
    

2 Modelling Basics 

Modelling Basics 

Science is build up of facts, as a house is build 
up of stones; but an accumulation of facts is no 
more science than a heap of stones is a house. 

Henri Poincaré 
Science and Hypothesis, 1905 

 
Before turning to the problems of modelling in mechatronics, which is our 
immediate domain of interest in this study, we need to set up a descriptive 
foundation by clarifying the essential notions, as well as to define new relevant 
terms, i.e. to give names to some (new) notions, when appropriate. A name cannot 
change the appearance or the properties of the named entity, but nevertheless, it 
has a great impact on people's attitude through associations that can be provoked – 
especially at the first contact with an entity. Improperly chosen or inadequate 
names can lead to misunderstandings and even misconceptions. As we shall see 
later on, names play an important role in communication, integration, 
standardization and other fields. We also use these names when we refer to the 
“building blocks of science” – notions, relations, facts, attributes and others. No 
“scientific house” (i.e. theory) can ever be built without such building blocks. For 
these reasons, special care should be taken when new terms are introduced or 
existing terms renamed. Due to the attempt to avoid invention of totally new 
words, the names chosen for some notions may seem strange at first glance, 
especially if considered out of context. 

Now, let us begin with the formal meaning of the terms model and modelling 
and then discuss some of their most important attributes. 

2.1 Models and Modelling 

Let us start with the most frequently used terms and consider their motivation and 
interrelations. 
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2.1.1 Definitions 

A definition is the enclosing a wilderness of 
idea within a wall of words. 

Samuel Butler 
Note-Books 

The word model is an overloaded term. For example, the Collins Cobuild 
Dictionary Sinclair et al. (1987), specifies fifteen meanings, with three of them – 
instances 1, 3 and 4 – being mostly relevant for our purposes: 

1.  A model of an object is a physical representation that shows what 
it looks like or how it works. The model is often smaller than the 
object it represents. 

 ...an architect's model of a wooden house. 
 ...a working scale model of the whole Bay Area... 
 I made a model out of paper and glue. 
 Model is also an adjective. 
 I had made a model aeroplane. 

 ...a model railway. 

2.  … 

3.  A model of a system or process is a theoretical description that 
can help you understand how the system or process works, or how it 
might work. (TECHNICAL or FORMAL) 

4.  If someone such as a scientist models a system or process, they 
make an accurate theoretical description of it in order to understand 
or explain how it works. (TECHNICAL or FORMAL) 

5.  … 
 
Such overloading of the term with different meanings requires a clear initial 

statement of how we shall understand this term within this study. Let us have a 
look at some more specialized (i.e. not so universal) definitions. 

In Stachowiak (1973), any object having the following three main distinctive 
features is viewed as a model: to be a representation of something, to be a 
simplification and to be pragmatic (in the German original they are called 
“Abbildungsmerkmal”, “Verkürzungsmerkmal” and “Pragmatisches Merkmal”, 
respectively). Actually, the first one seems to be not always required – cf. Section 
2.1.3.2 below. 

Yet another definition is found in Woolfson and Pert (1999): 
The essence of the model is that it should be a simplified 
representation of some real object or physical situation which serves 
a particular, and perhaps limited, purpose. 

Although these two definitions might seem different at first glance, what in the 
latter definition is expressed as “to serve a particular purpose” is formulated in the 
former definition as “to be pragmatic”. 
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In essence, each model is a purpose-dependent representation. According to the 
purpose of modelling, it might be required that different traits are represented or 
respectively ignored, therefore, we shall define model as follows: 

Definition 2.1: Model is a purpose-dependent, finite, simplified, but 
still adequate representation of whatever is modelled, 
allowing us to abstract from its unimportant properties 
and details and to concentrate only on the most specific 
and most important traits. 

The respective implementation may use different media or principles (cf. 
Section 2.4.2.3.1 below) and is neither substantial nor pre-defined. When the 
model is a representation of the object's traits and their interrelations by means of 
pieces of information (or data), we shall speak about informational models or data 
models. When these pieces of information are electronically representable values 
(numbers), we shall speak – depending on the context – about software models or 
computer models. 

To better understand the nature of models and modelling, we shall first of all 
examine how these notions are related, and how they depend on other factors. A 
somewhat humorous interpretation of what we are concerned with here is sketched 
in Figure 2.1. 

Modelling

Model

Modeller(s)
Modellee

 

Output
Input

 

Figure 2.1. Modelling: the “holy” trinity 

In a typical representation of a process, the assumption is made that somebody 
or something acts on something else (input) to create or achieve a result (output). 
Apparently, such a scenario would not represent the really important fact that 
processes are time-dependent, i.e. they “progress” with time. More precisely, it is 
the process of creation and development of models that is understood as modelling. 
No unambiguous generic (preferably: one-word) term exists for what occurs as 
input of the modelling process. Expressions like “object, product or process to-be-
modelled”, for instance, would be rather long and imprecise. As we have to refer to 
the input of the modelling fairly often, let us consider introducing a new term 
instead. The latter would be used as a generic term in all cases of modelling and 
especially in the lifecycles of both original and derived products (cf. Section 2.2.3). 
Having looked into the existing terminology as well as having considered the 
possibilities of making up a new, “artificial” term that would simultaneously be 
intuitive, short, well-known and, at the same time, not contradictory, I’ve come to 
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the conclusion that the word modellee will be most appropriate for my purposes. 
This term has the same root as model and modelling and in addition makes allusion 
to words with similar morphology and well-known meaning like employee (person 
who is employed), trainee (person who is trained), adoptee (person who is adopted) 
and many others. So we shall use the term modellee for referring to what is or will 
be modelled (the object of modelling). 

A conceivable approach to defining the term model is to enumerate whatever 
appears to be related to any thinkable model, and then show the relation between 
these enumerated “components” or attributes. A graphical representation of such 
an attempt is given in Figure 2.2. Since for the preparation of this picture we have 
abstracted from insignificant properties, concentrating only on the specific and 
important ones, we have eventually created a model of a model, or a meta-model. 

Model

Traits

Inherencies Represents a modelee
Ignores unimportant details (abstraction)
Usage is pragmatic

Control Model parameters (case&purpose dependent!)
Requirements for the model (case&purpose dependent!)

Main problems&wishes

Low dependency on other factors

Functionality of the modellee

of the model Inherent
acquired, modellee-extrinsic

core
auxiliary

 Organization

Purpose Supporting & improving the understanding of the matter

Allowing comparison of different solutions
Allowing analysis and prediction of: behaviour

characteristics

Providing a common basis for discussions and 
information exchange (argumentative framework)

Reuse

Adequacy
Integration

Model

 
Figure 2.2. Attributes of a model and their relations 

Of course, not everybody will accept the representation given in Figure 2.2 
without objections. But, depending on the purpose for which this meta-model is 
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created, different requirements are imposed on its representation, behaviour, level 
of detail and so on. Inasmuch as these requirements are case-dependent, no model 
can be perfect per se (or in general, or for all cases), but any model can be perfect 
for a given purpose. And the purpose of the meta-model in Figure 2.2 is to give us 
an idea what the main attributes of every model are, and how one could start to 
develop a model. In order to be able to show it in more detail, the organization of a 
model is presented in a separate picture – Figure 2.3. 

Model
Organization

Structure

Architecture

Interaction between
components

Component
interdependency

Important external relations

Composition

Stratification

Hierarchy

Monolithic
Compound Homogeneous

Heterogeneous
Logical
Physical

Levels
Depth

Paradigm

Platform

Style

Modularity
Holonity
Bionic
Object-orianted
Model-driven
...

SW base
HW base
Integration within the environment

None
Weak
Strong

Coupled
Decoupled
Uncoupled

To data & its derivatives
To software&hardware

Model
Organization

 

Figure 2.3. Model organization 
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Another more detailed representation of the most important participants of the 
modelling process and the relations among them is given in Figure 2.4. Such 
representation has some similarities with the conceptual graphs as they are defined 
in Sowa (2000, Appendix A), but the conceptual graphs possess greater expressive 
power. 

Modelling
    Input    

   Output   Model

"Modellee", archetype
(product, process, ...)

    Aims    Support of
the analysis

Support of 
the development

Support of the
improvement

   Control   Methods

Tools

Feedback

Capabilities Approach dependent

Domain dependent

Case dependent

Providing a common 
basis for discussions 
& information exchange

have influence on

impacts

have influence on

type, scope and extent depend on
Modelling

 

Figure 2.4. Participants in the modelling process and their interrelations 

Quite in the spirit of the model of a model given in Figure 2.2, we can prepare a 
model of the modelling process itself (cf. Figure 2.6), which will enable its 
systematic study. As we can see there, the result of the modelling process is a 
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(possibly compound) model. If the content of this monograph is brought in relation 
to the specificities of the modelling process illustrated in Figure 2.6, we can say 
that it focuses on information-technology aspects and approaches for efficient, 
platform-independent modelling in the area of mechatronics and mechanical 
engineering, based on an arbitrary web-browser, a (formal) modelling language, 
and a 3D visualization engine. 

2.1.2 Modelling Stages 

Modelling is a complex iterative process and has typically several phases or stages. 
Consider the following quotation from Duffy and Andreasen (1995): 

Phenomena models are primarily based upon observations and 
analysis of the “reality” of design and the use of the tools employed, 
and hence reflect “descriptive” models. Where appropriate, these 
models are then developed in more detail as information models and 
similarly as computational models and tools. At each stage any model 
can be compared or evaluated against any previous model in order to 
enhance our understanding and hence models. 

According to the graphical representation in Figure 2.5 based on Duffy and 
Andreasen (1995), the nodes in the bottom row of the figure can be viewed as 
modelling stages, with the reality being the origin of (computer) modelling, and the 
development leading from a phenomenon model through an information model 
towards a computer model. 

 

 

Figure 2.5. Design modelling research approach, after Duffy and Andreasen (1995) 

At a careful observation, many (nested) cycles can be discovered in Figure 2.5, 
and it is not easy to tell where the “beginning” is meant to be: when we have to do 
with cycles, the cycle-start can be everywhere. Note, however that two main types 
of activities exist during the development of any model:  
1. Essential (modelling) activities: improving the model and its adequacy by 

increasing the number of modelled properties, their accuracy and other 
essential qualities; and 

2. Auxiliary activities: “fighting” with the restrictions, limits and problems of the 
modelling approach used, methods, tools, etc.  

Thus, at each new stage some new model quality is achieved, but at the price of 
increased auxiliary activities. The efficiency of the modelling is directly 
proportional to essential activities and inversely proportional to auxiliary activities. 

Computer 
model 

Reality Information 
model 

Phenomenon 
model 
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Modelling

Inherencies (boundary conditions)

Environment OS

Host

Basic software
Domain area

Basis (of the modelling) Data
Objects
Functions
Data-flow
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Aims Supporting & improving the understanding of the matter

Allowing comparison of different solutions
Allowing analysis and prediction of: behaviour
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Phases/Stages Analysing the "to be modelled" object

Approach Methods
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universality
support for abstraction
standardization
extendibility
ease of learning
independence(from application, context, ...)
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user-friendliness

validate the model
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Virtual
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Other workable material

Data / Software
Imagination

Providing a common basis for discussions and 
information exchange (argumentative framework)

model specific extendibility
variable abstraction degree
understandability
clarity, simplicity
integrity

modellee specific
functionality
attributes

outlook

Componentization

Modelling cycle (spiral)

reusability

Problem localisation and formulation

Elaborating the (full) model Elaborating the partial sollutions
Synthesis

Looking for available solutions (Ready-to-use) Submodels
Similar models, that could be adapted

Assessing the suitability of the available approaches and choosing the best suited
Preparing a concept Looking for partial solutions

Assessing the suitability of the available approaches
Choosing the best-suited approach

Deploying, use/reuse
Validating and verifying

Enumerating its esential traits and parts

Result:

Model

UML

Modularization
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Figure 2.6. Specificities of the modelling process 
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The stages in Figure 2.5 are defined on the basis of “model metamorphosis” 
during model development. If, instead, the modeller’s activities were considered, it 
would certainly be possible during the model development to distinguish phases 
similar to those presented in Figure 2.7. 

Phases/Stages

5.Elaborating the (full) model

4.Preparing a concept

3.Assessing the suitability of the available 
approaches and choosing the best suited

2.Looking for available solutions

1.Analysing the "to be modelled" object

6.Validating and verifying

7.Deploying

8.Use

9.(Reuse)

2.1.(Ready-to-use) Submodels

2.2.Similar models, that could be adapted

1.2.Problem localisation and formulation

1.1.Enumerating its esential traits and parts

Phases/Stages

 

Figure 2.7. Modelling phases and activities 

2.1.3 Purpose and Objectives of Modelling 

Ipsa Scientia Potestas Est 
(Knowledge is power) 

Francis Bacon, Religious Meditations, Of Heresies 

It is in the nature of mankind to strive for power in the most general possible 
sense – the ability to rule, govern or control every possible thing from the simple 
toy to the whole universe. For people of different professions this general “rule” 
sounds somewhat different – the politician strives for political power, the physician 
would like to have power over all diseases, the fireman wishes to be able to control 
each fire, the engineers pursue control over the production and so on. But the sense 
remains in all cases the same: to hold full control over the respective domain. 
Unfortunately, there are powers that we cannot (yet) control – like the four 
elements, the sun, the cosmic powers. In cases where uncontrollable power (often 
referred to as force majeure) is involved, the next most attractive and important 
option is the ability to predict the flow of the upcoming events and the near future. 
For instance, science and technology are not (yet) strong enough to prevent an 
earthquake or tsunami-waves, but the foreseeing of their oncoming, together with 
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the appropriate actions, can avoid almost as many casualties as its prevention and 
thereby avert calamity. 

Let us introduce definitions of the terms control and prediction, which will be 
adequate for engineering purposes. 

Definition 2.2: To predict means to know the causal connection 
between some event e0 and its consequence c0. We shall 
call e0 a forerunner of c0. 

Definition 2.3: To (fully) control a given object or system means to be 
able to put the system in any of its known states, 
whichever of them is desired. 

In many cases Definition 2.3 does not hold, but it is possible to avoid certain 
undesired states of the system. Such an ability is more important than it seems at 
first glance. For instance, the ability not to allow a system to reach its worst (or 
most dangerous) state is more important than the ability to switch this system from 
the worst state into any other state. We shall call the former ability blocking (or 
weak) control and define it as follows: 

Definition 2.4: Blocking control is the ability to recognize a forerunner 
and issue a reaction r0 to it in a way that avoids an 
(upcoming) undesired event or state of the system, as 
well as any undesired consequence. 

Since, according to this definition, the controller first waits for a given 
forerunner to occur and then issues a reaction, we shall call this kind of control 
passive control. Of course, in many cases the controller can act on its own – i.e. 
without waiting for any forerunner – in order to change the state of the system. We 
say then that the controller is proactive or exercises active control over it. The 
actions or reactions, issued for gaining or keeping control over a certain system or 
object are usually called commands. 

Both passive and active control can be possible either for all forerunners or for 
some of them, so we can speak about full or partial control. 

Definition 2.5: When for a given system and a person controlling it 
Definition 2.3 holds for any forerunner, this system is 
fully controllable by the mentioned person. 

Cases where a system is fully controllable by somebody are rather rare. 
Therefore, when we speak about control we typically understand a highly, but still 
partially controllable system. 

The ability to predict, exactly as the ability to rule or control, can exist on any 
level of scale between the macro-cosmic and the micro-cosmic level. Somewhere 
in the middle there is also a level that can be viewed as the engineering level, 
which is in the focus of this work. But is the modelling really related to power and 
prediction? If yes, how are they related? Well, neither controlling nor prediction 
are possible without the appropriate knowledge. The approximate interdependence 
of these two abilities on a priori knowledge is illustrated in Figure 2.8. 

So, the next question is how the knowledge about a given topic or domain is 
acquired and whether we could influence the acquisition speed. Let us discuss 
these topics with the help of Figure 2.9. Suppose that the abscissa in Figure 2.9 
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shows the time or, in some cases – the lifetime of a given domain or entity. Then 
the solid line, starting from the beginning of the coordinate system shows how our 
knowledge about this domain or entity changes with the time. Four different phases 
are denoted under the abscissa, through which the “dealing” with knowledge 
goes – passive and active learning, and passive and active use of knowledge. In 
addition, there are two areas surrounded with rectangles, whose line patterns are 
different. Each of these areas is annotated with text, describing the (specific) 
activity, which is possible only with an amount of knowledge greater than that 
corresponding to the knowledge curve at the lower left corner of the respective 
area. 
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Figure 2.8. Domain-related abilities to predict and control events as a function of the 
acquired domain-knowledge 

During the first phase (passive learning) knowledge is collected relatively 
slowly, mainly through perception – an activity that takes place during all four 
phases and thus exists throughout the whole lifetime; it is marked with a rectangle, 
bordered by a dot-pattern line. Perception can occur through any of the human's 
five senses, but most of it happens through observation. 

Observation helps us learn everything that can be seen, but since most of the 
objects are opaque, neither their structure nor the connections among their 
components/elements can be studied through observation. Imagine you are 
presented with an unknown to you until now electric torch, having no battery yet. 
How do you know which position of the switch turns the light on and which turns 
it off if there is no inscription? One possible way to tell is to put a battery in the 
torch and to try which position turns the light on, but this is already another 
activity – an experiment. 
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Figure 2.9. Knowledge acquisition and use 

Having collected enough basic knowledge, an (intelligent) individual is capable 
of conducting some experiments, observing simultaneously the causal connections 
between his own actions and the subsequent reactions of the entity, increasing thus 
additionally his knowledge. In the case of the electric torch the basic knowledge is 
that it can light that it works with a battery, and that the light can be turned on and 
off through the switch. The action would be turning the switch and the reaction – 
changing the state of the light from on to off or vice versa. As soon as you can 
connect each position of the switch with a state – either lighting or non-lighting – 
you have learned to use the switch (and the electric torch). Now assume that a 
friend of yours has been with you and has watched attentively your actions all the 
time. Would he also have acquired the same knowledge as you did? Well, almost: 
he would know which position of the switch turns the light on, but he would not 
know, for instance, how much force is needed for turning the switch. The point is 
that your friend's newly acquired knowledge is gained through passive 
experimenting, while you gained the same knowledge through active 
experimenting. In general, more knowledge can be gained through active than 
through passive experimenting. 

After sufficient experimenting, the acquired knowledge reaches another point at 
which the individual is able to control the entity to some extent (cf. Figure 2.8 
again, with the domain being the use of an electric torch), so that some immediate 
goals can be reached – e.g., turning the light on or off, changing batteries, etc. The 
acquired knowledge typically does not increase during controlling; instead, the a 
priori knowledge (e.g., from old experiments) is confirmed and increases thus the 
certainty of the controller that the known commands can put the controlled entity 
to certain states or prevent it from getting into undesired states. Only if something 
unknown happens – say (if we continue our mental experiment with the above-
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mentioned electric torch), the light suddenly does not go on anymore due to a burn-
out of the light bulb – this can be registered as a new possible state and thus 
increases marginally the domain knowledge. The knowledge how to return the 
system from an unknown state to a known one can be either still missing or 
generally available – e.g., pressing the reset button of any computer puts it into a 
well-known state. Thus, the controlling itself can lead to acquiring new knowledge 
only indirectly – through coming to unknown problems or situations, solvable 
(only) by means of experimenting. The last proposition raises a fundamental 
question: is it possible to gain knowledge by mental experimenting? A positive 
answer to this question would revolutionize the whole science by making many 
experiments needless. What would be possible for sure is to search the memory for 
patterns of similar but already solved problems, and then attempt to derive from 
any pattern found a solution for the current problem/task. 

Since in this phase the main activities are observing and experimenting 
activities together with some controlling, an appropriate name for the phase is 
passive use of knowledge.  

From another point of view, as soon as an individual has noticed the causal 
connection between two (types of) events he can predict what would happen after 
some known forerunners occur. Back to the example with the electric torch: after 
using it long enough one should know that a noticeable decrease in the light 
intensity means an approaching end of the battery's charge, i.e. it is possible to 
predict the need for a replacement in the near future, and to take care to have the 
battery ready at hand. The prediction itself does not increase the knowledge, but as 
soon as it becomes clear whether the prediction is true or false, the knowledge very 
often may increase3. 

The most important outcome of the phases passive learning, active learning and 
passive use of knowledge is the determining a causal connection in the given 
domain. After acquiring a reasonable amount of causal connections (50–80%), it 
becomes more and more important to use them for acquisition of additional 
knowledge. We shall call such activity an active use of knowledge and name after it 
the last phase in the learning process. The reasoning and more specifically the use 
of techniques like induction, reduction and deduction for acquiring new knowledge 
on the basis of available knowledge and information are typical examples of active 
use of knowledge. 

Let us summarize again the analysis of Figure 2.9: 
• Apparently, the activity leading to the highest learning speed is the 

“experimenting”. Clearly, well planned experiments can additionally 
increase the learning speed. 

• It is never possible to get 100% of the theoretically possible (or practically 
available) knowledge because it is impossible to learn everything through 
observation and experiments. Instead, the curve showing knowledge 
acquisition as a function of time provokes associations with the Pareto-

                                                 
3 It depends on the kind of prediction, though. If you predict that the next toss up would be 

a head, you would not know more after the coin falls tail. But if you predict, say, that 
increasing the pressure in the tyres of your car twice would prolong their life, and yet the 
first tyre explodes during the increasing, you would know more as a results of this 
experiment. 
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principle: in many cases it is possible to acquire about 80% of the 
knowledge about a certain domain in about 20% of the time. 

• The probability of each prediction coming true is proportional to the 
knowledge about the respective domain. 

• It is impossible to fully control anything that is not well-known (or learned). 
On the other side, only tasks small enough to allow knowing everything 
about them, can be automated. Assume the control (of a process) can be 
defined as a mapping of a set of input states – problems – to a set of output 
states – solutions. Since the automation can be defined as delegating the 
control or the decision taking to an artefact (device, software, combination 
thereof, or whatever else), the existence of such a mapping and the 
possibility of its implementation are crucial. The implementation is only 
possible if: a) the number of probable input states is countable and exactly 
known, and b) an onto-mapping M of the set of problems {P} to the set of 
solutions {S} is known, and c) M is realizable as an artefact. 

So, how could models help here? At least the following two reasons for using 
models are justified: 

a) Models can be used instead of real resources, at least during the early 
phases of the development, and thus make even the most intensive 
experimenting affordable and (financially) more effective. 

b) Models can save time when they are workable or when they allow 
automation of experimenting. For software models both conditions are 
fulfilled. 

In short, the objective of modelling is to increase learning speed and the 
amount of acquired knowledge (reason b) and simultaneously decrease the costs of 
knowledge acquisition (reason a), supporting thereby indirectly the abilities to 
predict and to control. On this basis are built concepts like Digital Factory, Virtual 
Factory, or Smart Factory: if anything that has to be build in reality – from a given 
product up to the factory producing it – is fully modelled, studied and optimized in 
advance, there is a great potential for saving time, money and other resources. 

Of course, there are other reasons why we need models, which are more or less 
directly related to the discussed abilities to rule and to predict. They will be 
discussed in the following section. 

2.1.3.1 Why are Models Needed 
There are so many reasons for using models that their complete enumeration and 
description is almost impossible. Nevertheless, let us try to consider some of the 
more important ones (cf. Figure 2.10). 

Models contain or reflect only the most important, for a given purpose, traits of 
whatever is being modelled. As a result, they reduce the complexity of the 
modellee and allow the modeller to ignore unimportant traits in order to 
concentrate on the essentials. Therefore, models crucially support and improve the 
understanding of the matter. Since the models are a simplified, finite representation 
of something, they are easier to handle. In many cases the only way for comparison 
of different objects, products, solutions, etc. is to compare their models. For 
instance, we (still) cannot compare two screws atom-by-atom, particle-by-particle, 
and this would not make sense either. But it does make sense to compare their 
diameters, lengths, pitches, number of threads and a couple of other purpose-
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dependent traits. Since these traits represent a kind of screw-model, it is enough to 
compare the models instead of the modellees.  

Why do we 
need models

Have simplified, finite representation

Offer easier handling than the modellee

Support & improve the 
understanding of the matter

Allow comparison of different solutions

Allow prediction of: behaviour

Provide a common basis for 
discussions & information exchange

Allow to analyse non-existent
and/or unavailable modellees

problems
characteristics

weaknesses

To make an idea concrete
Why do we 
need models

 

Figure 2.10. Some reasons to use models 

Another interesting application of models is the prediction of properties and 
behaviour. This prediction is based on the comparison of relevant characteristics 
with those of similar but already known objects, activities, etc. For example, 
whenever we see that a bolt and a nut have the same diameter, pitch and number of 
threads, it is possible to predict on the basis of previous experience that the bolt 
will fit into the nut. 

A careful look at Figure 2.11 reveals that the model is involved in two loops: 
gaining insight and applying it to the problem in order to solve it. Besides, the 
former loop is nested in the latter. The advantage of the “long way” from the real 
system through problem definition, target definition, model creation, experiment, 
analysis and so on, viewing the steps clockwise, is that the inner loop (gaining 
insight) allows one to collect the knowledge, necessary for the solving of the 
problem, much more quickly (cf. Figure 2.9 again!). Note that the more iterations 
are made in the inner loop the deeper insight would be gained, and the problem 
should be solved either sooner or better, or both. 

Another important reason for using models is to harness them in the problem 
solving process. A nice example of how this could be done is given in Nyhuis and 
Wiendahl (2004) and reproduced in Figure 2.11. 
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Figure 2.11. Model-based problem solving process, after Nyhuis and Wiendahl (2004) 

2.1.3.2 How Models Arise 
Some of the possible ways for creating a model are represented in Figure 2.12. 

In all cases, after a model has been created, it has to be represented in some 
way in order to make it useful. Without such a representation, the model creator 
cannot communicate the model to other people, which renders it hardly usable. 
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Figure 2.12. Processes leading to model inception 
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2.1.3.3 Models and Product Development 
It seems at first glance that development is a linear or straightforward process, but 
this is not really the case. The point is that the real flow of this process is difficult 
to represent. Indeed, attempts to represent development typically concentrate on 
the most important traits of the process and ignore the non-essential ones. In 
particular, models are indispensable for the product development, and the main 
reasons for using models can be summarized as follows: 

1. to support the decision taking 
2. to shorten the development time 
3. to minimize the development costs 
All three reasons are more or less interdependent (at least in the direction from 

reason 1 towards reason 3 – i.e. easier and faster decision taking can shorten the 
development time, which in turn reduces the costs.  

A compact explanation of reason 3 is given in Figure 2.13. The three curves 
reflect the nearing of the product's achieved properties to the requested properties 
of a product as the development advances. The right-hand solid-line curve refers to 
the normally developed and produced artefacts; the left-hand solid-line curve refers 
to a rapid prototyping and the dashed-line curve refers to a virtual prototyping – 
i.e., to the percentage of modelled product's properties. 
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Figure 2.13. Maturity of model and (real) product during their development, after 
Gausemeier et al. (2000) 

Why are these curves so different? There are several reasons for this. On the 
one hand, before an artefact can be produced, the respective production process has 
to be developed and implemented. On the other hand, for the production of the 
rapid prototype another technology is used, which leads quickly to a product, but is 
much more expensive. Due to specificities of the rapid prototyping technology in 
some cases the manufactured prototype does not have all properties or does not 
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have the same quality as the real artefact. This applies to the virtual prototypes (or 
virtual models) in an even stronger way: since they are immaterial, they always 
lack more properties than a prototype. Since the model is always simpler (by 
definition) than the modellee, its processing is also easier and much faster. 
Moreover, since development is a cyclic process, the time difference gained on 
each loop accumulates. Furthermore, the development of models (and especially 
software models) requires fewer resources than the development of the product 
itself or than the manufacturing of its (rapid) prototype, and can be therefore much 
cheaper. Consequently, it is affordable to make new iterations of the development 
cycle even with minimal corrections of the model, and the development progress is 
faster. 

Use of models is indispensable also in situations when products or processes 
are developed for still unknown application areas – e.g. spaceflights. 

In short, a careful look around confirms once again that the whole science is 
based on models. Without models it would be impossible to analyse, to 
communicate, to compare, to take decisions, to improve, to solve problems and so 
on. The question about the form of existence (cf. Figure 2.2) of a model is of a 
lower importance, as long as the model achieves its purpose. Accordingly, the 
capability to control the modelling (of everything and everywhere) can also be 
crucial for success. 
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Figure 2.14. Important milestones of the product lifecycle and their sequence 

2.1.3.4 Models of Product Development 
Since the shortening of the (product) development cycle and the improvement of 
product quality can be viewed as main purposes of the modelling, it is instructive 
to discuss this development on the basis of a simplified model. The first question is 
when the development of a given product starts. Assume that there exists 
increasing demand for a given product. After this demand reaches a certain 
threshold (i.e. after some delay), a formulation of requirements for the product 
begins. As soon as the requirements are considered complete, the (actual) 
development can start. With the development progress, more and more of the 
functionality of the product is finished, which means that more and more 
requirements are satisfied. Again, after reaching some threshold of functionality, 
mass production can start, followed – with respective delays – by marketing and 
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use of the product. With the start of the product use starts also the wear and tear of 
its instances, and during use, new requirements are posed. Thus, the loop is closed, 
and we can speak about the lifecycle of the product with its elements or milestones. 
A simple model, illustrating the sequence of the mentioned milestones is sketched 
in Figure 2.14. 

Some of these milestones are in antagonistic relations, e.g., demand vs. supply, 
or unsatisfied requirements vs. achieved (required) functionality. The latter is more 
interesting from a technical point of view: as soon as the formulation of 
requirements is complete, the development starts, and with the fulfilment of each 
required function or quality the number of unsatisfied requirements decreases until 
all of them are satisfied. At this point the number of unsatisfied requirements is 0 
and the required functionality is 100%, and the first development cycle ends here. 
At the latest with the beginning of the product use, though, new requirements can 
arise, which may cause the next loop of the cycle to start. A simplified model of 
this process is illustrated in Figure 2.15. 

unsatisfied requirements
required functionality

 
Figure 2.15. Delay between posing requirements and achieving the respective functionality 

Typically the number of requirements decreases exponentially with every new 
loop. This fact can be reflected in the model as illustrated in Figure 2.16. 

If we define model maturity as the difference between the unsatisfied 
requirements and (implemented) required functionality, the resulting graphical 
representation of the curve will be very similar to the upper curve in Figure 2.13. 
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2.1.4 Some (Unusual) Examples of Models 

Let us view some examples and see how they comply with the definitions, and 
decide which of them are models and which are not. Paradoxically, these samples 
show that people are modelling all the time, even if they are not aware of it. 

2.1.4.1 Text 
Strangely enough, the most often used models are text models. Let us first consider 
the single words: they are finite, simple and are “linked to” or describe more or less 
adequately something. For instance, any verb describes a process or an action; the 
verb alone is hardly sufficient to achieve an accurate representation, but it 
represents the most important trait of the action. Most nouns cause association with 
specific objects or even classes of similar objects – e.g., the noun “lathe” is 
normally associated with the respective machine tool. When somebody says, “I am 
running”, we can imagine that he is moving in such a manner that his body 
periodically has no contact with the ground. Thus, on the one hand it seems that 
most words can hardly be viewed as models. On the other hand, every word is 
related to some concept or notion in our minds, which is in turn a simplification or 
idealization of something and can, therefore, be viewed as the model of this 
something. 

unsatisfied requirements

required functionality

 

Figure 2.16. Fading in posed requirements and achieving the respective functionality 

Now let us consider an arbitrary (textual) description of something. No matter 
how detailed the description is, it could not describe every atom, every bit, every 
detail – simply everything – since the description would become infinite. Thus, the 
author of the description tries to describe the essential things first, then some less 
important and so on, until there is no reason to describe further (levels of) details. 
Two criteria are most often applied in deciding when it would make sense to stop, 
namely:  
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a) it is clear that the description of more details would not contribute to the 
purpose for which the model is created; and  

b) the effort for describing more details would be greater than the achieved 
benefit. 

Thus, the description is a kind of representation of an object, it would become 
finite due to the outlined reasons, i.e. by applying one of the above mentioned 
criteria or both of them, and it would contain the most important traits of the 
modellee by ignoring whatever appears to be insignificant. Summing up, words 
can be viewed as models of notions, texts as models of ideas. 

2.1.4.2 Drawings, Sketches and Maps 
Similar reasoning is applicable to drawings, sketches and maps: they are finite and 
represent only traits that are important for a given purpose. Nevertheless, not every 
sketch is a model: the pen scratches, made by someone unconsciously – for 
instance, during a phone call – would seldom be named a model of anything. 

Maps4 of the same landscape or area made in different scales offer us a 
remarkable example of models with different levels of detail. An indispensable 
element of almost any map is the legend, where a correspondence between real 
objects and their representations on the map is defined. 

2.1.4.3 Pictures 
Pictures in the form of photographs, drawings, scans, etc., are also finite and 
simplified representations of something. Since they represent the outlook of 
something, they can be viewed as models of the respective outlook. In many cases, 
though, the outlook is not the most important property; in such cases pictures can 
hardly be called models. For instance, a photograph of a book can be a model of 
the appearance or of the design of a book, but not of the book itself.  

It is interesting to contemplate whether a photograph of the content of a book, 
with still readable text, can be viewed as a model of the book. At first glance, it is a 
finite representation of the content of the book. At a more careful viewing, it 
becomes clear that the real model of the book is the text of its content, while the 
picture is rather a representation of the model of the book and, in a sense, it can be 
viewed as a meta-model of the book. 

2.1.4.4 Bank Statements 
A bank statement is a textual document representing the financial transactions of a 
customer for a period of time (usually month or year). The question is if this 
statement, which is final and represents important milestones of the customer's 
financial or bank-related behaviour, could be viewed as a model of this behaviour. 
The answer can be figured out if the type of information available in such 
statements (amount transferred, date, source, destination) is compared with the 
“parameters” of financial behaviour – i.e. frequency of transactions; volume of 
month’s and year’s turnover; minimal, maximal and average value of transactions, 
etc. It is clear that these types of information are different. Therefore, although a 
bank statement can be used to organize a model of someone's financial behaviour, 
it cannot be viewed as its model. 

                                                 
4 We mean here geographical, geological and similar types of maps. 
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2.1.4.5 Itemized Phone Bills 
For similar reasons an itemized phone bill is not itself a model of a person's 
communicational behaviour, but rather could be used for building such a model. 

2.1.4.6 Model of a Circle 
The geometric figure circle is so well-known that having heard or read this word 
everybody can immediately imagine its specific shape. Therefore, if we are 
discussing geometric objects where the respective shape is important, the word 
“circle” can be viewed as a model of this class of objects, since it bears the most 
prominent trait of the class – its shape. 

In the majority of cases, though, we would like both to use the same model for 
the whole class and to be able to represent different specific objects (instances) of 
the same class without having to model them again. To achieve this we need to 
factor out everything that is specific for the whole class and make some 
characteristics serve as parameters, allowing us to instantiate arbitrary 
representatives of the class. Then, in order to be able to distinguish between 
different objects of the same class we need only to compare the values of the 
respective parameters. 

In the case of a (two-dimensional) circle we would need at least the radius, 
which can be represented by means of one number. Should we need to distinguish 
also between circles with equal radii, we could use in addition the coordinates of 
the circles' centre, which are a pair of numbers for each circle. Consider the 
hierarchical representation in Figure 2.17. The radius and the centre point are 
grouped and represented as properties. Further specifications account for model-
specific names, types of properties and validity rules (denoted as constraints). 

Model of a Circle

Definition

all Points equidistant
to a given (centre) point

Properties

Radius

Number

Name Value Constraint

R 1 >0

Centre point 

Two numbers

Name Value Constraint

x,y 0, 0.7 None

Model of a Circle

 

Figure 2.17. Simplified model of a circle 
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An interesting point for discussion could be whether the definition itself is a 
property or not. Later on we shall discuss other possibilities, but for the purposes of 
the current simplified model, let us leave it the way it is now. 

2.2 Model-related Terms and Notions 

The task of formalizing everything is like the 
construction of a medieval cathedral: it takes 
centuries to complete, and when it is done, 
someone else will have a plan for an even 
grander cathedral. 

John F. Sowa 
Knowledge Representation 

Numerous terms are used in the literature in connection with models and 
modelling. Some of them are already well known and established, some, still 
contradictory or simply not popular. In order to avoid misunderstanding, we 
introduce in this section the terminology to be used throughout this monograph as 
well as some characteristics and properties of models. 

2.2.1 Prototype 

In mechanical engineering, we often hear the term prototype in addition to the 
terms model and modelling. The definition in Sinclair et al. (1987), for example, 
puts prototypes in a strange relation to models, namely, prototypes seem to be 
restricted to models only, which is certainly not the case. “A prototype is the first 
model that is made of something; P. is used as a basis for later improved models”. 
In yet another dictionary, we read: “A prototype is a new type of machine or device 
which is not yet ready to be made in large numbers and sold.” And as a second 
meaning: “if you say that someone or something is a prototype of a type of person 
or thing, you mean that they are the first or most typical one of that type.” 
Obviously, the latter two interpretations are more precise and do not lead to 
contradictions. If we replace the word “model” with the word “instance” in the first 
definition, all three interpretations would become compatible. With this 
adjustment, we can adopt the following definition for the purposes of the current 
study: 

Definition 2.6: A prototype is the first instance that is made of 
something; P. is used as a basis for later improved 
instances. 

The prototype is typically a real material thing, but in some cases it can also be 
virtual – in the sense of imaginary or not perceivable by the five human senses. 
The possible combinations between the type of the prototype, the type of the 
mature product (or end product) and their “virtuality” are sketched in Table 2.1. 
We can see in this table that the strangest predicted combination would be to 
prepare a real (in the sense of material) prototype of a virtual end product. 
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A similar comparison of modellee types with prepared models demonstrates 
that in this case all predicted combinations are possible (cf. Table 2.2). 

Within any product's lifecycle the prototype comes clearly before the mature 
product. But on the basis of what is the “first instance” made then? And if we can 
model real objects, is it possible to model objects that still do not exist? And how 
should they be called? 

Table 2.1. “Virtuality” of prototypes and models 

# Mature product Prototype Possibility Plausibility Example 

1 real real yes yes (most 
common case) mock-up 

2 real virtual yes yes digital mock-up 

3 virtual  
(unperceivable) real5 hardly ? ? 

4 virtual virtual yes yes software 
 

Table 2.2. “Virtuality” of modellees and models 

# Modellee Model Possibility Plausibility Example 

1 real real yes yes (most 
common case) mock-up 

2 real virtual yes yes digital mock-up 

3 virtual  
(unperceivable) real5 yes yes 

sketch of a magnetic 
field? listing of a 

program? 
4 virtual virtual yes yes software 

 

2.2.2 Archetype 

It is possible to model everything – modellees can be existing and non-existing, 
real or virtual, abstract or concrete. Often the possibility to distinguish between the 
modelling of already existing and modelling of not yet existing modellees is 
crucial. The latter case is of special interest, since it is specific for every novel 
product or process. The models in such cases are successors of ideas, but in our 
view there is one additional intermediate stage between a new idea and the model 
or prototype of any future product: the archetype.  

In Sinclair et al. (1987) the term is explained as follows: “An archetype is 
something that is considered to be a perfect or typical example of a particular kind 
of person or thing, because it has all their most important characteristics.” 

The archetype can be viewed as a mature well-elaborated idea, which can 
create a clear vision of the modellee in a modeller’s head. It is a bearer of the 

                                                 
5 In this case “real” is used in the sense of “made of some material”. 
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inherent (or most important) traits and functions of the desired (or designed, or 
modelled) object, product or process. 

Definition 2.7: The elaborated idea that is (or has to be) modelled will 
be called archetype. 

Note that according to this definition, which will be adopted here, the archetype 
is always abstract or immaterial. 

2.2.3 Interrelations Among Important Terms within the Product's 
Lifecycle 

Now let us return to the modelling of real objects. Possible modellees (i.e. the 
objects to be modelled) originate either in nature or from organized manufacturing. 
An interesting question in the latter case (no matter whether the products are under 
development or are already mature) is which one is primary, the product or the 
model? This question is similar to the famous question about the primacy of the 
egg and the hen. Different viewpoints can obviously lead to different answers, but 
what remains viewpoint-independent is that there is a relation or connection 
between the two. To avoid contradictions and reduce the uncertainties related to 
these terms, let us consider Figure 2.18. 

 

Figure 2.18. Interrelations among idea, model, archetype and prototype during the 
development cycle of an original product 

Normally, at the beginning there is an idea. It is elaborated until there is enough 
information in it to prepare an archetype on its basis. On the basis of the archetype, 
a model is prepared. After that, through some manufacturing process, the model is 
embodied into a prototype. The prototype, in turn, is tested, improved and 
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optimized until it can be used as a pattern for mass production. During the 
production, many replicas of the pattern are made. Any of these replicas, their 
production itself, as well as the model, the prototype or the pattern could inspire 
new ideas or be used directly as modellee and thus initiate the lifecycle (or the 
development cycle) of a derived product, as illustrated in Figure 2.19. 

Figure 2.19. Interrelations between idea, model and prototype during the development cycle 
of a copied or derived product 

In certain cases, derived developments are desired and intended, in other cases 
they are not desired but hardly avoidable, and in the worst case copy modelling or 
copy production could even be illegal. To summarize, copy modelling is not 
necessarily a breach of copyright or stealing of intellectual property – it actually 
takes place in each development loop and helps to improve the initial prototype. As 
“normal” modelling – shown in Figure 2.18 – has a lot in common with inventing, 
it can also be named inventive modelling. 

Consequently, the answer to the question at the beginning of the section is that 
for inventive modelling the idea is prime, while for derived modelling the product 
(or object) is prime. This is true especially at the beginning of both processes – 
more precisely, for their first loop, since already for the second loop of the cycle, 
the case could become either mixed or transform into the “opposite” kind of 
modelling. 
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2.2.4 Process Models 

Nothing endures but change 

Diogenes Laertius 
Lives of the Philosophers 

2.2.4.1 Ambiguity of the Word “Process” 
Similarly to the terms “model” and “modelling”, the term “process” is used in 
many different contexts and refers to activities in totally different domains. In this 
text the focus will be on production-related processes (including modelling itself). 
We shall understand product to be a really existing object that is usually a result of 
a manufacturing process. We shall understand a product model to be a model of an 
existing as well as not-yet-existing product. Although virtual objects like software 
models, software, etc., can also be the result of “manufacturing” processes, they 
will be referred to with their specific names. 

Definition 2.8: A process is any non-empty and time-dependent 
sequence of interactions of two or more objects, leading 
to changes in (the state of) at least one of the objects. 

According to this definition processes are, for instance, the movement and 
changes in the orientation of an object (they can happen only as result of an 
interaction with the surrounding objects and are relative to them), changes in the 
structure or in the form of an object (usually as a result of applying mechanical, 
chemical or other forces). In the context of this work, we normally understand 
process to be a production-related one.  

There are three terms in Definition 2.8 that could need more discussion: event, 
time and interaction. We shall define the term event as any ascertainable change in 
the state of an object or system of objects. The second term, time, has a tight 
relationship with the events and helps us distinguish one event from another. The 
third term is interaction, usually defined in terms of an action causing a reaction: in 
particular, as a pair comprising the action of one object on another one, and the 
respective reaction (or answer-action) of the affected object. It could be useful to 
distinguish here two different meanings, though. In the context of Newtonian 
physics, the action and reaction are two forces that (can) exist only simultaneously; 
in the context of process control, it sometimes makes sense to view the action and 
the reaction as two events that are related, but – in general – happening at different 
times. 

2.2.4.2 Time 

Time is an illusion. Lunch time doubly so. 

Douglas Adams 
The Hitchhiker's Guide to the Galaxy. Chapter 2 

The main attribute of all processes, common to all of them, is their dependence on 
time. Although many great scholars have written about time, we shall try to 
introduce a short and pragmatic definition of this term: 
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Definition 2.9: For engineering purposes time can be viewed as an 
invisible but inherent characteristic of the universe, 
allowing us to correlate different events or processes, 
order them in a sequence and quantify the “distance” 
between them. 

On the one hand, we try to accomplish each (production) process in the shortest 
possible time. On the other hand, even if it were possible to work infinitely fast, 
and thus reduce the accomplishment time to zero, this would be rather impractical, 
since without time (time=0) we would lose the order of events, ending thus in 
chaos. Therefore, when there is no need to consider relativity theory, we assume 
axiomatically that: 
3. time depends on nothing (that we could influence); 

4. time advances with constant, greater than zero speed; 

5. time advances only forward; 

6. there are no interruptions in time; 

7. all processes are time-dependent. 
When all these assumptions hold, we can describe process flows or sequences 

as functions of time. 

2.2.4.3 Relations Between Product, Production and Process 
On the one hand, every product is a specific type of object. On the other hand, 
products are output of some kind of production. Production itself is a process. 
Therefore, process modelling implies also modelling of objects, or in other words, 
modelling of production processes implies product modelling, too. A simplified 
model of a production process is represented in Figure 2.20. 

Production process           

Raw material

Processor(s) (machine, worker, etc.)

Product
Input Output

Input

Energy Waste

Output

 

Figure 2.20. A simplified model of a production process 

With regard to the relation between process and product, this simple model can 
be viewed from at least three different perspectives, depending on the starting 
point: 
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8. given the process, analyse what can be produced and what raw material is 
needed; 

9. given the (required) product, find how to produce it and what raw material is 
needed; 

10. given a raw material, analyse how it can be processed and what can be 
produced. 

When two of the three elements are given, it is easier either to determine the 
third element or to make sure that no adequate third element exists. 

Process

Definition

Participants

Parameters

subject(s)/
actor(s)
object(s)

Components
Input
Output
Control

Process
classification

Flow
Steps(operations)

Dependencies
Intermediate results

Attributes
Properties

Characteristics changes

influence

influence

Process

 
Figure 2.21. A model of a generic process 
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Figure 2.22. Example process classification 

In contrast to Figure 2.20, which is normally “read” from left to right, the 
generic model in Figure 2.21 is focused in the centre, i.e. it is to be “read” towards 
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the periphery, with the reading order – clockwise or counter-clockwise – playing 
no significant role.  

Compared to a function in the mathematical sense, which is a mapping between 
two sets – input and output – the process represents a similar mapping between (the 
elements of) an input set and an output set, but it contains a time component, i.e. 
any process needs or takes time. 

Processes can be classified according to different criteria. A very systematic 
classification from cognitive point of view can be found in Sowa (2000). Also, 
Sowa gives a very intuitive and mnemonic symbolic notation for different kinds of 
processes and for some of their elements – start, stop, branching, concurrency, etc. 
Another possibility, better suited (in my view) to the field of engineering, is 
illustrated in Figure 2.22. 

The development of every product and every process is influenced by a few 
major factors. When they are restrictive, we can speak about limitations or 
constraints, Dörner (1987) even speaks about barriers. An example of influencing 
factors is represented (in a self-explanatory way) in Figure 2.23. 
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Figure 2.23. Role of some factors, influencing product and process development 

In general, three main groups of questions should be asked in respect of the 
development of a (potential) product. They are given in Figure 2.24. 

When trying to detail the answers to these questions it is usually helpful to 
prepare and consider a (meta-)model of the product development to consider the 
factors influencing it. An example is presented in Figure 2.25. 
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Figure 2.24. The main questions, related to product development and some related notions  
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Figure 2.25. Model of the impact of some processes on product development 

2.2.4.4 Simulation and Modelling of Processes 
An explanation of the term simulation in a general sense is found in Wikipedia 
Wiki (2006) as “an imitation of some real device or state of affairs. Simulation 
attempts to represent certain features of the behaviour of a physical or abstract 
system by the behaviour of another system.” A more complete definition of this 
notion that would be closer to our needs and understanding is adopted here from 
VDI-Richtlinien (2000)6: 
                                                 
6 In original: “Unter dem Begriff Simulation versteht man … die Nachbildung eines 

dynamischen Systems in einem Modell, um zu Erkenntnisse zu gelangen, die auf die 
Wirklichkeit übertragbar sind." (cf. VDI-Richtlinien (2000)). 
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Definition 2.10: The implementation of a dynamic system in a model 
suitable for experiments and the experimenting with 
this model7 to gain knowledge that can be transferred 
(back) to the reality. 

In this definition of simulation, we can distinguish the following essential 
points. The aim is not only to gain knowledge, but also to use it to act against weak 
points of the reality and towards its improvement. There are two phases in 
achieving this: (i) modelling of the dynamic system, and (ii) experimenting with 
the model. Consequently, the simulation relies upon modelling, where the 
modellee is a dynamic system. 

2.3 Modelling: Classification 
Known modelling approaches can be classified according to different criteria (cf. 
Figure 2.2), so let us consider some representative examples.  

According to the medium used for the model, we can distinguish between real 
(mock-up) and virtual (mathematical, informational, software/computer models, 
etc.) models.  

According to the application domain, we can distinguish between medical, 
psychological, linguistic, engineering, architectural, chemical, physical and other 
models. 

According to the application (sub-)domain, we can distinguish (e.g., within the 
engineering domain) between modelling in design, manufacturing, assembly, 
planning, marketing, service and others. 

According to the basic modelling tool, there could be (CAx-) system-based, 
language-based (UML, Express, natural language, etc.), and other modelling. 

According to the used (software) architecture, it is possible to have client–ser-
ver architecture, distributed architecture, high level architecture (HLA) and so on.  

According to the dominant method or approach, the modelling can be 
functional, object-oriented, feature-based, distributed, etc. 

According to the involved concepts, the modelling can be modular, agent-
based, holonic or other type. 

It is also possible to classify the modelling according to the characteristics of 
the resulting model, which are to be guaranteed or expected.  

A classification of several possible model types according to some key criteria 
is illustrated in Figure 2.26. 

2.4 Model Traits 
Ideally, each model would have or at least represent all the important traits of the 
modellee. In reality, the set of traits of the modellee and the set of traits of the 
model have a common subset, but are rarely identical (cf. Section 2.4.1.18 below). 
The traits that are specific to the model only, but not the modellee, can be called 
model-specific traits; they represent directly or indirectly the quality of the model. 
They depend on the modelling approach, on the methods used, on the chosen 
representation and many other factors.  

                                                 
7 The bold text is added from the author to make the idea clearer. 
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Figure 2.26. Sample modelling classification 
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The next section discusses some important model-specific traits that can be 
observed in most information models. 

2.4.1 Definitions 

It makes sense to define traits and their measurement in a way that will allow us to 
compare models of different types. This can be achieved if we use either relative 
values or a common comparison basis. For this reason, the formulae for calculation 
of the trait values have to be defined so that the range of the respective functions is 
between zero and one. 

2.4.1.1 Compositeness 
Theoretically, it is possible to distinguish between atomic (or elementary) models –
that contain no other models – and compound models – that contain other (atomic 
or compound) models. Besides, “contain other models” refers not to the physical 
aspect but to the organization instead, especially in the case of software models. 

It makes sense to define compositeness as having a Boolean value: zero for 
atomic modes and one otherwise. In practice, the software implementation of an 
atomic information model is not necessarily also atomic: for instance a point is – 
both as object in space and as (informational) notion – something single and 
undividable, but is usually modelled by means of at least two numbers – its 
coordinates in the coordinate system used. Similarly, the majority of software 
models are compound, too. The only exceptions are the models of some scalar 
attributes and properties of the modellees (like the point's coordinates above) – 
they are modelled by representing their value in a variable of an appropriate type 
(cf. Section 2.4.2.3.1). 

The dependency of any trait listed below on the model's compositeness is to be 
explicitly mentioned in its definition. 

2.4.1.2 Divisibility 
This trait describes the possibility to split a given model in several sub-models that 
would be equivalent (as a group) to the initial model. Such activity can be helpful 
when optimizing composite (and complex) models to factor out a sub-model that is 
common to two or more models. In this sense the value is Boolean, it can only be 
true (one) or false (zero). 

2.4.1.3 Accuracy 
The accuracy is a trait, showing how similar to the modellee the model is, and 
what deviations can be expected. Extremely rarely, the accuracy of a model can be 
measured directly or calculated – typically, for very simple models only or for 
separate model traits representable with numbers. Since (the elements of) software 
models are represented by numbers, it is important to know how accurately the 
numbers can be represented in a computer. The accuracy of a software model 
depends on the hardware and on the representation used. 

2.4.1.4 Actuality 
The actuality can be viewed as a time-dependent accuracy, meaning that if a 
modellee is changing with time, its model should be updated or actualized in order 
to remain useful and fulfil its purpose. In a dynamic environment it is extremely 
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important to work with the most recent information in order to be able to make 
proper decisions. On the other side, there is a desire to make the model's lifetime as 
long as possible (discussed in more detail later on – cf. Section 3.1.1.8). These two 
requirements seem contradictory at first glance – i.e. actuality of a model despite 
its long lifetime. Nevertheless, it is possible to achieve both of them relatively 
easily by well-directed and well-localized update of the non-actual components of 
the model. The actuality may change in two situations. On the one hand, it can 
“expire” if the modellee is changed or new information about it becomes available. 
On the other hand, new scientific discoveries can also make a model outdated and 
require its actualization. It can be necessary to assess the actuality in two cases: 
either to determine whether a given model needs to be updated or to determine 
which of two (non-numbered) versions of the model is more recent. 

2.4.1.5 Adequacy 
Whereas the accuracy reflects the mathematical and the numerical representation 
of a model, the adequacy reflects its logical and semantic correctness. 
Unfortunately, there is no way to measure or calculate this trait objectively. 

2.4.1.6 Aspect 
Depending on the purpose of the task at hand, each modellee can be viewed from 
different viewpoints or aspects. If a real three-dimensional object is viewed from 
two different viewpoints, some of the observed things can be the same, but most of 
them will be different or look different. Similarly, when modelling complex 
modellees, it can be useful to distinguish the inherent traits of their different 
aspects. For instance, when we are modelling the manufacturability of a given 
aggregate, we need to know all dimensions, the shape, the material, the pursued 
surface quality, among others. When another aspect is modelled, e.g., the 
functionality, traits of the modellee like structure, connections among the 
components and others become more prominent than material and surface quality. 
Each different aspect of a given model is usually representable as a distinct layer 
(cf. Stratification). 

2.4.1.7 Autonomy 
The ability of a model, object or system to react to events and changes in 
conditions or environment in an adequate and purposeful way will be called 
autonomy. The autonomy is a way of self-control. It can vary on a scale from zero 
(fully controlled or fully dependent) to one – fully autonomous. This property is 
rarely inherent to atomic (informational) models. It is natural to expect autonomy 
of a computer model when the modellee is also autonomous. All four combinations 
of such a pair (modellee and model) with regard to autonomy are indeed possible. 

The term autonomy refers mainly to the lifetime of the respective object 
(compare with independence below!). 

2.4.1.8 Cardinality 
In set theory, the number of elements in a given set is called cardinality. 
Analogically, this term will be used here to denote the number of sub-models or 
components within a model. Only the direct sub-models (i.e. without the nested 
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sub-models) have to be counted8. We shall consider elementary models as having 
cardinality zero. 

2.4.1.9 Changeability 
This property is a measure inversely proportional to the effort needed to change the 
model. It makes sense to use absolute and relative changeability. 

2.4.1.10 Compatibility 
One entity (part, product, model, etc.) is said to be compatible with another entity 
(usually of the same type) if the former has functionality and properties 
corresponding to some degree with those of the latter entity. Apparently 
compatibility can vary on a scale from zero (fully incompatible) to one (fully 
compatible or equivalent), although a compatibility below 50% should be 
classified, in general, as “incompatibility”. Some aspects of compatibility are given 
in Figure 2.27. Depending on purpose and application domain, though, some of 
these aspects become more prominent, others become negligible, but almost 
always one turns out to have a dominant importance. 
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Figure 2.27. Example classification of compatibility 

                                                 
8  In contrast to set theory, though, some cases exist where the cardinality of complex 

models should be calculated as the sum of the cardinalities of all components, applying 
this rule recursively, if necessary. 
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2.4.1.11 Consistency 
When all components (or sub-models) of a compound model are described and 
represented without contradictions – i.e. they follow the same approach, use 
compatible methods and organization – we shall say that the compound model is 
consistent. 

2.4.1.12 Dimensions 
Computer models have only one dimension – their size, measured in bytes or 
derivative units. Physical models (mock-ups) can have many dimensions. 
Nevertheless, when a model represents (or “derives”) some dimensions of the 
modellee, we speak about “x-dimensional-model” (xD-model), where x is usually a 
number from 2 to 4. 

2.4.1.13 Durability 
Durability is the ability of something to last. For materials, it depends on the 
material properties and on the conditions of use (environment, etc.). For immaterial 
things like concepts, ideas and similar, it depends on the durability of the 
respective host (see below for definition), medium or representation. Although we 
typically strive for high durability, it is not always good, since it could impair other 
traits like changeability, extensibility, flexibility and updateability (see below for 
their definitions). 

2.4.1.14 Dynamics 
The possibility for a model to (frequently) change appearance or behaviour is 
called dynamics. It is apparent that the model of any process will be dynamic. It is 
difficult to measure the dynamics. Although at the first glance it seems that there 
exist objects or models that do not change with time and thus should have 
dynamics=0 (or are static), a more careful look suggests that they actually contain 
two (or more) phases in their lifecycle that have different dynamics: creation (or 
genesis) – with dynamics=1 – and post-creation (or use, or existence) – with 
dynamics=0. Therefore, this trait is time-span-dependent. 

2.4.1.15 Extensibility 
This property describes whether it is possible to extend the respective object 
(model, product, etc.) with new functionality or other characteristics. Ideally it 
should be possible to infinitely extend anything (this could be denoted as 
extensibility=100%), but in the worst case extensibility is impossible 
(extensibility=0%). 

2.4.1.16 Flexibility 
In IEEE (1991) flexibility is defined as “the ease with which a system or component 
can be modified for use in applications or environments other than those for which 
it was specifically designed”. For the case of modelling we should redefine 
flexibility as the ease with which a model or a system of models can be adapted for 
(use in) purposes, not intended or foreseen during the initial development. Note 
that a new purpose may require new application, new environment or both. 

In some cases flexibility can be achieved only by means of extensions (cf. the 
definition of extendibility above). In cases when flexibility is inherent without need 
to implement extensions, the term versatility is used as a synonym. 
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The flexibility can be expressed with numbers between 0 (enormous effort for 
any adaptation) and 1 (no effort for adaptation to an infinite number of purposes). 
Yet, it can be neither directly measured nor easily calculated. Nevertheless, we 
have to distinguish the flexibility of a system or compound object (respectively – 
compound model) from the sum of the flexibilities of its components. The former 
is usually much lower than the latter! The point is that the purpose is a determining 
factor, but for a system is defined top-down, while the system's embodiment 
happens bottom-up. Thus, using a given system with a new purpose would usually 
mean having a new set of functional requirements, which means that many existing 
modules would remain unused. 

High reusability does not mean automatically high flexibility – if the object in 
question is reused again and again for the same purpose, it is simply durable, but 
not yet flexible. If a system can be used for a new purpose without adaptation, this 
means that either the new set of requirements is a subset of the old requirements, or 
the system exhibits great lateral functionality (cf. the respective section below). 

2.4.1.17 Functionality 
The functionality describes all capabilities of the model. It can be viewed as a set 
of all functions that a given entity can accomplish. Thus, it can be represented by 
the cardinality of this set, which is a number between 0 for no functionality and 
infinity for infinite, endless functionality. Actually, zero functionality would mean 
that the respective object is of no use, or – when the object is a model – that the 
model cannot fulfil its purpose. Therefore, the zero remains excluded from the 
range. The other end of the range – the infinity – is excluded too, since no object or 
model can accomplish an infinite number of functions. Thus, even the highest 
functionality will be a huge but countable number. 

The requirements for any artefact depend on its purpose and can also be 
described as a set of functions, which form the required functionality (Freq). Since 
not every artefact fulfils its requirements, the “normal” (or full or actual) 
functionality is sometimes called implemented functionality (Fimpl). It intersects the 
required functionality, as illustrated by the Venn-diagram in Figure 2.28. 

Required
functionality

Implemented 
functionality 

 
Figure 2.28. Functionality types 

Functionality that is required, but not implemented, remains due functionality 
(Fdue). It can be expressed as: 

implreqdue FFF −=  (2.1) 
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Functionality that is not required, but implemented – perhaps, due to 
specificities of the development process or due to other considerations – can be 
called lateral9 functionality (Flat). It can be expressed as: 

reqimpllat FFF −=  (2.2) 

Note that the subtraction in Formulae 2.1 and 2.2 operates on sets and is 
different from the normal subtraction.  

The cardinalities of the respective subsets can be expressed as:  

],0( reqdue FF =  (2.3) 

and 

],0[ impllat FF ∈  (2.4) 

Lateral functionality is very welcome when achieved as a side effect of the 
development (i.e., without extra effort or costs), since for some new purpose it can 
become a required functionality and therefore increases the flexibility (cf. the 
definition in Section 2.4.1.16 above). 

When the required functionality Freq is the same as the implemented 
functionality Fimpl or the former is a subset of the latter (Freq ⊆ Fimpl) it is said that 
the artefact fulfils (completely) its purpose. In such cases the cardinality of the 
subset of all due functions is zero (|Fdue | = 0). 

From the point of view of the importance of the specific functions that build the 
functionality, we can group them in two categories or subsets: basic functions, 
which implement the inherent functionality, and auxiliary functions, which 
implement functionality of lower importance. 

When still unknown objects or artefacts are investigated, one can distinguish 
between apparent functionality and (yet) hidden functionality. 

2.4.1.18 Coverage 
Given a modellee and its model made for a certain purpose, the following 
considerations can take place: 
11. Only the important for the respective purpose attributes and functions of the 

modellee have to be modelled (cf. Definition 2.1) and thus represented in the 
model. 

12. Typically, some attributes and functions of the model (would) concern only 
the model itself and not the modellee. 

13. Often there are attributes or functions that are not required, but nevertheless 
modelled. 

If we try to represent the set of attributes and functions of a modellee Amodellee 
and the set of attributes and functions of a model Amodel as a Venn-diagram, the 
result is illustrated in Figure 2.29. Apparently, the greater the intersection of the 
two sets, the better (approximation of the modellee is) the model. We shall call the 
                                                 
9 Other possible terms for this notion are side or excess or extra or unrequested 

functionality. 
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intersection coverage, since it reflects to what degree the model “covers” attributes 
and functions of the modellee, and shall measure it as percentage. 

modellee

modelmodellee  
A

AA
Coverage

I
=  (2.5) 

Unfortunately, coverage gives a more quantitative than qualitative impression 
about the model, since the importance of single attributes and functions is different. 
Therefore, covering a large number of unimportant attributes and functions can be 
worse than covering a much smaller but more important number of them. 

Similarly to the functionality, the coverage can be represented by Venn-
diagrams as in Figure 2.29. 

Modellee

Model

 

Figure 2.29. Coverage and suitability of a model 

Clearly, better coverage means higher quality of the model. But with the 
increased cardinality of the set mentioned in 12 above, the inefficiency of the 
model also increases.  

Now let us consider the coverage of compound models.  

2.4.1.19 Compound Models 
The traits of any model depend on the traits of its components. Unfortunately, very 
few model traits are representable as a sum or superposition of the respective traits 
of the components or by means of a simple formula. 

Obviously, the set of all modelled attributes and functions can be expressed as 

U
M

1i
model-submodel

=

= iAA  (2.6) 

Similarly, when the modellee is also compound, its respective set can be 
calculated as 

U
N

1i
componentmodellee

=

=
i

AA  (2.7) 

Since in both cases overlapping between the sets of attributes and functions of 
the components and, respectively, of the sub-models can occur (cf. Figure 2.30), 
the cardinality of the top level sets will be smaller than or equal to the sum of the 
cardinalities of the components. The following formulae hold: 
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∑
=

≤
M

iAA
1i

model-submodel  (2.8) 

and 

∑
=

≤
N

i
AA

1i
componentmodellee  (2.9) 

finally, 

Coveragemax = granule_count * granule_area (2.10) 

a) c)

d)b)  

Figure 2.30. Coverage and granularity of compound models 

2.4.1.20 Granularity (Only for Compound Models) 
According to the Langenscheidt dictionary, the granularity is “a measure for the 
size of the standalone sub-operations in which a process or program can be 
divided for achieving parallel processing”10. 
                                                 
10 In the original: “granularity 1. Körnigkeit f; 2. Maß für die Größe selbstständiger 

Teiloperationen, in die ein Prozess oder Programm für die Parallelverarbeitung zerlegt 
werden kann”. Langenscheidt Fachverlag GmbH, München, 1999 
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In the context of modelling, granularity refers to the average size of all sub-
models of a given model. Since some models could have different dimensions, it is 
important to specify to which of them the word “size” refers in the previous 
sentence, i.e. which of them is taken for determining granularity. For instance, if 
the quality of the modelling is assessed, an appropriate measure for the “size” 
could be the coverage of each sub-model. If the efficiency of the memory usage is 
assessed, a better candidate for the dimension to be used could be the size of each 
sub-model in bytes. 

Since the granularity can be very useful for comparison or assessment of 
compound models, it will be discussed again later on. 

2.4.1.21 Homogeneity 
This property shows whether all sub-models have the same (type) of origin and are 
thus homogeneous and directly compatible with one another, or have different 
(types) of origin and are heterogeneous. Sub-models of the latter type typically 
require special effort for their integration.  

2.4.1.22 Independence 
This is a measure of the strength of the relations to or of the dependencies on other 
elements of the surrounding system or environment. It could be related to or 
combined with model properties like existence, functionality and others. 

Unlike autonomy (cf. the respective section above), independence is more 
related to the genesis of an object than to its lifetime. 

2.4.1.23 Intelligence 
This property is discussed in Section 2.4.2.3.1. 

2.4.1.24 Interchangeability 
If two entities (real or virtual) are fully compatible with each other (i.e. equivalent) 
and each can be used instead of the other without discernable loss of functionality, 
quality or anything else, we say that they are interchangeable. When a single entity 
is said to be interchangeable, it is meant that the design of the entity provides such 
a possibility and that spare parts of the same type are deliverable. 
Interchangeability is usually viewed as a binary (i.e. true or false) property (cf. also 
compatibility above). 

2.4.1.25 Openness and Modifiability 
The term openness refers to the possibilities of changing or extending any given 
model, and is implementation-dependent. The less functional a given model is, the 
higher is the probability that new desires concerning its functionality will arise, so 
that the model will have to be extended. The more complex a given model is, the 
higher is the probability that errors will occur or (for mechatronic systems) failures 
will happen during the exploitation, so that the model will have to be 
corrected/changed/repaired at the end user's place. For pure software models this is 
seldom a problem, but for complex mechatronic systems the distance to the place 
of use could cause problems (or at least additional costs).  

Increasing the openness of a given model has strong influence on many of its 
other traits. In most cases it is positive – extendibility, flexibility, integrability, etc. 
In one aspect, though, the change is negative: the increased openness of a model 
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makes it easier for the competition to imitate. For this reason many producers of 
software and software models sell their products as turnkey products. A necessary 
condition for achieving model openness is a clear definition of its interfaces. 
Depending on the model type, the interfaces can be mechanical, electrical, 
software, or any combination of these.  

2.4.1.26 Paradigm 
Webster’s dictionary gives the following definitions for paradigm: 

Example, pattern; especially: an outstandingly clear or typical 
example or archetype.  
… 
A philosophical and theoretical framework of a scientific school or 
discipline within which theories, laws, and generalizations and the 
experiments performed in support of them are formulated. 

Another explanation is found in Wikipedia: “From the late 1800s the word 
paradigm refers to a thought pattern in any scientific disciplines or other 
epistemological context.” 

One of the most popular paradigms in modelling is the object-oriented 
modelling (or object-oriented paradigm), related also to object-oriented analysis, 
object-oriented design and object-oriented programming. The main objection to all 
OO techniques is that the attribute “object-oriented” is somewhat misleading. 
Actually, the focus of these techniques is the grouping of similar objects into 
classes in order to factor out the common knowledge (data, procedures, etc.) about 
them and to increase the efficiency through reuse. Therefore, an attribute like 
class-oriented would be more self-explanatory. 

2.4.1.27 Platform 
By platform we shall understand the set of hardware, operating system and 
possibly additional software, providing an environment for a software product or 
software model to “live in”. 

2.4.1.28 Portability 
Portability is usually defined as the easiness of making a model usable on a 
different platform, cf. for instance Howe (2006). For the purposes of computer 
aided engineering I would define it as the (average) easiness of making a model 
usable on any possible platform. It is inversely proportional to the effort necessary 
to adapt the model for use on a new platform. This effort is proportional to the 
number of platforms and to the complexity of the model to be adapted. So it is not 
trivial to compare the portability of differently complex models. 

One of the ways to achieve (better) portability is to develop the models upon a 
layer (or basis) that is already portable. 

2.4.1.29 Effort for Porting to new Platform  
Very often it is necessary to make already existing model available and functioning 
on a new platform. The process is called porting or migration and the additional 
work to achieve this is the effort for porting (cf. Figure 3.5 in the next chapter). 
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2.4.1.30 Platform Independence 
We shall understand by platform independence, the ability of a software 
application or software model to run on different platforms without (or with 
minimum) changes for adaptation.  

According to Frankel (2001, p.25), the notions of main importance to achieve 
platform-independence have evolved from the 1960s until now starting from 
processors in the 1960s, through 3GLs (third generation languages) in the 1970s 
and 1980s, through middleware in the 1990s and MDA (model driven architecture) 
since the new millennium. 

2.4.1.31 Quality 
It is difficult to measure quality since it depends on the purpose of the model. The 
same model can be perfect for one purpose but totally unsuitable for other. For this 
reason, no mathematical definition will be given, but let us consider one guideline 
of The Association of German Engineers (cf. VDI-Richtlinien (1993)): 

The quality of the model is decisive for the quality of the analysis 
results. Only if the model realistically describes the system, it is 
possible for the subsequent model analysis to produce results that 
can be transferred to reality. 

2.4.1.32 Reliability 
According to Howe (2006) reliability (of a system) is “An attribute of any system 
that consistently produces the same results, preferably meeting or exceeding its 
specifications. The term may be qualified, e.g. software reliability, reliable 
communication.”. 
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2.4.1.33 Reparability 
During its use any model can get broken, malfunction or cease to be useful. This 
could happen due to internal problems (specific mainly to material models) or due 
to a critical change in the environment. The latter can impact on all kinds of 
models, including software models – a typical example was the problem of the 
2000th year11. We shall call reparability the possibility to restore the functionality 
of the respective model or the conditions allowing us to use it in accordance with 
the initially foreseen purpose. 

2.4.1.34 Reusability 
Before defining the term “reuse” as “second or multiple use of something”, let us 
see what we mean by “(first) use”. Some reasons for ending the “first use” of a 
product are listed below.  

                                                 
11 This problem caused calendar-related modules in some improperly designed software 

programs and electronic devices to function improperly due to overflow of the year-
counter. 
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a) There is no more need to use it for the initially foreseen or intended 
purpose. 

b) It gets broken or there is a malfunction. 
c) There is no qualified user anymore. 
d) Its use is not legal anymore. 

In case b) we can say that a purposeful or natural reuse can be pursued. In case 
a) one could try to reuse the product for alternative purposes. Since the aim is to 
achieve economic advantages or even profit, a suitable term here can be 
economically based reuse. 

Product
(re)use

Use

Reuse

Prerequisites
for start

Causes to end
Product meets qualified user

Malfunction (not (fully) useful anymore)
No more need for the initially foreseen purpose

Use is legal (low & environment conform)

Manufacturing finished
The product is needed and useful

Use is not legal anymore
No qualified user exists anumore

Prerequisites
for start

"First" use ended

The cause for the end of the use eliminated

Types Intended ("by design")
Alternative

Compatibility
Suitability

acceptability

Economic advantages or profit are expected

Not available anymore (lost, stolen, ...)

The product is available

The product is still available

Product
(re)use

 

Figure 2.31. Conditions and prerequisites for (re)use of a product 

Depending on the flexibility of the product and – with a composite product – on 
the flexibility of the components, several possibilities have to be considered. Of 
course, in the best case every product is fully reusable and in the worst case – 
absolutely not reusable. In the majority of cases some subset of the components of 
any composite product can be reused. 
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2.4.1.35 Robustness 
In general, this term is used to denote the capability of a product to keep its 
integrity, usability and functionality despite negative and possibly unforeseen 
influences of the environment. In the context of computer science, the meaning is 
extended to cover not only hardware but also the software, including behaving 
incorrectly or – possibly intentionally – even illegally. 
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2.4.1.36 Scalability 
When a greater need for a given function can be satisfied by employing more 
instances of the respective model (or object), working in parallel, we shall speak 
about scalability. This trait belongs more to the result of a process than to the 
respective “processor” and does not always exist. For instance, we can use more 
cars for transporting more things, but more cars cannot help us travel faster – we 
need another quality. In other words, we could define the scalability as the 
possibility to trade quantity for quality. 

2.4.1.37 Size 
The size of a software model is the volume of memory it needs to be saved on 
disk – sometimes referred to as static size – or in the operating memory – also 
known as dynamic size. It is measured in bytes or their derivatives. The size of a 
software model is also an indirect measure of its complexity (cf. Section 3.1.2 in 
the next chapter). 

2.4.1.38 Time Dependency 
Time dependency explains whether a given model changes with time or not. It 
makes sense to define this trait as having a binary (or Boolean) value, since atomic 
models are either time-dependent or not. A compound model becomes time-
dependent if any of its elements is time-dependent. All models of processes are 
time-dependent, too. 

2.4.1.39 Universality 
This property shows for how many different purposes a given model is well suited. 
More purposes mean higher universality and vice versa. Although it can be 
tempting to develop models with universality as high as possible, it is not always 
rational to do so. And achieving a full universality – i.e. developing a model that is 
suitable for all thinkable purposes – is impossible. 

2.4.1.40 Updateability 
The more valuable the trait actuality of a given model is, the more important 
becomes the possibility to update this model regularly. The actuality of a non-
updateable model (e.g., a wood mock-up) can only decrease with time, while the 
actuality of an updateable model can be improved regularly and on demand. 

2.4.2 Organization of Models 

In order to understand models, their capabilities and interaction it is important to 
analyse how they are organized. The two most often used terms in this respect are 
structure and architecture of models. Some of their more important properties, as 
well as their interrelations, are visualized in Figure 2.32. 

Static models (e.g., a physical mock-up of an object) do not have organization – 
they have only structure and sometimes also architecture. Monolithic objects have 
neither structure nor architecture, but they still can have static functionality and 
relations with the environment. Software models are usually dynamic models, 
having always structure, functionality, architecture, external relations (interfaces), 
and are unique in the sense that they have a programmable behaviour. For these 
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reasons we shall say that they have organization too. Many authors use the terms 
organization and architecture as synonyms, but for the above-mentioned reasons I 
consider the architecture a component of the organization. 

Organization
of (software)

models: Structure

Architecture inherencies refers more to the process and 
the pursued (future!) results 
the effort for changes is proportional to the 
already invested in the development effort

aspects

inherencies refers more to the current state

aspects composition atomic
compound

stratification layers

hierarchy levels
depth

is always changeable for SW-models

component integration

modelling paradigm
platform
methods

Important
external
relations

inter-layer-connections

integration within the environment

to software
& hardware

platform
host
system system interfaces

CAx-Systems
component

style

to other models
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to the embracing system integration data transfer,

data sharing

interactions

data exchange

Functionality
(activities) dynamic functions

(behaviour)
actions
reactions

states

"static" functions

Organization
of (software)
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Figure 2.32. Organization of software models 

2.4.2.1 Structure 
The structure of a model describes its components and the (static) relations among 
them. Only compound models have structure. 

2.4.2.1.1 Inherencies 
The structure of a model refers mainly to its current (or already achieved) state in 
the model's lifecycle. It can be (and usually is) changed between the iterations of 
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the development process. The structure of a software model is always changeable, 
but this is not true for existing non-software models, e.g., for mock-ups. 

2.4.2.1.2 Structure-related Aspects of Models 
The structure can be viewed from several viewpoints or aspects. 

2.4.2.1.2.1 Composition 
This attribute describes how the models are built. The simplest models are the so-
called atomic or elementary models. They are monolithic or not dividable, having 
thus no structure but being used in building all other (non-atomic) models. Atomic 
models are often used for modelling properties of a modellee that are representable 
as scalar values. 

Assuming that several models are available, they can be grouped according to 
different criteria. A group can be useful for easier reference to all objects 
simultaneously or for defining and performing operations on all elements of the 
group at the same time. Depending on the purpose, different criteria can be chosen. 
Grouped models can come from the same library or developer. They may be 
independent from one another or even be hosted on different platforms. 

Models comprising other models are said to be compound models. For instance, 
the model of a circle in Figure 2.17 has (among others) the properties radius and 
centre point. The former property can be viewed as a model of a scalar, the latter as 
a model of a point; therefore the model of the circle itself is a compound model. 
Any compound model can be viewed as a group of models (e.g., the radius and the 
centre point can be viewed as a group of models, belonging to the same compound 
model), but not every group is a compound model – e.g., the group of all models, 
created by the same modeller are not necessarily parts of a (larger) compound 
model. 

Often we have to model several objects (or modellees), which do not belong to 
one another but are interacting within a given process or are somehow related, and 
we need to model this relation. In such cases, we speak about system of models. If 
the involved models are physically or geographically distributed, but still interact 
with one another, they can be referred to as a distributed system of models or a 
system of distributed models. 

2.4.2.1.2.2 Stratification 
Another structure-related aspect of models is their stratification. It is inherent to 
some compound models and reveals the existence of several layers in their 
structure. The criteria for stratification are very interesting from a scientific point 
of view, cf. Figure 2.33. 

Since every model is similar to the modellee, it is natural for a model to be 
layered if the modellee is layered too. Nevertheless, all combinations between the 
two are possible, as illustrated in Table 2.3. 

In some cases the modellee can be viewed from different viewpoints and thus 
exhibit different aspects. From an organizational point of view the aspects can be 
represented either as different layers in the same model or as different standalone 
models. An important characteristic of the different layers is that they are always 
connected in a certain way. In the example for case #2 in Table 2.3, for instance, 
the values of the three colour components are connected with one another so that 
they form together the modelled colour. 
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In general, there are properties that are represented in a single layer, in all 
layers, or in a subset of layers. We shall call the modellee properties that are 
present in (almost) all layers core properties, those that are present in at least two 
layers – essential properties, and the rest – aspect-specific or auxiliary properties. 
It is obvious that the core and the essential properties can be used to build inter-
layer-connections. They play an important role in integration of separately 
modelled aspects. 

(Example) Criteria (Example) Layers

Layer
(grouping 

or
distinctive 

feature)

Spatial

Outer

Downward

Mechanical

Structural

Organizational

Electronical

Level

Software

Role

Relations

...

Function

Inner

Intermediate

...

Domain

...

Associativity

Deepness

...

Intermediate

Uppermost

Lowermost

...

Upward

Sideway

...

Visualization

Mathematical

Interface

...

Processing

Auxiliary

...

Controling

 

Figure 2.33. Criteria for defining layers 

2.4.2.1.2.3 Hierarchy 
The hierarchy is an attribute of the structure, which describes the systematic 
character in the order of the components and their relations. It can be said that a 
hierarchy is vertically divided in several levels, whereas each level can contain one 
or more components. In many cases we have to do with nested structures of 
models, in which hierarchical structures are clearly recognizable. A simple 
hierarchy is given in Figure 2.17. 
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Table 2.3. Stratification of modellee and model: possible combinations 

Stratification of 
the: 

# modellee model Possibility Plausibility Example 
1 no no yes yes sculpture of a man 

2 no yes yes yes all colour models 
(RGB12,CMYK13) 

3 yes no yes yes clay model of a car 
4 yes yes yes yes car and a model car 

 

2.4.2.1.2.3.1 Levels of Hierarchical Structure 
Levels are the biggest components of each hierarchical structure. Splitting of 
sophisticated systems, models or objects in several levels, where each level 
consists of approximately the same number of objects to deal with, is an often used 
method for hierarchical structuring. It simplifies the manipulation of both the 
separate levels and the objects within each level. 

The same holds for sophisticated models, but sometimes the number of levels 
in the model is not equal the number of levels in the modellee – it can be both 
greater or smaller. One example of a “Multi-dimensional Meta-modelling 
Architecture” is given in Jeckle (1999, p.11). He describes five level of a 
modelling hierarchy: 

• M -1: Instance 
• M 0 “Reality” 
• M 1: Modelling language 
• M 2: Meta-language (“Grammar”) 
• M3: Meta-meta-language (“Meta-grammar”) 
Again there is discussed the use of the XML Metadata Interchange Format 

(XMI format) within the four layer Meta-model Architecture Jeckle (1999, p.14).  
Depending on the purpose and the point of view, the same structure can 

sometimes be interpreted either as layered or as hierarchical (levelled). For 
instance, depending on distinctive characteristics, the group of models 
clothes(skin(muscles(skeleton))) can be viewed either as nested, hierarchical 
structure or as models belonging to the different layers beauty, protection, 
movement and support. 

2.4.2.1.2.3.2 Depth of Hierarchical Organization 
This characteristic can give us an impression of the complexity and the possible 
minimal and maximal number of elements in a hierarchy. It can be used either to 
show the relative position of an element or to denote the depth of the whole 
hierarchy. The model in Figure 2.17, for instance, exposes a hierarchy of depth 6. 
                                                 
12 RGB: method for representing any colour as a mix of the primary colours red, green, blue. 
13 CMYK: A colour model that describes each colour in terms of the quantity of each 

secondary colour (cyan, magenta, yellow), and “key” (black) it contains. The CMYK 
system is used for printing Howe (2006). 
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The minimal possible depth is one, which implies that the organization is flat or 
there is no hierarchy. There is no restriction on the maximum depth, but the 
complexity of organization rises exponentially with each new level in the 
hierarchy. 

2.4.2.2 Architecture 
This term is so ancient that it is usually viewed as already known and is rarely 
defined. One of the few definitions that can be found is given in Wikipedia Wiki 
(2006): 

Architecture (in Greek αρχή = first and τέχνη = craftsmanship) is the 
art and science of designing buildings and structures. 

The literal translation makes an allusion to the fact that many creators have 
imitated already existing artefacts, since this is easier than creating a totally new 
artefact. Often the first artefact has already established a pattern or even a norm 
that is simply followed by the others. 

2.4.2.2.1 Inherencies 
We can think of three properties that are inherent to any architecture. It defines 
how the subcomponents one level below the top level are to be put together. This 
depends on the pursued results. In fact, changes are always possible, although more 
and more difficult with time. 

2.4.2.2.2 Architectural Aspects of Models 
Several aspects of model architecture are clearly distinguishable: the model 
structure, the integration within the environment, the modelling paradigm, the 
platform and the methods to be used. 

To summarize, the architecture can be defined as the combination of concepts, 
approaches, methods and techniques that are used in the initial building phase of 
any model, system, or other compound and complex object, and therefore plays a 
crucial role in determining its most important traits and its entire future – 
development, use, maintenance, re-use, etc. 

2.4.2.3 Important External Relations 

2.4.2.3.1 Relations (of Software Models) to Data and its Derivatives 
On the lowest level of all kinds of information and knowledge structures is the 
data. Each of the levels above can be viewed as a data derivative. Since these 
derivatives play an enormous role in modelling, we shall explain briefly some of 
them. 

2.4.2.3.1.1 Data and its Derivatives 

2.4.2.3.1.1.1 Data 
We shall understand data to be strings of (ordered) symbols. These symbols are 
represented in computers by numbers, and in turn, the numbers are represented by 
binary digits or bits. Apart from bits, the numbers are the smallest “building block” 
in the representation of data and data derivatives – including algorithms – in a 
computer. An example of such a string of symbols is “3.1415”. 



58 2 Modelling Basics 

    

2.4.2.3.1.1.2 Meta-data 
The meta-data is a connection or relation between groups or pieces of data. Given 
the strings of data “5.003” and “5.02”, we can connect them into a relation, for 
instance by the sign “smaller than”: 

5.003 < 5.02 

Thus, the “<” symbol has special meaning and is meta-data in this case. 

2.4.2.3.1.1.3 Information 
The information emerges from interpreting data. Interpreting means that each piece 
of data and meta-data is connected or put into a relation with already known facts 
as well as with all other pieces of data. Thus, the example above would be 
interpreted as putting two numbers in a relation, saying that the second one is 
greater than the first one. To achieve this, the interpreter (human or machine) 
should have some a priori knowledge – i.e. to be able to read the numbers and to 
understand the meaning of the sign “<”. This knowledge is often called context or 
background knowledge. 

Since the context always plays a crucial role by gaining information from given 
data, another possible definition for information is data in certain context. Thus, 
when hearing the (incomplete) expression “to be or not to be…” people, who are 
experts in different domains, can interpret it differently. A fan of Shakespeare 
could see an allusion to the famous phrase of Hamlet; a philosopher could think 
about The Question of Douglas Adams' book Life, the Universe and Everything, 
and a mathematician could write it down on a piece of paper as 2b | ⌐(2b) and say 
“this is always true!”. 

Another possibility to define the term information is as a combination of meta-
data and (groups of) data that are to be connected/related, for instance: 

π ≈ 3.1415 

Such a combination of data and meta-data is usually named an attribute-value 
pair. In representing more complex information it is possible to nest attribute-value 
pairs by using a given pair as the value of another one. A sample graphical 
representation of nested attribute-value pairs can be seen in Figure 2.34. 

When the value of an attribute-value pair contains just data (i.e., there is no 
nesting), this pair can be named basic or substantial attribute-value pair. 
Independently of their representation, basic attribute-value pairs can be viewed as 
the smallest units of information. 

2.4.2.3.1.1.4 Meta-information 
Meta-information is information about other information. For instance, the node 
“Invariable properties” in Figure 2.34 is meta-information and denotes that all 
nodes below it are invariable for the whole class of objects of the circle type. 

2.4.2.3.1.1.5 Knowledge 
We shall call knowledge the ability to gain new information from already existing 
information or data. For instance, knowing that the circumference of all circles is 
equal to 2πR, and that the radius of a given circle C is R=1, we can conclude that 
the circumference of C is equal to 2π. 
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Another possible way to define knowledge is to view it as the union of the 
meta-information and the pieces of information that have to be connected. 
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2.4.2.3.1.1.6 Intelligence of a Software 
Intelligence is a quality that is inherent mainly to human beings and is usually 
related to thinking and especially to the ability for reasoning on the basis of a 
priori knowledge. 

We perceive and rate intelligence mainly based on behaviour. But what is, 
actually, behaviour? If we define the set of all activities of a given person or object 
as behaviour, it is possible to distinguish between two main behaviour types: 

c) passive behaviour: reactions to external influences (coming from the 
environment or from other objects); 

d) proactive behaviour: actions, initiated for some internal reasons and 
having – intended or not – impact on other objects (i.e., causing their 
reactions); 

Of course, a mix of both above-mentioned types is also possible and can be 
referred to as either mixed behaviour or simply behaviour. 

Strictly speaking, it is almost impossible to meet pure proactivity as defined 
above. In practice, when we say about a human that he is proactive we usually 
mean that he shows initiative. In turn, taking the initiative from an individual can 
be viewed as attempt on his part to predict or anticipate the next action towards 
himself and prepare for it or even initiate the appropriate reaction in advance. 

Since any reaction can cause another reaction, often one simple activity 
initiates a chain of interlinked actions and reactions – i.e., interactions. From the 
point of view of an external observer, the life of any object can be viewed as a 
chain of interactions with its environment. Note that according to the definition 
above, activities having negligible or no influence on other objects (e.g., breathing, 
digesting or even thinking itself), are not considered proactive. Both thinking and 
reasoning are themselves activities, internal for every individual. Therefore we can 
rate them and estimate how intelligent they are only after the result of the 
reasoning is communicated to us by some activity – at least by speaking. 

Now let us turn to the software. On the one hand, it is obvious that any software 
possesses some (kind of) behaviour. On the other hand, the possessing/exposing 
behaviour alone is insufficient for being intelligent. In regard to humans we would 
say that somebody's behaviour is intelligent after we compare it with either another 
person's or with our own (supposed or real) behaviour in a similar situation. Thus, 
we can state that a) there is no absolute intelligence and b) intelligence is relative 
and can be discovered only in comparison with something. In regard to software, 
usually similar reasoning is applied: when we say that a program is intelligent, we 
mean that in a given situation it either behaves better than most programs with 
similar purpose, or attempts to behave like a human being who experiences a 
similar situation. The most well-known test in this area is the test proposed by Alan 
Turing and named after him Turing (1950). This test is based on a chain of 
questions and answers (interactions). It should help one to decide whether a given 
machine or program can think and, consequently, can be considered intelligent. Up 
to now, no computer/program has passed this test; why should we then discuss 
intelligence of a software systems? The point is that on the one hand, the Turing 
test gives only a binary answer whether a given computer (system) is intelligent; 
on the other hand, each travel begins with the first step and we have to do it, if we 
want to reach the destination. Therefore, we need some other measure of 
intelligence in the meantime until intelligent machines become available. For 
engineering purposes we do not have to start with fully intelligent machines. 
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Anything more than “not intelligent at all” can lead to improvements and savings 
in the respective area. 

We shall view a product or process model as being intelligent if it possesses at 
least one of the following capabilities: 

e) to behave/react as the modellee or simulate its reaction when the user 
simulates acting on it; 

f) to guess what (re)action is desired/needed in any given moment and either 
propose alternatives or perform it immediately (cf. the description of 
initiative by human's behaviour above); 

g) to find, determine or request any missing data or information alone; 
h) to recognize invalid data or information and correct it alone. 
The more of these capabilities a given model possesses, the more intelligent it 

is considered. On the other hand, of two models, the one that can complete more 
tasks with less effort of the controlling/requesting user or program is considered 
more intelligent. The effort could be measured either as number of necessary 
instructions or as the time spent to give them. 

Apparently, neither models drawn on paper, nor models made of clay or other 
workable materials can be given behaviour and, therefore, they cannot become 
intelligent. The only model type to which intelligence can be granted is the 
software model. 

In general, proactive behaviour would require more intelligence from a model 
than passive behaviour, since the initiative implies own desires resulting from 
thinking or reasoning. Computer science, though, is not expected to achieve such 
advances in the next decade. Therefore, we concentrate on passive behaviour, since 
it is simpler to implement. But as mentioned above, passive behaviour alone is not 
sufficient to achieve intelligence. Turing (1950) says: 

Intelligent behaviour presumably consists in a departure from the 
completely disciplined behaviour involved in computation, but a rather 
slight one, which does not give rise to random behaviour, or to 
pointless repetitive loops. 

Two types of passive behaviour are distinguished: reactions to commands 
(leading to a desired result that is known in advance) and reactions to other events 
(all actions without commands). It is clear that reactions to commands 
(“disciplined behaviour”), which is immanent for every software product, cannot 
represent intelligence. 

2.4.2.3.1.1.7 Wisdom 
Wisdom is empirical information (experience), complementing the available 
knowledge and intelligence and making possible or increasing the probability to 
take proper decisions in yet unknown or not explicitly foreseen situations. 

2.4.2.3.1.2 Models for Representation of Data and its Derivatives 
We have defined data as strings of symbols, and each symbol is represented in the 
computer as an integer number. There are no (more) problems with representing 
symbols as numbers after the adoption of the Unicode standard, since the number 
of symbols used is finite. But how should the numbers themselves be represented 
when their number is infinite and no computer has infinite memory? Each pupil 
knows that the number of different fractions is infinite even in small ranges like 
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this between 0 and 1. Then, how is the finite number of symbols, plus the infinite 
quantity of numbers, represented in the finite computer memory? The answer is 
simple: by analysing the different application areas, and using a model of the 
respective range of numbers, which is appropriate for the given purpose. These 
models are called data types and have the inherencies illustrated in Figure 2.35. 

Data type

Each instance has finite size Fixed
Variable

All instances have the same core properties

Defines a mapping between range of numbers 
and a range of bits/bytes in the memory

Models the numbers within the application area
with an accuracy adequate for the purpose

Defines specific operations with and 
actions on the instances of the type

Data type

 

Figure 2.35. Inherencies of a data type 

The simplest data type is dedicated to representation of Boolean values (true 
and false). Since there are only two possibilities, a single bit14 would be sufficient, 
but due to technical considerations, usually a whole byte15 is used. The 
representation of a finite set of consecutive numbers is commonly achieved by 
means of the data type integer or its derivatives. This data type has a typical size of 
2, 4 or 8 bytes, depending on the implementation. The number N of consecutive 
numbers in the representable range R is directly dependent on the size S of the data 
type (in bytes) in the specific case, and is calculated with the following formula: 

8*2SN =  (2.13) 

Thus, with an integer data type variable of size one byte we could theoretically 
represent 256 consecutive numbers. If the numbers to be represented have a sign 
(i.e. the range is zero-symmetric), one bit has to be reserved for the sign 
representation. In this case, since the zero is “sign-neutral”, i.e. can have both 
signs, the integer data type should either be able to represent +0 and –0, which is 
redundant. So one number less can be represented, or the implementation should 
perform some checks for representing +0 and –0 as the same state of bits in order 

                                                 
14 A bit (abbreviated b) is the smallest information unit used in computing and information 

theory. It can be either one or zero and thus can represent any two mutually exclusive 
values or states like true or false, “on” or “off”, etc. 

15 One byte (abbreviated B) has eight bits. Often used with prefixes like kilo, mega, giga, 
etc. 
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to avoid the reduction of the amount of representable numbers by one. The size of 
this data type is typically restricted to 8 (sometimes also to 10 or more) bytes, and 
thus the largest representable symmetrical range R is  

R∈ [–28*8, 28*8]  or  R∈ [–264, 264] (2.14) 

or 

R∈ [-18446744073709551616, 18446744073709551616] (2.15) 

Although fairly large, this range could be insufficient for some applications. So, 
to represent either larger ranges or rational numbers with a finite number of bits, 
another data type is used: floating-point number. Assuming that we reserve one bit 
for the sign S, p bits for the significand16, representing the most-significant digits of 
the number, and e bits for the exponent, the mathematical model of the range of 
numbers R representable by floating-point data type with size=1+p+e bits will be 
as follows (all numbers in decimal base!): 

]2*2*1,2*2*1[ 2021 ee ppR −−∈  (2.16) 

Here the significand is represented by p2 , the factor e2 is the exponent and the 
base is 2. The symbol ∈ in the last expression should be interpreted with a 
“restriction”: since p and e are integer numbers, not all numbers within the given 
interval are representable (e.g., no number between 2² and 2³ is representable and 
exponentiation is used in the representation of both the significand and the 
exponent), therefore R is only defined through the representable numbers. Thus, 
only a small subset of the real numbers can be represented in a (digital!) computer 
exactly, and the rest are represented as the nearest rational numbers. A more 
detailed description of the floating-point representation and its problems would go 
beyond the scope of this work, but can be found, e.g., in Goldberg (1991). 

2.4.2.3.1.3 Data-derivatives in Software Models 
The software models are built-up from data, data-derivatives and (possibly) code. 
Therefore, many of the model traits depend on the traits of the underlying data and 
its derivatives, as well as on the chosen representation. For that reason, it should be 
kept in mind that most of the properties of software models are represented through 
real numbers, and when these numbers are approximated in their computer 
representation, the respective models could be badly influenced. Software models 
can use additional data for specialization (concretization) and communication. 
Software models can use bound or built-in code (as a special kind of data) for 
implementing intelligence. 

2.4.2.3.2 Relations to other Terms and Software and Hardware Components 
The information technology (IT) has huge influence on all computerized 
production methods. Since the rapid IT developments during the last decade have 
introduced numerous novelties and respective new terminology, let us consider 
some definitions and assumptions that would facilitate the further discussion. 

                                                 
16 According to Goldberg (1991), “This term was introduced by Forsythe and Moler 

[1967], and has generally replaced the older term mantissa.” 
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2.4.2.3.2.1 Platform 
The term platform denotes the hardware and software used as a basis for either 
development or use of a given software model. When a model is used on a 
platform that differs from the platform it has been developed on, we speak about 
cross-platform development. 

2.4.2.3.2.2 Host 
Since the platform for the use of one particular software model may differ from the 
platform for its development, the possibility to distinguish between these two 
platforms is crucial. The platform where a given model can be used (or where the 
model can “live”) is referred to as host. The more platforms that can be used as 
hosts of a given model, the more portable or platform-independent this model is. 
The lower the number of components or layers required for the host, the higher the 
autonomy17 of the respective model.  

2.4.2.3.2.3 System 
The term system is overloaded with different meanings related to different areas of 
the science. A definition of this term that resembles our understanding closely 
enough is given in Wikipedia (cf. Wiki (2006)): “A system is an assemblage of 
inter-related elements comprising a unified whole. From the Latin and Greek, the 
term “system” meant to combine, to set up, to place together”. For our engineering 
purposes this definition has to be slightly modified in order to reflect the specifics 
of the majority of systems – both models and modellees – in the field of 
engineering. 

Definition 2.11: A system is an assembly of inter-related components 
(subsystems, modules or elements) built together in a 
unified whole to serve a certain purpose. 

In this sense, any compound model is also a system. 
The purpose of a system together with the art of the components and their 

connections and relations determine most of the system's properties. A simplified 
model of a system, based on its most important properties, is presented in Figure 
2.36. A taxonomy of some more important system-related attributes, terms and 
activities is presented in Figure 2.37. 

2.4.2.3.2.4 System Interfaces 
A system is typically connected to the outside world through interfaces – the set of 
all discernable input and output “channels” of the system that ensure cross-
boundary communication with the outside world (cf. Figure 2.36). Apart from 
systems, all subsystems, modules and other components have interfaces, too. A 
system of hardware components has hardware interfaces, while a system of 
software components has, respectively, software interfaces.  

Since the software “lives” in hardware (cf. Section 2.4.2.3.2.2 above), the 
properties of all software components – including interfaces – are strongly 
influenced by the properties of the underlying hardware. Software models either 
“live” in software systems or form themselves systems of software models.  

                                                 
17 Cf. the definition in Section 2.4.1.7. 
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Figure 2.36. A simplified model of a system, advanced after Pahl and Beitz (1993) 
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Figure 2.37. A taxonomy of some system-related attributes, terms and activities 
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In the domain of software programs or models, according to OMG18 or Booch 
et al. (1999), “every interface should represent a seam in the system, separating 
specification from implementation”. Let us call it OMG-interface to distinguish it 
from its typical meaning in CAx-context. 

A system that possessing interfaces is sometimes called an open system. 
Theoretically it is also possible to have the opposite type of system – a closed 
system, but since such systems cannot communicate with the outside world, they 
are not of interest for our study (except if we are inside such a system), and are not 
discussed further. 

The systems can be classified according to different criteria. An example 
classification is given in Figure 2.39. 

2.4.2.3.2.5 Systems Engineering 
Systems engineering (also known as systems design engineering) is a relatively 
new (originating around the time of World War II) branch of the science with focus 
on the definition, realization and characterization of complex, but at the same time 
successful systems. Some of the well-known subfields of systems engineering are 
safety engineering, reliability engineering, interface design, cognitive systems 
engineering, communication protocols, security engineering. 
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Figure 2.38. Inherencies of the systems engineering 

2.4.2.3.2.6 Software Model vs. Computer Model 
The terms software models and computer models are often used. Before we make 
use of them, we shall clarify what is similar and what is different between them. 

A software model is an implementation of an information model (cf. Figure 
2.5). It is a kind of representation (or mapping) of the information model by means 
of data structures and algorithms. Typically some formal languages are used to 
code the algorithms and the respective data structures into programs. 

                                                 
18 Object Management Group, Inc. Cf. http://www.omg.org/ 
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Figure 2.39. Sample classification of systems 
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Therefore, any software model can be viewed as a set of programs and data. 
Software models can be kept or transported on a medium, but the medium alone is 
not enough to allow the model to “come to life”. This can be achieved only when 
the model is loaded in some hardware, and the control is transferred to it. Thus, we 
can say that the model “lives” in its host – typically, a computer. 

Without software no computer can directly be used to represent anything. 
When we say that something is “modelled with computer” we mean: “modelled by 
means of software running on a computer”. Thus, a computer model is nothing else 
than a software model that is loaded into a computer and activated there. In other 
words, both terms can be viewed as synonyms referring to a system consisting of 
hardware, programs and data. The main difference is that each of the terms stresses 
a different aspect of this kind of modelling, e.g. the use of software or the use of 
hardware, with the respective specificities. 

2.4.2.3.2.7 Computer Aided Systems 
A Computer Aided system or in short CA-system (also spelled without dash) is a 
complex software system, dedicated to solving tasks in a specific subject area. The 
subject area is typically a phase of the product lifecycle (design, planning, 
manufacturing, marketing, etc.) or an activity existing in many phases (e.g., quality 
control, product-data management) and its name is usually reflected in both the 
long and the short forms (e.g., Computer Aided Manufacturing system or CAM 
system). The alternative short form CAx-system is often used as a collective name 
for all possible short forms, where “x” is a placeholder, matching the name of any 
phase or activity. The “computer aided” is not really an obligatory part of the 
name, since it is implied for numerous activities. Thus, nobody would speak about 
word-processing without some kind of computer, but the respective “computer 
aided” system – the word processor or word-processing system – meets the 
definition and should be considered as belonging to the group of CAx-systems, too. 

When several CAx-systems are used to automate related activities and are 
developed from the same producer they are often referred to as software packages, 
software packets or suites. 

2.4.2.3.2.7.1 CAx-model 
The usage of CAx-systems has become so common during recent decades that 
many people tend to forget: most CAx-systems create as one of their outputs a 
model (CAD-model, DMU-model, FEM-model, etc.). This model is often either 
the most important or the only result produced. 

Some of these CAx-models are product models, some of them are object 
models (i.e., something that is not going to be produced, but is used as part of other 
models) and some are models of processes. Therefore, the term CAx-model is used 
in the text as a generic term, referring to models of any of the types mentioned. 

2.4.2.3.2.7.2 CAx-system Centred Approach 
For each product several different product models, related to different phases or 
aspects of its lifecycle, are created and used. Typically, the model related to a 
given phase or aspect is prepared by a dedicated (CAx) system and can be 
modified and further developed only by identical (i.e. having the same 
type/dedication and from the same producer) or compatible (i.e. capable to read the 
models in their initial format) system. Even more important is that the models, 
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created from a CAx-system, can be used mainly within the system-creator, 
sometimes – within another (foreign) system and almost never – alone. In other 
words, any model “lives” only within a given CAx-system, and it in turn “lives” 
only within the respective hardware. For these reasons I shall use the name system 
centred approach (in short, SCA). The system where a specific model lives is 
called its host or host system. 

In contrast to the object-oriented approach, where everything is centred around 
the concept of an object, and where the objects’ methods (algorithmic description 
of operations on objects) are typically defined only on the objects of the same class 
(i.e. type), CAx-systems operate on diverse types of objects but can perform only a 
given group (or class) of operations19. Thus, a general term for referring to all 
types of CAx-systems together could be “operation-oriented system”. Since in the 
computerized support of production we more often speak about classes of 
operations having to be performed than about classes of objects having to be 
processed, we have one more reason to say that conventional computer aided 
production is system centred. 

2.4.2.3.2.8 Data Integration 
The process of data integration includes collecting all data “pieces”, putting them 
in the same (or in compatible) format and possibly performing other actions to 
ensure that they are usable together. 

2.4.2.3.2.8.1 Data Transfer, Data Exchange 
The term data transfer/exchange refers to all actions that have to be performed in 
order to make a model created or existing on a given platform, work on another 
platform. These actions include the physical transfer of the model and possibly 
conversions (translation) on different levels. One could speak of unidirectional and 
bi-directional exchange, as well as exchange among multiple platforms. Typically, 
data exchange uses a file as entity, is unidirectional (i.e. it is transfer and not real 
exchange!), occurs offline and not so often as the data processing itself. 

2.4.2.3.2.8.1.1 Models of the Data Exchange and their Qualities 
As any other process, the process of data transfer or exchange can also be 
modelled. The resulting models can be divided into two main groups, aiming either 
at process development and realization or at its analysis and possibly – requests for 
improvement. A short classification of data exchange is given in Figure 2.40; more 
different models and a discussion of their qualities can be found in Avgoustinov 
(1997). 

2.4.2.3.2.8.1.2 “Interface Pressure” 
Suppose that a “force” called demand for data exchange exists, and that the 
descriptive potential, defined in Avgoustinov (1997) as the cardinality of the set of 
elements of the source language, symbolizes the “area” on which the force is 
applied. Then we could use the metaphor “interface pressure”, which (exactly as 
normal pressure) is proportional to the force and inversely proportional to the area. 

                                                 
19 This does not mean that the object-oriented approach is not used in CAx-systems; it is 

simply applied on a different (lower) level. 
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Similarly, it is possible to say that the target system has “interface resistance” that 
is also proportional to the demand for exchange, and inversely proportional to that 
part of the descriptive potential which is utilized in the models to be transferred. 
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Figure 2.40. An example classification of the data exchange. Reworked and extended, after 
Avgoustinov (1997)20 

2.4.2.3.2.8.2 Data Sharing 
Data sharing is a general term used to denote the process of making data available 
to more than one user or system. In contrast to data exchange there is no typical 
entity. Only needed data is accessed and the sharing occurs on demand, online, 
multidirectional and even multiple times per processing. Since typically only very 
small parts of the source model are needed, accessing only them and only on 
demand makes the process much more efficient than data exchange. 

2.4.2.3.2.9 Component 
We shall refer to any at least logically separable part of a model, product, system 
or any other compound object as a component. When a component is not 
compound, we can call it also an element. In the domain of software programs or 
models, according to OMG as in Booch et al. (1999), a component is “A physical 
and replaceable part of a system that conforms to and provides the realization of a 
set of interfaces.”  

                                                 
20 Slightly different notation is used in the cited publication for the two terms, denoted “*" 

in Figure 2.40, but the actualized notation (as given in the figure) seem more adequate to 
me. 
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2.4.2.3.2.9.1 Integration of Components 
On the one hand, components (both software and physical) are designed to be 
integrated into systems and also to be interchangeable. On the other hand, they 
cannot be combined arbitrarily. The process of achieving effective interaction 
(including communication) among components, as well as interaction of the user 
with these components independently of their location, host, state, etc., is called in 
this study component integration. 

2.4.2.3.2.9.2 Component-based CAx-system 
Any CAx-system that is built up from software components is called component-
based CAx-system. According to Kilb and Arnold (1998) “… using a system based 
on the CAx object bus, there is no longer a need for file based data transfer 
between different integrated systems. Only the necessary representation 
information of the data models has to be transmitted as CAx objects through the 
CAx object bus.” The problem here is that the “necessary representation 
information” has not only to be transmitted but – depending on the case – also 
converted to the respective format! 

2.4.2.3.3 Relation to Suitability, Relevance, Adequacy, Reusability 
The components and their organization and granularity have a strong influence on 
many traits of the system that contains them. Below are enumerated some relations 
of the components (or componentization) to some of these traits or to other notions 
of interest; in all formulas f(…) symbolizes a function of something, whereas F 
denotes some kind of functionality (e.g., a set of functions), explained by an 
appropriate subscript; after some formulas are given their ranges. 

Suitability=f(form, granularity) (2.17) 

If all functions composing the functionality are equally important and their 
implementation is either full or null, suitability can be expressed as the ratio 
between the cardinalities of the set of (fully) covered functions and the set of 
needed functions. 

Suitability=|Fcovered|/|Fneeded| [0, 1] (2.18) 

Since usually some functions are more important than others, the above 
formula should be extended with weight factors for each functions. To keep results 
within a normalized range (i.e., within [0,1]) the sum of all weight factors should 
be equal to 1 (or 100%). 

Suitability=f((coverage - needs)/needs) [0, 1] (2.19) 

The gaps between the granules (i.e., the uncovered areas) decrease the 
suitability and together with the excess functionality, form the inefficiency of the 
system. 

Adequacy=f(overlaps, shortage, excess) [0, 1] (2.20) 

It can be reasonable to use the inadequacy instead: 
Inadequacy=f((overlaps + shortage + excess) / needs) (2.21) 

The reserve (or spare) functionality can be expressed as follows: 
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FReserve = Ftotal – Fneeded (2.22) 

Analogously, the redundant (or excess) functionality can be expressed as a 
function of the doubled (or overlaped) in different components functionality: 

Fredundant = f(Foverlaped, Fneeded) (2.23) 

2.5 Model Representation 

After its elaboration, each idea has to be represented somehow. The representation 
allows us to communicate the model to others, to save it for later use and even to 
discover things or relations among them that were invisible or not obvious before. 
When the modellee is not an idea, but something really existing, the situation is not 
very different: the main difference is that the modeller first “gets the idea” and then 
prepares a representation, reflecting the most important and relevant-for-the-
purpose properties of the modellee. 

2.5.1 Reasons for Discussing the Representation 

Apart from the fact that for software models the representation has great influence 
on the efficiency, compactness and other characteristics of the model, there are 
other reasons for discussing the models' representation: 

• very often models are mixed up with one of their representations; 
• improper representation could lead to confusion or loss of information; 
• some models represent not a single entity/modellee, but a whole class of 

similar entities (modellees); we shall call such models parameterized; 
• the model's representation is non-abstract (real) in contrast to any software 

model itself. 
Very often models have more than one representation – e.g., if the same model 

were drawn twice, but in two different colours, we would get two representations 
of the same model. But we should not confuse different models of the same 
modellee with different representations of the same model: if we represent some 
modellee once as a text and once as a drawing, these would be two different 
models of the same modellee. 

On the other hand, some models can have different views or aspects – for 
instance, a three-dimensional (3D) model can be viewed from different viewpoints; 
although each viewpoint can be represented on paper as a 2D drawing or snapshot, 
they remain different 2D representations of the same 3D model. 

2.5.2 Classification of the Representation Types 

The representation of a model can depend on many different things – medium, 
method, changeability, dynamics and others. The representation can even change 
during the model's use. Since each representation type has its advantages and 
disadvantages, the modeller can choose the type most appropriate for the purpose. 
Therefore, we say that each representation is purpose-dependent. Sometimes – 
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especially with respect to multi-purpose models – the modeller can choose to 
provide several representations, so that the user of the model is able to choose the 
most appropriate for the moment or for the respective task representation.  

We shall distinguish between two different types of model representation: 
internal and external. 

The internal representation concerns how a given model is represented within a 
software system or within a computer, and is implementation dependent. For 
instance, the internal representation of the simplified model of a circle from Figure 
2.17 can be as short as three numbers, connected with the knowledge that they 
represent the radius and the coordinates of the centre point, respectively.  

The external (or observable) representation of a software model is usually a 
dynamic representation, depending on the values of the model data at the moment. 
Figure 2.17 itself is an external representation of the (parameterized) circle. It 
should be noted that the external representation is usually based on the internal 
one. 

Within the internal representation we distinguish between model data (or 
parameters) and model invariance or model knowledge. 

The model data is different among the instances of the modelled class of 
entities and is used to create distinguishable representatives of the class. It is 
almost always included in the model saved on a medium to guarantee its 
persistence. 

Model invariance can be of two subtypes: programs and metadata. A program 
can be viewed as data, describing one or more algorithms. It can describe 
operations on real data or on placeholders. At runtime the placeholders are 
replaced with the actual values of the parameters. 

The metadata describes the relation among the data elements at the lowest level 
(the parameters) and is usually implemented by means of data structures.  

On the next level the relations among the metadata can be described by means 
of meta-metadata – cf. Figure 2.17 once more. Since we can always describe the 
relations among elements of one level by means of metax-data on the next higher 
level, we can speak about metadata of different degree (cf. Section 2.4.2.1.2.3.1 
Levels of Hierarchical Structure above). 

2.6 Integration of Models 

The majority of devices, machines and other products are actually complex 
systems built up from separately produced components. These components can be 
of pure mechanical, electrical, or electronic nature, or they can also be intermixed. 
When users observe and use them as a whole – i.e. the product – there is no need to 
speak about integration from the user's point of view. From the manufacturer's 
point of view, however, all components have to be assembled or built together; this 
process can be viewed as integration. Therefore, when a compound product is 
modelled, depending on the purpose of the model, it could be natural and useful 
first to model each component alone and after that to integrate all these models in a 
compound model of the product. But what is integration? According to Lutters 
(2001), there are countless definitions of integration. One more reason to define 
again what should be understood under integration in the present work is that none 
of the known definitions is perfect, including this in Lutters (2001): “the 
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facilitation of mutual cooperation and interaction between distinct functions in the 
manufacturing environment”. Weak points in the last definition are the lack of an 
aim in the definition and the word “facilitation”; a better attempt would be to use 
“accomplishing” instead. Our approximation for a more general definition could be 
the following: 

Definition 2.12: The integration of two or more (manufacturing) 
components is the process of making them work on one 
and the same task or contribute to achieving one and 
the same outcome. 

How exactly integration will be achieved – whether the components will be 
“physically joined” or “obey the same control”, or just the results of their work will 
be joined – is a question of secondary importance. In other words, the integration is 
not an end in itself: either the result, achieved after the integration of two models, 
is better than the sum of the results of the two non-integrated models, or such a 
result cannot be achieved at all without integration. 

In the simplest case integration of two models would be to achieve their 
simultaneous use within (or from within) the same environment (hardware, 
operating system, application software, etc.). For more sophisticated dynamic 
systems, though, making the communication between the models involved and the 
interaction (of the user) with them effective, independently of model location, host, 
state, etc., is also indispensable. 

2.6.1 Integration Classification 

The integration can be classified according to different criteria. Perhaps the most 
important criterion is the type of components that have to be integrated – real or 
virtual, material or abstract, etc. – since this can affect most of the other criteria. It 
is apparent that the method for integration of the components of a real car will be 
different from the methods for integration of the models of the same car 
components. 

The technique used for achieving the integration can serve also as a 
characteristic of classification of integration techniques. An example is given in 
Figure 2.41. 

Integration techniques
on the modelling level
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Online tool
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Modelling 
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Description
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Systems of
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Program
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libraries

Partial 
integration
of models

 

Figure 2.41. Some integration techniques, after Gausemeier and Lückel (2000) 

A sample classification according to several additional criteria (inherent 
integration traits) is given in Figure 2.42. 
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Figure 2.42. Example for a possible classification of the integration 

2.6.2 Models, (Software) Applications and their Integration 

Computer programs (a.k.a. software programs) that aim to solve user-specific (and 
not system-specific!) problems are often called software applications. They reside 
on top of the operating system and are very often used to: 
14. control some local-computer-related process like printing, visualization, 

communication, etc.; 

15. control some process that is not related to the host computer, but to business or 
some other part of real life – production, transportation, commerce, etc.; 

16. model and simulate different real processes; 

17. support various processes otherwise. 
Exactly like many other things that have structure or are part of a structure, 

applications may need to be integrated. Even if we consider only case 16 above, 
models of sub-processes have to be integrated to achieve a simulation of the full 
process that is modelled. In the case of modelling, simulation or control of 
complex processes it can be necessary to integrate many applications of different 
type, different origin, and different sites within a given enterprise and even located 
in different enterprises. In similar cases an often used term is enterprise 
application integration. One of the popular definitions is given in Wikipedia Wiki 
(2006): 

Enterprise application integration (EAI) is the use of software and 
architectural principles to bring together (integrate) a set of enterprise 
computer applications. It is an area of computer systems architecture 
that gained wide recognition from about 2004 onwards. EAI is related 
to middleware technologies such as message-oriented middleware 
MOM, and data representation technologies such as XML. Newer EAI 
technologies involve using web services as part of service-oriented 
architecture as a means of integration. 
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Achieving integration – or even better, integrability – is often more important 
than achieving good coverage or good functionality. Again in Wikipedia Wiki 
(2006), the following is said about the role of the integration: 

Without integration, enterprise computing often takes the form of 
islands of automation, where the value of individual systems is not 
maximised because they are working in partial or full isolation. 
However, if integration is carried out without following a structured 
EAI approach, many point-to-point connections grow up across an 
organization. Dependencies are added on an ad hoc basis, resulting 
in a tangled non-maintainable mess, commonly referred to as 
spaghetti.  
… 
EAI is not just about sharing data between applications. EAI focuses 
on sharing both business data and business process. 

Many different integration approaches have been developed and tested, 
achieving great or small success, but none of them has been generally accepted. 
One of the objectives of this book is to clarify the role of the modelling approach in 
achieving satisfactory model integration and therewith also better integration of the 
respective modellees. More details are discussed in the following chapters. 
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