
What Rayleigh-Bénard, Taylor-Couette
and Pipe Flows have in Common

Bruno Eckhardt1, Siegfried Grossmann1 ��, and Detlef Lohse2

1 Fachbereich Physik, Philipps-Universität, Renthof 6, D-35032 Marburg,
Germany, bruno.eckhardt@physik.uni-marburg.de
grossmann@physik.uni-marburg.de

2 Department of Applied Physics, University of Twente, 7500 AE Enschede,
The Netherlands, d.lohse@utwente.nl

The very close correspondence between the three types of thermally or shear
driven fluid flows is elucidated. Expressions for the relevant currents of tem-
perature, angular momentum, and axial velocity by transverse convective flow
in the profile direction are derived from the Navier-Stokes equations. Also the
dissipation rates of the advective flows are calculated. Exact relations be-
tween the respective currents, the dissipation rates and the external control
parameters are presented.

1 Introduction

Although Rayleigh-Bénard, Taylor-Couette, and pipe flow have rather dif-
ferent driving mechanisms – externally controlled temperature differences,
concentric cylinders rotating at different speeds, or an externally controlled
pressure drop or mean flow – the also different physical quantities of interest –
the heat flow, the torque, or the skin friction – have a remarkable feature in
common. Instead of the expected scaling behavior of these quantities of inter-
est in terms of the driving forces, the corresponding scaling exponents turn out
to be valid only locally. In fact they depend on the driving force and change
for increasing forcing. This striking correspondence prompts the idea, that
the corresponding mechanism might be very similar. In this paper we report
on this. Section 2 deals with the main ideas to calculate the Nusselt number
in Rayleigh-Bénard flow. In the next Sect. 3 we show that the corresponding
ideas can be developed also for flow in the gap between independently rotating
cylinders. In the last step, Sect. 4, we derive the very corresponding relations
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also for pipe flow. We close (Sect. 5) by indicating the answer to the question
of a forcing dependent scaling: It is the varying weight of the boundary layer
relative to the bulk contributions that changes the relevant scaling exponent
with increasing external forcing!

2 Rayleigh-Bénard Convetion

Thermal heat convection in fluid layers heated from below, known as Rayleigh-
Bénard (RB) flow, has been intensively studied in the recent years, see [1, 2, 3]
and others. Considerable, impressive experimental progress has been obtained.
The standards of precision today are very high, with a scatter ≤ 0.1% and a
temperature stabilization of ≈ 0.001o C or better.

The quantities of main interest are the heat flux Q and the amplitude U
of the convection field. The corresponding dimensionless quantities are the
Nusselt number Nu = Q/ΛΔL−1 = Jθ/κΔL−1 and the Reynolds number
Re = U/νL−1. Here Λ and κ are the heat and thermal conductivity, Δ is
the temperature surplus of the hotter bottom plate relative to the colder top
plate of the container, L is the height of the fluid layer (or container) and ν
the fluid’s kinematic viscosity. The flow is assumed to be incompressible, the
density of the liquid ρfluid is constant, κ = Λ/cpρfluid, with cp the isobaric
heat capacity per mass.

The external flow parameters are the Rayleigh number Ra = gαpΔL
3/(νκ)

and the material property Pr = ν/κ is the Prandtl number. Ra measures the
buoyancy due to the gravitational acceleration g, with αp the isobaric thermal
expansion coefficient. The geometry of the container is parametrized by the
aspect ratio Γ = D/L, lateral extension D in multiples of the height L. In
experiment Γ is in the range of about 1/2, . . . , 20, in theory we consider the
ideal limit Γ → ∞.

The physical understanding of Nu,Re as functions of the varying control
parameters Ra and Pr has been developed in a series of papers [4, 5, 6, 7]. It
basically consists of two arguments. First, there are close and exact relations
between the thermal current Jθ and the dissipation rates εu and εθ of the
velocity and the temperature fields u and θ. Second, the dissipation rates can
be modelled in terms of their dimensional amplitudes.

The exact relations, which can be derived from the Oberbeck-Boussinesq
equations of motion, are

εu/(ν3L−4) ≡ ε̃u = Pr−2Ra(Nu− 1) (1)

and εθ/(κΔ2L−2) ≡ ε̃θ = Nu . (2)

They are valid in the case Γ → ∞ or with laterally periodic boundary
conditions.

In order to derive them, a well defined expression for the thermal current
Jθ is needed,
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Jθ = −κ∂z〈θ〉A,t + 〈uzθ〉A,t = Nu · κΔL−1 . (3)

This definition is a unique consequence of the θ-equation, if averaged over
planes A parallel to the bottom and top plates at any height z, with 0 < z < L
from bottom to top. Also the time average is taken (or stationarity assumed).
The defining property to identify Jθ is that it is independent of z. This
expresses the conservation of heat, the current must be the same at each
height z.

While Jθ consists of area averages, the dissipation rates are volume aver-
ages, εu = ν〈u2

i|j〉V,t and εθ = κ〈grad2θ〉V,t. The average convective dissipa-
tion rate ε̃u is decomposed now into its isotropic bulk contribution and the
anisotropic boundary layer part. The thermal dissipation, being equal to the
area averaged current, is decomposed according to the dimensional ampli-
tudes of the two Jθ-terms.

ε̃u = ∼ U2/(LU−1) + ∼ ν(U2/λ2
u) · (λu/L) , (4)

Nu = ∼ L/λθ + ∼ UΔ . (5)

The Ansatz for the width λu of the kinematic boundary layer is the Prandtl
scaling

λu/L = a/
√
Re , (6)

the one for the thermal boundary layer width λθ is either obtained from (3)
taken at the plates or from the Pohlhausen theory

λθ/L = 1/(2Nu) ≈ ∼
√
Re Pr . (7)

Depending on the size of Pr, the velocity U which is relevant in the ex-
pression for Nu either is the full amplitude U itself, namely if λu � λθ, or
it is only the fraction Uλθ/λu at the edge of the thermal boundary layer, if
λu � λθ. These two limiting cases, known as ”lower” and ”upper” ranges, are

connected by a switch function f(λθ/λu) =
(

(λθ/λu)n

1+(λθ/λu)n

)1/n

; that n = 4 is
chosen, is not important.

These ideas lead to the following set of two equations,

Pr−2Ra(Nu− 1) = c1Re
5/2 + c2Re

3 , (8)

Nu = c3

√√√√RePrf

(√
Re

Nu

)
+ c4RePrf

(√
Re

Nu

)
. (9)

Its solution leads to the quantities of interest, Nu(Ra, Pr) and Re(Ra, Pr)
(after fitting the constants ci to one available data set), and allows to calculate
the heat current as well as the convection amplitude for any value of the
external control parameters Ra and Pr. The agreement with an increasing
amount of data (experimental as well as numerical) is up to now very pleasing;
details are given in [4, 5, 6, 7].
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The most remarkable observation is that there are no global scaling
exponents

Nu ∼ RaβPrβ
′
, (10)

but that these β’s are local quantities only, changing as functions of Ra and Pr
in a ball park (for β) between about 1

5 , 1
4 and 1

3 or even 1
2 . More precisely, Nu

and Re are varying superpositions of boundary layer and bulk contributions
to the dissipation rate and the current.

3 Taylor-Couette Flow

We now show that there is a very close correspondence between thermal RB
flow and Taylor-Couette (TC) flow in the gap between concentrically rotating
cylinders and (in the next section) also with pipe flow. The details will be
published elsewhere, cf. [8, 9, 10]. Here only the main ideas of this interesting
correspondence are discussed. We even restrict ourselves to the exact relations;
the modelling can be (and has been) also worked out, of course, see the detailed
publications.

In TC flow two cylinders with radii r1, r2 rotate independently with angu-
lar velocities ω1, ω2. The gap width between the cylinders is d = r2 − r1, the
aspect ratio Γ is �cyl/d and in practice of the order of 10. The nondimensional
control parameters are Re1 = r1ω1d/ν and Re2 correspondingly. Another im-
portant geometrical parameter is the radius ratio η = r1/r2, varying between
0 (large gap) and 1 (small gap). With decreasing η the effects of curvature
become more relevant, while for η → 1 the TC system approaches the flat
narrow channel. Another interesting degree of freedom is counter rotation,
ω2 < 0 and ω1 > 0. Then a neutral surface develops at some intermediate
radius rn, defined by uϕ(rn) = 0. The results presented in the following hold
in all these various cases. They are exact consequences of the Navier-Stokes
equations for incompressible fluid flow.

∂tu = −(u · ∇)u − ∇p+ νΔu , divu = 0 . (11)

These have to be used, of course, in cylindrical coordinates, as found e.g. in
[11].

Consider at first laminar TC flow, which apparently corresponds to the RB
system at rest. As there is a profile in the RB case, namely the temperature
profile, also in laminar TC flow one has a profile, this time of angular velocity,
ω1 < ω(r) < ω2. It is ω(r) = A +B/r2. The corresponding velocity is purely
azimuthal, uϕ = rω(r) and the angular momentum field is L = ruϕ = r2ω(r).
Due to the r-gradient of the profile there is a transverse molecular ω-current
∝ −ν∂rω, similar to ∝ −κ∂zθ in RB. Note that it is not the state of resting
cylinder which corresponds to the RB state with u = 0; this latter still has a
θ-profile. The resting TC system has no profile anymore.
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If the rotation rates are sufficiently large, convection transverse to the
cylinder surfaces develops, u⊥, having velocity components ur and uz. These
of course couple to uϕ via (11). This transverse convection enhances the radial
ω-transport.

The ω-transport leads to forces F1,2 and thus to torques T1 ≡ T and
T2 = −T on the cylinders, which can be measured [12, 13, 14, 15, 16] and
more. One expects T ∝ Reα1 , similar as in RB we wrote Jθ ∝ Raβ. It again
turns out that also this exponent α depends on Re1, i.e. is only local but not
universal.

How can one define the ω-current? In perfect analogy to the argument in
RB convection we perform area and time averages the relevant equation of
motion for TC flow. In RB this is the θ-equation because the driving mech-
anism is the θ-profile. Since in TC the driving profile is in ω or uϕ = rω, we
start from the uϕ-equation, i.e. the ϕ-component of the Navier-Stokes (11).
The relevant area here are cylinders A(r) = 2πr · �cyl concentric to the TC
cylinders, for any r1 ≤ r ≤ r2. After some algebra one finds that the following
quantity has to be the same for all r,

r3
(
−ν∂r〈ω〉A(r),t + 〈urω〉A(r),t

)
≡ Jω . (12)

Because of its r-independence we consider this Jω as the angular momentum
current and as the very analog of Jθ. Of course, an proportionality factor is
still free. To prove the physical meaning of just this expression Jω, we consider
its relation to the torque. It is T = r1F1 = r1 · σrϕ(r1) · 2πr1�cyl, with the
stress tensor in cylindrical coordinates σrϕ(r1) = −ρfluidν(∂ruϕ− uϕ

r )r1 . Thus
T = 2π�cylρfluidJω.

Jω, as Jθ in RB, consists of a molecular contribution to the transport,
∝ −ν∂r〈ω〉A(r),t and a convective part ∝ 〈urω〉A(r),t, proportional to the
transverse amplitude ur. The latter term is missing in the laminar case. Thus
the convective enhancement of the angular momentum transport is

Nω =
Jω

Jωlam
=

Jω

2νB
, (13)

which we call the ω-Nusselt number. This leads to

T ∝ Jωlam ·Nω ∝ Re1 ·Nω . (14)

There is a significant influence of the curvature on Jω, namely the explicit
factor of r3 in (12). It is only with this r3 that Jω is r-constant. It means
that the molecular gradient contribution as well as the convective correlation
function are much weaker near the outer than near the inner cylinder. In par-
ticular, the differences between the ω-slopes near the inner and outer cylinder
increase dramatically with η,

∂r2〈ω〉2 = η3∂r1〈ω〉1 . (15)
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For decreasing radius ratio η or increasing gap width 1−η the boundary layer
at the inner cylinder is (much) thinner than at the outer one.

Having identified the corrrespondence of the relevant currents, we now
consider the energy dissipation rate in TC flow. It reads ε = ν

2 〈(∂iuj +
∂jui)2〉V and is calculated from the Navier-Stokes (11) by multiplying with u
and volume averaging. After some algebra (see [9]) one finds

ε =
2

r22 − r21
(ω1 − ω2)Jω . (16)

This total dissipation rate clearly does not correspond to εu in RB flow, cf. (1);
namely, we have εu = 0 in the case of no convective transport, but ε in (16),
instead, reduces to εlam ∝ Jωlam �= 0 in case of missing convective transport.
Therefore, the convective dissipation rate in TC flow corresponding to εu in
RB is

ε̃w =
ε− εlam
ν3d−4

=
εlam
ν3d−4

(Nω − 1) . (17)

One can introduce a purely geometrical analog of the material property
Pr = ν/κ by defining a quasi-Prandtl number

σ(η) =
(
ra
rg

)4

=
( 1

2 (1 + η)
√
η

)4

, (18)

ra,g denoting the arithmetic and geometric mean radii of r1,2. A quasi-thermal
conductivity then is κ = ν/σ. One can also introduce a Taylor number

Ta = σ
d2r2a(ω1 − ω2)2

ν2
=
d2r2a(ω1 − ω2)2

νκ
. (19)

In terms of these control parameters the convective dissipation rate (17)
becomes

ε̃w = σ−2Ta(Nω − 1) , (20)

the perfect analogon of ε̃u from (1). These two exact relations, (20) for the
convective dissipation rate, and (12),(13) for the ω-current between the cylin-
ders, establish the complete correspondence between RB and TC flows. It is,
incidentally, precisely with the prefactors included in the definition (19) of
the Taylor number, that this analogy is perfect. This suggests which of the
various different, though dimensionally all correct Taylor numbers should be
preferred, namely the definition (19). The current or ω-Nusselt number (13)
can be written as

Nω =
(
r

ra

)3 〈urω〉A(r),t − ν∂r〈ω〉A(r),t

κ(ω1 − ω2)/d
. (21)

The correspondence to (3) is striking. In a simplified version we had shown
in [17] that the torque data can be rather well described along this RB-TC-
correspondence. For more details in the present frame of complete correspon-
dence, see [9].
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4 Pipe Flow

We finally analyse the correspondence not only of RB with TC but now also
with pipe flow, being rather brief only and giving reference to [8, 10] for more
details.

The counter part to the RB state of rest but with a temperature θ profile,
corresponding to laminar TC flow with an ω proffile, in the case of pipe flow
is the laminar Hagen-Poiseuille flow. It also has a profile, namely of the axial
component uz(r), leading to a molecular current ∝ −ν∂ruz(r), which in turn
gives rise to a skin friction at the pipe’s wall that has to be overcome by
the applied external pressure drop Δp/�pipe. To define the proper current
in pipe flow we perform area and time averages of the uz-component of the
Navier-Stokes (11). Here the appropriate surfaces are virtual circular surfaces
concentric to the pipe, of any radius r ≤ a, the pipe’s radius: A(=) = 2πr ·
�pipe = A(r)(=). After some arguments one arrives at the following definition
for the uz-current, which is independent of r, constant for all radii smaller
than a,

Juz =
2
r

(
〈uruz〉A(=),t − ν∂r〈uz〉A(=),t

)
. (22)

It is only including the factor r−1 that this expression is constant. The uz-
Nusselt number is Nu = Juz/Juz

lam, where Juz

lam = 8νa−2U . Here U is the
cross-sectional mean flow velocity and a = d/2 the radius and diameter of the
pipe.

Convective enhancement of the uz-current, which flows from the interior
to the pipe wall is provided by the radial component ur (and, of course,
uϕ), which develop in the turbulent state beyond laminarity. This gives rise
to a convective dissipation rate. The full dissipation rate in the pipe is ε =
UJuz . The contribution due to the transverse ur-convection is obtained by
subtracting the laminar contribution. This leads to the following definition of
the convective dissipation rate

ε̃w =
ε− εlam
ν3d−4

∝ Re2(Nu − 1) . (23)

This corresponds perfectly to (1) in RB and (17),(20) in TC. We would like to
draw the readers’ attention to the fact, that there is one possibly severe differ-
ence between pipe and the other two flows. While in RB and TC the driving
profiles are externally controlled as the bottom and top plates temperatures
or as the cylinders rotation frequencies, in pipe flow the profile underlies dy-
namical fluctuations. The center velocity which determines the uz-profile is
a dynamical response of the flow already, either to the externally applied
pressure drop Δp/�pipe or to the controlled mean flow velocity U .
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5 Summarizing Conclusions

Having calculated Nu,Nω, or Nu, all along the same lines, one finds the local
exponents of the quantities of physical interest. In RB convection this is the
Nusselt number exponent β itself. In TC flow between independently rotating
cylinders it is the torque exponent α from T ∝ Reα1 ; one then has with (14)
T ∝ Re1N

ω ∝ Re1+β1 , i.e. α(Re1) = 1 + β(Re1). In pipe flow the skin fric-
tion coefficient is of interest, cf = (16/Re)Nu ∝ Re−1+β, so that the relation
α(Re) = −1 + β(Re) holds. This establishes the close correspondence be-
tween RB, TC, and pipe flow. In all three cases exact relations connecting the
currents and the convective dissipation rates hold.They are consequences of
the Navier-Stokes equations and are valid in any situation. The further steps,
namely the modelling of both the currents N and the dissipation rates ε̃w in
terms of the dimensional amplitudes, need more details about the respective
flows and will be discussed in [8, 9, 10].
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