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1.1 Introduction

This chapter introduces a relatively new meta-heuristic for combinatorial
optimization, the ant colony. The ant colony algorithm is a multiple solu-
tion global optimizer that iterates to find optimal or near optimal solutions.
Like its siblings genetic algorithms and simulated annealing, it is inspired
by observation of natural systems, in this case, the behavior of ants in for-
aging for food. Since there are many difficult combinatorial problems in
the design of reliable systems, applying new meta-heuristics to this field
makes sense. The ant colony approach with its flexibility and exploitation
of solution structure is a promising alternative to exact methods, rules of
thumb and other meta-heuristics.

The most studied design configuration of the reliability systems is a se-
ries system of s independent k-out-of-n:G subsystems as illustrated in Fig-
ure 1. A subsystem i is functioning properly if at least &; of its n; compo-
nents are operational and a series-parallel system is where k; = one for all
subsystems. In this problem, multiple component choices are used in par-
allel in each subsystem. Thus, the problem is to select the optimal combi-
nation of components and redundancy levels to meet system level con-
straints while maximizing system reliability. Such a redundancy allocation
problem (RAP) is NP-hard [6] and has been well studied (see Tillman, et
al. [45] and Kuo & Prasad [25]).
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Fig. 1. Typical series-parallel system configuration.

Exact optimization approaches to the RAP include dynamic program-
ming [2, 20, 35], integer programming [3, 22, 23, 33], and mixed-integer
and nonlinear programming [31, 46]. Because of the exponential increase
in search space with problem size, heuristics have become a common al-
ternative to exact methods. Meta-heuristics, in particular, are global opti-
mizers that offer flexibility while not being confined to specific problem
types or instances. Genetic algorithms (GA) have been applied by Painton
& Campbell [37], Levitin et al. [26], and Coit & Smith [7, 8]. Ravi et al.
propose simulated annealing (SA) [39], fuzzy logic [40], and a modified
great deluge algorithm [38] to optimize the complex system reliability.
Kulturel-Konak et al. [24] use a Tabu search (TS) algorithm embedded
with an adaptive version of the penalty function in [7] to solve RAPs.
Three types of benchmark problems which consider the objectives of sys-
tem cost minimization and system reliability maximization respectively
were used to evaluate the algorithm performance. Liang and Wu [27] em-
ploy a variable neighborhood descent (VND) algorithm for the RAP. Four
neighborhood search methods are defined to explore both the feasible and
infeasible solution space.

Ant Colony Optimization (ACO) is one of the adaptive meta-heuristic
optimization methods inspired by nature which include simulated anneal-
ing (SA), particle swarm optimization (PSO), GA and TS. ACO is distinct
from other meta-heuristic methods in that it constructs a new solution set
(colony) in each generation (iteration), while others focus on improving the
set of solutions or a single solution from previous iterations. ACO was in-
spired by the behavior of physical ants. Ethologists have studied how
blind animals, such as ants, could establish shortest paths from their nest to
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food sources and found that the medium used to communicate information
among individual ants regarding paths is a chemical substance called
pheromone. A moving ant lays some pheromone on the ground, thus
marking the path. The pheromone, while dissipating over time, is rein-
forced if other ants use the same trail. Therefore, superior trails increase
their pheromone level over time while inferior ones reduce to nil. Inspired
by the behavior of ants, Marco Dorigo introduced the ant colony optimiza-
tion approach in his Ph.D. thesis in 1992 [13] and expanded it in his fur-
ther work including [14, 15, 18, 19]. The primary characteristics of ant
colony optimization are:

1. a method to construct solutions that balances pheromone trails (charac-
teristics of past solutions) with a problem-specific heuristic (normally, a
simple greedy rule),

2. a method to both reinforce and dissipate pheromone,

3. a method capable of including local (neighborhood) search to improve
solutions.

ACO methods have been successfully applied to common combinatorial
optimization problems including traveling salesman [16, 17], quadratic as-
signment [32, 44], vehicle routing [4, 5, 21], telecommunication networks
[12], graph coloring [10], constraint satisfaction [38], Hamiltonian graphs
[47] and scheduling [1, 9, 11]. A comprehensive survey of ACO algo-
rithms and applications can be found in [19].

The application of ACO algorithms to reliability system problems was
first proposed by Liang and Smith [28, 29], and then enhanced by the same
authors in [30]. Liang and Smith employ ACO variations to solve a sys-
tem reliability maximization RAP. Section III uses the ACO algorithm in
[30] as a paradigm to demonstrate the application of ACO to RAP.

Thus far, the applications of ACO to reliability system are still very lim-
ited. Shelokar et al. [43] propose ant algorithms to solve three types of
system reliability models: complex (neither series nor parallel), N-stage
mixed series-parallel, and a complex bridge network system. In order to
solve problems with different number of objectives and different types of
decision variables, the authors develop three ant algorithms for single ob-
jective combinatorial problem, single objective continuous problem, and
bi-objective continuous problem, respectively. The ant algorithm of single
objective combinatorial version use the pheromone information only to
construct the solutions, and no online pheromone updating rule is applied.
Two local search methods, swap and random exchange, are performed to
the best ant. For continuous problems, the authors divided the colony into
two groups — global ants and local ants. The global ant concept can be
considered as a pure GA mechanism since these ants apply crossover and
mutation and no pheromone is deposited. Local ants are improved by a
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stochastic hill-climbing technique, and an improving ant can deposit the
improvement magnitude of the objective on the trails. Lastly, a clustering
technique and Pareto concept are combined with the continuous version of
ant algorithms to solve bi-objective problems. The authors compared their
algorithms with methods in the literature such as SA, a generalized La-
grange function approach, and a random search method. The results on
four sets of test problems show the superiority of ACO algorithms.

Ouiddir et al. [36] develop an ACO algorithm for multi-state electrical
power system problems. In this system redesign problem, the objective is
to minimize the investment over the study period while satisfying avail-
ability or performance criteria. The proposed ant algorithm is based on the
Ant Colony System (ACS) of [17] and [30]. A universal moment generat-
ing function is used to calculate the availability of the repairable multi-
state system. The algorithm is tested on a small problem with five subsys-
tems, each with four to six component options. Samrout et al. [41] apply
ACO to determine the component replacement conditions in series-parallel
systems minimizing the preventive maintenance cost. Three algorithms
are proposed — two based on Ant System (AS) [18] and one based on ACS
[17]. Different transition rules and pheromone updating rules are em-
ployed in each algorithm. Local search is not used. Given different mis-
sion times and availability constraints, the performance of the ACO algo-
rithms is compared with a GA from the literature. In this paper, results are
mixed: one of the AS based methods and the ACS based method outper-
form the GA while the other AS algorithm is dominated by the GA. Nahas
and Nourelfath [34] use an AS algorithm to optimize the reliability of a se-
ries system with multiple choices and budget constraints. Online phero-
mone updating and local search are not used. The authors apply a penalty
function to determine the magnitude of pheromone deposition. Four ex-
amples with up to 25 component options are tested to verify the perform-
ance of the proposed algorithm. The computational results show that the
AS algorithm is effective with respect to solution quality and
computational expense.

The remaining chapter is organized as follows. Section II offers the no-
tation list and defines the system reliability maximization RAP. A detailed
introduction of an ant colony paradigm on solving RAP is provided in Sec-
tion III using the work of Liang and Smith as a basis. Computational re-
sults on a set of benchmark problems are discussed in Section IV. Finally,
concluding remarks are summarized in Section V.
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1.2 Problem Definition

1.2.1 Notation

Redundancy Allocation Problem (RAP)

k

n
k-out-of-n: G

minimum number of components required to function a
pure parallel system

total number of components used in a pure parallel system
a system that functions when at least & of its » components
function

overall reliability of the series-parallel system

cost constraint

weight constraint

number of subsystems

number of available component choices for subsystem i
reliability of component j available for subsystem i
cost of component ;j available for subsystem

weight of component j available for subsystem i

quantity of component j used in subsystem i

Yil>Via;)
a;

=> Yij» total number of components used in subsystem i
J=1

maximum number of components that can be in parallel
(user assigned)

minimum number of components in parallel required for
subsystem i to function

reliability of subsystem i, given £;

total cost of subsystem i

total weight of subsystem i

unpenalized system reliability of solution u
penalized system reliability of solution u

penalized system reliability of the rank m” solution

total system cost of solution u
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w

u

AC

total system weight of solution u

set of available component choices

Ant Colony Optimization (ACO)

index for subsystem, i =1,...,s
index for components in a subsystem
pheromone trail intensity of combination (i, j )

pheromone trail intensity of combination (i, j ) before up-
date
pheromone trail intensity of combination (i, j ) after up-

date
=1/a;, initial pheromone trail intensity of subsystem i

transition probability of combination (i, j )

problem-specific heuristic of combination (7, j )

relative importance of the pheromone trail intensity
relative importance of the problem-specific heuristic

index for component choices from set AC

€[0,1], trail persistence

€[0,1], a uniformly generated random number

€[0,1], a parameter which determines the relative impor-
tance of exploitation versus exploration

number of best solutions chosen for offline pheromone
update

index (rank, best to worst) for solutions in a given iteration
amplification parameter in the penalty function

1.2.2 Redundancy Allocation Problem

The RAP can be formulated to maximize system reliability given re-
strictions on system cost of C and system weight of /. It is assumed that
system weight and system cost are linear combinations of component
weight and cost, although this is a restriction that can be relaxed using heu-

ristics.

max R=TIR(y, k) ()

Subject to the constraints
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:zlci(y,») <c, )

:ZIW,»(yi) <, 3)

If there is a known maximum number of components allowed in paral-
lel, the following constraint is added:

ki <Dy, S Vi=12,.s 4)
j=1

Typical assumptions are:

e The states of components and the system are either operating or failed.

e Failed components do not damage the system and are not repaired.

e The failure rates of components when not in use are the same as when in
use (i.e., active redundancy is assumed).

e Component attributes (reliability, weight and cost) are known and de-
terministic.

e The supply of any component is unconstrained.

1.3 Ant Colony Optimization Approach

This section is taken from the authors’ earlier work in using the ant col-
ony approach for reliable systems optimization [28, 29, 30]. The generic
components of ant colony are each defined and the overall flow of the
method is defined. These should be applicable, with minor changes, to
many problems in reliable systems combinatorial design.

1.3.1 Solution Encoding

As with other meta-heuristics, it is important to devise a solution encod-
ing that provides (ideally) a one to one relationship with the solutions to be
considered during search. For combinatorial problems this generally takes
the form of a binary or k-nery string although occasionally other represen-
tations such as real numbers can be used. For the RAP, each ant represents

a design of an entire system, a collection of 7, components in parallel
(k; <n,<n_, ) for s different subsystems. The n, components are cho-

sen from a, available types of components. The a, types are sorted in de-

scending order of reliability; i.e., 1 represents the most reliable component
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type, etc. An index of a; +1 is assigned to a position where an additional
component was not used (that is, was left blank) with attributes of zero.
Each of the s subsystems is represented by n, . positions with each com-

ponent listed according to its reliability index, as in [7], therefore a com-
plete system design (that is, an ant) is an integer vector of length 7, X s.

1.3.2 Solution Construction

Also, as with other meta-heuristics, an initial solution set must be gener-
ated. For global optimizers the solution quality in this set is not usually
important and that is true for the ant approach as well. In the ACO-RAP

algorithm, ants use problem-specific heuristic information, denoted by 7,
along with pheromone trail intensity, denoted by 7., to construct a solu-

tion. n, components (k; +1<n; <ny,« —4) are selected for each sub-

system using the probabilities calculated by equations 5 and 6, below.
This range of components encourages the construction of a solution that is
likely to be feasible, that is, be reliable enough (satisfying the &; + 1 lower
bound) but not violate the weight and cost constraints (satisfying the 7, —
4 upper bound). Solutions which contain more or less components per
subsystem than these bounds are examined during the local search phase of
the algorithm (described in Section III D).

Tij
Cij + Wij

where 7,

The ACO problem specific heuristic chosen is 77, =

¢;, and w; represent the associated reliability, cost and weight of compo-

nent j for subsystem i. This favors components with higher reliability and
smaller cost and weight. Adhering to the ACO meta-heuristic concept, this
is a simple and obvious rule. Uniform pheromone trail intensities for the
initial iteration (colony of ants) are set over the component choices, that is,

7,0=1/a;. The pheromone trail intensities are subsequently changed as de-

scribed in Section III E.
A solution is constructed by selecting component j for subsystem i ac-
cording to:

arg max[(r,)*(7,)"]  q<gq,
j= (6]
J q9>9,
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and J is chosen according to the transition probability mass function
given by

(@) ()P
a;
El(fiz)“(mz)ﬁ edc
Bj = (6)
0 Otherwise

where o and £ control the relative weight of the pheromone and the
local heuristic, respectively, AC is the set of available component choices
for subsystem i, g is a uniform random number, and g, determines the
relative importance of the exploitation of superior solutions versus the di-
versification of search spaces. When g < g, exploitation of known good
solutions occurs. The component selected is the best for that particular
subsystem, that is, has the highest product of pheromone intensity and ratio
of reliability to cost and weight. When g > ¢, the search favors more ex-

ploration as all components are considered for selection with some prob-
ability.

1.3.3 Objective Function

Fitness (the common term for the analogy to objective function value
for nature inspired heuristics) plays an important role in the ant colony ap-
proach as it determines the construction probabilities for the subsequent

generation. After solution u is constructed, the unpenalized reliability R,
is calculated using equation (1). For solutions with cost that exceeds C
and / or weight that exceeds 7, the penalized reliability R,, is calculated:

/4 4
Rup = Ru : (%j ’ (CEJ (7)

where the exponent y is an amplification parameter and /¥, and C,

are the system weight and cost of solution u, respectively. This penalty
function encourages the ACO-RAP algorithm to explore the feasible re-
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gion and infeasible region that is near the border of the feasible area, and
discourages, but allows, search further into the infeasible region.

1.3.4 Improving Constructed Solutions Through Local Search

After an ant colony is generated, each ant is improved using local
search. Local search is an optional, but usually beneficial, aspect of the
ant colony approach that allows a systematic enhancement of the con-
structed ants. For the RAP, starting with the first subsystem, a chosen
component type is deleted and a different component type is added. All
possibilities are enumerated. For example, if a subsystem has one of com-
ponent 1, two of component 2 and one of component 3, then one alterna-
tive is to delete a component 1 and to add a component 2. Another possi-
bility is to delete a component 3 and to add a component 1. Whenever an
improvement of the objective function is achieved, the new solution re-
places the old one and the process continues until all subsystems have been
searched. This local search does not require recalculating the system reli-
ability each time, only the reliability of the subsystem under consideration
needs to be recalculated.

1.3.5 Pheromone Trail Intensity Update

The pheromone trail is a unique concept to the ant approach. Naturally,
this idea is taken directly from studying physical ants and their deposits of
the pheromone chemical. For the RAP, the pheromone trail update con-
sists of two phases — online (ant-by-ant) updating and offline (colony) up-
dating. Online updating is done after each solution is constructed and its
purpose is to lessen the pheromone intensity of the components of the so-
lution just constructed to encourage exploration of other component
choices in the later solutions to be constructed. Online updating is by

o = perf? (1= p) i ®)
where p €[0,1] controls the pheromone persistence; i.e., 1—p repre-

sents the proportion of the pheromone evaporated. After all solutions in a
colony have been constructed and subject to local search, pheromone trails
are updated offline. Offline updating is to reflect the discoveries of this it-
eration. The offline intensity update is:
E
)
rl.’}ewzp-rg +(1=p)- 2 (E=m+1)-Ry, 9)

m=1
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where m = 1 is the best feasible solution yet found (which may or may
not be in the current colony) and the remaining E-1 solutions are the best
ones in the current colony. In other words, only the best £ ants are al-
lowed to contribute pheromone to the trail intensity and the magnitudes of
contributions are weighted by their ranks in the colony.

1.3.6 Overall Ant Colony Algorithm

Generally, ant colony algorithms are similar to other meta-heuristics in
that they iterate over generations (termed colonies for ACO) until some
termination criteria are met. If an algorithm is elitist (as most genetic algo-
rithms and ant colonies are) the best solution found is also contained in the
final iteration (colony). The termination criteria are usually a combination
of total solutions considered (or total computational time) and lack of best
solution improvement over some number iterations. These are experimen-
tally determined. Of course, there is no downside to running the ACO
overly long except waste of computer time.

The flow of the ACO-RAP is as follows:

Set all parameter values and initialize the pheromone trail intensities
Loop
Sub-Loop
Construct an ant using the pheromone trail intensity and the
problem-specific heuristic (egs. 5, 6)
Apply the online pheromone intensity update rule (eq. 8)
Continue until all ants in the colony have been generated
Apply local search to each ant in the colony
Evaluate all ants in the colony (eqs. 1, 7), rank them and record the
best feasible one
Apply the offline pheromone intensity update rule (eq. 9)
Continue until a stopping criterion is reached

1.4 Computational Experience

To show the effectiveness of the ant colony approach for reliable sys-
tems design results from [30] are given here. The ACO is coded in Bor-
land C++ and run using an Intel Pentium III 800 MHz PC with 256 MB
RAM. All computations use real float point precision without rounding or
truncating values. The system reliability of the final solution is rounded to
four digits behind the decimal point in order to compare with results in the
literature.
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The parameters of the ACO algorithm are set to the following values:
a=1, =05,499=09, p=0.9 and E = 5. This gives relatively more

weight to the pheromone trail intensity than the problem-specific heuristic
and greater emphasis on exploitation rather than exploration. The ACO is
not very sensitive these values and tested well for quite a range of them.
For the penalty function, y = 0.1 except when the previous iteration has

90% or more infeasible solutions, then y = 0.3 . This increases the pen-

alty temporarily to move the search back into the feasible region when all
or nearly all solutions in the current colony are infeasible. This bi-level
penalty improved performance on the most constrained instances of the

test problems. Because of varying magnitudes of R, C and W, all 77, and

7, are normalized between (0,1) before solution construction. 100 ants

are used in each colony. The stopping criterion is when the number of
colonies reaches 1000 or the best feasible solution has not changed for 500
consecutive colonies. This results in a maximum of 100,000 ants.

The 33 variations of the Fyffe et al. problem [20] as devised by Naka-
gawa and Miyazaki [35] were used to test the performance of ACO. In
this problem set C =130 and W is decreased incrementally from 191 to
159. In [20] and [35], the optimization approaches required that identical
components be placed in redundancy, however for the ACO approach, as
in Coit and Smith [7], different component types are allowed to reside in

parallel (assuming that a value of n , = 8 for all subsystems). This
makes the search space size larger than 7.6x1033. Since the heuristic
benchmark for the RAP with component mixing is the GA of [7], it is cho-
sen for comparison. Ten runs of each algorithm (GA and ACO) were
made using different random number seeds for each problem instance.

The results are summarized in Table 1 where the comparisons between
the GA and ACO results over 10 runs are divided into three categories:
maximum, mean and minimum system reliability (denoted by Max R,
Mean R and Min R, respectively). The shaded box shows the maximum
reliability solution to an instance while considering all GA and ACO re-
sults. The ACO solutions are equivalent to or superior to the GA over all
categories and all problem instances. When the problem instances are less
constrained (the first 18), the ACO performs much better than the GA.
When the problems become more constrained (the last 15), ACO is equal
to GA for 12 instances and better than GA for three instances in terms of
the Max R measure (best over ten runs). However, for Min R (worst over
10 runs) and Mean R (of 10 runs), ACO dominates GA.
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Table 1. Comparison of the GA [7] and the ACO over 10 random number seeds
each for the test problems from [35]. These results are from [30].

C&S [7] GA - 10 runs ACO-RAP - 10 runs
No C W |MaxR Mean R Min R|Max R Mean R Min R
1 130 191| 09867 0.9862 0.9854| 0.9868 0.9862 0.9860
130 190] 0.9857 0.9855 0.9852| 0.9859 0.9858 0.9857
130 189] 0.9856 0.9850 0.9838| 0.9858 0.9853 0.9852
130 188] 0.9850 0.9848 0.9842 | 0.9853 0.9849 0.9848
130 187| 0.9844 0.9841 0.9835| 0.9847 0.9841 0.9837
130 186] 0.9836 0.9833 0.9827| 0.9838 0.9836 0.9835
130 185] 0.9831 0.9826 0.9822| 0.9835 0.9830 0.9828
130 184] 0.9823 0.9819 0.9812] 0.9830 0.9824 0.9820
9 130 183] 0.9819 09814 0.9812] 0.9822 0.9818 0.9817
10 130 182 0.9811 0.9806 0.9803 | 0.9815 0.9812 0.9806
11 130 181} 0.9802 0.9801 0.9800| 0.9807 0.9806 0.9804
12 130 180| 0.9797 0.9793 0.9782] 0.9803 0.9798 0.9796
13 130 179| 0.9791 09786 09780 0.9795 0.9795 0.9795
14 130 178 0.9783 0.9780 0.9764| 09784 0.9784 0.9783
15 130 177| 0.9772 09771 09770 0.9776 0.9776 0.9776
16 130 176] 0.9764 0.9760 0.9751| 0.9765 0.9765 0.9765
17 130 175] 0.9753 0.9753 0.9753] 0.9757 0.9754 0.9753
18 130 174 0.9744 0.9732 0.9716| 0.9749 0.9747 0.9741
19 130 173] 0.9738 0.9732 009719] 0.9738 0.9735 0.9731
20 130 172f 0.9727 0.9725 0.9712| 09730 0.9726 09714
21 130 171f 09719 0.9712 0.9701| 09719 09717 0.9710
22 130 170f 0.9708 0.9705 0.9695( 0.9708 0.9708 0.9708
23 130 169| 0.9692 0.9689 0.9684 | 0.9693 0.9693 0.9693
24 130 168| 0.9681 0.9674 0.9662 | 0.9681 0.9681 0.9681
25 130 167| 0.9663 0.9661 0.9657| 0.9663 0.9663 0.9663
26 130 166] 0.9650 0.9647 0.9636] 0.9650 0.9650 0.9650
27 130 165| 0.9637 0.9632 0.9627 | 0.9637 0.9637 0.9637
28 130 164] 0.9624 0.9620 0.9609] 0.9624 0.9624 0.9624
29 130 163| 0.9606 0.9602 0.9592( 0.9606 0.9606 0.9606
30 130 162] 0.9591 0.9587 0.9579] 0.9592 0.9592 0.9592
31 130 161} 0.9580 0.9572 0.9561] 0.9580 0.9580 0.9580
32 130 160] 0.9557 0.9556 0.9554] 0.9557 0.9557 0.9557
33 130 159 0.9546 0.9538 0.9531] 0.9546 0.9546 0.9546

R AN A WN

Thus, the ACO tends to find better solutions than the GA, is signifi-
cantly less sensitive to random number seed, and for the 12 most con-
strained instances, finds the best solution each and every run. While these
differences in system reliability are not large, it is beneficial to use a
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search method that performs well over different problem sizes and parame-
ters. Moreover, any system reliability improvement while adhering to the
design constraints is of some value, even if the reliability improvement re-
alized is relatively small.

The best design and its system reliability, cost and weight for each of
the 33 instances are shown in Table 2. For instances 6 and 11, two designs
with different system costs but with the same reliability and weight are
found. All but instance 33 involve mixing of components within a subsys-
tem which is an indication that superior designs can be identified by not
restricting the search space to a single component type per subsystem.

It is difficult to make a precise computational comparison. CPU sec-
onds vary according to hardware, software and coding. Both the ACO and
the GA generate multiple solutions during each iteration, therefore the
computational effort changes in direct proportion to number of solutions
considered. The number of solutions generated in [7] (a population size of
40 with 1200 iterations) is about half of the ACO (a colony size of 100
with up to 1000 iterations). However, given the improved performance per
seed of the ACO, a direct comparison per run is not meaningful. If the av-
erage solution of the ACO over ten seeds is compared to the best perform-
ance of GA over ten seeds, in 13 instances ACO is better, in 9 instances
GA is better and in the remaining instances (11) they are equal, as shown
in Figure 2. Since this is a comparison of average performance (ACO)
versus best performance (GA), the additional computational effort of the
ACO is more than compensated for. In summary, an average run of ACO
is likely to be as good or better than the best of ten runs of GA. The dif-
ference in variability over all 33 test problems between ACO and the GA
is clearly shown in Figure 3.

Given the well-structured neighborhood of the RAP, a meta-heuristic
that exploits it is likely to be more effective and more efficient than one
that does not. While the GA certainly performs well relative to previous
approaches, the largely random mechanisms of crossover and mutation re-
sult in greater run to run variability than the ACO. Since the ACO shares
the GA’s attributes of flexibility, robustness and implementation ease and
improves on its random behavior, it seems a very promising general
method for other NP-hard reliability design problems such as those found
in networks and complex structures.
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Table 2. Configuration, reliability, cost and weight of the best solution to each
problem. These results are from [30].

No.| W| R | Cost| Weight Solution
1| 191 0.9868] 130 191(333,11,111,2222,333,22,333,3333,23,122,333,4444,12,12
2| 190[ 0.9859 129 190]333,11,111,2222,333,22,333,3333,22,112,333,4444,11,22
3| 189 0.9858( 130 189(333,11,111,2222,333,22,333,3333,22,122,11,4444,11,12
4 188 0.9853 130 188)333,11,111,2222,333,22,333,3333,23,112,13,4444,12,12
5| 187| 0.9847[ 130 187|333,11,111,2222,333,22,333,3333,23,122,13,4444,11,12
6| 186] 0.9838] 129 186]333,11,111,2222,333,22,333,3333,22,122,11,4444,11,22
130 186|333,11,111,2222,333,24,333,3333,33,122,13,4444,12,12
7| 185] 0.9835] 130 185)333,11,111,2222,333,22,333,3333,13,122,13,4444,11,22
8| 184] 0.9830] 130 184(333,11,111,222,333,22,333,3333,33,112,11,4444,11,12
9| 183 0.9822 128 183(333,11,111,222,333,22,333,3333,33,112,13,4444,11,12

10] 182 0.9815] 127 182{333,11,111,222,333,22,333,3333,33,122,13,4444,11,12
11| 181 0.9807| 125 181]333,11,111,222,333,22,333,3333,13,122,13,4444,11,22
126 181{333,11,111,222,333,22,333,3333,23,122,11,4444,11,22
12] 180] 0.9803] 128 180{333,11,111,222,333,22,333,3333,33,122,11,4444,11,22
13| 179] 0.9795] 126 179(333,11,111,222,333,22,333,3333,33,122,13,4444,11,22
14| 178] 0.9784{ 125 178(333,11,111,222,333,22,333,3333,33,222,13,4444,11,22
15| 177] 0.9776] 126 177)333,11,111,222,333,22,333,133,33,122,13,4444,11,22
16| 176] 0.9765[ 125 176(333,11,111,222,333,22,333,133,33,222,13,4444,11,22
17| 175 0.9757] 125 175]333,11,111,222,333,22,13,3333,33,122,11,4444,11,22
18| 174 0.9749] 123 174{333,11,111,222,333,22,13,3333,33,122,13,4444,11,22
19] 173] 0.9738) 122 173(333,11,111,222,333,22,13,3333,33,222,13,4444,11,22
20| 172 0.9730] 123 172{333,11,111,222,333,22,13,133,33,122,13,4444,11,22
21) 171{ 09719 122 171{333,11,111,222,333,22,13,133,33,222,13,4444,11,22
170] 0.9708] 120 170]333,11,111,222,333,22,13,133,33,222,33,4444,11,22
169 0.9693] 121 169(333,11,111,222,333,22,33,133,33,222,13,4444,11,22
168| 0.9681] 119 168]333,11,111,222,333,22,33,133,33,222,33,4444,11,22
167| 0.9663] 118 167(333,11,111,222,33,22,13,133,33,222,33,4444,11,22

26[ 166[ 0.9650] 116 166{333,11,11,222,333,22,13,133,33,222,33,4444,11,22

27] 165 0.9637) 117 165(333,11,111,222,33,22,33,133,33,222,33,4444,11,22

28[ 164{ 0.9624| 115 164{333,11,11,222,333,22,33,133,33,222,33,4444,11,22

29| 163] 0.9606 114 163]333,11,11,222,33,22,13,133,33,222,33,4444,11,22

30 162| 0.9592) 115 162(333,11,11,222,33,22,33,133,33,222,13,4444,11,22

31 161f 0.9580[ 113 161|333,11,11,222,33,22,33,133,33,222,33,4444,11,22

32| 160] 0.9557 112 160(333,11,11,222,33,22,33,333,33,222,13,4444,11,22

33| 159] 0.9546] 110, 159{333,11,11,222,33,22,33,333,33,222,33,4444,11,22

—_
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Fig. 2. Comparison of mean ACO with best GA performance over 10 seeds.
These results are from [30].

1.5 Conclusions

This chapter cites the latest developments of ACO algorithms to reliabil-
ity system problems. The main part of the chapter gives details of a gen-
eral ant colony meta-heuristic to solve the redundancy allocation problem
(RAP) which was devised over the past several years by the authors and
published in [28, 29, 30]. The RAP is a well known NP-hard problem that
has been the subject of much prior work, generally in a restricted form
where each subsystem must consist of identical components in parallel to
make computations tractable. Heuristic methods can overcome this limita-
tion and offer a practical way to solve large instances of a relaxed RAP
where different components can be placed in parallel. The ant colony al-
gorithm for the RAP is shown to perform well with little variability over
problem instance or random number seed. It is competitive with the best-
known heuristics for redundancy allocation. Undoubtedly there will be
much more work forthcoming in the literature that uses the ant colony
paradigm to solve the many difficult combinatorial problems in the field of
reliable system design.
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