a16 
              NF      a21 A2  a23 a24 a25 a26 
  H= TF    a31 a32 A3  a34 a35 a36  
              SF   a41 a42 a43 A4  a45 a46 
              DA       a51 a52 a53 a54 A5  a56 
         GT    a61 a62 a63 a64 a65 A6    
                                                                                                             (2.8) 
       

The permanent of H may be called the ‘variable permanent machinability 
function (VPF)’. 
                          6              5         6         3         4          5            6 

per (H) = ∏ Ai +∑    ∑     ∑    ∑     ∑      ∑    (aijaji )AkAlAmAn 

                       i =1           i=1    j=i+1   k=1   l=k+1  m=l+1  n=m+1                                                            
k,l,m,n ≠ pus 
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               4           5         6          4           5          6                 
            +∑     ∑     ∑     ∑     ∑     ∑   (aijajkaki + aikakjaji)AlAmAn 

                    i=1    j=i+1  k=j+1     l=1     m=l+1  n=m+1                                                                            
 k,l,m,n ≠ pus 

                         3         6         5          6           5         6 
            +[∑    ∑     ∑     ∑     ∑     ∑   (aijaji) (aklalk)AmAn 

                       i=1    j=i+1  k=i+1  l=i+2      m=1    n=m+1                                                             
k,l,m,n ≠ pus 

               3           5            6          6        5      6 
            +∑      ∑       ∑     ∑    ∑   ∑ (aijajkaklali + ailalkakjaji)AmAn] 
             i=1    j=i+1       k=i+1  l=j+1  m=1   n=m+1                                                                                                                           

k,l,m,n ≠ pus 
                 4          5          6         5       6          6 
            + [∑     ∑     ∑     ∑   ∑     ∑ (aijajkaki + aikakjaji) (almaml)An 
                 i=1   j=i+1     k=j+1   l=1    m=l+1  n=1                                                                                                                   

k,l,m,n ≠ pus 
                2        5          6          6         6          6 
            + ∑    ∑    ∑     ∑     ∑     ∑ (aijajkaklalmami+ aimamlalkakjaji)An]  
                     i=1    j=i+1  k=i+1  l=i+1  m=j+1   n=1                                                                                                                                                        

k,l,m,n ≠ pus 
                           3         5         6            6          5         6 
            + [∑    ∑     ∑      ∑     ∑    ∑(aijajkaklali + ailalkakjaji) (amnanm) 
                 i=1    j=i+1    k=i+1  l=j+1   m=1   n=m+1   

  k,l,m,n ≠ pus 
                        1        5          6        4      5          6 
             + ∑    ∑    ∑    ∑  ∑     ∑(aijajkaki + aikakjaji)(almamnanl + alnanmaml)  
                       i=1  j=i+1   k=j+1    l=1  m=l+1  n=m+1 

k,l,m,n ≠ pus 

                        1       6           3         6           5              6 
             +∑   ∑      ∑    ∑      ∑       ∑ (aijaji) (aklalk) (amnanm) 

                       i=1  j=i+1  k=i+1    l=i+2   m=k+1   n=k+2                                                             
k,l,m,n ≠ pus 

                 1        5          6         6           6          6 
             +∑    ∑     ∑     ∑     ∑     ∑(aijajkaklalmamnani + ainanmamlalkakjaji)] 
               i=1   j=i+1  k=i+1  l=i+1   m=i+1   n=j+1 

 k,l,m,n ≠ pus 
                                                                            (2.9) 

 
It may be noted that the only difference between the VPF, i.e., per (H), and the 

determinant polynomial det (G), i.e., VCF, is that the former does not carry 
negative signs with its terms, while both positive and negative signs appear in the 
latter. Comparing Equations 2.8 and 2.9, it is noted that each term of the grouping/ 
sub-grouping is the same in both cases, the only difference being in the signs of the 
coefficients. Both the functions are basically the same, and have the same physical 
meaning, except for the difference in signs. It may be mentioned that the 
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permanent is a standard matrix function, and is used in combinatorial mathematics 
(Marcus and Minc, 1965; Jurkat and Ryser, 1966; Nijenhuis and Wilf, 1975).  

Use of the permanent concept in machinability evaluation will help in 
representing machinability attributes of work materials as obtained from 
combinatorial consideration. Application of the permanent concept will lead to a 
better appreciation of machinability attributes of the work materials. Moreover, 
using this, no negative sign will appear in the equation, and hence no information 
will be lost.  

The adjacency matrix, incidence matrix, characteristic matrix, etc., could also 
be used for machinability evaluation, but these matrices have their own drawbacks. 
The adjacency matrix makes no provision for parallel-directed edges in both 
directions (i.e., relative importance in both directions), and the elements of the 
matrix are either 0 or 1. On expanding the adjacency matrix, only some numbers 
can be obtained that do not reveal much physical information associated with the 
machinability attributes and their relative importance. The incidence matrix 
contains the elements either 0 or 1, and it requires more computer storage than 
needed for an adjacency matrix, as the number of edges is usually greater than the 
number of nodes. Moreover, as the incidence matrix is a non-square matrix, its 
further use for machinability evaluation is not possible. The characteristic matrix is 
not an invariant of the system, as a new matrix can be obtained by changing the 
labeling, but one matrix can be obtained from the other by proper permutations of 
rows and columns. The characteristic multinomial or characteristic function, which 
is nothing but the determinant of the characteristic matrix, contains both positive 
and negative signs, and may not be able to provide the total objective value when 
the numerical values for Ai

 and aij are substituted in the multinomial, because some 
of the information is lost by subtraction and addition operations in the determinant 
function, as explained above. Due to these reasons, researchers have used the 
permanent function of a matrix, which does not contain any negative terms, and 
thus provides the complete information without any loss (Gandhi et al., 1991; 
Gandhi and Agrawal, 1992, 1994; Venkatasamy and Agrawal, 1996, 1997; Rao 
and Gandhi, 2001, 2002a, 2002b; Rao, 2004, 2006a, 2006b, 2006c, 2006d; Grover 
et al., 2004; Rao and Padmanabhan, 2006). 

In general, if there is M number of machinability attributes, and the relative 
importance exists among all the machinability attributes, then the machinability 
attributes matrix, J, for the considered machinability attributes digraph is written as 
Equation 2.10. 

 
     Attributes        1 2 3 - - M 

              1        A1 a12 a13 - - a1M 
              2      a21 A2  a23 - - a2M 
  J= 3    a31 a32 A3  - - a3M  
              -   - - - -  - - 
              -       - - - - -  - 
         M    aM1 aM2 aM3 - - AM    
                                                                                                                            (2.10) 

The VPF for this matrix J contains factorial M (M!) number of terms. In sigma 
form, it is written as Equation 2.11. 
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                        M           M-1      M                         M                               

per (J) = ∏ Ai +∑     ∑    ………∑    (aijaji)AkAlAmAnAo …..AtAM 

                       i =1         i=1     j=i+1                   M=t+1                                                            
... , M ≠ pus 

              M-2     M-1     M                        M                  
            +∑     ∑    ∑   ..........  ∑ (aijajkaki + aikakjaji)AlAmAnAo …..AtAM 

                     i=1    j=i+1  k=j+1     l=1       M=t+1                                                                           
     k, … , M ≠ pus 

                      M- 3    M        M-1      M                     M  
            +[∑   ∑     ∑     ∑ ……… ∑  (aijaji) (aklalk )AmAnAo …..AtAM 

                       i=1    j=i+1  k=i+1  l=i+2                M=t+1                                                             
     k,l, … , M ≠ pus 

             M-3      M-1         M        M                    M                             
            +∑    ∑       ∑     ∑ ………∑ (aijajkaklali + ailalkakjaji)AmAnAo …..AtAM] 
              i=1      j=i+1      k=i+1  l=j+1           M=t+1                                                                                                                           

    k,l, ... , M ≠ pus 
               M-2     M-1        M        M-1   M                   M    
            + [∑     ∑     ∑     ∑   ∑ ………∑(aijajkaki + aikakjaji)(almaml)AnAo …..AtAM 
                   i=1   j=i+1     k=j+1   l=1  m=l+1            M=t+1                                                                                                                  

      k,l,m, ... , M ≠ pus 
               M-4   M-1    M       M        M                  M 
            + ∑   ∑    ∑     ∑    ∑ ..........∑(aijajkaklalmami + aimamlalkakjaji)AnAo…..AtAM]  
                      i=1    j=i+1  k=i+1  l=i+1  m=j+1           M=t+1                                                                                                                                               

     k,l,m, ... , M ≠ pus 
     M-3   M-1    M    M      M-1  M                    M 
            +[(∑    ∑    ∑  ∑    ∑  ∑ ………∑(aijajkaklali + ailalkakjaji)(amnanm)Ao…..AtAM 
                   i=1  j=i+1 k=i+1 l=j+1 m=1 n=m+1           M=t+1                                                                                                    

        k,l,m,n, ... , M ≠ pus 
                       M-5   M-1  M  M-2  M-1 M              M    
             + ∑   ∑  ∑ ∑  ∑   ∑….…∑(aijajkaki + aikakjaji)(almamnanl + alnanmaml)Ao..AtAM 
                      i=1 j=i+1 k=j+1 l=1 m=l+1 n=m+1   M=t+1 

      k,l,m,n, ... , M ≠ pus 
                      M-5   M         M- 3   M        M-1       M                M  
             +∑   ∑      ∑    ∑      ∑    ∑ .........∑ (aijaji) (aklalk) (amnanm) Ao …..AtAM 

                     i=1  j=i+1  k=i+1    l=i+2   m=k+1   n=k+2     M=t+1                                                     
     k,l,m,n, ... , M ≠ pus 

               M-5  M-1   M    M        M         M     M 
             +∑  ∑   ∑   ∑     ∑     ∑...∑(aijajkaklalmamnani + ainanmamlalkakjaji)Ao…..AtAM)]  
               i=1  j=i+1 k=i+1 l=i+1 m=i+1 n=j+1 M=t+1 

   k,l,m,n, ... , M ≠ pus 
  + ----------                                                                                             (2.11) 

 
‘pus’ stands for ‘previously used subscripts’, i.e., in the Equation 2.11, k, l, m, 

n, … , M take those subscripts that are other than previously used subscripts. The 
VPF contains terms arranged in (M + 1) groups, and these groups represent the 
measures of attributes and the relative importance loops. The first group represents 
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the measures of M attributes. The second group is absent as there is no self-loop in 
the digraph. The third group contains 2-attribute relative importance loops and 
measures of (M-2) attributes. Each term of the fourth group represents a set of a 3-
attribute relative importance loop, or its pair, and measures of (M-3) attributes. The 
fifth group contains two sub-groups. The terms of the first sub-group is a set of two 
2-attribute relative importance loops and the measures of (M-4) attributes. Each 
term of second sub-group is a set of a 4-attribute relative importance loop, or its 
pair, and the measures of (M-4) attributes. The sixth group contains two sub-
groups. The terms of the first sub-group is a set of a 3-attribute relative importance 
loop, or its pair, and 2-attribute relative importance loop and the measures of (M-5) 
attributes. Each term of the second sub-group is a set of a 5-attribute relative 
importance loop, or its pair, and the measures of (M-5) attributes. Similarly other 
terms of the equation are defined. Thus, the VPF fully characterizes the considered 
machinability evaluation problem, as it contains all possible structural components 
of the attributes and their relative importance. It may be mentioned that this 
equation is nothing but the determinant of an M * M matrix but considering all the 
terms as positive. 
       The computer program written in C++ language to calculate the permanent 
function of a square matrix of M * M size is given in Appendix A. 
 
 
2.4 Machinability Index 
 
The machinability index is a measure of the ease with which a work material can 
satisfactorily be machined in a given machining operation. The machinability 
function defined above, i.e., Equation 2.11, contains measures of attributes and 
their relative importance, and is hence appropriate, and can be used for evaluation 
of the machinability index. As the machinability function contains only positive 
terms, higher values of Ai and aij will result in increased value of the machinability 
index. To calculate this index, the required information is the values of Ai and aij.  

The value of Ai
 should preferably be obtained from a standard or specific test. 

If such objective value is not available, then a ranked value judgment on a scale, 
e.g., 0 to 1, is adapted. Table 2.1 represents the machinability attribute on a 
subjective scale. It holds for a given machining operation, some of the Ai will be 
subjective, and the others objective. Moreover, these objective values will have 
different units. It is therefore desirable to convert, or normalize, the objective 
values of Ai

 on the same scale as the subjective values, i.e., 0 to 1. If Ai
 has range 

Ail and Aiu, the value 0 is assigned to the lowest range value Ail and 1 is assigned to 
the highest range value Aiu. The other, intermediate value Aii of the machinability 
attribute is assigned a value in between 0 and 1, as per the following:  
 
Ai

 = (Aii - Ail) / (Aiu - Ail)                                                       (2.12) 
 

Equation 2.12 is applicable for general beneficial attributes only. A beneficial 
attribute (e.g., grinding ratio) is one of which higher attribute value is more 
desirable for the given machining operation. A non-beneficial attribute (e.g., 
normal force) is one of which the lower attribute value is desirable. Therefore, in 
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the case of non-beneficial machinability attributes, the attribute value 0, on scale 0 
to 1, is assigned to the highest range value Aiu, and the value 1 is assigned to the 
lower range value Ail. The other intermediate value Aii of the machinability 
attribute is assigned a value in between 0 and 1, as per the following:  
 
Ai

 = (Aiu - Aii) / (Aiu - Ail)                                                        (2.13) 
 

Alternatively, the normalized value Ai
 can be calculated by Aii /Aiu in the case 

of the beneficial attribute, and by Ail /Aii in the case of the non-beneficial attribute. 
This alternative method is better than the method described by Equations 2.12 and 
2.13 as it does not contain ‘0’ as the normalized attribute value, and hence no 
information will be lost subsequently in machinability index calculation.   

The relative importance between two attributes (i.e., aij) for a given machining 
operation is also assigned value on the scale 0 to 1, and is arranged into six classes. 
The relative importance implies that an attribute ‘i’ is compared with another 
attribute ‘j’ in terms of relative importance for the given machining operation. The 
relative importance between i, j and j, i is distributed on the scale 0 to 1, and is 
defined similarly to Equation 2.5 in which L is taken as 1. If aij represents the 
relative importance of the i-th attribute over the j-th attribute, then the relative 
importance of the j-th attribute over the i-th attribute is evaluated using Equation 
2.5. For example, if the i-th attribute is slightly more important than the j-th 
attribute, then aij = 6 and aji = 4.  

Table 2.2 aids in assigning aij values based on the above. The relative 
importance is expressed in six classes, which lead to minimization of subjectivity 
while deciding the relative importance between machinability attributes. 
 

Table 2.1. Value of attribute 
________________________________________________________________ 
Subjective measure of attribute                     Assigned value 
________________________________________________________________ 
Exceptionally low     0.0 
Extremely low     0.1 
Very low      0.2 
Low      0.3 
Below average     0.4 
Average                  0.5 
Above average      0.6 
High      0.7 
Very high      0.8 
Extremely high              0.9 
Exceptionally high                 1.0 
________________________________________________________________ 
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Table 2.2. Relative importance of attributes 
______________________________________________________________________ 
Class description                              Relative importance 

aij aji = 1 - aij 
______________________________________________________________________ 
Two attributes are equally important    0.5 0.5 
One attribute is slightly more important over the other  0.6 0.4 
One attribute is strongly more important over the other  0.7 0.3 
One attribute is very strongly important over the other  0.8 0.2 
One attribute is extremely important over the other  0.9 0.1 
One attribute is exceptionally more important over the other 1.0 0.0 
______________________________________________________________________ 
 

It may be mentioned that one may choose any scale, e.g., 0 to 1, 0 to 5, 1 to 5, 
0 to 10, 1 to 10, 1 to 11, 0 to 50, 0 to 100, 1 to 100, 1 to 110, 0 to 1000, 1 to 1000, 
or any other scale for Ai

 and aij. But the final ranking will not change, as these are 
relative values. It is, however, desirable to choose a lower scale for Ai

 and aij
 to 

obtain a manageable value of machinability index. It may be further mentioned that 
the scales adapted for Ai

 and aij can be independent of each other. Whenever the 
machinability index is calculated for a work material, only the diagonal elements 
will change, i.e., (Ai), and the off-diagonal elements (aij) remain the same. 

The machinability index for each material is evaluated using Equation 2.11, 
and substituting the value of Ai and aij. The work materials are arranged in the 
descending or ascending order of the machinability index to rank these for a given 
machining operation. These are called the machinability ranking values of the work 
materials for the given machining operation. The work material, for which the 
value of machinability index is highest, is the best choice for the machining 
operation considered. However, the final decision depends on factors such as cost, 
availability, environmental constraints, economical constraints, political 
constraints, etc. Compromise, however, should be made to select the work material 
having the highest value of machinability index.  

The next section describes the identification and comparison of work 
materials. 
 
 
2.5 Identification and Comparison of Work Materials 
 
2.5.1 Identification of Work Materials 
 
The variable permanent machinability function, i.e., Equation 2.11, is useful for the 
identification and comparison of work materials for a given machining operation. 
The number of terms in each grouping of the machinability function for all the 
work materials for a given machining operation will be the same. However, their 
values will be different. This aspect is used for the purpose. Let Tij represent the 
total value of terms of the j-th sub-grouping of i-th grouping of the machinability 
function. In case there is no sub-grouping, then Tij = Ti, i.e., total value of terms of 
the i-th grouping. The identification set for a work material for the given 
machining operation is: 
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/ T1 / T2 / T3 / T4 / T51 + T52 / T61 + T62 / ………            (2.14) 
Two work materials can be compared using Equation 2.14. 

 
2.5.2 Comparison of Work Materials 
 
In general, two work materials are never identical from the performance (i.e., 
machinability) point of view. If two work materials are similar, then they must be 
similar in performance, and vice versa. Comparison of two work materials is also 
carried out by evaluating the coefficient of similarity/dissimilarity based on the 
numerical value of the terms of the machinability function in its grouping/sub-
grouping. The coefficient of similarity/dissimilarity lies in the range 0 – 1. If two 
work materials are of similar performance, then the coefficient of similarity is 1 
and coefficient of dissimilarity is 0. In the same manner, if two work materials are 
of dissimilar performance, then the coefficient of dissimilarity is 1 and coefficient 
of similarity is 0. Based on performance dissimilarity, the coefficient of 
dissimilarity for two work materials is proposed as Equation 2.15. 
                    M-1    M                                                                                                                           
Cd = (1/Q) ( ∑    ∑ ψij)                                                                                       (2.15) 
                      i=1    j=i+1 

                                           M-1    M                    M-1    M                                                                                                                                                                          
where, Q = maximum of  ∑    ∑ Tij and  ∑    ∑ T’ij  
                                            i=1    j=i+1             i=1    j=i+1 

Tij and T’ij denote the values of the terms for the machinability function of the 
two work materials under comparison, and ψij = │Tij - T’ij

 │. It may be noted that 
the absolute difference between the values of the terms for the machinability 
function of the two work materials is considered for proposing Cd. The coefficient 
of similarity is proposed as: 
 
Cs = 1 - Cd                             (2.16) 

 
Equations 2.15 and 2.16 are useful for comparing two work materials, based 

upon their performance in a given machining operation. The coefficients of 
similarity and dissimilarity, and the identification sets are also useful for work 
materials documentation, and for easy storage and retrieval of the work materials 
data for various machining operations.  

Thus, graph theory and the matrix approach can be used as a decision-making 
method for choosing an appropriate alternative work material from amongst the 
given alternatives, based on machinability. The proposed method offers a general 
procedure that can be used for any type of decision-making problem involving any 
number of selection attributes and alternatives. The next section describes the 
general methodology of graph theory and matrix approach as a decision-making 
method.  
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2.6 Methodology of GTMA as a Decision- aking Method   
 
The main steps are given below: 

Step 1: Identify the pertinent attributes and the alternatives involved in the 
decision-making problem under consideration. Obtain the values of the attributes 
(Ai) and their relative importance (aij). An objective or subjective value, or its 
range, may be assigned to each identified attribute as a limiting value or threshold 
value for its acceptance for the considered decision-making problem. An 
alternative with each of its selection attributes, meeting the acceptance value, may 
be short-listed. After short-listing the alternatives, the main task in choosing the 
alternative is to see how it serves the considered attributes. 

Step 2:  
1. Develop the attributes digraph considering the identified pertinent 

attributes and their relative importance. The number of nodes shall be 
equal to the number of attributes considered in Step 1 above. The edges 
and their directions will be decided upon based on the interrelations 
among the attributes (aij). Refer to Section 2.2 for details. 

2. Develop the attributes matrix for the attributes digraph. This will be the 
M*M matrix with diagonal elements as Ai and off-diagonal elements as 
aij. Refer to Section 2.3 for details.  

3. Obtain the permanent function for the attributes matrix, on the lines of 
Equation 2.11. 

4. Substitute the values of Ai
 and aij, obtained in step 1, in Equation 2.11 

above to evaluate the index for the short-listed alternatives. 
5. Arrange the alternatives in the descending order of the index. The 

alternative having the highest value of index is the best choice for the 
decision-making problem under consideration. 

6. Obtain the identification set for each alternative, using Equation 2.14. 
Refer to Section 2.5 for details. 

7. Evaluate the coefficients of dissimilarity and similarity using Equations 
2.15 and 2.16. List also the values of the coefficients for all possible 
combinations.  

8. Document the results for future analysis/reference.    
Step 3: Take a final decision, keeping practical considerations in mind. All 

possible constraints likely to be experienced by the user are looked into during this 
stage. These include constraints such as: availability or assured supply, 
management constraints, political constraints, economic constraints, environmental 
constraints, etc. However, compromise may be made in favor of an alternative with 
a higher index. 

From the above, it is clear that the graph theory and matrix approach as a 
decision-making method is relatively new, and offers a generic, simple, easy, and 
convenient decision-making method that involves less computation. The method 
lays emphasis on decision-making methodology, gives much attention to the issues 
of identifying the attributes, and to associating the alternatives with the attributes, 
etc. The method enables a more critical analysis and any number of objective and 
subjective attributes can be considered. In the permanent procedure, even a small 
variation in attributes leads to a significant difference in the selection index, and 

m
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hence it is easy to rank the alternatives in the descending order, with clear-cut 
difference in the selection index. Further, the proposed procedure not only provides 
the analysis of alternatives, but also enables the visualization of various attributes 
present and their interrelations, using graphical representation. The measures of the 
attributes and their relative importance are used together to rank the alternatives, 
and hence provides a better evaluation of the alternatives. The permanent concept 
fully characterizes the considered selection problem, as it contains all possible 
structural components of the attributes and their relative importance.    

The decision-making capability of graph theory and the matrix approach can 
be utilized for making decisions in the manufacturing environment, and Chapters 
5-30 of this book present those details. 

The next chapter gives an introduction to the multiple attribute decision-
making methods. 

 
 

References 
 
Biswal PC (2005) Discrete mathematics and graph theory. Prentice Hall India, 

New Delhi 
Chen WK (1997) Graph theory and its engineering applications. Advanced Series 

in Electrical and Computer Engineering, University of Illinois, Chicago 
Deo N (2000) Graph theory with applications to engineering and computer science. 

Prentice Hall India, New Delhi 
Gandhi OP, Agrawal VP (1992) FMEA - A digraph and matrix approach. 

Reliability Engineering and System Safety 35:147–158 
Gandhi OP, Agrawal VP (1994) A digraph approach to system wear evaluation and 

analysis. Journal of Tribology 116:268–274 
Gandhi OP, Agrawal VP, Shishodia KS (1991) Reliability analysis and evaluation 

of systems. Reliability Engineering and System Safety 32:283–305 
Gross J, Yellen J (2005) Graph theory and its applications. CRC Press, Florida 
Grover S, Agrawal VP, Khan IA (2004) A digraph approach to TQM evaluation of 

an industry. International Journal of Production Research 42:4031–4053 
Harary F (1985) Graphs and applications. Wiley, New York 
Jense JB, Gutin G (2000) Digraph theory, algorithms, and applications. Springer, 

London 
Jurkat WB, Ryser HJ (1966) Matrix factorisation of determinants and permanents. 

Journal of Algebra 3:1–11 
Liu LB, Lai LHJ (2001) Matrices in combinatorics and graph theory. Kluwer 

Academic Publishers, Dordrecht 
Marcus M, Minc H (1965) Permanents. American Mathematics Monthly 72:571–

591 
Nijenhuis A, Wilf HS (1975) Combinatorial algorithms. Academic Press, New 

York 
Pemmaraju S, Skiena S (2003) Computational discrete mathematics: combinatorics 

and graph theory with mathematica. Cambridge University Press, UK 



Graph Theory and Matrix Approach        25 

Rao RV (2004) Digraph and matrix methods for evaluating environmentally 
conscious manufacturing programs. International Journal of Environmentally 
Conscious Design and Manufacturing 12:23–33 

Rao RV (2006a) A decision making framework model for evaluating flexible 
manufacturing systems using digraph and matrix methods. International 
Journal of Advanced Manufacturing Technology 30:1101–1110 

Rao RV (2006b) A material selection model using graph theory and matrix 
approach. Materials Science and Engineering A 431:248–255 

Rao RV (2006c) Machine group selection in a flexible manufacturing cell using 
digraph and matrix methods. International Journal of Industrial and Systems 
Engineering 1:502–518 

Rao RV (2006d) Plant location selection using fuzzy digraph and matrix methods. 
International Journal of Industrial Engineering 13:357–362 

Rao RV, Gandhi OP (2001) Digraph and matrix method for selection, 
identification and comparison of metal cutting fluids. Proc. IME, Journal of 
Engineering Tribology 212:307–318 

Rao RV, Gandhi OP (2002a) Digraph and matrix methods for machinability 
evaluation of work materials. International Journal of Machine Tools and 
Manufacture 42:321–330 

Rao RV, Gandhi OP (2002b) Failure cause analysis of machine tools using digraph 
and matrix methods. International Journal of Machine Tools & Manufacture 
42:521–528 

Rao RV, Padmanabhan KK (2006) Selection, identification and comparison of 
industrial robots using digraph and matrix methods Robotics and Computer 
Integrated Manufacturing 22:373–383 

Tutte WT (2001) Graph theory. Cambridge University Press, UK 
Venkatasamy R, Agrawal VP (1996) Selection of automobile vehicle by evaluation 

through graph theoretical methodology. International Journal of Vehicle 
Design 17:449–470 

Venkatasamy R, Agrawal VP (1997) A digraph approach to quality evaluation of 
an automotive vehicle. Quality Engineering 9:405–417 

Wilson RJ, Watkins JJ (1990) Graphs, an introductory approach. Wiley, New York  



http://www.springer.com/978-1-84628-818-0


