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Exact Muffin-tin Orbitals Method

In order to reduce the very expensive computational effort of full-potential
methods, often a compromise has been made between the accuracy and ef-
ficiency, and methods based on approximate single-electron potentials have
been developed. The most widely used approach is based on the physically
transparent Muffin-Tin (MT) approximation. Within this approximation, the
effective potential is represented by non-overlapping spherically symmetric
potentials around the atomic nuclei and a constant potential in the intersti-
tial region. Although the mathematical formulation of the MT approach is
very elegant, it gives a rather poor representation of the exact potential. The
so called Atomic Sphere Approximation (ASA) [39] substitutes the space by
overlapping spherical cells. The total volume of the ASA spheres is equal to
the volume of the real space, and thus the region between spheres is com-
pletely removed. Because of the large potential spheres, the ASA brings a real
improvement to the MT approximation. However, most of the conventional
methods based on the ASA potential use a similar approximation for the
Schrödinger and Poisson equations [43]. Therefore, with these methods, rea-
sonably accurate results could only be obtained for close-packed systems. In
order to increase the accuracy and extend the ASA methods to open systems,
different corrections had to be included [39, 40, 44, 45, 48, 50].

In the 1990s, a breakthrough was made by Andersen and co-workers by de-
veloping the Exact Muffin-Tin Orbitals (EMTO) theory [46, 84, 85, 86]. This
theory is an improved screened Koringa−Kohn−Rostoker method [38, 42], in
that large overlapping potential spheres can be used for an accurate represen-
tation of the exact single-electron potential [84]. The single-electron states are
calculated exactly, while the potential can include certain shape approxima-
tions, if required. By separating the approaches used for the single-electron
states and for the potential, the accuracy can be sustained at a level compa-
rable to that of the full-potential techniques without detracting significantly
from the efficiency. In this chapter, we shall review the EMTO theory and
introduce a self-consistent implementation of it within the Spherical Cell Ap-
proximation for the muffin-tin potential.
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2.1 The Exact Muffin-tin Orbitals Formalism

The self-consistent solution of the Kohn−Sham equations (1.3), (1.4) and
(1.7) involves two main steps. First, the solution of Equation (1.3) for the
effective potential (1.4), and second, the solution of the Poisson equation1 for
the total charge density. In this section, we explicate the first problem within
the EMTO formalism.

2.1.1 Optimized Overlapping Muffin-tin Wells

Within the overlapping muffin-tin approximation, the effective single-electron
potential in Equation (1.4) is approximated by spherical potential wells
vR(rR) − v0 centered on lattice sites R plus a constant potential v0, viz.

v(r) ≈ vmt(r) ≡ v0 +
∑
R

[vR(rR) − v0] . (2.1)

By definition, vR(rR) becomes equal to v0 outside the potential sphere of
radius sR. For simplicity, here and in the following, we suppress the density
dependence of the potential. For the vector coordinate, we use the notation
rR ≡ rRr̂R = r − R, where rR is the modulus of rR, and omit the vector
notation for index R.

For fixed potential spheres, the spherical and the constant potentials from
the right hand side of Equation (2.1) are determined by optimizing the mean
of the squared deviation between vmt(r) and v(r), i.e. minimizing the

Fv[{vR}, v0] ≡
∫

Ω

{
v(r) − v0 −

∑
R

[vR(rR) − v0]

}2

dr (2.2)

functional [47]. Here Ω is a region where the potential optimization is per-
formed, e.g., the unit cell. Since Fv is a functional of the spherical potentials,
the minimum condition is expressed as∫

Ω

δvR(r)
δFv[{vR}, v0]

δvR(r)
dr = 0 for any R, (2.3)

where δ/δvR(r) stands for the functional derivative, and

∂Fv[{vR}, v0]
∂v0

= 0. (2.4)

The solution of these integro-differential equations gives the optimal vR(rR)
and v0, and leads to the so called optimized overlapping muffin-tin (OOMT)
potential. The reader is referred to Andersen et al. [47] for further details
about the potential optimization.
1 The Hartree potential [87] can be found either by direct integration or as the

solution of the Poisson equation ∇2vH(r) = −8πn(r).
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In the case of non-overlapping muffin-tins, Equations (2.3) and (2.4) reduce
to the spherical average of the full-potential within the potential sphere, i.e.

vR(rR) =
1
4π

∫
v(r)dr̂, for rR ≤ sR, (2.5)

and to the space average of the full-potential within the s-interstitial region2,
i.e.

v0 =
1

ΩIs

∫
Is

v(r)dr, (2.6)

where Is denotes the s-interstitial region and ΩIs = Ω − ∑
R

4πs3
R

3 is the
volume of the s-interstitial. Note that Equation (2.6) gives the well-known
muffin-tin zero.

The overlap between potential spheres may be described in terms of the
linear overlap. The linear overlap between two spheres is defined as the relative
difference between the sum of the sphere radii and the distance between them,
i.e.,

ωRR′ ≡ sR + sR′

|R − R′| − 1. (2.7)
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Fig. 2.1. Optimized overlapping muffin-tin potential approximation to the cosine
potential in a simple cubic lattice. The radius corresponding to inscribed sphere
(si = a/2) is marked by a vertical line.

2 The interstitial region is the space outside of the potential spheres.
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In a monoatomic system, the inscribed sphere is defined as the largest non-
overlapping sphere. The radius of this sphere is si

R = minR′ |R − R′|/2. The
linear overlap is set to zero for potential spheres with radii sR ≤ si

R. Obviously,
in polyatomic crystals, the inscribed sphere depends upon the convention used
to divide the space into units around the lattice sites.

In the following, using a simple model potential, we demonstrate how
the full-potential can be represented by overlapping muffin-tins. We model a
general three dimensional full-potential by a cosine potential in a simple cubic
lattice with lattice constant a. Choosing the reference level in the corner of
the Wigner−Seitz cell, i.e. in (a/2, a/2, a/2), the cosine potential has the form

vc(r) = − cos
(

2π

a
x

)
− cos

(
2π

a
y

)
− cos

(
2π

a
z

)
− 3, (2.8)

where x, y, z are the Cartesian coordinates for r. For this potential, we solve
Equations (2.3) and (2.4), and the v0 and vR(rR) obtained are used to con-
struct the optimized overlapping muffin-tin potential approximation for vc(r).

The integrated local deviation between vc(r) and its OOMT approximation
is plotted in Figure 2.1 as a function of the potential sphere radius s. Results
are shown from s = 0.7si to s = 1.7si, where si = a/2 is the radius of the
inscribed sphere. This interval corresponds to linear overlaps ωRR′ ranging
from −30% to +70%, as indicated at the top of the figure. We observe that
the error in the muffin-tin potential decreases continuously with increasing
potential sphere radius. Around linear overlaps corresponding to the ASA
(∼ 24%), the error falls to below half of the error observed for touching,
i.e., non-overlapping spheres. From these results one can clearly see that the
accuracy of the overlapping muffin-tin approximation to the full-potential can
be improved substantially by increasing the overlap between the potential
spheres.

2.1.2 Exact Muffin-tin Orbitals

We solve the single-electron Equation (1.3) for the muffin-tin potential defined
in Equation (2.1), by expanding the Kohn−Sham orbital Ψj(r) in terms of
exact muffin-tin orbitals ψ̄a

RL(εj , rR), viz.

Ψj(r) =
∑
RL

ψ̄a
RL(εj , rR) va

RL,j . (2.9)

The expansion coefficients, va
RL,j , are determined from the condition that the

above expansion should be a solution for Equation (1.3) in the entire space. In
the EMTO formalism, the algebraic formulation of this matching condition is
the so called kink cancelation equation [46, 79, 80]. This equation is equivalent
to the Korringa−Kohn−Rostoker tail cancelation equation [36, 37] written in
a screened representation [38].
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The exact muffin-tin orbitals form a complete basis set for the Kohn−Sham
problem. They are defined for each lattice site R and for each L ≡ (l, m),
denoting the set of the orbital (l) and magnetic (m) quantum numbers. In
practice, it is found that in Equation (2.9), the l summation can be truncated
at lmax = 3, i.e. including the s, p, d and f muffin-tin orbitals only.

Screened Spherical Waves
The exact muffin-tin orbitals are constructed using different basis functions
inside the potential spheres and in the interstitial region. In the interstitial
region, where the potential is approximated by v0, we use as basis functions
the solutions of the wave equation,{

∇2 + κ2
}

ψa
RL(κ2, rR) = 0, (2.10)

where κ2 ≡ ε − v0, and ε is the energy. Within the EMTO formalism, the
ψa

RL(κ2, rR) functions are referred to as the screened spherical waves [46].
The boundary conditions for Equation (2.10) are given in conjunction with

non-overlapping spheres centered at lattice sites R with radii aR. Although,
the screening sphere radius might also depend upon the orbital quantum num-
ber l, for simplicity, here we assume that aR depends only on the site index
R. The screened spherical waves behave like a pure real harmonic YL(r̂R)3 on
their own a-spheres, while the YL′(r̂R′) projections on all the other a-spheres,
i.e. for R′ 	= R, vanish [46]. With these energy independent boundary con-
ditions, for κ2 below the bottom of the a-spheres continuum, the screened
spherical waves have short range and weak energy dependence [46, 79]. They
form a complete basis set in the a-interstitial region and may be expanded in
real harmonics YL′(r̂R′) around any site R′ as

ψa
RL(κ2, rR) = fa

Rl(κ
2, rR) YL(r̂R)δRR′ δLL′

+
∑
L′

ga
R′l′(κ

2, rR′) YL′(r̂R′) Sa
R′L′RL(κ2). (2.11)

The expansion coefficients, Sa
R′L′RL(κ2), are the elements of the slope ma-

trix, which is related to the well-known bare KKR structure constant matrix
through an inhomogeneous Dyson equation [46]. This is introduced and dis-
cussed in Chapter 3.

In Equation (2.11), fa
RL and ga

RL are the value or head and the slope or
tail functions, respectively. The previously described boundary conditions for
the screened spherical waves for l ≤ lmax lead to the following conditions at
the a-spheres

3 For the convention used for the real harmonics and for the Bessel and Neumann
functions see Appendix B.



18 2 Exact Muffin-tin Orbitals Method

fa
Rl(κ

2, r)|aR
= 1 and ga

Rl(κ
2, r)|aR

= 0. (2.12)

Here we fix the slopes of fa
RL and ga

RL as4

∂fa
R(κ2, r)
∂r

∣∣∣∣
aR

= 0 and
∂ga

Rl(κ
2, r)

∂r

∣∣∣∣
aR

=
1

aR
. (2.13)

Using the spherical Bessel and Neumann functions3, jl(κ2, rR) and nl(κ2, rR)
respectively, the value and slope functions can be expressed as

fa
Rl(κ

2, r) = t1Rl(κ
2)nl(κ2, r) + t2Rl(κ

2)jl(κ2, r) (2.14)

and

ga
Rl(κ

2, r) = −t3Rl(κ
2)nl(κ2, r) − t4Rl(κ

2)jl(κ2, r). (2.15)

The coefficients t1,...,4
Rl are the screening parameters. They are chosen according

to the imposed boundary conditions (2.12) and (2.13), namely

{
t1Rl(κ

2) t2Rl(κ
2)

t3Rl(κ
2) t4Rl(κ

2)

}
= 2

a2
R

w

⎧⎨⎩
∂jl(κ

2,aR)
∂rR

−∂nl(κ
2,aR)

∂rR

1
aR

jl(κ2, aR) − 1
aR

nl(κ2, aR)

⎫⎬⎭ . (2.16)

Here w denotes the average atomic or Wigner−Seitz radius defined from the
atomic volume V as

4πw3

3
≡ V =

unit cell volume
number of atoms in unit cell

. (2.17)

Since the Bessel and Neumann functions satisfy Equation (B.33), for the
Wronskian of the value and slope functions we get

Wr{fa
Rl, g

a
Rl} = aR, (2.18)

and thus the determinant of the screening matrix becomes

da
Rl ≡ t1Rl(κ

2)t4Rl(κ
2) − t2Rl(κ

2)t3Rl(κ
2) = −2

aR

w
. (2.19)

According to Equations (2.11), (2.14) and (2.15), the screened spherical waves
have no pure (lm) character5, and they are irregular at the origin. This prob-
lem is overcome in the next section by replacing the irregular head functions
by the partial waves.

4 Different slopes at a-spheres can be used. For example, fixing the slope of ga to
−1/a2 leads to a Hermitian slope matrix.

5 A function fL(r) has pure (lm) character if the angular part is fully described by
a real harmonic, viz., if fL(r) = fL(r) YL(r̂).
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In Equation (2.11), l ≤ lmax and the l′ summation is infinite. In practice,
the latter is truncated at lhmax ≈ 8 − 12. For l′ > lmax, the tail function
reduces to the Bessel function, i.e. ga

R′l′(κ
2, rR′) = −jl(κ2, rR′). These terms

are called the highers and unlike the low-l components, they are allowed to
penetrate into the a-spheres.

Partial Waves
Inside the potential sphere at R, the partial waves are chosen as the basis
function. These are defined as the products of the regular solutions of the
radial Schrödinger equation6 for the spherical potential vR(rR),

∂2
[
rR φRl(ε, rR)

]
∂rR

2 =
[ l(l + 1)

r2
R

+ vR(rR) − ε
]

rR φRl(ε, rR), (2.20)

and the real harmonics, viz.

φa
RL(ε, rR) = Na

Rl(ε)φRl(ε, rR) YL(r̂R). (2.21)

The normalization function Na
Rl(ε) should be determined from the matching

conditions. The partial waves are defined for any real or complex energy ε and
for rR ≤ sR.

Because a screened spherical wave behaves like YL(r̂R) only on its own
a-sphere, the matching condition between ψa

RL(κ2, rR) and φa
RL(ε, rR) should

be set up at this sphere. On the other hand, as we have seen in Section 2.1.1,
for an accurate representation of the single-electron potential the potential
spheres should overlap. Therefore, usually we have sR > aR. Because of this,
an additional free-electron solution with pure (lm) character has to be intro-
duced. This function realizes the connection between the screened spherical
wave at aR and the partial wave at sR. It joins continuously and differentiable
to the partial wave at sR and continuously to the screened spherical wave at
aR. Accordingly, the radial part of this backward extrapolated free-electron
solution can be written in the form

ϕa
Rl(ε, rR) = fa

Rl(κ
2, rR) + ga

Rl(κ
2, rR) Da

Rl(ε), (2.22)

where Da
Rl(ε) = D{ϕa

Rl(ε, aR)} is the logarithmic derivative of ϕa
Rl(ε, rR) cal-

culated for rR = aR. By definition, the logarithmic derivative of a function
f(rR) in the radial mesh point r0

R is

6 In practice, we solve the Dirac equation within the so called scalar relativistic
approximation rather than the non-relativistic Schrödinger equation. This ap-
proximation is obtained by taking into account the mass-velocity and Darwin
corrections and neglecting the spin-orbit interaction.
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D{f(r0
R)} ≡ r0

R

f(r0
R)

∂f(rR)
∂rR

∣∣∣∣
rR=r0

R

. (2.23)

The normalization function in Equation (2.21) and the logarithmic derivative
in Equation (2.22) are determined from the conditions

Na
Rl(ε)φRl(ε, sR) = ϕa

Rl(ε, sR), (2.24)

and

Na
Rl(ε)

∂φRl(ε, rR)
∂rR

∣∣∣∣
rR=sR

=
∂ϕa

Rl(ε, rR)
∂rR

∣∣∣∣
rR=sR

, (2.25)

After simple mathematics, we obtain

1
Na

Rl(ε)
=

φRl(ε, sR)
fa

Rl(κ2, sR)
D{φRl(ε, sR)} − D{ga

Rl(κ
2, sR)}

D{fa
Rl(κ2, sR)} − D{ga

Rl(κ2, sR)} , (2.26)

and

Da
Rl(ε) = −fa

Rl(κ
2, sR)

ga
Rl(κ2, sR)

D{φRl(ε, sR)} − D{fa
Rl(κ

2, sR)}
D{φRl(ε, sR)} − D{ga

Rl(κ2, sR)} . (2.27)

In these expressions, D{φRl(ε, sR)}, D{fa
Rl(κ

2, sR)} and D{ga
Rl(κ

2, sR)} rep-
resent the logarithmic derivatives calculated according to Equation (2.23). Fi-
nally, the exact muffin-tin orbitals are constructed as the superposition of the
screened spherical waves (2.11), the partial waves (2.21) and the free-electron
solution (2.22), viz.

ψ̄a
RL(ε, rR) = ψa

RL(κ2, rR) + Na
Rl(ε) φRl(ε, rR) YL(r̂R)

− ϕa
Rl(ε, rR) YL(r̂R), (2.28)

where the last two terms are truncated outside the s-spheres.

2.1.3 Kink Cancelation Equation

With the exact muffin-tin orbitals defined in Equation (2.28), the trial wave
function (2.9) around site R can be expressed as

Ψ(rR) =
∑
L

Na
Rl(ε) φRl(ε, rR) YL(r̂R) va

RL

+
∑
L

[
fa

Rl(κ
2, rR)va

RL + ga
Rl(κ

2, rR)
∑
R′L′

Sa
RLR′L′(κ2)va

R′L′

]
YL(r̂R)

−
∑
L

[
fa

Rl(κ
2, rR) + ga

Rl(κ
2, rR)Da

Rl(ε)
]

YL(r̂R) va
RL. (2.29)
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Here the index j has been omitted, emphasizing that the expansion may be
written for any energy ε = κ2 + v0. We observe that the head functions of
the screened spherical wave (2.11) are canceled by the head functions of the
free-electron solution (2.22). After rearranging the terms proportional to the
tail function, we obtain

Ψ(rR) =
∑
L

Na
Rl(ε)φRl(ε, rR) YL(r̂R)va

RL +
∑
L

ga
Rl(κ

2, rR) YL(r̂R)

×
∑
R′L′

[
Sa

RLR′L′(κ2) − δR′RδL′L Da
Rl(ε)

]
va

R′L′ . (2.30)

This trial function will be a solution of Equation (1.3) for the muffin-tin
potential (2.1), if inside the s-spheres the l ≤ lmax part of the second term
from the right hand side of (2.30) vanishes for any rR. That is, if the l ≤
lmax components of the screened spherical waves, multiplied by the expansion
coefficients, are canceled exactly by ϕa

Rl(ε, rR) YL(r̂R) va
RL,j . This is realized

if the kink cancelation equation,

∑
RL

aR′
[
Sa

R′L′RL(κ2
j ) − δR′RδL′L Da

Rl(εj)
]

va
RL,j = 0, (2.31)

is satisfied for all R′ and l′ ≤ lmax. Here and in the following κ2
j ≡ εj −v0, and

εj is a Kohn−Sham single-electron energy for which Equation (2.31) has non-
trivial solution. The difference between the slope matrix and the logarithmic
derivative matrix is called the kink matrix,

Ka
R′L′RL(εj) ≡ aR′ Sa

R′L′RL(κ2
j ) − δR′RδL′L aRDa

Rl(εj). (2.32)

Using the kink-cancelation equation, the wave function inside the potential
sphere at R reduces to

Ψj(rR) =
∑
L

Na
Rl(εj) φRl(εj , rR) YL(r̂R) va

RL,j

+
l′>lmax∑

L′
ga

Rl′(κ
2
j , rR) YL′(r̂R)

∑
R′L

Sa
RL′R′L(κ2

j ) va
R′L,j . (2.33)

Note that the l′ > lmax components of ψa
RL(κ2

j , rR) are present in the potential
spheres. However, due to the l(l + 1)/r2

R centrifugal term in Equation (2.20),
the partial waves for large l converge towards the Bessel functions, i.e. towards
the second term from the right hand side of Equation (2.33).

The solutions of Equation (2.31) are the single-electron energies and wave
functions. These solutions can be obtained from the poles of the path operator
ga

R′L′RL(z) defined for a complex energy z by
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R′′L′′

Ka
R′L′R′′L′′(z) ga

R′′L′′RL(z) = δR′RδL′L. (2.34)

In the case of translation symmetry, in Equations (2.31) and (2.34) the site
indices run over the atoms in the primitive cell only, and the slope matrix,
the kink matrix, and the path operator depend on the Bloch vector k from
the first Brillouin zone. The k and energy dependent slope matrix is obtained
from the Bloch sum

Sa
Q′L′QL(κ2,k) =

∑
T

eikTSa
Q′L′(Q+T )L(κ2), (2.35)

where Q′ and Q denote two sites from the primitive cell, and T is a translation
vector.

2.1.4 Overlap Matrix

The overlap integral of the partial waves within the potential sphere of radius
sR is the norm of φRl(ε, rR), viz.

∫
φa

RL
∗(ε, rR)φa

RL(ε, rR)drR = [Na
Rl(ε)]

2
∫ sR

0

φRl(ε, rR)2r2
RdrR. (2.36)

The radial integral can be calculated using the radial Schrödinger equation
(2.20) and the Green’s second theorem [46], and it gives

∫ sR

0

φRl(ε, rR)2r2
RdrR = −sRḊ{φRl(ε, sR)}φRl(ε, sR)2, (2.37)

where the over-dot denotes the energy derivative

Ḋ{φRl(ε, sR)} ≡ ∂D{φRl(ε, sR)}
∂ε

. (2.38)

The corresponding expression for the free-electron solution (2.22) obtained
between the s-sphere and a-sphere, is

∫ sR

aR

ϕa
Rl(ε, rR)2r2

RdrR =
∫ sR

0

ϕa
Rl(ε, rR)2r2

RdrR −
∫ aR

0

ϕa
Rl(ε, rR)2r2

RdrR

= − sRḊ{ϕRl(ε, sR)}ϕa
Rl(ε, sR)2 + aRḊa

Rl(ε), (2.39)

where we have taken into account that ϕa
Rl(ε, aR) = 1. According to the

matching conditions (2.24) and (2.25) we have

D{ϕRl(ε, sR)} = D{φRl(ε, sR)} (2.40)
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for any ε, and thus

Ḋ{ϕRl(ε, sR)} = Ḋ{φRl(ε, sR)}. (2.41)

Therefore, the first term on the right hand side of Equation (2.39) is equal to
the overlap integral of the partial waves (2.37).

The energy derivative of the logarithmic derivative function Ḋa
Rl(ε) is cal-

culated from Equation (2.27). The energy derivatives of the Bessel and Neu-
mann functions, and their radial derivatives are obtained from the recurrence
relations quoted in Appendix B, whereas Ḋ{φRl(ε, sR)} is given in Equation
(2.37).

The overlap integral of the screened spherical waves over the a-interstitial
is obtained in a similar way using the wave equation (2.10) and Green’s second
theorem [46], and it has the following simple expression

∫
Ia

ψa∗
R′L′(κ2, rR′)ψa

RL(κ2, rR)dr = aRṠa
R′L′RL(κ2), (2.42)

where Ia denotes a-interstitial. Here we recall that only the low-l compo-
nents of ψa

RL(κ, rR) are truncated outside the Ia. The high-l components are
present in the whole space, and their contribution to the overlap integral is
included in Equation (2.42). The energy derivative of the slope matrix can
be calculated from finite differences around κ2. Alternatively, one may use an
analytic expression derived from the unscreened slope matrix. This will be
presented in Section 3.1.

We can now establish the overlap matrix for the exact muffin-tin orbitals
(2.28) calculated over the whole space. Let us assume, for the moment, that
the potential spheres do not overlap and are smaller than the a-spheres. In this
situation, we can split the integral

∫
ψ̄∗

R′L′(ε, r) ψ̄RL(ε, r) dr into an integral
of the partial waves over the potential sphere, an integral of the free-electron
solutions over the region between the a-sphere and the potential sphere and an
integral of the screened spherical waves over the a-interstitial. Using Equations
(2.37), (2.39) and (2.42), we obtain

∫
ψ̄∗

R′L′(ε, r) ψ̄RL(ε, r) dr

= aRṠa
R′L′RL(κ2) − aRḊa

Rl(ε) = K̇a
R′L′RL(ε). (2.43)

For overlapping potential spheres, there are other small terms coming from
the overlap region. However, these terms are small, and for reasonable small
overlaps the above expression remains valid. For more details, the reader is
referred to the work by Andersen and co-workers [46, 84].
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2.1.5 The Fermi Level

During the iterations for solving self-consistently the Kohn−Sham equations
(1.3), the Fermi energy εF is established from the condition that the total
number of states N(εF ) below the Fermi level should be equal to the number
of electrons Ne from the system, i.e.

N(εF ) = Ne. (2.44)

In practice, N(ε∗F ) is computed for a series of trial ε∗F and the proper εF is
obtained according to Equation (2.44).

Within the present method, we make use of the residue theorem (Appendix
B) to find the number of states below the Fermi energy. According to this
theorem, the contour integral of the properly normalized path operator gives
the total number of states within the contour. Using the overlap matrix of the
exact muffin-tin orbitals (2.43) to normalize the path operator, each electronic
state will be normalized correctly within the real space. This leads to the
following expression for the total number of states below the Fermi level:

N(εF ) =
1

2πi

∮
εF

G(z) dz, (2.45)

where

G(z) ≡
∑

R′L′RL

ga
R′L′RL(z) K̇a

RLR′L′(z)

−
∑
RL

⎛⎝Ḋa
Rl(z)

Da
Rl(z)

−
∑
εD

Rl

1
z − εD

Rl

⎞⎠ , (2.46)

with l, l′ ≤ lmax. The energy integral in Equation (2.45) is performed on a
complex contour that cuts the real axis below the bottom of the valence band
and at εF . It is easy to see that near each pole εj , the path operator behaves
like K̇a

RLR′L′(εj)/(z − εj), and, therefore, the first term from the right hand
side of Equation (2.46) will contribute with 1 to N(εF ).

Because of the overlap matrix, the ga(z)K̇a(z) term may also include the
poles of Ḋa(z). Here, we omit the R and l indices for simplicity. Let us de-
note by z0 a pole of Ḋa(z). This pole has no physical meaning and should
be removed from N(εF ). Near z0, both Da(z) and Ḋa(z) diverge, and thus
ga(z)K̇a(z) → Ḋa(z)/Da(z) for z → z0. Therefore, subtracting Ḋa(z)/Da(z)
removes the nonphysical pole z0 of ga(z)K̇a(z). In the second step, we have
to restore the real poles of Ḋa(z)/Da(z) due to the zeros of the logarithmic
derivative function. We denote by εD a real energy where Da(z) vanishes.
Expanding Da(z) near this energy, we have Da(z) ≈ Ḋa(εD)(z−εD)+ ..., and
thus Ḋa(z)/Da(z) ≈ 1/(z − εD). Hence, Ḋa(z)/Da(z) − 1/(z − εD) contains
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no poles due to the zeros of the logarithmic derivative function. Note that the
second term from the right hand side of Equation (2.46) gives no contribu-
tion to N(εF ) if Ḋa(z) is an analytic function of z inside the complex energy
contour.

In Equation (2.43) the negligible terms due to the overlap between poten-
tial spheres have been omitted [84]. Besides these terms, N(εF ) in Equation
(2.45) gives the exact number of states at the Fermi level for the muffin-tin
potential from Equation (2.1).

2.2 Electron Density

The electron density (1.7) is given in terms of Kohn−Sham single-electron
wave functions. From the expansion of Ψj(r) (Equation (2.9)), a multi-center
form for the charge density can be obtained. Although, this multi-center ex-
pression gives a highly accurate charge density in the entire space, its applica-
tion in the Poisson equation or the total energy functional is very cumbersome.
Therefore, we seek a more transparent expression which can easily be used to
compute the Hartree and exchange-correlation terms in Equations (1.4) and
(1.9). To this end, we turn to the one-center expression (2.33). This expression
is valid inside the potential spheres. Nevertheless, due to the kink-cancellation
equation, the one-center expression remains valid for rR > sR as well, if the
normalized partial wave Na

Rl(εj) φRl(εj , rR) is replaced by the backward ex-
trapolated free-electron solution ϕa

Rl(εj , rR). We use this expression to set up
the one-center form for the charge density.

We divide the total density n(r) into components nR(rR) defined inside
the Wigner−Seitz cells,7 viz.

n(r) =
∑
R

nR(rR). (2.47)

Around each lattice site we expand the density components in terms of the
real harmonics, viz.

nR(rR) =
∑
L

nRL(rR)YL(r̂R). (2.48)

The partial components nRL(rR) are radial functions, which are obtained us-
ing Equation (2.33), the residue theorem (Appendix B) and the orthogonality
condition for the real harmonics (B.3). The final expression can be cast into
the following form:

7 In practice, in order to be able to compute the density gradients and eventually
the higher order density derivatives, the partial densities should in fact be defined
inside a sphere which is slightly larger than the sphere circumscribed to the
Wigner−Seitz cell.
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nRL(rR) =
1

2πi

∮
εF

∑
L′′L′

CLL′L′′Za
Rl′′(z, rR)

×g̃a
RL′′L′(z) Za

Rl′(z, rR)dz, (2.49)

where CLL′L′′ are the real Gaunt numbers (Appendix B). For the radial func-
tions the following notation has been introduced:

Za
Rl(z, rR) =

⎧⎪⎨⎪⎩
Na

Rl(z)φRl(z, rR) if l ≤ lmax and rR ≤ sR

ϕa
Rl(z, rR) if l ≤ lmax and rR > sR

−jl(κ rR) if l > lmax for all rR

. (2.50)

Note that in Equation (2.49), the l′′ and l′ summations include the highers
as well, i.e. l′′, l′ ≤ lhmax. The low-l block of the generalized path operator
g̃a

RL′L(z) is given by

g̃a
RL′L(z) = ga

RL′RL(z) +
δL′L

aR Ḋa
Rl(z)

⎛⎝Ḋa
Rl(z)

Da
Rl(z)

−
∑
εD

Rl

1
z − εD

Rl

⎞⎠ , (2.51)

with l, l′ ≤ lmax. The second term from the right hand side of Equation (2.51)
is introduced to remove the nonphysical poles of the normalization function
Na

Rl(z). The off-diagonal blocks of g̃a
RL′L(z) are

g̃a
RL′L =

⎧⎨⎩
∑

R′′L′′ ga
RL′R′′L′′aR′′Sa

R′′L′′RL if l′ ≤ lmax, l > lmax∑
R′′L′′ Sa

RL′R′′L′′ga
R′′L′′RL if l′ > lmax, l ≤ lmax

. (2.52)

Finally, the high-l block is

g̃a
RL′L =

∑
R′′L′′R′′′L′′′

Sa
RL′R′′L′′ga

R′′L′′R′′′L′′′ aR′′′Sa
R′′′L′′′RL, (2.53)

with l′, l > lmax. For simplicity, in Equations (2.52) and (2.53), the energy
dependence has been suppressed. The high-low and low-high blocks of the
slope matrix are calculated by the blowing-up technique [83], which will be
introduced in Chapter 3.

The charge density computed from Equations (2.48) and (2.49) is nor-
malized within the unit cell, and for reasonably large lhmax, it is continuous
at the cell boundaries. Note that because the real Gaunt numbers vanish for
l > l′′ + l′, the partial components of the charge density are nonzero only
for l ≤ 2lhmax. For a reasonably high lhmax (10−12), however, the partial com-
ponents with l > lhmax are very small. Because of this, the l-truncation in
Equation (2.48) is usually set to lhmax.
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2.3 The Poisson Equation

Equations (2.31), (2.45) and (2.48) constitute the basis of the method used
to solve the Schrödinger equation (1.3). In order to perform a self-consistent
calculation, one constructs the electron density from the solutions of the kink
cancelation equation and calculates the new effective single-electron potential.
Within the EMTO formalism, this latter procedure involves two steps [47].
First, we calculate the full-potential from the total charge density (2.48), and
second, we construct the optimized overlapping muffin-tin wells (2.1). Due to
the l-truncation in the one-center expression from Equation (2.48), the first
step is very demanding and inaccurate in the corners of the unit cell. Fur-
thermore, the expression for the effective potential (1.4) involves an integral
over the real space. These types of integrals can be performed using, e.g.,
the shape function technique (Chapter 4). Applying this technique, however,
would unnecessarily overcomplicate the self-consistent iterations. In the next
section, we show that within the so called Spherical Cell Approximation [80],
both of the above problems can be avoided.

2.3.1 Spherical Cell Approximation

To simplify the solution of the Poisson equation, during the self-consistent
iterations, we substitute the Wigner−Seitz cell around each lattice site by a
spherical cell. The volume of the spherical cell at R, ΩwR

, may be chosen to
be equal to the volume of the Wigner−Seitz cell ΩR centered on the same
lattice site, i.e.

ΩwR
≡ 4π

3
w3

R = ΩR, (2.54)

where wR is the radius of the spherical cell.
Next, we investigate the overlapping muffin-tin approximation to the full-

potential in the case of spherical cells. The integrated local deviation between
the full-potential and the OOMT potential was introduced and discussed in
Section 2.2. It represents a basic measure to establish the accuracy of the
muffin-tin potential. But there are other important quantities which should
be considered when searching for the best muffin-tin approximation.

The muffin-tin discontinuity is defined as the jump in the muffin-tin po-
tential at the potential sphere boundary, [vR(sR)−v0]. The error in the single-
electron energies due to the overlap between the s-spheres is given as

ΔEone ≡
∑

εj≤εF

Δεj ≈ − π

24

∑
RR′

|R − R′|5ω4
RR′

× [vR(sR) − v0][vR′(sR′) − v0]n ((R − R′)/2) . (2.55)

This expression has been obtained by the first order perturbation theory
[42, 84]. Accordingly, ΔEone is proportional to the average density within
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the overlap region n ((R − R′)/2), the square of the muffin-tin discontinuity,
and the fourth order power of the linear overlap defined in Equation (2.7).
Therefore, if we can keep the muffin-tin discontinuity small, the overlap errors
will be negligible, and thus large overlapping potential spheres can be used.

Another important parameter is the constant potential from Equation
(2.1) expressed relative to the Fermi level. The screened spherical waves
have short range for energies below the bottom of the hard sphere contin-
uum (Chapter 3). Therefore, in order to have localized slope matrices with
a smooth energy dependence for energies below κ2 ≈ εF − v0, one prefers to
have v0 close to εF .

We make use again of the model potential (2.8) to illustrate how the above
parameters depend on the potential sphere radius. For the integral in Equation
(2.2) we consider two different domains: (A) the integral is carried out over
the real Wigner−Seitz cells, and (B) the Wigner−Seitz cells are substituted
by the spherical cells and the OOMT potential is derived for these cells, i.e.
the integrals are performed within ΩwR

.
In Figure 2.2, we show three sets of results for the integrated local devi-

ation, the muffin-tin discontinuity and the constant potential. The first set
(a, solid line) corresponds to the fully optimized overlapping muffin-tins cal-
culated within the Wigner−Seitz cells (domain A). The second set (b, dot-
ted line) is also obtained from the fully optimized overlapping muffin-tins,
but this time they are calculated within the spherical cells rather than the
Wigner−Seitz cell (domain B). The third case (c, dashed line) corresponds
to partially optimized muffin-tins. In this case the spherical potential is fixed
to the spherical part of the full-potential according to Equation (2.5) and for
this v(r) the constant potential v0 is optimized within the domain B.

The integrated local deviations are plotted in the upper part of Figure
2.2. In contrast to the monotonously decreasing error obtained in case a (also
shown in Figure 2.1), in the second case the error first decreases with s, at
∼ 15% overlap it starts to increase and diverges at larger overlaps. In the
third case, for overlapping s-spheres there is a moderate improvement of the
muffin-tin approach relative to the non-overlapping situation, but above 30%
overlap the integrated local deviation shows no significant dependence on the
radius of the potential spheres.

The muffin-tin discontinuity is shown in the middle panel of Figure 2.2.
With increasing overlap between the s-spheres, [v(s)−v0] converges smoothly
to zero in case a and it diverges in case b. When v0 is optimized for v(r) fixed
to the spherical part of the full-potential, [v(s)− v0] approaches zero at small
overlaps and remains close to zero up to linear overlaps of 60−70%. Conse-
quently, in the third case the single-electron energies of monoatomic systems
are expected to depend negligibly on the overlap between the potential spheres
[80].

The constant potential v0 is plotted in the lower part of Figure 2.2. In case
a, v0 increases with s and reaches the zero potential level at ∼ 60% overlap.
When the muffin-tins are fully optimized inside the spherical cell, v0 decreases
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Fig. 2.2. Overlapping muffin-tin potential approximation to the cosine potential in
a simple cubic lattice. Upper panel: integrated local deviation of the full-potential
and overlapping muffin-tins (in %). Middle panel: muffin-tin discontinuity (in ar-
bitrary units). Lower panel: muffin-tin zero (relative to the zero potential level, in
arbitrary units). Solid line: fully optimized overlapping muffin-tins calculated in the
Wigner−Seitz cells; dotted line: fully optimized overlapping muffin-tins calculated
in the spherical cells; dashed line: spherical potential fixed to the spherical part of
the full-potential and muffin-tin zero optimized for this spherical potential.

with s for overlaps larger than ∼ 15%. In the third case, v0 increases slightly
with the overlap but always remains well bellow its optimal value, i.e. the one
from the first case.

From these results one clearly sees that using a spherical cell model, due
to the improper description of the full-potential, the fully optimized overlap-
ping muffin-tins approximation breaks down for linear overlaps larger than
10−15%. One possibility to overcome this problem is given by the third case
(c), which we will refer to as the Spherical Cell Approximation (SCA).
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In summary, the SCA involves two approximations. First, in Equation
(2.2) the spherical cells rather than Wigner−Seitz cells are used, and second,
vR(rR) is fixed to the spherical average of the full-potential given in Equation
(2.5). With this particular choice, the expression for parameter v0 obtained
from Equation (2.4) becomes [47, 80]

v0 =

∑
R

∫ wR

sR
r2
R

[∫
v(r)dr̂R

]
drR∑

R [4π(w3
R − s3

R)/3]
. (2.56)

When sR → wR, the above expression reduces to

v0 →
∑

R

[∫
v(r)dr̂R

]
rR=sR

s2
R∑

R 4πs2
R

=
∑

R vR(sR)s2
R∑

R s2
R

. (2.57)

One of the most important consequences of the SCA is that both vR(rR) and
v0 from Equation (2.1) are given in terms of the spherical symmetric part of
the full-potential, which can be computed efficiently and with high accuracy.

2.3.2 The Effective Potential

In this section, we establish an expression for the spherical part of the single-
electron potential (1.4). An electron from a crystal feels the attractive poten-
tial (1.11) created by the nuclear charges located at the lattice sites R, and
the repulsive electrostatic potential created by all the other electrons, i.e. the
Hartree potential (1.5). Since both of these potentials have long range, they
should be grouped in such a way that at large distance the negative and pos-
itive terms cancel each other. Usually, this is done by dividing ve(r) + vH(r)
into components due to the charges from inside and from outside of the cell
at R. The intra-cell part of the electrostatic potential then becomes

vI
R(rR) = −2 ZR

rR
+ 2

∫
ΩR

nR(r′R)
|rR − r′R|

dr′R. (2.58)

Using the expansion [87]

1
|rR − r′R|

= 4π
∑
L

1
2l + 1

rl
R

r′R
l+1

YL(r̂R)YL(r̂′R), (2.59)

valid for r′R > rR, we can separate the r′R integration in Equation (2.58).
Calculating the spherical part of the resulting expression, we arrive at

vI
R(rR) ≡ 1

4π

∫
vI

R(rR)dr̂R = 8π
1
rR

∫ rR

0

r′R
2
nRL0(r

′
R)dr′R

+ 8π

∫ sR

rR

r′RnRL0(r
′
R)dr′R − 2ZR

rR
, (2.60)
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where nRL0(rR) is the L0 = (0, 0) partial component of the charge density
near site R.

The effect of charges from outside of the potential sphere give the so called
Madelung potential

vM
R (rR) = −

∑
R′ �=R

2 ZR′

|rR′ + R′|

+
∑

R′ �=R

2
∫

ΩR′

nR′(rR′)
|rR − rR′ + R − R′|drR′ . (2.61)

This is calculated by expanding 1
|r−r′| first around rR = r − R and then

around rR′ = r′ − R′, namely

1
|r − r′| = 4π

∑
L

1
2l + 1

rl
R

|r′ − R|l+1
YL(r̂R)YL( ̂r′ − R), (2.62)

and

YL( ̂r′ − R)

|r′ − R|l+1
=

4π

(2l − 1)!!

∑
L′L′′

CLL′L′′
(−1)l′(2l′′ − 1)!!

(2l′ + 1)!!
rl
R′

|R′ − R|l′′+1

× YL′(r̂R′)YL( ̂R′ − R). (2.63)

These expansions are strictly valid only for rR + rR′ < |R′ − R|, i.e. if the
spheres circumscribed on the cells at R and R′ do not overlap. The case of over-
lapping bounding spheres will be discussed in connection with the Madelung
energy in Chapter 4. Using the above expressions, for the spherically symmet-
ric part of the Madelung potential we obtain

vM
R ≡ 1

4π

∫
vM

R (rR)dr̂R =
1
w

∑
R′ �=R,L′

MRL0R′L′ QSCA
R′L′ . (2.64)

Here

MRLR′L′ = 8π(−1)l′
∑
L′′

CLL′L′′
(2l′′ − 1)!!

(2l − 1)!!(2l′ − 1)!!
δl′′,l′+l

×
(

w

|R′ − R|
)l′′+1

YL′′( ̂R′ − R) (2.65)

are the elements of the Madelung matrix, and w is the average atomic radius.
Note that because of the Kronecker delta (δl′′,l′+l), in Equation (2.65) only
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the l′′ = l′ + l term is nonzero. The multipole moments, QSCA
RL , are calculated

within the SCA,

QSCA
RL =

√
4π

2l + 1

∫ wR

0

(rR

w

)l

nRL(rR) r2
R d rR

− ZR δL,L0 + δSCA δL,L0 . (2.66)

Since the integral in Equation (2.66) is performed over the spherical cell rather
than over the unit cell, the monopole moments in Equation (2.66) have to be
renormalized within the cell [80]. This is realized by the site independent
constant δSCA, which is determined from the condition of charge neutrality,
viz.

∑
R QSCA

RL0
= 0.

Usually, the number of electrons inside the s-sphere,

Q(sR) =
√

4π

2l + 1

∫ sR

0

nRL(rR) r2
R d rR, (2.67)

is different from the number of electrons inside the cell, QSCA
RL0

+ ZR. This
difference contributes a constant shift, ΔvM

R , to the spherical potential. In
the SCA, this extra or missing charge is redistributed equally on the NNN

nearest-neighbor cells, i.e.

ΔvSCA
R =

1
w

∑
RNN

MRL0RNN L0 ΔQRNN
, (2.68)

where ΔQRNN
≡ 1

NNN

(
QSCA

RL0
+ ZR − Q(sR)

)
and RNN are the nearest-

neighbor sites.
Finally, the spherical symmetric part of the exchange-correlation potential

(1.6) is

μxcR(rR) ≡ 1
4π

∫
μxcR([nR]; rR)dr̂R. (2.69)

The total potential within the potential sphere is obtained as the sum of
contributions from Equations (2.60), (2.64), (2.68) and (2.69), namely

vR(rR) = vI
R(rR) + vM

R + ΔvSCA
R + μxcR(rR). (2.70)

Except the negligible approximations made in the Madelung terms, i.e. in
Equations (2.64) and (2.68), the above expression gives the exact spherical
part of the full potential inside the s-sphere.

In many application, the multipole moments in Equation (2.64) can be
neglected for l > 0. Moreover, the non-spherical part of μxcR([nR]; rR) from
the right hand side of Equation (2.69), giving only a small contribution to the
spherically symmetric exchange-correlation potential, can also be omitted. In
this situation, all potential components in Equation (2.70) depend only on the
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spherical symmetric density nRL0(rR). On the other hand, when the multipole
moments for l 	= 0 are large (e.g., near the free surfaces), the Madelung
potential due to the higher order moments has to be taken into account. In
this case, the l-truncation in Equation (2.64) is given by the l-truncation for
the multipole moments, which in turn is lhmax used for the charge density
(see Section 2.2). In practice, however, the l-truncation for the charge density
during the self-consistent iterations can be set to a value (usually 4−6) smaller
than the one used to calculate the final full charge density, without sacrificing
the accuracy of the method.

Before closing this section, we shall comment on the numerical calcula-
tion of the Madelung potential for a periodic bulk (infinite) system. When
collecting different contributions to vM

R , the R′ summation in Equation (2.64)
should run over all the lattice sites. The Madelung matrix (2.65) can eas-
ily be computed for any pair of lattice points R and R′. However, since
MRL0R′L′ ∼ 1/|R − R′|l′+1, for the low order multipole moments (l′ ≤ 1),
the R′ summation diverges. This is because at large distance the number of
sites included in the Madelung sum roughly increases as the surface of the
coordination shell, i.e. as 4π|R − R′|2. On the other hand, the unit cells are
neutral, and thus the contribution coming from a remote cell should vanish.
In order to overcome this problem, the lattice summation should be carried
out using the so called Ewald technique. For details about this technique, the
reader is referred to Skriver [39].

2.3.3 Potential Sphere Radius sR

The potential sphere radius influences the accuracy of the muffin-tin approx-
imation. In Section 2.3.1, we saw that in the case of monoatomic systems
the integrated local deviation between full-potential and OOMT potential de-
creases and the constant potential is pushed towards the Fermi level with
increasing potential sphere radius. But what is even more important, large
potential spheres also lead to decreased muffin-tin discontinuity and thus to
decreased error coming from the s-sphere overlap. On the other hand, this
error is proportional to the fourth order power of the linear overlap between
spheres [42, 84], which sets an upper limit for sR.

In Figure 2.3, the overlap error and the muffin-tin discontinuity (inset) are
plotted as a function of the potential sphere radius in the case of face centered
cubic (fcc) Cu. These calculations were done at the experimental volume
using the SCA. We find that for linear overlaps between ∼ 4% and ∼ 20% the
muffin-tin discontinuity is below 10 mRy. This results in a negligible error in
the single-electron energies. On the other hand, at larger overlaps the error
diverges rapidly with increasing sR. Taking into account that the integrated
local deviation shows a weak sR dependence for overlaps above ∼ 10% (see
Figure 2.2), we conclude that in close-packed monoatomic systems the best
representation of the full-potential within SCA can be achieved by choosing
potential spheres with a linear overlap between 10% and ∼ 25%.
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Fig. 2.3. The overlap error for face centered cubic Cu (w = 2.669 Bohr) as a
function of the potential sphere radius. In the inset the muffin-tin discontinuity is
plotted.

In a polyatomic system, small muffin-tin discontinuity can be obtained
if the individual spherical potentials at the potential sphere boundary have
similar values, i.e.

vR(sR) ≈ vconst. for each R. (2.71)

Then the constant potential, obtained as the average of the spherical po-
tentials calculated in the vicinity of sR, will be v0 ≈ vconst. and therefore
vR(sR) − v0 ≈ 0. For well localized slope matrices, vconst. from Equation
(2.71) should have the maximum possible value.

The effect of sR on the muffin-tin discontinuity in polyatomic crystals
is illustrated in the case of magnesium diboride. The crystal structure of
MgB2 has the hexagonal symmetry (space group P6/mmm) with a = 5.833
Bohr and c/a = 1.14 [88, 89, 90]. Layers of Mg and B atoms are located
at z = 0 and z = 0.5c/a, respectively. Using sR = wR corresponding to
sMg/sB ≈ 1.12, the linear overlap between nearest-neighbor B atoms is 42%.
In this situation, the actual value of the muffin-tin discontinuity is crucial
for an accurate self-consistent calculation. In Figure 2.4, we plotted the two
muffin-tin discontinuities [vMg(sMg)− v0] and [vB(sB)− v0] calculated around
Mg and B sites, respectively. Different symbols correspond to different pairs of
sMg and sB. For example, triangles represent muffin-tin discontinuities +0.288
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Fig. 2.4. The two muffin-tin discontinuities in MgB2 compound as functions of the
Mg and B potential sphere radii.

Ry and −0.335 Ry obtained using sMg = 3.37 Bohr and sB = 1.62 Bohr. We
can see that there is a particular ratio, namely sMg/sB ≈ 1.26, when the
muffin-tin discontinuity vanishes on both sites. Although the linear overlap
between boron sites is still around 30%, with this choice for sMg and sB the
error in the single-electron energies is found to be negligible.
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