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Introduction

Christophe Chipot, M. Scott Shell and Andrew Pohorille

1.1 Historical Backdrop

To understand fully the vast majority of chemical processes, it is often necessary
to examine their underlying free energy behavior. This is the case, for instance,
in protein—ligand binding and drug partitioning across the cell membrane. These
processes, which are of paramount importance in the field of computer-aided, ratio-
nal drug design, cannot be predicted reliably without knowledge of the associated
free energy changes.

The reliable determination of free energy changes using numerical simula-
tions based on the fundamental principles of statistical mechanics is now within
reach. Developments on the methodological front in conjunction with the continuous
increase in computational power have contributed to bringing free energy calcula-
tions to the level of robust and well-characterized modeling tools, while widening
their field of applications.

1.1.1 The Pioneers of Free Energy Calculations

The theory underlying free energy calculations and several different approximations
to its rigorous formulation were developed a long time ago. Yet, due to compu-
tational limitations at the time when this methodology was introduced, numerical
applications of this theory remained very limited. In many respects, John Kirkwood
laid the foundations for what would become standard methods for estimating free
energy differences — perturbation theory and thermodynamic integration (TI) [1, 2].
Reconciling statistical mechanics and the concept of degree of evolution of a chem-
ical reaction, put forth by Théophile De Donder [3] in his work on chemical affinity,
Kirkwood introduced in his derivation of integral equations for liquid-state theory the
notion of the order parameter, or generalized extent parameter, and used it to infer
the free energy difference between two well-defined thermodynamic states [1, 2].
Almost 20 years later, Robert Zwanzig [4] followed a perturbative route to free
energy calculations, showing how physical properties of a hard-core molecule change
upon adding a rudimentary form of an attractive potential. The high-temperature
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expansions that he established for simple, nonpolar gases form the theoretical basis
of the popular free energy perturbation (FEP) method, widely employed for deter-
mining free energy differences. However, the significance of FEP was appreciated
much earlier. In fact, Lev Landau [5] included a simple derivation of the thermody-
namic perturbation formula in the first edition of his widely read textbook on statis-
tical mechanics as early as 1938.

Nearly 10 years after Zwanzig published his perturbation method, Benjamin
Widom [6] formulated the potential distribution theorem (PDT). He further sug-
gested an elegant application of PDT to estimate the excess chemical potential —
i.e., the chemical potential of a system in excess of that of an ideal, noninteracting
system at the same density — on the basis of the random insertion of a test particle.
In essence, the particle insertion method proposed by Widom may be viewed as a
special case of the perturbative theory, in which the addition of a single particle is
handled as a one-step perturbation of the liquid.

1.1.2 Escaping from Boltzmann Sampling

Central to the accurate determination of free energy differences between two
systems — viz. target and reference — is to explore the configurational space of
the reference system such that relevant, low-energy states of the target system
are adequately sampled. It has long been recognized, however, that direct appli-
cations of conventional computer simulations methods, such as molecular dynam-
ics (MD) or Monte Carlo (MC), are not successful in this respect [7]. In the
late 1960s and in the 1970s a number of remarkable strategies were developed
to circumvent this difficulty by generating effective non-Boltzmann sampling. The
basic ideas behind these strategies have been broadly exploited in most subsequent
theoretical developments.

One of the most influential ideas was the energy distribution formalism, in which
free energy difference was represented in terms of a one-dimensional integral over
the distribution of potential energy differences between the target and reference states
weighted by the unbiased or biased Boltzmann factor. This idea was proposed and
applied to calculate thermodynamic properties of Lennard-Jones fluids by McDonald
and Konrad Singer [8, 9] as early as 1967. In subsequent developments it formed the
conceptual basis for some of the best techniques for estimating free energies.

Returning to the concept of a generalized extent parameter, John Valleau and
Damon Card [10] devised so-called multistage sampling, which relies on the con-
struction of a chain of configurational energies that bridge the reference and the
target states whenever their low-energy regions overlap poorly. The basic idea of this
stratification method is to split the total free energy difference into a sum of free
energy differences between intermediate states that overlap considerably better than
the initial and final states.

Finding the best estimate of the free energy difference between two canonical
ensembles on the same configurational space, for which finite samples are available,
is a nontrivial problem. Charles Bennett [11] addressed this problem by develop-
ing the acceptance ratio estimator, which corresponds to the minimum statistical
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variance. He further showed that the efficiency of this estimator is proportional to
the extent to which the two ensembles overlap. A remarkable feature of Bennett’s
method is that, once data are collected for the two ensembles, good estimates of the
free energy difference can be obtained even if the overlap between the ensembles
is poor.

Another approach to improving the efficiency of free energy calculations is to
sample the reference ensemble sufficiently broadly that adequate statistics about
low-energy configurations of the target ensemble can be acquired. In 1977, Glenn
Torrie and John Valleau [12] devised such an approach by introducing non-Boltzmann
weighting function that can subsequently be removed to yield unbiased probability
distribution. This method became widely known as umbrella sampling (US). It is
interesting to note that an embryonic form of the US scheme had been laid 10 years
earlier in the pioneering computational study of McDonald and Konrad Singer [8].

The seminal work on stratification and sampling opened new vistas for the accu-
rate determination of free energy profiles. Both approaches are still widely used to
tackle a variety of problems of physical, chemical, and biological relevance. Perhaps
because they are most efficient when used in combination the distinction between
them has often been lost. At present, the name ‘umbrella sampling’ is commonly
used to describe simulations in which an order parameter connecting the initial and
final ensembles is divided into mutually overlapping regions, or ‘windows,” which
are sampled using non-Boltzmann weights.

1.1.3 Early Successes and Failures of Free Energy Calculations

As we have already pointed out, the theoretical basis of free energy calculations were
laid a long time ago [1, 4, 5], but, quite understandably, had to wait for sufficient com-
putational capabilities to be applied to molecular systems of interest to the chemist,
the physicist, and the biologist. In the meantime, these calculations were the domain
of analytical theories. The most useful in practice were perturbation theories of dense
liquids. In the Barker—Henderson theory [13], the reference state was chosen to be
a hard-sphere fluid. The subsequent Weeks—Chandler—Andersen theory [14] differed
from the Barker—Henderson approach by dividing the intermolecular potential such
that its unperturbed and perturbed parts were associated with repulsive and attractive
forces, respectively. This division yields slower variation of the perturbation term
with intermolecular separation and, consequently, faster convergence of the pertur-
bation series than the division employed by Barker and Henderson.

Analytical perturbation theories led to a host of important, nontrivial predictions,
which were subsequently probed by and confirmed in numerical simulations. The
elegant theory devised by Lawrence Pratt and David Chandler [15] to explain the
hydrophobic effect constitutes a noteworthy example of such predictions.

As more computational power became accessible and confidence in the poten-
tial energy functions developed for statistical simulations increased, applications of
free energy calculations to systems of chemical, physical, and biological interest
began to flourish. The excellent agreement between theory and experiment reported
in pioneering application studies encouraged attempts to employ similar methods to
increasingly complex molecular assemblies.
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Most of the earliest free energy calculations were based on MC simulations.
Initial applications to Lennard-Jones fluids [8] were extended to study atomic clus-
ters [16] and hydration of ions by a small number of water molecules [17]. Atomic
clusters were also studied in one of the first applications of MD to free energy cal-
culations [18]. All these calculations were based on the thermodynamic integration
method originally proposed by Kirkwood [1]. The thermodynamic integration app-
roach was also used by Mihaly Mezei et al. [19, 20] to calculate the free energy
of liquid water. Using a different approach, based on multistage [10] and US [12]
numerical schemes, Gren Patey and John Valleau [21] further extended the range of
free energy calculations by deriving a free energy profile characterizing the interac-
tion of an ion pair dissolved in a dipolar fluid.

In 1979, two studies appeared that addressed the nature of the hydrophobic
effect through free energy calculations. Susumu Okazaki et al. [22] used MC sim-
ulations to estimate the free energy of hydrophobic hydration. They found that,
consistent with the conventional picture of the hydrophobic effect, hydrophobic
hydration is accompanied by a decrease in internal energy and a large entropy loss.
In the second study, Bruce Berne and coworkers [23] adopted a multistage strat-
egy to investigate a model system formed by two Lennard-Jones spheres in a bath
of 214 water molecules. They successfully recovered the features of hydrophobic
interactions predicted by Pratt and Chandler [15]. Subsequent results based on more-
accurate potential energy functions and markedly extended sampling further fully
confirmed these predictions — see for instance [24]. Two years later, Postma et al. [25]
further contributed to our understanding of the hydrophobic effect by investigating
the solvation of noble gases and estimated the reversible work required to form a
cavity in water.

In the early 1980s, free energy calculations were extended in several new directions
in ways that were not possible only a few years earlier. In 1980, Chyuan-Yin Lee and
Larry Scott [26] estimated the interfacial free energy of water from MC simulations.
In this work, they also derived and applied for the first time a useful technique that
is currently often called simple overlap sampling (SOS). Two years later, Quirke
and Jacucci [27] calculated the free energy of liquid nitrogen from MC simulations,
Shing and Gubbins [28] used US combined with the particle insertion method to
determine chemical potentials, focusing sampling on cavity volumes sufficiently
large to accommodate a solute molecule, and Arieh Warshel [29] calculated the
contribution of the solvation free energy to electron and proton transfer reactions,
using a rudimentary hard-sphere model of the donor and acceptor, and a dipolar
representation of water. The same year, Scott Northrup et al. [30] applied US
simulations to examine the free energy changes in a biologically relevant system.
Isomerization of a tyrosine residue in bovine pancreatic trypsine inhibitor (BPTI) was
studied by rotating the aromatic ring in sequentially overlapping windows. From the
resulting free energy profile, the authors inferred the rate constant for the ring-flipping
reaction.

In 1984, using a very rudimentary model, Tembe and McCammon [31] demon-
strated that the FEP machinery could be applied successfully to model ligand—
receptor assemblies. In 1985, Jorgensen and Ravimohan [32] followed the same
perturbative route to estimate the relativesolvation free energy of methanol and
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ethane. To reach their goal, they elaborated an elegant paradigm, in which a common
topology was shared by the reference and the target states of the transformation.
Employing a similar strategy, William Jorgensen and coworkers [33, 34] pioneered
the estimation of the pK , values of simple organic solute in aqueous environments.
These pioneering efforts, which initially met with only moderate enthusiasm, con-
stitute what might be considered today the turning point for free energy calculations
on chemically relevant systems, paving the way for extensions to far more complex
molecular assemblies.

In early studies, complete free energy profiles along a chosen order parameter
were obtained by combining US and stratification strategies—e.g. Chandrasekhar
et al. investigated the Sn2 reaction of Cl1~ + CH3Cl, both in the gas phase and in
aqueous solution [35], thus, laying the ground for the forthcoming hybrid quantum
mechanical/molecular mechanical (QM/MM) calculations. In 1987, Douglas Tobias
and Charles Brooks III showed that the same information could be extracted from
thermodynamic perturbation theory. They did so by constructing the free energy pro-
file for separating two tagged argon atoms in liquid argon [36].

The same year, Peter Kollman and coworkers published three papers that opened
new horizons for in silico modeling of site-directed mutagenesis. Employing the
FEP methodology, they estimated the free energy changes associated with point mu-
tations of the side chains of naturally occurring amino acids [37]. They used the same
approach for computing the relative binding free energies in protein—inhibitor com-
plexes of thermolysin [38] and substilisin [39]. The same year, they also explored
an alternative route to the costly FEP calculations, in which perturbation was carried
out using very minute increments of the general extent, or coupling parameter [40].
It is worth mentioning, however, that this so-called ‘slow-growth’ (SG) strategy had
to wait for 10 years and the work of Christopher Jarzynski [41] to find a rigorous
theoretical formulation. Yet, during that period, a number of ambitious problems
were tackled employing SG simulations, including a heroic effort to understand
structural modifications in deoxyribonucleic acid (DNA) [42].

Considering that the chemical transformations attempted hitherto involved only
one or two atoms, the series of articles from the group of Peter Kollman appeared to
represent a quantum leap forward. It was soon recognized, however, that these cal-
culations were evidently too short and probably not converged. They demonstrated,
nonetheless, that modeling biologically relevant systems was a realistic goal for the
computational chemist.

Also back in 1987, Fleischman and Brooks [43] devised an efficient approach
to the estimation of enthalpy and entropy differences. They concluded that the
errors associated with the calculated enthalpies and entropies were about one order of
magnitude larger than those of the corresponding free energies. Only recently did Lu
et al. [44] revisit this issue, proposing an attractive scheme to improve the accuracy
of enthalpy and entropy calculations. Wilfred van Gunsteren and coworkers [45]
further concluded that reasonably accurate estimates of entropy differences might be
obtained through the TI approach, in which several copies of the solute of interest are
desolvated. It is fair to acknowledge that, although several improvements to the orig-
inal approaches for extracting enthalpic and entropic contributions to free energies
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have recently been put forth, the conclusions drawn by Fleischman and Brooks re-
main qualitatively correct.

In contrast to FEP and US, TI was not widely applied in the late 1970s and early
1980s. Only in the late 1980s, did TI regain its well-deserved position as one of the
most useful techniques to obtain free energies from computer simulations. In 1988,
Tjerk Straatsma and Herman Berendsen [46] used this technique to study the free
energy of ionic hydration by performing the mutation of neon into sodium. Three
years later, Wang et al. [47] used TI to construct the free energy profile describing
interactions between two hydrophobic solutes — viz. a pair of neon atoms in a bath
of water. Today, TI remains one of the favorite methods for free energy calculations.

Several research groups paved the way for future progress through innovative
applications of free energy methods to physical and organic chemistry, as well as
structural biology. An exhaustive account of the plethora of articles published in the
early years of free energy calculations falls beyond the scope of this introduction.
The reader is referred to the review articles by William Jorgensen [48, 49], David
Beveridge and Frank DiCapua [50, 51] and Peter Kollman [52], for summaries of
these efforts.

1.1.4 Characterizing, Understanding, and Improving Free Energy
Calculations

After the initial enthusiasm ignited by pioneering studies, which often reported
excellent agreement between computed and experimentally determined free energy
differences, it was progressively realized that the some of the published, highly
promising results reflected good fortune rather than actual accuracy of computer
simulations. For example, in many instances, it was observed that the calculated free
energy differences showed a tendency to depart from the experimental target value
as more sampling was accumulated. It became widely appreciated that many free
energy calculations were plagued by an inherent slow convergence, sometimes to
such extent that, for all practical purposes, systems under study appeared nonergodic.
These observations clearly indicated that improved sampling and analysis techniques
were needed. Efforts were thus expended, with excellent results, to address these
issues. It was further discovered that several aspects of early calculations had not
been treated with sufficient care to theoretical details. In the subsequent years, the
underlying methodological problems received considerable attention and at present
most of them have been solved. Along different lines, much work was devoted to
large-scale free energy calculations, especially in the biological domain, in which
improved efficiency was achieved by relaxing theoretical rigor through a series of
well-motivated approximations. Below, we outline some of the main advances of the
last 15 years. A more complete account of these advances is given in the subsequent
chapters.

A large body of methodological work is devoted to clarifying and improving
the basic strategies for determining free energy — stratification, US, FEP, and TI
methods. A common class of problems involves calculating free energy along an
order parameter — e.g., the reaction coordinate, based on a combination of US and
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stratification. The efficiency of these methods relies on designing biases that improve
the uniformity of sampling. Intuitive guesses of such biases may turn out to be very
difficult, especially for qualitatively new problems. Improperly set biasing potentials
could result in highly nonuniform probability distributions and a paucity of data at
some values of the order parameter. To improve accuracy, additional simulations
with revised biases are required. This raises a question: what is the optimal scheme
for combining the data acquired at different ranges of the order parameter and using
different biases?

Recasting the Ferrenberg—Swendsen multiple histogram equations [53], Kumar
et al. [54] answered this question by devising the weighted histogram analysis
method (WHAM). WHAM rapidly superseded previously used ad hoc methods and
became the basic tool for constructing free energy profiles from distributions derived
through stratification.

Four years later, Christian Bartels and Martin Karplus [55] used the WHAM
equations as the core of their adaptive US approach, in which the efficiency of free
energy calculations was improved through refinement of the biasing potentials as
the simulation progressed. Efforts to develop adaptive US techniques had, how-
ever, started even before WHAM was developed. They were pioneered by Mihaly
Mezei [56], who used a self-consistent procedure to refine non-Boltzmann biases.

Observing that stratification strategies, which rely on breaking the path connect-
ing the reference and the target states into intermediate states, often led to singu-
larities and numerical instabilities at the end points of the transformation, Beutler
et al. [57] suggested that introducing a soft-core potential might alleviate end-point
catastrophes. This simple technical trick turned out to be a highly successful app-
roach to estimate solvation free energies in computationally challenging systems,
involving, for example, the creation or annihilation of chemical groups.

Another technical problem that plagued early estimations of free energy was
their strong dependence on system size whenever significant electrostatic interac-
tions were present [46]. Once long-range corrections using Ewald lattice summation
or the reaction field are included in molecular simulations, size effects in neutral
systems decrease markedly. The problem, however, persists in charged systems, for
example in determining the free energy of charging a neutral species in solution.
Hummer et al. [58] showed that system-size dependence could be largely eliminated
in these cases by careful treatment of the self-interaction term, which is associated
with interactions of charged particles with their periodic images and a uniform neu-
tralizing charge background. Surprisingly, they found that it was possible to calculate
accurately the hydration energy of the sodium ion using only 16 water molecules if
self-interactions were properly taken into account.

The determination of the character and location of phase transitions has been
an active area of research from the early days of computer simulation, all the way
back to the 1953 Metropolis et al. [59] MC paper. Within a two-phase coexistence
region, small systems simulated under periodic boundary conditions show regions of
apparent thermodynamic instability [60]; simulations in the presence of an explicit
interface eliminate this at some cost in system size and equilibration time. The deter-
mination of precise coexistence boundaries was usually done indirectly, through the



8 C. Chipot et al.

use of a method to determine the free energies of the coexisting phases, such as TI
or the particle insertion method [61, 62]. A notable advance emerged with the Gibbs
ensemble approach [63], in which two phases were simulated directly without an in-
terface by coupling separate simulation boxes via particle and volume fluctuations.
In the last 10 years, however, the preferred approach to fluid-phase coexistence has
become histogram reweighting methods, which offer greater control over simulation
errors and enable more precise determination of critical points than the Gibbs
ensemble [64]. For equilibria involving dense fluid or solid phases — for which at-
tempted particle insertions are infrequently accepted — the approach of tracing phase
coexistence lines by Gibbs—Duhem integration [65] remains a primary technique.

An aspect of free energy calculations that caused considerable, and somewhat
surprising difficulties is the treatment of holonomic constraints. In numerical sim-
ulations these are often used to remove high-frequency vibrations, and by doing so
allow the equations of motion to be integrated with larger time steps. In the early
years of free energy calculations, the effect of frozen internal degrees of freedom
on the generated ensemble was essentially ignored [66]. It was shown, however, that
hard constraints might alter the accessible volume of phase space, and, consequently,
might significantly influence the computed free energy differences. Stefan Boresch
and Martin Karplus [67] pointed out the importance of metric tensor corrections in
free energy calculations, and showed that, in a number of instances, these corrections
could be evaluated analytically. To a large extent, the foundations for the treatment
of constrained internal degrees of freedom may be found in the articles of Marshall
Fixman [68] and Nubuhiro Go and Harold Scheraga [69], published some 20 years
earlier.

Holonomic constraints also appear in the determination of free energy profiles
along a chosen order parameter, &, using TI. In this framework, the thermodynamic
force — i.e., the first derivative of the free energy with respect to the order parame-
ter — is calculated at fixed values of the parameter and subsequently integrated to
recover the free energy profile along &. Wilfred van Gunsteren [70] hypothesized
that the thermodynamic force was equal to the constraint force acting along &. It,
however, soon became apparent that this conjecture was incorrect whenever £ was
a nonlinear function of the Cartesian coordinates. A rigorous framework for han-
dling holonomic constraints in the simulation of rare events was proposed the very
same year by Carter et al. [71]. The complete treatment of such constraints in free
energy calculations that involved other rigid constraints was proposed nearly another
decade later by Wouter den Otter and Wim Briels [72], and further extended to the
multidimensional case [73].

Almost immediately, it was realized that keeping the system at fixed values of the
order parameter was not a prerequisite to calculating the thermodynamic force. Fol-
lowing a different route than den Otter and Briels, Eric Darve, and Andrew Pohorille
derived the formulas for this force in both constrained and unconstrained simula-
tions. They further showed how the latter could be used to combine TI and US into a
highly efficient scheme that yielded uniform sampling of the order parameter. They
called this approach the adaptive biasing force (ABF) method [74]. Gains in effi-
ciency of ABF, compared to the previous adaptive US schemes based on probability
distribution functions, are due to the fact that forces, in contrast to probabilities,
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are local properties and, therefore, they can be readily estimated without the need to
sample broad ranges of £. The efficiency of this approach in the treatment of complex
systems has been demonstrated by Jérome Hénin and Christophe Chipot [75, 76].

ABF is an example of a strategy in which nearly optimal sampling of a low-
dimensional configurational space is achieved even in the presence of high free
energy barriers. In recent years, other strategies aimed at the same goal have been
proposed. In 2002, Allessandro Laio and Michele Parrinello [77] introduced a meta-
dynamics approach for exploring free energy surfaces that relied on the definition
of collective degrees of freedom to which coarse-grained, non-Markovian dynamics
was applied. A memory kernel guarantees that, as the simulation progresses, the
visited minima of the free energy landscape are continuously filled, ensuring that, in
the long run, exploration of the system is uniform.

Some of the most efficient techniques for sampling configurational space were
developed in association with the MC method rather than MD. In 1992, Berg and
Neuhaus [78] devised a multicanonical method in which weighting factors that yield
equiprobable distributions of order parameters are determined through an iterative
procedure. A similar underlying idea is at the origin of the method proposed by
Fugao Wang and David Landau [79]. In their algorithm, independent random walks
are performed over different ranges of the order parameter — e.g., the energy. The
derived density of states is then updated in a continuous fashion, eventually yield-
ing flat probability distributions. This method, originally designed for discrete lattice
systems, was later adapted to continuum fluids by Shell et al. [80] and Yan et al. [81].
A somewhat different approach was taken by Smith and Bruce [82, 83] in their
transition matrix method. Instead of estimating probabilities of visiting different
states of the system, they calculated transition probabilities between macrostates.
This method proved to generate excellent estimates of thermodynamic functions
with a high statistical accuracy. Another multicanonical strategy devised by John
Valleau allows a range of both densities and temperatures to be spanned in a sin-
gle simulation, thus giving access to accurate free energies and other ensemble
averages [84, 85].

In comparison with MC-based methods, US-based molecular dynamics appeared
to be limited by the fact that order parameters had to be dynamical variables, for
which equations of motion existed. This limitation was removed by introducing to
free energy calculations the extended ensemble formalism. In 1996, Xianjun Kong
and Charles Brooks III [86] adopted an extended Hamiltonian approach, which al-
lowed general order parameters to be treated as dynamical variables, to follow a
pathway along which the free energy is always minimal. The same idea forms the
basis of an algorithm recently put forth by Bitetti-Putzer et al. [87]. The authors
observed that using the generalized ensemble helped to cross free energy barriers
and to overcome kinetic traps. An extended ensemble formalism is also an inherent
part of the previously discussed method proposed by Laio and Parrinello [77].

In the early 1990s, another approach was developed for improving the efficiency
of free energy calculations through non-Boltzmann sampling [88-91]. Its basic idea
is to construct simultaneously a series of MD trajectories or MC walks that are char-
acterized by different values of an order parameter. The method is effective if the
probability of visiting different states of the system varies significantly for the target
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value of the parameter, but becomes progressively smoother as the parameter in-
creases, or decreases. Occasionally, one attempts to update the simulations by swap-
ping configurations between the systems characterized by the consecutive values of
the parameter, and accepting this modification according to the Metropolis criterion.
The result is that the rugged nature of the probability density function at the target
value of the parameter is tempered by exchanging configurations with those sam-
pled from smoother probability distributions. For this reasons, the approach is called
parallel tempering, although versions of this method are also known under different
names, such as replica exchange and J-walking. A suitable and most frequently used
parameter that increases smoothness of the probability distribution and efficiency
of sampling is the temperature, although other choices are possible and occasion-
ally employed. In recent years, the method has gained considerable popularity as a
successful approach to problems that involve high-energy barriers between different
states of the system.

Also in the early 1990s, a somewhat related method for calculating free energy
differences was proposed by Ron Elber and coworkers [92, 93]. It relies on simulat-
ing multiple, noninteracting replicas that differ only locally. As a result, the method
is applicable to systems that undergo only local modification — e.g., point mutations
in proteins. For this reason, it has been called the locally enhanced sampling (LES)
technique.

In contrast to the FEP, US, and TI methods, which provided general routes to
calculating free energy, methods based on the PDT had only limited applications.
Their standard formulation, the particle insertion method, was successful only if the
cavities formed spontaneously due to thermal fluctuations in the solvent were suffi-
ciently large to accommodate solvent molecules. These methods, however, proved to
be of considerable conceptual importance, especially in improving our understand-
ing of the hydrophobic effect. To this end, particularly influential was the work of
Hummer et al. [94]. Building on the earlier studies of Pratt and Pohorille [95, 96],
they connected information theory with statistical mechanics to model the probabil-
ity distribution of solvent centers in a given cavity volume. This approach was not
only able to describe the primitive hydrophobic effects that drive cavity formation
in water and association of nonpolar solutes but also provided a convenient frame-
work for investigating other hydrophobic phenomena, such as the conformational
equilibria in alkanes and nonpolar peptide chains, and the effects of temperature and
pressure on protein folding.

Recently, Lawrence Pratt and coworkers applied the generalized form of the PDT,
which included averaging not only over particle positions but also over molecular
orientations and conformations, in a new context. They developed a quasichemical
theory for the evaluation of solution free energies [97] and applied it to several chal-
lenging problems, such as the hydration free energy of ions — viz. H™, Li™, Na* and
HO™ [98]. They further argued that the PDT forms the basis for approaches to calcu-
lating free energies that are as general and practical as other, widely used methods.

One of the most important theoretical developments of the last decade is due to
Chris Jarzynski, who established a remarkably simple relationship between the equi-
librium free energy difference and an ensemble of properly constructed irreversible
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transformations linking the initial and final state of the system [41, 99]. Jarzynski’s
identity laid the foundations for a new, general class of methods for estimating free
energies, which is applicable to phenomena that are either irreversible or clearly
driven out of equilibrium. Not surprisingly, this work stimulated further theoretical
developments [100], and applications on both the experimental [101] and computa-
tional [102] fronts.

In one of the most advanced applications of the nonequilibrium method, Klaus
Schulten and coworkers [103] coupled steered MD simulations with the Jarzynski
identity to derive the free energy profile that characterizes glycerol conduction in
the aquaglyceroporin GlpF [104]. This computationally challenging study, which
required MD simulations of a system composed of approximately 106,000 atoms,
provided theoretical support for the proposed mechanism of glycerol transport by
identifying potential binding sites, energy barriers, and a vestibular low-energy
region conducive to glycerol uptake within the channel.

Further improvements to Jarzynski’s method were proposed in 2004 by Marty
Ytreberg and Daniel Zuckerman [105], who combined it with a path sampling
scheme. Transition path sampling was used to refine in an iterative fashion the
reaction pathway along which the nonequilibrium work was evaluated. Compared
to standard calculations relying on the Jarzynski identity, this approach appears to be
substantially more effective, because it favors rare events involving small works, and
focuses sampling on regions that truly contribute to the free energy change.

Until recently, advances in calculating the free energy were not accompanied by
comparable progress in rigorous error analysis and reduction. Although a variety of
methods to estimate the error in calculated free energies were proposed [32, 106],
they were usually somewhat heuristic or involved approximations that were not al-
ways sufficiently well supported. Only recently, considerable progress has been made
on this front, in particular by Daniel Zuckerman and Thomas Woolf [107].

An interesting approach for eliminating the systematic sampling bias caused by
the exponential averaging in FEP calculations has been proposed by Lu et al. [108].
In a nutshell, it relies on a combination of the forward and reverse transformations
between a reference and target state, employing Bennett’s acceptance ratio [11] for
the optimal averaging of these simulations in terms of overlap sampling. The merit
of the scheme devised by Lu et al. lies in the reconciliation of two techniques that
have been employed widely, albeit always independently and for different purposes
—i.e., running forward and reverse simulations, usually to infer some estimate of the
statistical error associated with the free energy difference [32], and the long-known,
elegant method put forth by Charles Bennett back in 1976. Amazingly enough, the
connection between these two commonly adopted sampling strategies had to wait
almost 20 years to be clearly articulated. The latter illustrates that concepts once
popular may become dormant, until they are rediscovered years later and used in a
computationally more attractive version.

Realizing that practical application of free energy calculations outside the purely
academic environment, in particular in the pharmaceutical industry, required sig-
nificant cost reductions, much effort was invested towards developing faster and
cheaper methods for estimating free energy differences in complex systems. The goal
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for this line of research, primarily aimed at drug design applications, was quite ambi-
tious: to make approximate methods sufficiently efficient and reliable that they would
provide answers faster than laboratory experiments [109].

In this context, of particular interest are protein—ligand associations, which are
typically accompanied by significant conformational changes. Since these changes
occur on time scales that make direct, atomic-level simulation of these processes
impractical, alternative, simplified strategies had to be devised. One such strategy
was proposed by Aqvist. He assumed that the change in the binding free energy
due to the mutation of a ligand associated with a protein obeyed the linear response
theory [110]. Empirical parameters that appeared in his formulation were determined
from training sets of protein—ligand complexes and were subsequently applied to
predict the binding affinities of new ligands.

Another computational strategy relied on simultaneous in silico creation of the
ligand in the free and the bound states. The term creation, that will be discussed in
detail in Chap. 2, refers to the progressive scaling of parameters that describe inter-
action of the ligand with its environment. Andrew McCammon and coworkers [111]
laid the statistical-mechanical foundations for deriving protein—ligand association
constants, showing, in particular, how the double-creation scheme should be mod-
ified to obtain rigorous binding free energies. In a related work, Jan Hermans and
Lu Wang [112] proposed a complete treatment of the binding free energy, which
included the so-called cratic term arising from the loss of rotational and translational
entropy upon association.

In 2000, Erin Duffy and William Jorgensen [113] simulated a set of 200 organic
solutes of potential pharmaceutical interest in aqueous solution. Using an automated
procedure, they inferred solvation free energies on the basis of configurationally
averaged descriptors obtained through linear regression. Noting that the estimated
free energies were sensitive to the choice of the net atomic charges on the solutes,
they proposed that specific corrections be included in the regression equations
for poorly described functional groups. With the increase of computational power,
William Jorgensen showed how lead optimization could be guided employing FEP
calculations to design new, very potent anti-HIV-1 agents [114]. To find a compromise
between accurate but low-throughput free energy calculations and inexpensive but
generally poor-scoring function-based schemes, David Pearlman and Paul
Charifson [115] suggested that one-step FEP simulations on a grid surrounding the
solute of interest represented a promising tradeoff for high-throughput determination
of protein-ligand binding constants.

Paul Smith and Wilfred van Gunsteren [116, 117] suggested an approach to
inferring a set of free energy differences based on a single simulation of the initial
state. Herman Berendsen and coworkers [118] developed another strategy, which was
based on the potential energy distribution function. Using a quasi-Gaussian entropy
theory, the free energy and entropy changes were expressed in terms of the potential
energy moments. This approach was shown to reproduce accurately the free energy
of water and methanol over an appreciable range of temperatures.

New horizons for treating computationally challenging problems opened with the
emergence of reliable implicit solvation models. For example, Simonson et al. [119]
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showed that a continuum treatment of long-range interactions could be used in free
energy calculations without sacrificing accuracy, which led to significant reductions
in the cost of atomistic simulations. More recently, the application of an implicit sol-
vation scheme to the calculation of association free energies was revisited by Andrew
McCammon and coworkers [120]. Employing a molecular mechanics Poisson—
Boltzmann surface area (MM/PBSA) model, they successfully tackled the difficult
problem of estimating changes in the conformational free energy upon binding of
a ligand to its receptor. In general, application of implicit solvent to protein-ligand
assemblies, in which solvent molecules do not contribute directly to the association,
is a possible answer to the need for high-throughput de novo drug design in industrial
settings.

The vast majority of free energy theory/calculation approaches originate from
a classical statistical-mechanical underpinning. This assumption is appropriate for
a wide range of ion and molecule solvation problems. Even in the early stages
of the development of free energy methodology, however, emphasis was placed
on quantum aspects of free energies. These early developments followed two gen-
eral lines. In the first, Eugene Wigner and John Kirkwood, as early as the 1930s,
derived an expansion for the free energy in powers of #; the first term in the series is
the classical free energy, and subsequent terms yield increasingly accurate quan-
tum corrections. In addition, an effective potential can be derived which allows
for a classically based simulation moving on a quantum-modified potential. The
Wigner—Kirkwood and thermodynamic perturbation theory approaches are described
thoroughly in reference [5]. The second line in the development of approximate
quantum free energy methods was the discovery of variational approaches pioneered
by Richard Feynman [121], Albert Hibbs [122], and Hagen Kleinert [123]. Starting
from a path integral description of the quantum system, and integrating out the path
modes, effective potentials were derived which ensure that the computed free ener-
gies were above the exact result. More recently, the PDT has been extended to the
quantum domain using Feynman path integral methods [124, 125], and these ideas
have found utility in modeling quantum behavior in fluids [126, 127].

The ideas mentioned in this section, and many others, will be discussed in detail
in subsequent chapters. As we have already stressed, the goal of this section is not
to be exhaustive. Instead, the guiding idea has been to show how developments in
the field were motivated by the theoretical and practical challenges arising as both
the computational power and the popularity of free energy calculations increased.
The reader interested in learning more about the history of free energy calcula-
tions is referred to the previously mentioned articles by William Jorgensen [48, 49],
David Beveridge and Frank DiCapua [50, 51], and Peter Kollman [52] from the late
1980s and early 1990s, and to more recent reviews by Thomas Simonson et al. [128],
Christophe Chipot and David Pearlman [129], Bruce Berne and John Straub [130],
as well as Tomas Rodinger and Régis Pomes [131].
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1.2 The Density of States

In the remainder of this chapter, we review the fundamentals that underlie the the-
oretical developments in this book. We outline, in sequence, the concept of density
of states and partition function, the most basic approaches to calculating free ener-
gies and the essential strategies for improving the efficiency of these calculations.
The ideas discussed here are, most likely, known to the reader. They can also be
found in classical books on statistical mechanics [132-134] and molecular simu-
lations [135, 136]. Thus, we do not attempt to be exhaustive. On the contrary, we
present the material in a way that is most directly relevant to the topics covered in
the book.

The density of states is the central function in statistical thermodynamics, and
provides the key link between the microscopic states of a system and its macro-
scopic, observable properties. In systems with continuous degrees of freedom, the
correct treatment of this function is not as straightforward as in lattice systems — we,
therefore, present a brief discussion of its subtleties later. The section closes with a
short description of the microcanonical MC simulation method, which demonstrates
the properties of continuum density of states functions.

1.2.1 Mathematical Formalism

We begin by considering the density of states, {2, or microcanonical partition func-
tion for a single-component, structureless fluid of IV particles — although the exten-
sion to structured, or multicomponent systems is rather straightforward. Our use of
the notation {2 refers to the energy density of microstates, and not the integrated
phase space volume [137, 138]. Although there has been some debate about which
is appropriate to the microcanonical entropy, the former is tied to histograms, as
discussed in Chap. 3, and, hence, it is our focus here. For an in-depth mathematical
treatment of these issues, the reader is referred to [137-139].

For discrete systems such as the Ising model, the density of states counts the num-
ber of microstate configurations of the system consistent with each macrostate —e.g.,
2(&) gives the number of microstates with energy &. In a system with continuous
degrees of freedom, this ‘counting’ is ill-defined because the number of configura-
tions is infinite. In contrast, for our fluid, we consider the entire 3/N-dimensional
space defined by all the coordinates of the particles, and let the ‘number’ of configu-
rations of a given potential energy be proportional to the (3N — 1)-dimensional area
of the associated energy hypersurface. In mathematical terms, this translates to:

1
Qcon X ﬁ i~ 6[U(q) - éa] dq (11)

Here, § is the Dirac delta function, U is the potential energy function, and q rep-
resents the 3V coordinates. In this expression, the integral is performed over the
entire configuration space — each coordinate runs over the volume of the simulation
box, and the delta function ‘selects’ only those configurations of energy &. The N!
term factors out the identical configurations which differ only by particle permuta-
tion. It is worth noting that the density of states is an implicit function of NV and V,
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which define the dimensionality and boundaries of the hypersurface &, respectively.
We have also used here the annotation “con,” because this integral depends on the
configurational coordinates and the potential energy alone. The complete density of
states depends on the total Hamiltonian of the system, and is expressed as follows:

1
Qnot(N7‘/7f50)=W//‘/N‘S[%(q,m)—g] dq dp, (1.2)

where p, are the 3N conjugate momenta. Here, we have introduced 1/h3" as the
factor of proportionality, which is necessary to retrieve the correct correspondence
with the high-temperature quantum-mechanical prediction. For a detailed discussion
of this proportionality, see for instance [132]. The interpretation of the density of
states in this classical, continuum setting is that the quantity £2(&)d& measures the
volume of microstates of energy & +=dé& /2. Although this definition may seem vague
in physical terms, the important result is that relative values of the density of states
have a clear significance. This is to say, if £2(&1) is twice §2(&3), then there are twice
as many microstates at energy level 1 than 2, even though we may not have a clear
way of counting their absolute number at &7 or &5. Ultimately, at a classical level, we
need only know the density of states to a multiplicative constant, since this will not
change the relative measures at different energy levels — or volumes, or even particle
numbers.

The connection between the multiplicative insensitivity of {2 and thermodynamics
is actually rather intuitive: classically, we are normally only concerned with entropy
differences, not absolute entropy values. Along these lines, if we examine Boltzmann’s
equation, S = kg In {2, where kg is the Boltzmann constant, we see that a multi-
plicative uncertainty in the density of states translates to an additive uncertainty in
the entropy. From a simulation perspective, this implies that we need not converge
to an absolute density of states. Typically, however, one implements a heuristic rule
which defines the minimum value of the working density of states to be one.

As suggested previously, the density of states has a direct connection to the
entropy, and, hence, to thermodynamics, via Boltzmann’s equation. Alternately, we
can consider the free energy analogue, using the Laplace transform of the density of
states — the canonical partition function:

QN,V,T) = / exp(—BE) Du(N, V, &) A& (1.3)

B3 = (kgT) ™. In this expression, the macrostate probabilities at a given temperature
are easy to identify — the probability that each energy will be visited is proportional
to the integrand.

We now return to the issue of configurational density of states. In the simulation
of molecular systems, we are interested only in the calculation of their configura-
tional properties, or more explicitly, the configurational contribution to their parti-
tion functions. This is because the kinetic component is analytic, and, hence, there
is no need to measure it via simulation. For conventional MC simulations in the
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canonical N, V, T ensemble, for example, we readily integrate out these kinetic de-
grees of freedom, which are simply factored out of the total partition function [135].
The situation in the microcanonical ensemble is somewhat more intricate [139].
Since the kinetic and the potential energies are additive in the Hamiltonian, one
can rewrite the single §-function in (1.2) as a convolution integral involving two
d-functions of each energy term:

1
(NV.E) = s [ | o0(@) + K(p,) = £] daap,

— vy [ | oK)~ 0

[ U@ -6+ dq} ¢’

X

= / 2e(N,V,E) 2 (N,V, & — &) A& (1.4)

where the ideal gas and excess density of states in the last lines are defined by

2N, :8) = e [ 00 (p2) - £1dp,
emme)2v]" s
- [ h? NIT (3N) (-3
and )
2u(N.V,6) = g | dlU(@) - &) da (16

Here m is the mass of a particle and I is the I" function. In (1.5), we have determined
the explicit ideal gas density of states. This is possible since the kinetic energy is a
quadratic function of the momentum, K = p2 /2m, which allows us to switch
to hyper-spherical coordinates for the treatment of the J-function. The important
fact is that the kinetic contribution to the total, microcanonical partition function is
analytical, whereas the excess quantity is the subject of our simulation. This should
not cause any confusion, since the excess and the configurational density of states
differ only by a simple factor:
N!

Qex(vavvéa) = Wgcon(Na‘/a(g))' (1.7)
The simulation algorithms presented in Chap. 3, for example, may be formulated in
such a way that one is calculating either the excess or the configurational density of
states, the only distinction being whether the functionality of the multiplicative term
on the right-hand side of (1.7) is absorbed into {2 or introduced into the reweighting
of results. The use of (2, might be mathematically more aesthetic, in that it has
natural dimensions. It should, however, be emphasized that it is the configurational
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quantity which retains the physical significance of a density of states. In other words,
.on(N, V, &) remains proportional to the number of microstates with given N, V, &.

The excess density of states figures straightforwardly into the canonical partition
function. Substituting the convolution in (1.4) into (1.3) and making the substitution
&' =& — &', it follows that

QN,V,T) = [ / B8 (N, V, &) dﬁ} [ / " O (N.V.6") d&"

VN P
/W]W/eﬁ -Qex(N,‘/,(g])dg

_ W / ¢~ 0un(N,V, &) d& (1.8)

In the second line, we have carried the integral over the ideal gas part, which results in
the temperature-dependent de Broglie wavelength, A. The final expression is similar
to the familiar casting of the canonical partition function,

1
QUNV.T) = iy [ (=657 (a.p.)] da dp
1
= WZ(N,VT) (1.9)

except that the multidimensional integral over coordinates is now replaced by a one-
dimensional integral over energy. In (1.9), Z(N, V, T) is the configurational integral
defined by:

Z(NV,T) = / exp(—BU(q)) dg (1.10)

where U (q) is the potential energy of the system.

In this chapter and in others of the present book, we will often drop the subscript
“con” from the configurational density of states, which will simply be denoted by
(2. Any other quantity, such as the total and excess density of states, will retain its
subscript.

1.2.2 Application: MC Simulation in the Microcanonical Ensemble

A working example will help illustrate some of the mathematical properties of the
density of states and its connection to the microcanonical ensemble. It is possible
to perform a MC simulation in a microcanonical setting (constant total energy,
kinetic plus potential) using the previous arguments. This method was developed
by John Ray [140] and later by Rolf Lustig [141], and though it is not frequently
used, its derivation is instructive. As with any MC simulation, the first concern is the
ensemble of interest, which specifies the relevant underlying partition function and,
importantly, the probability with which configurations should be visited or sampled.
In this case, we extract these probabilities with a simple manipulation of the den-
sity of states. Starting with the analytically evaluated ideal gas density of states in
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(1.5), we substitute this contribution back into the convolution integral determining
the total microcanonical partition function in (1.4):

N

3/2
NV, &) ! [(%m)

NIF(GN) | W

// [U(a) — &+ &'(&)*N?7! dq dé”
VN
1

X

N
(27rm)3/2

~ NIT(2N) l h?

x /V 6= U@ 016~ Ula)] da (L11)

where 6 is the Heaviside step function. In going to the last line in this expression,
we have switched the order of integration and performed the integral over & to
remove the delta function. The final expression gives a clear significance of the
microstate probabilities in the ensemble and has a nice correspondence with the
canonical configurational partition function. Compare this result to that of a constant-
temperature simulation, in the NVT ensemble. There we must specify the temper-
ature, the partition function is (), and the state probabilities follow the Boltzmann
factor. Similarly, in the microcanonical simulation we must specify a total energy,
the partition function is {2, and the weight each configuration should carry is:

2(q) < [6~ U@ 1 0[6 ~ U(a)]. (1.12)

Based on (1.12), we can implement any complement of MC moves and formulate
appropriate acceptance criteria such that the progression of configurations satisfies
this distribution. For simple moves in which the proposal probability equals that of its
inverse — symmetric moves, such as single-particle displacements — the Metropolis
acceptance criterion then reads [141]:

_ 3N/2-1
1,(‘50 U") 6(85—Uy)

Poce(Ug — U,) = min g

(1.13)

where it is assumed that the initial energy, Uy, is less than &. Similar arguments can
be used to adapt (1.13) in the presence of additional constraints, such as nonspherical
rigid molecules or fixed total momentum [141].

1.3 Free Energy

1.3.1 Basic Approaches to Free Energy Calculations

The Helmholtz free energy, A, which is the thermodynamic potential, the natural
independent variables of which are those of the canonical ensemble, can be expressed
in terms of the partition function:
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A=—-p"'InQ(N,V,T). (1.14)

This equation forms the fundamental connection between thermodynamics and sta-
tistical mechanics in the canonical ensemble, from which it follows that calculating
A is equivalent to estimating the value of (). In general, evaluating @ is a very dif-
ficult undertaking. In both experiments and calculations, however, we are interested
in free energy differences, AA, between two systems or states of a system, say 0
and 1, described by the partition functions g and )1, respectively — the arguments
N, V, T have been dropped to simplify the notation:

AA= -7 InQ1/Qo (1.15)

If the quantity of interest is the excess Helmholtz free energy, as is almost always
the case, or if the masses of particles in systems O and 1 are the same, (1.15) can be
rewritten in terms of the configurational integrals Zy and Z;

AA=—p"'InZ,/7,. (1.16)

Almost all problems that require knowledge of free energies are naturally formulated
or can be framed in terms of (1.15) or (1.16). Systems 0 and 1 may differ in several
ways. For example, they may be characterized by different values of a macroscopic
parameter, such as the temperature. Alternatively, they may be defined by two differ-
ent Hamiltonians, %) and 77, as is the case in studies of free energy changes upon
point mutation of one or several amino acids in a protein. Finally, the definitions of O
and 1 can be naturally extended to describe two different, well-defined macroscopic
states of the same system. Then, () is defined as:

1
@0 = Nuaw /ro exp [=0 (x, p;)] dx dp, (1.17)

where I is the volume in the phase space accessible to the system in state 0. ()1
can be defined in a similar manner. The macroscopic states defined by Iy and I
may correspond to different conformations of a flexible molecule, or the bound and
unbound structures of a protein—ligand complex.

Calculating free energies in these three types of systems requires slightly differ-
ent theoretical treatments, but the underlying ideas remain the same. For this reason,
we will draw a distinction between these systems only when it is necessary for theo-
retical developments. If treatments of different types of systems are essentially iden-
tical, yet require somewhat different notations, we will often limit our discussion to
only one case, leaving the exercise of changing the notation to the reader.

Equation (1.15) indicates that our ultimate focus in calculating AA is on
determining the ratio Q1/Qo — or equivalently Z;/Z, — rather than on individual
partition functions. On the basis of computer simulations, this can be done in several
ways. One approach consists in transforming (1.16) as follows:
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/ exp [~ Uy (x)] dx

AA=—B'In
/exp [—BU, (x)] dx

(1.18)

= —f ' Inexp {—B[U1(x) — Up(x)]} Py (x)
= 7 n(exp {8 [U1(x) — Us(x)]})o

Here, the systems 0 and 1 are described by the potential energy functions, Up(x),
and Un (x), respectively. Generalization to conditions in which systems 0 and 1 are
at two different temperatures is straightforward. 3y and 3; are equal to (kgTp) ! and
(kgTy)~!, respectively. Py(x) is the probability density function of finding system
0 in the microstate defined by positions x of the particles:

exp [—BoUp (x)]

7 (1.19)

Py (x) =

An interesting feature of (1.18) is that AA is estimated from a simulation of system
0 only. During such a simulation, a sample of the value of 5,U; — ByUy needs to
be collected which is sufficient to estimate with the desired accuracy the average
exponential in (1.18). Using one system as the reference and focusing on energy dif-
ferences is reminiscent of perturbation methods. Not surprisingly, this general app-
roach is called the FEP method. This method will be discussed in detail in Chaps. 2
and 6.

Another approach to calculating AA relies on estimating the appropriate proba-
bility density functions. The connection between the probabilities of different states
and the partition function is natural in statistical mechanics. Equation (1.19) is
a reflection of this connection. Similarly, the probability of observing the potential
energy of the system being equal to U is:

exp (—pU) 22(U)
Z

where, again, the arguments N, V, T" have been omitted for simplicity.

Let us assume that system 0 can be transformed to system 1 through the continu-
ous change of some parameter A defined such that Ay and \; correspond to systems O
and 1, respectively. This parameter could be a macroscopic variable — viz. the temp-
erature, a parameter that transforms ) to 41, or a generalized coordinate (e.g.,
a torsional angle or an intermolecular distance) that allows the different structural
states of the system to be distinguished. It follows that:

P(U) = (1.20)

[exp (<0151 20) dx dp,
N

where .4 is a normalization constant. Here, /3, ¢ or x, p, could be functions of
A. P; can be obtained in the same way, by substituting subscript 1 for 0. Combining
(1.15) and (1.21) leads to:

_ _ _ Qo
Py=P(X\) = =2 (1.21)
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Py
Py
This equation provides a prescription for calculating AA. The probability distribu-
tion function, P()), for the range of A comprised between A and A; is obtained
from computer simulations, usually as a histogram. The ratio P; /P, is then esti-
mated. This generic idea has been implemented in various, creative ways, yielding
a class of techniques called probability distribution or histogram methods. These
methods are discussed in Chap. 3.

In the third approach, one calculates d A A/d ) rather than A A directly. Differen-
tiating (1.14) yields:

AA=—-3"1In (1.22)

dgA 1 0Q
A Q) aa (129
If A is a parameter in the Hamiltonian, we obtain:
0
dA /exp(—ﬁ%ﬂ) dx dp, OA /5

and the free energy difference between system O and system 1 is evaluated by inte-
grating the average derivative of the Hamiltonian with respect to A, which is in units
of the force, in the range extending from \g to A;. For this reason, the method is
called thermodynamic integration. If ) is a function of the positions of the particles,
derivation of the formula for dA/d\ is more intricate, but the quantity that needs to
be averaged remains the same. Details are given in Chap. 4.

Conceptually, the three methods outlined above are closely connected. For exam-
ple, one can derive the TI formula from (1.18) by assuming that the transformation
from system O to system 1 proceeds through a sequential series of small perturba-
tions, in which A changes by an increment A), and then taking the limit of A\ —
0. Even though the methods are related, the distinction between them is useful,
because the developments of advanced techniques for each of them is often markedly
different.

As we will see further in the book, almost all methods for calculating free
energies in chemical and biological problems by means of computer simulations of
equilibrium systems rely on one of the three approaches that we have just outlined,
or on their possible combination. These methods can be applied not only in the con-
text of the canonical ensemble, but also in other ensembles. As will be discussed in
Chap. 5, AA can be also estimated from nonequilibrium simulations, to such extent
that FEP and TI methods can be considered as limiting cases of this approach.

1.4 Ergodicity, Quasi-nonergodicity and Enhanced Sampling

Central to many developments in this book is the concept of ergodicity. Let us
consider a physical system consisting of /N particles. Its time evolution can be de-
scribed as a path, or trajectory, in phase space. If the system was initially in the state
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{Po, o0}, the time average — if it exists — of any property, f, observed over time T
would be equal to

T
Flaopo) = 7 [ Fla(t).p(o)] (1.25)

Similarly, we can define the ensemble average:

(f Z/fP(X,px) dx dpy, (1.26)

where P(x,p.) is the time-independent probability that measures the fraction of
systems that are in the state {x, p; }.

For ergodic systems, the probability of visiting the neighborhood of each point
in phase space converges to a unique limiting value as 7" — oo, such that the time
average of f is equal to its ensemble average

Jim_f(qo, po) = (f)- 1.27)

There are two important consequences of this equality for computer simulations of
many-body systems. First, it means that statistically averaged properties of these
systems are accessible from simulations that are aimed at generating trajectories —
e.g., molecular dynamics, or ensemble averages such as Monte Carlo. Furthermore,
for sufficiently long trajectories, the time-averaged properties become independent
of the initial conditions. Stated differently, it means that for almost all values of
{40, Po}, the system will pass arbitrarily close to any point {x, p, } in phase space
at some later time.

The assumption that (1.27) holds, i.e., that time averages of macroscopic vari-
ables can be replaced by their ensemble averages is called the ergodic hypothesis. It
is equivalent to the statement that a system assumes, in the long run, all conceivable
microstates that are compatible with the conservation laws, and, therefore, lies at the
foundation of statistical mechanics developed by Boltzmann and Maxwell. From our
perspective, it is clear that the theoretical outline given in the previous two sections
would not be appropriate for nonergodic systems. Moreover, for such systems, it is
not expected that different computer simulations of the same system, no matter how
long, would yield the same estimates of the free energy.

Although it is usually very difficult to prove ergodicity, it is strongly believed
that almost all many-body systems are ergodic. There are, however, a few known
examples of nonergodic systems. Perhaps the best known are completely integrable
systems — i.e., systems for which the number of degrees of freedom is equal to the
number of constants of motion. This was proven in the famous Kolmogorov—Arnold—
Moser (KAM) theorem [142]. Fortunately, systems known to be nonergodic are usu-
ally not of interest in chemistry and biology.

Even if a system is formally ergodic, its behavior during computer simulations
may resemble those of nonergodic systems. This means that the system does not
properly explore phase space, and, therefore, the calculated statistical averages might
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exhibit strong dependence on the initial conditions. This phenomenon is called quasi-
nonergodicity. It may occur because the system diffuses very slowly, to the extent that
the volume in phase space covered during the simulation is insufficient to estimate
reliably statistical averages of properties of interest. More often, the appearance of
nonergodicity is caused by high energy barriers separating different volumes of phase
space. It follows that transitions between these volumes constitute rare events that
might never happen during a computer simulation, or that occur so infrequently
that accurate estimates of statistical averages cannot be achieved in practice. Even
if the volumes are connected by low-energy regions, but these regions are very
narrow — viz. so-called ‘entropy bottlenecks,” and hence rarely sampled, the ap-
pearance of nonergodicity persists.

Quasi-nonergodicity is a common phenomenon in complex chemical and bi-
ological systems. If this is the case, direct application of the methods outlined
in the previous section might not yield correct estimates of free energies. To im-
prove these estimates, more-advanced strategies that allow relevant rare events to
be sampled are needed. These strategies are called enhanced sampling methods.
Most of them are also used in other fields of science, but under a different name —
viz. variance-reduction methods. The connection between these two names is fairly
obvious. The primary goal in applying enhanced sampling methods is to explore effi-
ciently the regions in phase space that are important for calculating free energy, and,
by doing so, reduce the variance of the estimates of this quantity.

Two enhanced sampling strategies have proved to be particularly effective in
dealing with quasi-nonergodicity, namely stratification and importance sampling. In
fact, almost all techniques used to improve the efficiency of free energy calcula-
tions rely on one of these strategies, or their combination. Their thoughtful and cre-
ative implementation often makes the difference between successful and unreliable
simulations.

Stratification, sometimes also called multistage sampling [10], is a strategy for
distributing samples so that all parts of the function are adequately sampled. In an
unstratified process, all the samples are generated from the same probability distri-
bution function, P(x), which might vary greatly in the domain 2. In a stratified
method, this domain is first partitioned into a number of disjoint regions (2;, called
strata, such that their union covers the whole domain. In the region (2;, x; is sampled
according to P;(x;), equal to P(z) in this region. In the process, every strata is sam-
pled, even if it is associated with a very low P(x), and, as a consequence, is unlikely
to be visited in an unstratified sampling. The end result of stratification is a lowered
variance on the estimate of any function f(z) averaged over {2 with the probability
measure P(z).

To illustrate how stratification works in the context of free energy calculations,
let us consider the transformation of state 0 into state 1 described by the parameter .
We further assume that these two states are separated by a high-energy barrier that
corresponds to a value of A between Ay and \;. Transitions between 0 and 1 are then
rare and the free energy estimated from unstratified computer simulations would
converge very slowly to its limiting value, irrespective of the initial conditions. If,
however, the full range of \ is partitioned into a number of smaller intervals, and
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each of these intervals is sampled independently, it is possible to recover the complete
P(\) and estimate AA from (1.22), with great savings of computer time.

Importance sampling is another, highly successful variance-reduction technique
[143]. The idea behind it is that certain regions in phase space are important for esti-
mating the quantity of interest, even though these regions might have low probability
of being visited. It is thus advantageous to choose a sampling distribution from which
these ‘important’ regions are sampled more frequently than they would be from the
true distribution. If this approach were applied directly in a simulation, it would yield
a biased estimator. The results of the simulation obtained using the modified distribu-
tion can, however, be properly weighted to ensure that the estimator is unbiased. The
weight is given by the likelihood ratio of the true distribution to the biased simulation
distribution.

The basic idea of importance sampling can be illustrated simply in the example
of the transformation from O to 1 along A, as described above. In lieu of sampling
from the true probability distribution, P(\), we design simulations in which A is
sampled according to P’()). The latter probability should be chosen so that it is
more uniform than P()). The relation between the two probabilities may then be
expressed as follows:

P'(A) = P (\)exp [By() (128)

where 7()\) is the weight factor that depends on the value of A. Next, AA in (1.22)
can be expressed in terms of P’'()\g) and P’(\;) derived from the biased simulation:
P(\)
P(Xo)

P()

AA=—3"1In PO

=—f"'In

+n(A1) —n(Xo) (1.29)

The fundamental issue in implementing importance sampling in simulations is the
proper choice of the biased distribution, or, equivalently, the weighting factor, . A
variety of ingenious techniques that lead to great improvement in the efficiency and
accuracy of free energy calculations have been developed for this purpose. They will
be mentioned frequently throughout this book.
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