1

Introduction

1.1 General Overview of the Monograph

This monograph focuses on robust monotonically-convergent iterative learn-
ing control (MC-ILC) systems and stochastic iterative learning control sys-
tems. For robust MC-ILC design, parametric interval uncertainty models are
considered. For stochastic ILC design, norm-bounded uncertainty, external
disturbances, stochastic measurement noise, and intermittent measurements
are considered, all in the iteration domain.

The monograph is organized into three parts and an appendix section. In
the first part of the monograph, the ILC problem is described and motivated
in Chapter 1. Then Chapter 2 gives an overview of the ILC literature, covering
specifically the literature published between 1998 and 2004. In Chapter 3 the
super-vector ILC (SVILC) framework is introduced for use in Chapters 4 to
8. The second part of the monograph considers interval ILC analysis (Chap-
ter 4) and interval ILC synthesis (Chapter 5 and Chapter 6). The focus in
the second part of the monograph is on plants with parametric interval un-
certainty models. In addition to analysis and synthesis for such systems, it is
shown how to develop suitable Markov interval models from state-space in-
terval models. The third part of this monograph discusses Ho, SVILC design
(Chapter 7) and stochastic ILC (Chapter 8). The focus in the third part of the
monograph is on asymptotic stability and monotonic convergence conditions
of ILC systems under assumptions of iteration-domain model uncertainty and
stochastic disturbances and noise. In the Appendix section, a taxonomy of
the ILC literature is presented and three fundamental interval computational
problems are introduced and solved. Although these interval problems were
initially motivated for solving interval ILC problems, due to their own com-
pleteness and their potential impact on robust control research in general,
these results are carefully described in the appendices.

4 1 Introduction

1.2 Iterative Learning Control

1.2.1 What Is Iterative Learning Control?

Control systems have played an important role in the development and ad-
vancement of modern civilization and technology. Control problems arise in
practically all engineering areas and have been studied both by engineers
and by mathematicians. Industrially, control systems are found in numerous
applications: quality control in manufacturing systems, automation, network
systems, machine tool control, space engineering, military systems, computer
science, transportation systems, robotics, social systems, economic systems,
biological/medical engineering, and many others. Mathematically, control en-
gineering includes modeling, analysis, and design aspects. The key feature of
control engineering is the use of feedback for performance improvement of
a controlled dynamic system. The branches of modern control theories are
broad and include classical control, robust control, adaptive control, opti-
mal control, nonlinear control, neural networks, fuzzy logic, and intelligent
control, with each branch being distinguished from the others based on the
assumptions made about the properties of the systems to be controlled and
the performance objectives of the specific methodology under consideration.

Iterative Learning Control (ILC) is one of the more recent control theo-
ries. ILC, which can be categorized as an intelligent control methodology,! is
an approach for improving the transient performance of systems that oper-
ate repetitively over a fixed time interval. Although control theory provides
numerous tools for improving the performance of a dynamic system, it is not
always possible to achieve a desired level of performance. This may be due
to the presence of unmodeled dynamics, parametric uncertainties, or distur-
bances and measurement noise exhibited during actual system operation. The
inability to achieve a desired performance may also be due to the lack of suit-
able design techniques [298]. In particular, when the system is nonlinear, it is
not easy to achieve perfect tracking using traditional control theory. However,
for a specific class of systems — those that operate repetitively — ILC is a de-
sign tool that can help overcome the shortcomings of traditional controllers,
making it possible to achieve perfect tracking or performance when there is
model uncertainty or when we have a “blind” system.?

! From “Defining Intelligent Control — Report of the Task Force on Intelligent Con-
trol,” IEEE Control Systems Society, Panos Antsaklis, Chair, Dec., 1993: “In-
telligent control uses conventional control methods to solve lower level control
problems ... conventional control is included in the area of intelligent control.
Intelligent control attempts to build upon and enhance the conventional control
methodologies to solve new, challenging control problems.”

“Blind” means we have little or no information about the system structure and
its nonlinearities. We can only measure input/output signals such as voltage,
velocity, position, etc.

1.2 Tterative Learning Control 5

Various definitions of ILC have been given in the literature. Some of them
are quoted here.

e “The learning control concept stands for the repeatability of operating a
given objective system and the possibility of improving the control input
on the basis of previous actual operation data.” Arimoto, Kawamura, and
Miyazaki [29].

e ILCisa “.. recursive online control method that relies on less calculation
and requires less a priori knowledge about the system dynamics. The idea
is to apply a simple algorithm repetitively to an unknown plant, until
perfect tracking is achieved.” Bien and Huh [43].

o ‘“Iterative learning control is an approach to improving the transient re-
sponse performance of a system that operates repetitively over a fixed time
interval.” Moore [298].

e “Iterative learning control considers systems that repetitively perform
the same task with a view to sequentially improving accuracy.” Amann,
Owens, and Rogers [10].

e “ILC is to utilize the system repetitions as experience to improve the sys-
tem control performance even under incomplete knowledge of the system
to be controlled.” Chen and Wen [66].

e ILC is a “... controller that learns to produce zero tracking error during
repetitions of a command, or learns to eliminate the effects of a repeating
disturbance on a control system output.” Phan, Longman, and Moore
[363].

e “The main idea behind ILC is to iteratively find an input sequence such
that the output of the system is as close as possible to a desired output.
Although ILC is directly associated with control, it is important to note
that the end result is that the system has been inverted.” Markusson [287].

All definitions about ILC will have their own emphases. However, a com-
mon feature of the definitions above is the idea of “repetition.” Learning
through a predetermined hardware repetition is the key idea of ILC. Hardware
repetition can be thought of as a physical layer on the uniformly distributed
time axis for providing experience to the mental layer of ILC. “Predeter-
mined” means that the ILC system requires some postulates that define the
learning environment of a control algorithm. A person learns about his/her
living environment by experience, where the physical layer is the daily ac-
tivity and the mental layer is the memory of strongly perceived events that
are closely related with his/her interest. These strongly perceived events of
the past provide knowledge to the human being that can be used to inform
the person’s current activity. In ILC, the current activity is a control force
and the past experience is stored data. A difference between human learning
and machine learning is in “predetermined.” For a human being, knowledge
by learning could be based on similarity and impression, whereas in a ma-
chine the initial setup, fixed time point, uniform sampling, repetitive desired
trajectory, etc. are predetermined, which then determines the future of the

6 1 Introduction

hardware machine. Thus, ILC is concerned with the problem of refining the
input to a system that operates repetitively, so that the future behavior of
the system is predetermined to improve its current operation over its past
operation through the use of past experience.

Consider a system in an initial state to which a fixed-length input signal is
applied. After the complete input has been applied, the system is returned to
its initial state and the output trajectory that resulted from the applied input
is compared to a desired trajectory. The error is used to construct a new input
signal (of the same length) to be applied the next time the system operates.
This process is then repeated. The goal of the ILC algorithm is to properly
refine the input sequence from one trial to the next trial so that as more and
more trials are executed the output will approach the desired trajectory.

The basic idea of ILC is illustrated in Figure 1.1. Standard assumptions
are that the plant has stable dynamics or satisfies some kind of Lipschitz
condition, that the system returns to the same initial conditions at the start
of each trial, that the trial lasts for a fixed time 7%, and that each trial has
the same length. A typical ILC algorithm for the architecture depicted in
Figure 1.1 has the form

wia(f) = wk(t) 7 ex(t), (11)

where wuy(t) is the system input and ey (t) = yq(t) — yi(¢) is the error on trial
k, with yx(t) the system output and y,(t) the desired response. For a large
class of systems this algorithm can be shown to converge in the sense that as
k — oo we have yx(t) — yq(t) for all t € [0,Ty]. Notice that this algorithm is
noncausal. To see this more clearly, note that a discrete-time version of (1.1)
can be given as

uk1(t) = ug(t) +ex(t +1), (1.2)

where now ¢ is an integer. Clearly (1.2) is noncausal with respect to time.
This is a key feature of ILC. Though the algorithm actually acts only on past
data, the fact that the initial conditions are reset at the beginning of each
trial allows us to do “noncausal” processing on the errors from the previous
trial.

Based on the ILC system definition as depicted in Figure 1.1 and following
the definitions quoted above, we will propose the following definition:

ILC is an approach to improve the transient response performance of
an unknown or uncertain hardware system that operates repetitively
over a fixed time interval by eliminating the effects of a repeating
disturbance and by using the previous actual operation data.

Finally, having defined ILC, it is important to point out the focus of ILC
research, as clearly defined in the following quote:

o “We learned that ILC is about enhancing a system’s performance by means
of repetition, but we did not learn how it is done. This brings us to the

1.2 Tterative Learning Control 7

u, (1) V(@) -

» System

> Memory -

Uy (1) Iterative Learning -)
B T —
Controller 4—)/,1

Fig. 1.1. Basic idea of ILC

core activity in ILC research, which is the construction and subsequent
analysis of algorithms.” Verwoerd [467].

Thus, the key question of ILC is how to eliminate the periodic disturbance
and how to use the past information for the current trial. As we will see below,
if the system uncertainty and external disturbances are predetermined on the
uniformly distributed repetitive time axis, all of these effects, including the
actual plant, could be considered as a predetermined model, so that finding
an inverse of the deterministic system will be the main objective of ILC.

1.2.2 Classical ILC Update Law

As shown from the taxonomy given in Appendix A, the scope of ILC research is
so wide that it is nearly impossible to describe all the branches of ILC. Thus, in
this subsection we review only the basic ideas of classical ILC algorithms. Let
us consider the following simple SISO linear repetitive system, in continuous
time:

i’k(t) = Amk(t) + Buk(t) (13)
yr(t) = Cai(t). (1.4)

The control task is to servo the output yi () to track the desired output yq(t)
for all time ¢ as the iteration k increases. In classical ILC, the following basic
postulates are required, although in recent ILC research, algorithms are sought
so that these postulations could be somewhat broken or relaxed (adopted from
page 2 of [66]):

e Every trial (pass, cycle, batch, iteration, repetition) ends in a fixed time
of duration.

e Repetition of the initial setting is satisfied. That is, the initial state 2 (0)
of the objective system can be set to the same point at the beginning of
each iteration.

8 1 Introduction

e Invariance of the system dynamics is ensured throughout the repetition.
e The output yx(t) is measured in a deterministic way.

To give a flavor of ILC results, consider the learning control algorithm
proposed in 1984 by Arimoto (and hence, called an “Arimoto-type” ILC law)
27, 28]:

uk+1(t) = uk(t) + Fék@). (1.5)
For this algorithm and the plant in (1.3-1.4), convergence is assured if
|f —CBI'||; < 1. (1.6)

Arimoto also considered more general “PID-type” ILC algorithms of the form:

Upt1 = Uk + Pey, + I'éy, + W/ekdt. (1.7)

In other types of algorithms, researchers have used gradient methods to opti-
mize the gain Gy, in:

uk+1(t) = uk(t) + erk(t + 1). (1.8)

For ILC design purposes it is sometimes useful to specify the learning control
algorithm in the frequency domain, for example:

Uk+1(8) = L(8)[Ur(s) + aEx(s)]. (1.9)

Note that in this last case the ILC gain is actually implied to be a linear
time-invariant filter.

Many schemes in the literature can be classified with one of the algorithms
given above. As such, it is possible to generalize the analysis by introducing
an operator-theoretic notation. Let T'(-) denote a general operator mapping
an input space to an output space. Then the following theorem summarizes a
number of technical convergence results for first-order® ILC systems:

Theorem 1.1. [298] For the plant yi, = Tsug, the linear time-invariant learn-
ing control algorithm

g1 = Tuuk + Te(Yd — yr) (1.10)
converges to a fived point u*(t) given by
uw*(t) = (I — Ty + T.Ts) ' Toyalt) (1.11)
with a final error

3 First-order ILC means that only data from the most recent (previous) trial is
used in the ILC update law.

1.2 Tterative Learning Control 9
6*(t) = klgrolo(yk - yd) = (I - TS(I =T+ TeTS)ilTe)yd(t) (112)

defined on the interval (to,ty), if

T, — T.T,|; < 1. (1.13)

Note that if T3, = I then |le*(¢)|| = O for all ¢ € [t,,¢f]; otherwise the final
converged error will be nonzero.
To understand the nature of ILC, consider the following:

Question: Given 75, for the general linear ILC algorithm:

upg1(t) = Tyur(t) + Te(ya(t) — yr(t)),

how do we pick T, and T, to make the final error e*(¢) as “small” as
possible?

Answer: Let the solution of the following problem be T';:

win (7 = T,)yl

It turns out that we can specify T, and T, in terms of T, and the re-
sulting learning controller converges to an optimal system input given
by:

u*(t) = Tyya(t)-

This means that the essential effect of a properly designed learning controller
is to produce the output of the best possible inverse of the system in the
direction of yq [298]. This is the key characteristic of ILC.

Returning to the classic Arimoto-type ILC law (1.5), note that the basic
formula for selecting the learning gain given in (1.6) does not require infor-
mation about the system matrix A, which implies that ILC is an effective
control scheme for improving the performance of uncertain (linear or nonlin-
ear) dynamic systems. This is the main feature of ILC, as distinguished from
classical control theories.

The ILC update rule of (1.5) is properly called a “D-type” ILC rule, as
it operates on the derivative of the error. Likewise, we can consider PID-type
ILC as given in (1.7), I-type ILC , or P-type ILC. For instance a P-type update
rule (meaning no derivative and integral effects) can be written as

k41 (t) = un(t) + () (ya(t) — yx(t), (1.14)

where k is the iteration trial, v4(t) is the proportional learning gain, y,(t) is
the desired output, and y(t) is the measured output. Note that this particular
algorithm also has another feature: the gain is time-varying. This introduces
another way to categorize ILC update laws: as time-invariant or time-varying.

10 1 Introduction

As we noted above, we can also consider learning gains that are filters (e.g., the
update law in (1.9)), which leads us to also consider the distinction between
time-varying and time-invariant learning gain filters.

As we mentioned in a footnote above, ILC that only looks back at the
most recent previous iteration is called first-order ILC. It is also possible to
consider what is called higher-order ILC (HOILC), whereby data from more
than one previous iteration is used. Consider, for instance, the ILC law

i=k—1
upy1(t) = uk(t) + Yi(6)(Ya(t) — vi(t)) (1.15)
i=k
or the update algorithm
i=k—1 i=k—1
uk 1 (t) = Ai(t)ui(t) + () (ya(t) — yi(t)- (1.16)
i=k i=k

Similar to (1.15) and (1.16), which are both P-type rules, I-type, PD-type,
and PID-type higher-order algorithms can be developed using the whole set
of past control input signals and output error signals. [66] formulates perhaps
the most general form of these type of algorithms, which is given as

N
U+l = Z(I — A)Pkuk + Au,
k=1
N
Jrz <5pk€ik+1 + I[%éi—kt1 +Wk/€ik+1dt> . (1.17)
k=1

It can be shown [66] that if Zgzl P, = I, then by properly choosing the
learning gain matrices we can ensure that e converges to zero asymptotically.

So far, we have considered continuous time ILC algorithms. However, prac-
tically it is desirable to use the discrete-time system state-space model given
below in (1.18-1.20), because microprocessor-based discrete, sampled-data
systems are widely used in actual applications. Furthermore, since the na-
ture of repetitive operations is finite-horizon, each iteration domain consists
of finite number of discrete-time points, which can be represented by vectors
(see (1.23-1.26) below). Thus, in the remainder of this monograph we will
restrict our attention almost exclusively to discrete-time systems.

1.2.3 The Periodicity and Repetitiveness in ILC

In the descriptions of ILC given above, it has been implied that repetition
in the system operation is with respect to time. However, more generally,
the periodicity and the repetitiveness treated in ILC could be time-, state-,
iteration-, or trajectory-dependent. Let us consider Figure 1.2(a) where the

1.2 Tterative Learning Control 11

mobile wheel is misaligned with the robot body. In this figure, the robot body
Y axis (Y;) is not pointing in the same direction as the wheel Y axis (Y,,).
This misalignment (4) results in an eccentricity problem in the control sys-
tem, which brings about an angle-dependent periodic disturbance. Thus, the
eccentricity (f.) is a function of angle 6, i.e., f. = f(0). Figure 1.2(b) shows
a satellite that rotates around the earth periodically. For a specified mission,
the satellite is controlled to point in a particular direction. However, the satel-
lite experiences external disturbances in the control system from the earth,
sun, magnetic field, solar radiation, etc. These disturbances would be time-
periodic, because the satellite orbit period is generally fixed. Figure 1.2(c)
shows a robot manipulator which is time-periodic and whose initial condi-
tion at the start of each new period is same. The robot manipulator works
time-periodically on a fixed trajectory (in this figure, by an angle 6), but ex-
periences iteration-varying disturbances. Thus, as shown in these figures, a
periodic system could be defined as being in one of three different classes:

e C(Class A: state-periodic, but not time-periodic (Figure 1.2(a)).
e C(Class B: time-periodic, but not state-periodic (Figure 1.2(b)).
e Class C: state (starting state)-periodic and time-periodic (Figure 1.2(c)).

In more detail, in Figure 1.2(a), the eccentricity is the function of 6 with
the following relationship: f.(0) = f.(f £ 2n7) where n is an integer; in Fig-
ure 1.2(b), the external disturbance f; is the function of ¢ with the following
relationship: f4(t) = fa(t £ nT) where T is the orbit period; in Figure 1.2(c),
the external disturbance could be time-periodic but with the same initial
states. Generally, iterative learning control treats the time-periodic system
like Class C, whereas the periodic systems like Class A and Class B are stud-
ied under repetitive control (RC) and/or periodic control.* In this monograph,
we will focus on Class C, although our framework can be easily modified to
cover Class A and Class B.

1.2.4 Advantages of Using ILC

In the previous subsections, we discussed the characteristics of ILC, introduced
basic ILC algorithms, and looked at different ways periodicity can occur.
In this subsection, we present some advantages of ILC over typical control
algorithms. These include:

e Precise trajectory tracking: If the four postulations given in Section 1.2.2
are satisfied, then a desired trajectory on a finite horizon in the time
domain can be perfectly achieved. Thus, ILC algorithms can be effec-
tively used for precise control in fields like semiconductor manufacturing

4 However, Class A and Class B also have been widely studied in ILC. More or less,
these days there is no distinction between the systems treated in ILC and the sys-
tems treated in RC. But, mathematical formulations of ILC and RC are different.
This monograph handles these periodic systems under the ILC framework.

12 1 Introduction

W
i)
A
(®)

@

Robot manipulator

Initial set
position

0

Working
position

Constant speed belt

(©

Fig. 1.2. (a): Eccentricity problem of a wheeled mobile robot. (b): Time-periodic
disturbance in a satellite orbit. (c¢): Time-periodic robot manipulator in a manufac-
turing process, with an iteration-dependent disturbance.

processes, robot arm manipulators, repetitive rotary systems, and factory
batch processes.

e Monotonic convergence: The system convergence to a desired trajectory
can be monotonic in iteration, if convergence conditions are met. Such
monotonic convergence can prevent the break-up of hardware and high
overshoots of the system trajectory.

e Controller design without accurate model information: An ILC controller
can be designed without an accurate model of the system. The uncertainty
that can be handled by ILC includes deterministic modeling error, para-

1.3 Research Motivation 13

metric uncertainty, stochastic disturbances and noise, parameter variation,
and deterministic external disturbances.

1.3 Research Motivation

The principal goal of this monograph is to investigate robustness issues in
ILC from an iteration-domain perspective, with an objective of demonstrating
analysis and design strategies that enable monotonic convergence and perfect
trajectory tracking against a variety of uncertainties. Three main motivations
for this study are provided in this section.

1.3.1 Motivation for Robust Interval Iterative Learning Control

Let us consider the following single-input, single-output (SISO), 2-dimensional
system described in the state-space:

ap(t+1) = Azp(t) + Bug(t) (1.18)
yr(t) = Cxy(t) (1.19)
7, (0) = o, (1.20)

where A € R™"*", B € R™*!, and C € R'*" are the matrices describing the
system; x (t) € R™, uk(t) € R, and y(t) € R are the state, input, and output
vectors, respectively; t represents discrete-time points along the time axis; and
the subscript k represents the iteration trial number along the iteration axis.
Notice that xj(0) = z for all k. This is a key assumption in the ILC process
and is called the initial reset condition (see again Section 1.2). Throughout
this monograph, it is assumed that this initial reset condition is satisfied if
there is no special indication otherwise.

For the system (1.18)—-(1.20), from basic ILC theory (Theorem 1.1), a
standard result is that the system is asymptotically stable (AS) if and only if
|1 —vhy| < 1 with the ILC update law

U1 (t) = ur(t) + yer(t + 1), (1.21)

where hy = CB # 0 (i.e., the system has relative degree 1) and + is the
learning gain [302]. Thus, it is easy to design « such that the condition |1 —
vhi| < 1 is satisfied, provided that C' and B are known exactly. However,
generally it is reasonable to assume that there exist model uncertainties in C'
and B. In this case, it is necessary to select v considering all possible model
uncertainties.

In fact, this kind of ILC problem has been studied widely in the literature.
For example, refer to [522, 390, 293]. However, the existing research results
are almost all restricted to the asymptotic stability (AS) problem. In ILC, it
has been observed that AS may not be acceptable in a practical setting, be-
cause it is possible that an ILC system can experience very high overshoots of

14 1 Introduction

the mean-square error during the transient before the system converges [279).
Thus, the monotonically-convergent ILC (MC-ILC) design problem has been
considered to be a practically important issue, as claimed and demonstrated
in [415, 279].> With regard to monotonically-convergent ILC, numerous pub-
lications are available. An approximate monotonic decay condition was given
n [417]. A monotonic convergence condition through parameter optimiza-
tion was introduced in [340]. Monotonic convergence of a Hamiltonian system
was guaranteed in [140]. A maximum singular value-based monotonic con-
vergence condition was given in [308, 331]. Following these works, in this
monograph, we are thus motivated to consider not only robust asymptotic
stability against interval perturbations in the system Markov parameters, but
also robust monotonic convergence (i.e., exponential stability in the iteration
domain).

To design a monotonically-convergent ILC algorithm, many results in the
literature require information about the A matrix [298, 363, 346, 136, 9.
Though most results have considered only the nominal plant, it is again natu-
ral to consider A to be an uncertain matrix. Thus we are motivated to consider
the design of the learning gain matrix when considering model uncertainties
in A, B, and C.

There are a number of analysis methodologies that have been used in the
ILC literature. In one such method the 2-dimensional problem of (1.18)—(1.20)
is reformulated into a 1-dimensional problem. This is called the super-vector
ILC (SVILC) framework [298] and it is in this framework that we will consider
the robust MC-ILC problem.

To describe the SVILC methodology, take z-transforms (in time) of (1.18)—
(1.20) and define the resulting plant to be G(z).% This gives

Y(z) = G(2)U(z)
= (hmz ™™ 4 hpy12” ™D f b 02 (M2 LU (2), (1.22)
where m is the relative degree of the system, z~! is the delay operator in
the discrete-time domain, and the parameters h; are Markov parameters of
the impulse response system of the plant G(z). If we now define the following
vectors:”
Uk = (uk(o)vuk(1)77uk(N71)) (
Yi = (ye(m),ye(m+1),...,yx(N — 1+ m)) (1.24
Yo = (ya(m),ya(m+1),...,y4(N — 1+ m)) (
Ek = Yd — Yk = (Ek(m),Ek(m + 1), PN ,Ek(N -1+ m)), (126

then the linear plant can be described by Y, = HUj, where H is a Toeplitz
matrix of rank N whose elements are the Markov parameters of the plant

5 For more precise definitions of AS and MC, see Section 3.2 and Section 4.1.

5G(z)=C(zI —A)™'B+D.

" The process of forming “super-vectors” Uy, Yi, Yy, and Ej is called “lifting” in
the literature [298].

1.3 Research Motivation 15

G(z), given by:

hom 0 0 .. 0
hm+1 hm O . O

H=| hmt Rmt1 hin e 0] (1.27)
him+N-1 hmeN—2 hmin—3 ... hp

Throughout this monograph, this matrix is called the system Markov matrix
or simply the Markov matrix.

The monotonic convergence condition for the system (1.18)—(1.20) with
the standard Arimoto-type ILC update law (1.21) is now simply given as

II-HI| <1,

where || - || is an operator norm and I' is the learning gain matrix. I" is a
diagonal matrix whose diagonal elements are the scalar learning gains .

In the super-vector framework we just described, the system given in
(1.18)—(1.20) is assumed to be the nominal plant, i.e., neither model uncer-
tainty nor process disturbances or measurement noises are considered. Thus,
the MC condition ||[I—HTI'|| < 1is not practically meaningful when taking into
account model uncertainties or external disturbances and noise. To address
this, consider instead the following 2-dimensional uncertain plant model:

vt +1) = (A+ AA)zk(t) + (B + AB)ug(t) + v(k,t) (1.28)
yr(t) = (C + AC)xy(t) + w(k, t), (1.29)

where AA; AB, and AC are model uncertainties, and v(k,t) and w(k,t) are
time- and iteration-dependent process disturbance and measurement noise sig-
nals, respectively. Recall that ¢ is the discrete-time point along the time axis,
which means that ¢ is defined in a finite interval. That is, on each iteration or
trial, £ has N different discrete-time points. Meanwhile, k is defined on an infi-
nite horizon, so it increases monotonically. Thus we can consider two different
types of model uncertainties. The first type is iteration-independent model
uncertainty, while the second type is iteration-dependent model uncertainty.

We are interested in addressing the robustness and convergence properties
of systems such as (1.28)-(1.29). However, the SVILC framework requires
analysis based on the system Markov matrix. Thus, it becomes necessary
to convert the model uncertainty of (1.28)—(1.29) to uncertainty associated
with the Markov matrix (1.27). To our knowledge, this uncertainty conversion
problem has never been addressed in the existing literature except in our
own work. This problem, which we call “interval model conversion,” will be
carefully addressed in this monograph. In particular, for the interval model
conversion problem, the power of an interval matrix will need to be computed
and we will show how this can be done in a computationally efficient and
non-conservative fashion.

16 1 Introduction

Next, let us suppose that Markov matrix includes the model uncertainty
converted from the uncertain plant (1.28)—(1.29) and let us denote the uncer-
tain system Markov matrix as H = H°+ AH, where H? is the system Markov
matrix corresponding to the nominal plant and AH is the uncertain system
Markov matrix corresponding to the uncertainty of the uncertain plant. Then,
our task is to find a learning gain matrix such that the system is AS or MC
against all possible uncertain plants H. There are two issues with regard to
this robust ILC design problem. The first issue is related to the conserva-
tiveness and the computational cost of the proposed method, and the second
issue is related to the performance of the algorithm. The performance issue
is concerned with the stability types: asymptotic stability (AS) and mono-
tonic convergence (MC).® As noted, although there are numerous results on
asymptotic and robust stability in ILC [522, 390, 183], to date there is no sys-
tematic analysis and synthesis framework addressing robust monotonically-
convergent ILC. Most existing works have focused on asymptotic stability
for plants with model uncertainty described in the state-space form given
by (1.28)—(1.29). To our knowledge, outside of our own work, no systematic
approach for handling the uncertainty in H (i.e., AH) has been reported.
Furthermore, though in many existing works, optimal-ILC [9, 181, 342, 341],
stochastic noise [397, 396, 395, 54], and frequency-dependent uncertainty [360]
have been considered, these techniques can give conservative results. We show,
however, that using parametric interval concepts can reduce the conservatism
connected with robustness tests and can provide tighter monotonic conver-
gence conditions.

In summary, there are three main research motivations for studying the
robust interval ILC problem. The first motivation is to solve fundamental
problems associated with the robustness of ILC designs when the plant is
subject to parametric uncertainty. Then, based on these results, the second
task is to guarantee monotonic convergence against all possible interval un-
certainties. Finally, the goal is to reduce the conservatism related to robust
stability tests.

1.3.2 Motivation for H., Iterative Learning Control

From the ILC literature, there is no systematic approach to handling iteration-
varying model uncertainty, iteration-varying external disturbances, or iteration-
varying stochastic noise all together [360]. Even though time-domain-based

8 Note that stability in an ILC problem refers to the boundedness of signals at
fixed points of time, considered along the iteration axis. By assumption (due
to the finite-time horizon), traditional stability along the time axis is achieved
by default (except, perhaps, in the case of a nonlinear system exhibiting finite
escape-time behaviors). Thus, by AS, we mean that the ILC system converges to
the desired trajectory as the iteration number increases. By MC, we mean that
the ILC system converges without overshoot to the desired trajectory as iteration
number increases.

1.4 Original Contributions of the Monograph 17

H, ILC schemes and 2-dimensional approaches have been suggested for mak-
ing a unified ILC framework, research to date has been limited to iteration-
independent uncertainty and disturbances. However, if we can cast the super-
vector notation as defined by (1.23)—(1.26) into a traditional discrete-time
H., framework (where now “time” is actually “iteration”), we can obtain a
unified robust control framework on the iteration domain. Furthermore, our
proposed unified robust H., ILC approach on the iteration domain provides a
way to consider and discuss frequency-domain analysis on the iteration axis.
Recall that in ILC the time axis is finite-horizon. Thus, the corresponding
frequency domain transformed from the time axis should also be finite. How-
ever, in control engineering the frequency domain is usually infinite. Thus,
the frequency-domain-based ILC analysis, transformed from the finite time
axis, is not suitable from an analytical perspective. However, in our proposed
H, scheme on the iteration axis, the discrete infinite iteration axis is readily
transformed into the discrete infinite frequency domain. Hence, the H,, ILC
scheme on the iteration axis provides a unified robust control framework on
the infinite frequency domain that is analytically correct.

1.3.3 Motivation for Stochastic Iterative Learning Control

Even though the Ho, ILC scheme on the iteration domain presented in this
monograph provides a unified framework, it is not related to monotonic con-
vergence. Motivated by this observation, we can raise a question: is it possible
to design a learning gain matrix to ensure monotonic convergence when con-
sidering stochastic noise or iteration-varying model uncertainty? Further, a
related question is how to analytically estimate the steady-state error that
the ILC system can achieve under stochastic noise and model uncertainty. In
the stochastic ILC approach proposed in this monograph, we try to estimate
the ultimate baseline error of an uncertain ILC system over which monotonic
convergence is guaranteed. And, we wish to make this estimate in an off-line
manner. A related problem also arises in the area of networked-control sys-
tems (NCS), where data dropout problems have been popularly studied. In
this monograph, we try to integrate the NCS into an ILC framework so that
an overall intermittent ILC system can be developed that is robust against
extreme data dropout situations in a network.

1.4 Original Contributions of the Monograph

This monograph makes the following theoretical contributions:

e Conditions for robust stability in the iteration domain are provided for
parametric interval systems.

e Techniques for converting from time-domain interval models to Markov
interval models are given.

18 1 Introduction

e A monotonically-convergent ILC system is designed under parametric in-
terval uncertainties and/or stochastic noise considerations.

e Robust Hy ILC is designed on the iteration domain, taking into account
three different types of uncertainties: iteration-variant/invariant model un-
certainty, external disturbances, and stochastic noise.

e The baseline error of the ILC process is analytically established, which
provides a novel idea for designing the ILC learning gain matrix in an
off-line manner.

e Solutions for three fundamental interval computational problems are of-
fered: robust stability of an interval polynomial matrix system, the power
of an interval matrix, and the maximum singular value of an interval ma-
trix.

It is the main contribution of this monograph to provide new analyti-
cal tools for designing robust ILC systems. Using the super-vector approach,
the robustness problem of ILC is discussed purely on the iteration domain.
Parametric interval uncertainty enables us to design both the monotonically-
convergent ILC process and a less conservative robust ILC system. Indeed,
this robust, monotonically-convergent ILC design method makes a significant
contribution to practical ILC applications because it avoids unacceptable over-
shoot on the iteration domain while considering all possible models the con-
troller might face. Furthermore, by casting the H., framework and Kalman
filtering into the SVILC framework, the monograph provides a different de-
sign perspective for stochastic and frequency-domain uncertain ILC systems
than has typically been found in the literature. Additionally, analytical solu-
tions for the three fundamental interval computational problems mentioned
above are provided. These solutions can be effectively used for solving various
types of control and systems problems. For example, robust controllability,
robust observability, multi-input multi-output robust control theory, robust
monotonically-convergent stability problems, and robust boundary calcula-
tions for the model conversion problem can all be addressed using the results
presented in the monograph.

2 Springer
http://www.springer.com/978-1-84628-846-3

lterative Learning Control

Robustness and Monotonic Convergence for Interval
systems

Ahn, H.-5.; Moore, K.L; Chen, Y.

2007, XV, 230 p. 36 illus., 4 illus. in color., Hardcowver
ISEM: 978-1-84528-846-3

