3 Relationship Types

Relationship types are another important element in conceptual schemas,
because they also play a fundamental role in the memory, informative, and
active functions of information systems. Determining the relationship
types that are relevant to an information system is one of the most impor-
tant tasks in conceptual modeling. In this chapter, we study the nature and
general characteristics of a relationship type.

In the first section, we define relationship types similarly to the way in
which entity types were defined in the preceding chapter. In Sect. 3.2, we
explain how to represent relationships and their types in an information
system, in both logic and UML. Attributes are a particular but important
kind of relationship type, which is addressed in Sect. 3.3.

3.1 Definition

Relationship types can be defined in several ways. Here, we adopt a defini-
tion similar to that of entity types. The rationale is that there is a similarity
between the operation of classifying an object into an entity type and that
of classifying a relationship into a relationship type. For example, there is
little difference between classifying the reader of this book as a Person and
that of classifying what he does with the book as Reads. In both cases we
abstract something: in Person, we ignore the differences that exist between
people; in Reads, we ignore how, where, and why the book is being read,
the reader’s interest in the book, the level of difficulty, and so on. Thus, it
would be reasonably accurate to use a definition of a relationship type that
is almost identical to that of an entity type: “A relationship type is a con-
cept whose instances at a given time are identifiable individual relation-
ships that are considered to exist in the domain at that time.”

However, the above definition is unsatisfactory because it ignores the
fact that a relationship is always a relationship between objects. Although
we can imagine isolated objects in a domain, it is impossible to imagine a
relationship without the presence of objects. The participants in a relation-
ship are the objects that participate in it. Each participant plays a role in

60 3 Relationship Types

the relationship. In the above example, the participants are The reader of
this book and This book. The former plays the role of reader, and the latter
the role of reading.

If we move on from instances to types, we can say that a relationship
type consists of a set of n participants, with n > 2. A participant is an entity
type that plays a role in a relationship type. We write R(p1:E\, ..., p.:E,) to
denote a relationship type named R, with participant entity types E|, ..., E,
playing roles p;, ..., p,, respectively. Sometimes we omit the role p; played
by participant p;:E;, either because it is obvious or because it is the same as
the name of E;. In these cases, it is assumed that p; is the same as E;. For
example, Reads (reader:Person, Book) is equivalent to Reads
(reader:Person, book:Book).

We say that R(p:E, ..., p.:E,) is the schema of the relationship type R
and that p,:E\, ..., p,’E, are its participants. Conceptually, the order of the
participants in the schema is not significant. Two different participants can
be of the same entity type, but there cannot be two participants with the
same role. For this reason, we sometimes say simply that py, ..., p, are the
participants of the relationship type.

Using the above notation and terminology, the following could be an
acceptable definition: “A relationship type R(p1:E1, ..., p.:E,) 1s a concept
whose instances at a given time are distinct sets {<p;:e;>, ..., <p,e,>}
formed by n entities ey, ..., e, that are instances of their corresponding type
E,, ..., E,, and are considered to have a relationship R in the domain at that
time, playing the respective roles py, ..., p,.” The instances of a relation-
ship type are called relationships.

This definition states, in the first place, that relationship types are con-
cepts. Therefore, the concept theories developed in cognitive science are,
in theory, also applicable to relationship types.

Secondly, the definition states that a relationship is a set {<p;:e;>, ...,
<pn:e,>} formed by exactly one pair <p;:¢> for each of its n participants.
For example, the instances of Supplies (Supplier, Part, user:Project) must
include an entity from each of the three entity types. If there were an in-
stance of Supplies without, say, a user role then the relationship type
would be incorrect. The definition requires each instance of Supplies to in-
clude a user role. Another incorrect case would occur if we were to accept
that an instance of Supplies could consist of a supplier S, a part P, and user
projects 4, B, and C. The definition requires each instance of Supplies to
include exactly one user; thus, we should consider that in this case there
are three relationships, not one.

The fact that a relationship must include one entity for each participant
should not be confused with the fact that two or more participants may be
of the same entity type. A relationship type such as IsParentOf (par-

3.1 Definition 61

ent:Person, child:Person) is totally valid. An instance of this relationship
type will include two persons, one for each participant (parent and child).
A relationship type in which the same entity type plays two or more roles
is called recursive.

Although it is rare, a relationship could include the same entity twice, as
distinct participants. For example, the recursive type Knows (Person, ac-
quaintance:Person) could have instances in which the two people are the
same (if it were the case that a person knew himself).

Thirdly, the definition states that the instances of a relationship type
must be distinct sets. It is not possible to have two relationships in the do-
main that are formed by exactly the same participants. In the Supplies ex-
ample, there cannot be two relationships with the same supplier, part, and
project.

Finally, the definition states that the instances of a relationship type R
are sets of entities that are considered to have the relationship R in the do-
main at that time, playing their respective roles. It is important to note that
the definition says that they “are considered to have the relationship R”.
As with entity types, this aspect does not cause difficulties in most rela-
tionship types, but there are cases that raise doubts because what some
people may consider to exist at a given point in time, other people may
consider not to exist (at least at that point in time). When this happens, an
effort must be made to refine the definition and reach an agreement be-
tween the people involved.

An example of a relationship type that should not cause any problem in
this respect is Lives (resident:Person, placeOfResidence:Town). If a person
p and a town fo are the participants in an instance of this type at some time,
it is because p lives in fo at that time.

An example that may raise some doubts is IsMotherOf (mother:Woman,
child:Person). An instance of this type at time ¢ involves a woman m and a
person p if it is considered at ¢ that m is the mother of p. Let us consider
two people: Alice and Alan (see Fig. 3.1). Alice is born and dies at 7} and
T5 respectively. At 75, Alice gives birth to Alan, who dies at 74. Figure 3.1
shows three possible interpretations of the relationship IsMotherOf (Alice,
Alan):

(a) The relationship holds only while the child, Alan, is alive.

(b) The relationship holds only while both the mother and the child are
alive.

(c) Once Alice has given birth to Alan, the relationship holds forever.

Which of these interpretations is best must be defined in the domain.
The one that is chosen will have an impact on the answer to the question

62 3 Relationship Types

Woman (Alice)

Person (Alan)

(a)

IsMotherOf (Alice,Alan) (b)

v

(c)

T, T, T, T,

Fig. 3.1. Three interpretations, (a), (b) and (c), of the temporal existence of the
relationship IsMotherOf (Alice, Alan) in a domain

“who is p’s mother now?” In Fig. 3.1, the answer to this question at 75 < ¢
< Ty and at T, > ¢t will depend on the interpretation chosen.

Note that the definition given above does not require that the entities
participating in a relationship at time ¢ must be an instance of their types at
t. Although they usually will be, they might have been an instance at some
previous time without being so at . We can see the difference in the two
previous examples. In Lives (resident.Person, placeOfResidence:Town), if
person p lives in town fo at time ¢, it is likely that p is required to be an in-
stance of Person at t, and to to be an instance of Town at t. However, in
IsMotherOf (mother:Woman, child:Person), it may be acceptable for
woman m to be considered the mother of person p at time ¢ even if m is not
considered an instance of Woman at ¢t. In interpretation (a) in Fig. 3.1, in
the interval from 75 to T4 Alice is considered to be Alan’s mother even if
Alice is no longer an instance of Woman. In interpretation (c), after 7, Al-
ice is also considered to be Alan’s mother, even if neither Alice nor Alan is
an instance of its type at that time.

We say that R(p:Ey, ..., p.E,) is synchronous if, for each of its in-
stances r = {<pie;>, ..., <p,le,>} at time ¢, the entities ey, ..., e, partici-
pating in r are instances of their respective types at ¢; otherwise, R is asyn-
chronous. In the examples above, Lives is synchronous, while IsMotherOf
is asynchronous according to interpretations (a) and (c) in Fig. 3.1. Almost
all relationship types are synchronous. Asynchronous relationship types
can be defined only in temporal conceptual models. In this book, unless
stated otherwise, we assume that relationship types are synchronous.

3.1 Definition 63

3.1.1 Degree

The degree of a relationship type is the number of participants in that type.
Most relationship types have degree 2, and are called binary. Relationship
types with a degree greater than 2 are called n-ary. The most common of
the n-ary relationship types are those that have degree 3, which are referred
to as fernary.

3.1.2 Pattern Sentence

Linguistically, a relationship is a fact that holds in a domain and can be
expressed using a grammatical sentence. For example, an instance of
Reads (reader:Person, reading:Book) with participants Arnold and Alice in
Wonderland may be expressed using the sentence “Arnold reads Alice in
Wonderland”, while another with participants Laura and Tirant Lo Blanc
could be expressed as “Laura reads Tirant Lo Blanc”, etc.

The pattern sentence of a relationship type is a declarative sentence in
which there is a placeholder for each participant. The sentence that linguis-
tically expresses a relationship is obtained by filling in the placeholders
with the names of the participants. In the above example, the pattern sen-
tence could be

<Person> reads <Book>

where <Person> and <Book> are slots that must be filled in with (the
names of) a specific person and book respectively. If we wish to express
that the first participant is a person and the second a book, we may use a
longer pattern sentence:

Person <Person> reads the book <Book>
which is instantiated as

The person Arnold reads the book Alice in Wonderland
The person Laura reads the book Tirant Lo Blanc

Pattern sentences help us to understand the meaning of relationship
types and may be implicit or explicit. The former are built as explained be-
low, and the latter are given by the designers. Every relationship type has
one or more implicit pattern sentences. Explicit pattern sentences are op-
tional.

Implicit pattern sentences are derived from the schema R(p:Ey, ...,
pnE,). If we choose the names of the relationship types (R) and roles (p;)

64 3 Relationship Types

sensibly, the sentences derived may be enough, and we shall not need ex-
plicit pattern sentences.

The derivation of implicit pattern sentences depends on how roles are
named. There are two approaches: noun-based and verb-based. In the
noun-based approach, role names are nouns, while in the verb-based ap-
proach, role names are verbs. An example of the former is R
(reader:Person, reading:Book), where the roles (reader and reading) are
nouns. The same example in the latter approach could be R (reads:Person,
is read by:Book), where the roles (reads, is read by) are verbs.

Firstly, we shall describe the derivation of implicit pattern sentences for
binary types when the role names are nouns. In this case, there are three
implicit pattern sentences. Before giving their general structure, we show
the sentences for the example Reads (reader:Person, reading:Book):

The person <Person> reads the book <Book>
The person <Person> is (a | the) reader of the book <Book>
The book <Book> is (a | the) reading of the person <Person>

In the option (a | the) in the second sentence, we use « if a book may be
read by several persons, and the if it can be read by one person at most.' In
the third sentence, we use « if a person can read several books at the same
time, and the if he or she can read one at most. The instantiation of these
pattern sentences for a particular relationship could be as follows (assum-
ing that a person reads several books and that the same book may be read
by several persons):

The person Laura reads the book Tirant Lo Blanc
The person Laura is a reader of the book Tirant Lo Blanc
The book Tirant Lo Blanc is a reading of the person Laura

Note that the first sentence is well formed when the name of the rela-
tionship type (Reads) is the verb of the sentence in third-person singular
and the two participants in R appear in an appropriate order. The other two
sentences are well formed when the role names are singular nouns.

The general structure of the three pattern sentences corresponding to a
binary relationship type R(pi:E1,p»:E») is as follows:

The e; < E;> R the e, < E,>

The e; < E> is (a | the) p; of the e, < E)>
The e, < E>> is (a | the) p,of the e; < E >

! The information about how many people can read a book (or how many books
can be read by a person) at the same time can be extracted from the cardinality
constraints, which are considered in the next chapter.

3.1 Definition 65

We shall now go on to explain the derivation of implicit pattern sen-
tences for binary types when the role names are verbs. In this case, the
name of the relationship type is not used, and there are two implicit pattern
sentences. Before giving their general structure, we show the sentences for
the example R (reads:Person, is read by:Book):

The person <Person> reads the book <Book>
The book <Book> is read by the person <Person>

The instantiation of these pattern sentences for a particular relationship
could be as follows:

The person Arnold reads the book Alice in Wonderland
The book Alice in Wonderland is read by the person Arnold

Note that the sentences are well formed when the role names are verbs
in third-person singular.

The general structure of the two pattern sentences corresponding to a
binary relationship type R(pi:E1,p2:E») is as follows:

The e, < E;> p; the e, < E>>
The €< E2> P2 the €< E1>

For most binary types, at least one of the implicit pattern sentences cap-
tures the meaning of the corresponding relationship. When this happens,
there is no need to define explicit pattern sentences.

In some cases, however, it may be difficult to find adequate names,
making it necessary to define explicit pattern sentences. For example, con-
sider the following popular relationship type found in online bookstores:
“Customers who bought this book also bought this other book™. It is diffi-
cult to choose names for the type and its two roles so that the implicit pat-
tern sentences express the meaning of the relationships. A schema such as

CustomersAlsoBought (origin:Book, additional:Book)

does not produce expressive sentences. Therefore, in this case it would be
appropriate to define an explicit pattern sentence, such as

Customers who bought book <Book> also bought book <Book>
An instance might be

Customers who bought the book Introduction to Conceptual Mod-
eling also bought the book Advanced Conceptual Modeling

For n-ary types, it is difficult to find names of relationship types and
roles from which we can derive expressive pattern sentences. Normally,

66 3 Relationship Types

we need to define explicit pattern sentences for these types. For example, a
pattern sentence for Supplies (Supplier, Part, user:Project) could be

Supplier <Supplier> supplies part <Part> to be used in project
<Project>

3.1.3 Unary Relationship Types

Normally, relationships are conceived of as having at least two partici-
pants. In fact, almost all conceptual modeling languages require that rela-
tionship types have a degree of at least two.

However, when we develop a conceptual schema for a domain, we find
concepts that seem to be naturally modeled as unary relationship types. For
example, we could have IsThick (Book) to represent the fact that a book is
thick. Another example could be IsManager (Person).

In languages that do not allow unary relationship types, the above con-
cepts can be modeled as new entity types. For example, we could define
the type ThickBook, or the type Manager. This is a valid and elegant solu-
tion, but it adds new entity types to the schema.

Another solution involves modeling a unary type as binary, with an ad-
ditional participant that may take two values: true and false. For example,
if Boolean is a data type we could define ThickBook (Book, Boolean) and
Manager (Person, Boolean). This is also a valid solution, and a practical
one in some languages, but few people will find it elegant.

There is a third solution, which can be applied when we have two or
more unary types with the same participant entity type £. An example of
this situation might be when we have IsManager (Person) and IsSalesman
(Person). In this case, we could define a binary type P(E,E’), where E' is
an entity type with as many instances as the unary relationship types that
we have. In this example, we could have P (Person, JobCategory), where
JobCategory has the instances Manager and Salesman. In UML, JobCate-
gory could be defined as an enumeration.

3.1.4 Population

The population of a relationship type R at time ¢ is the set of its instances
that exist in the domain at ¢.

In general, the population of a relationship type is time-varying during
the lifetime of an information system. However, there are two particular
cases that deserve special treatment: constant and permanent relationship
types. Their definition bears some resemblance to that of entity types, but
it is not the same.

3.1 Definition 67

A relationship type R(pi:E1, ..., p.:E,) is constant with respect to a par-
ticipant p; if the instances of R in which an instance e; of E; participates are
the same during the temporal interval in which ¢; exists. We shall illustrate
this definition with two examples. The first is

WasBorn (native:Person, birthplace:Town)

We assume that Town is constant and that Person is not permanent, mean-
ing that persons are born and die. WasBorn is constant with respect to na-
tive because the set of instances r = {<native:p>, <birthplace:to>} in
which a person p participates is constant during p’s life. Note that Was-
Born is not constant with respect to birthplace, because the set of people
born in a town may change over time.

The second example is:

Equivalence (source:Unit, conversionRate:Decimal, target:Unift)
with the explicit pattern sentence

A <Unit> is equivalent to <Decimal> <Unit>
which produces sentences such as

An inch is equivalent to 2.54 centimeters

Equivalence is constant with respect to its three participants. The set of in-
stances of Equivalence corresponding to a pair of units and a decimal is the
same at any time.

A relationship type is constant if it is constant with respect to all its par-
ticipants. Equivalence is constant, but WasBorn is not.

A relationship type R(p1:E\, ..., p.iE,) 1s permanent with respect to a
participant p; if the instances of R in which an instance ¢; of E; participates
never cease to exist during the temporal interval in which e; exists. In the
example above, if Person were permanent, WasBorn would be permanent
with respect to birthplace, because the set of people born in a town would
never decrease. As another example, consider

HasVisited (visitor:Person,Town)

If we assume that Town is constant and that Person is permanent then
HasVisited is permanent with respect to visitor and town because once a
person has visited a town, he has visited it forever.

A relationship type is permanent if it is permanent with respect to all its
participants. HasVisited is permanent, but WasBorn is not.

68 3 Relationship Types

3.1.5 Subsumption

In general, the population of a relationship type is independent of that of
the other types defined in a schema. However, in some cases the popula-
tion of a relationship type must necessarily be included in that of another
type. Using a definition similar to that of entity types, we say that R, sub-
sumes R, or that R, is a subtype of R, if all instances of R; must also be in-
stances of R,. A formal definition is provided in the next section. For ex-
ample, consider the following relationship types:

Works (employee:Person, employer:Company)
Manages (manager:Person, Company)

If we assume that the managers of a company are employees of that com-
pany, then Manages is a subtype of Works. We shall study the subsump-
tion of relationship types in Chap. 10.

3.2 Representation in an Information System

As we already know, in order to be able to perform their functions, infor-
mation systems must have a representation of their domain. In terms of the
elements considered in this chapter, this means that an information system
must have a representation of:

o the relationship types;
e the relationships in the domain;
o the classification of the relationships into relationship types.

The relationship types are represented in the conceptual schema. The
schema contains a symbol (which is generally chosen arbitrarily) for each
relevant relationship type. The concrete form of the symbol is irrelevant at
the conceptual level. We need only to assume that the symbols exist and
that there is a biunique correspondence between the relationship types rep-
resented in the information system and the symbols representing them in
the conceptual schema. In this book, we normally designate these symbols
with words beginning with a capital letter. When confusion is unlikely,
however, we do not distinguish between relationship types and their sym-
bols.

The relationships that exist in the domain and the classification of rela-
tionships according to their types are represented in the information base.

Below, we sketch the representation in first-order logic and describe the
use of UML in more detail.

3.2 Representation in an Information System 69

3.2.1 State of the Information Base

In the previous chapter, we defined the state of an information base at a
given time as the set of facts it contained at that time. In that chapter, the
facts were entity facts. We have now seen that there are also relationship
facts. Therefore, the state of an information base consists of the entity and
relationship facts represented in the information system. There are no other
fact types.

3.2.2 Logical Representation

In logic, we represent a relationship type R(py:E, ..., p.:E,), with degree n,
using a predicate R with the same degree, where the n arguments are sym-
bols denoting objects or values. The order of the arguments is conven-
tional. We assume the order used in the schema. If the name R is unique,
then the name of the predicate is also R. Otherwise, given that there cannot
be two predicates with the same name, we use some variation of the name
R. We write the predicate’s name starting with a capital letter and without
blanks. Note that in this representation, the role names disappear.

A relationship r = {<p;:4,>, ..., <p,:4,>} that is an instance of R(p;:E},
..., pniEy) 1s represented using a formula R(4,, ..., 4,), where R is the
predicate corresponding to the relationship type and A4,, ..., 4, are the
symbols that denote the entities or the values of the participants. The for-
mula R(A4,, ..., 4,) indicates simultaneously that 4, ..., 4, are related in
the domain and that the relationship they have is of type R. Note that, in
logic, there cannot be duplicate formulas and therefore there cannot be du-
plicate relationships. In logic, the formulas consisting of a simple predicate
with constant arguments are called facts. For this reason, formulas R(4,
..., A,) are called relationship facts, or simply facts.

For each synchronous relationship type R(p;:Ei, ..., p.:E,), the schema
must include n referential integrity constraints

R(el, ceey e,,) —> E](el)

R(ey, ..., e,) > E(e,)

These constraints guarantee that each participant entity is an instance of its
corresponding type. The referential constraint is the most important kind of
constraint in conceptual modeling.

In logic, we represent that Ri(p;1:E1, ..., pinE,) is a subtype of
Ry(pai:E\, ..., paniE,) using the formula

Rl(ela [EXT} en) g RZ(ela [EXT} en)

70 3 Relationship Types

Lives »
resident placeOfResidence
Person | native birthplace Town
{«permanent»} |{«constant»} {«permanent»} {«permanent»}
Works

Fig. 3.2. Graphical representation of three relationship types as UML associations

For example, to state that

Manages (manager:Person, Company)
is a subtype of

Works (employee:Person, employer:Company)
we write

Manages(p,c) > Works(p,c).

3.2.3 Representation in UML

In UML, binary relationship types can be represented in two ways: either
as associations or as attributes. We consider associations here and attrib-
utes in the next section.

Binary associations are represented graphically by means of a line con-
necting the two entity types. The name of the association is shown near the
line. The names of the roles are placed near their corresponding entity
types. Although it is not explicitly prescribed in the official documenta-
tion, most users of UML define role names using nouns. Figure 3.2 shows
the graphic representation of the associations corresponding to the follow-

ing types:
Lives (resident.Person, placeOfResidence:Town)

WasBorn (native:Person, birthplace:Town)
Works (Person, Town)

In the case of the first example, we show the names of the relationship
types and those of the two roles. The solid arrowhead next to the name of
the association that points toward a participant indicates the order of the

3.2 Representation in an Information System 71

participants used in the derivation of implicit pattern sentences. When the
order is left to right or top to bottom, we usually omit the arrowhead. In
this example, the implicit pattern sentences are:

Person <Person> lives in town < Town>
Person <Person> is a resident of town <Town>
Town <Town> is the place of residence of person <Person>

These sentences are reasonably expressive.

In the case of the second example, we omit the name of the relationship
type. There will only be two implicit pattern sentences, which are expres-
sive enough:

Person <Person> is a native of town <Town>
Town <Town> is the birthplace of person <Person>

In the case of the third example, the names of the roles are the same as
those of the entity types. The single implicit pattern sentence is also ex-
pressive:

Person <Person> works in town <Town>

Given that the order of the participants is from left to right, an arrowhead
is not needed in this case.

In UML, the name of an association is optional. When there is no name
and we need to refer to an association, we use the names of the roles. An
example is shown in the case of the association native-birthplace in Fig.
3.2.

Two or more associations may have the same name, but, conceptually,
each association shown in a diagram is unique. The role names are op-
tional; when they are missing, they are assumed to be the name of the en-
tity type starting with a lowercase character.

In UML, it must be possible to unambiguously navigate from one entity
type to the others with which it is connected using only the role names. In
Fig. 3.2, we can navigate from Person to Town using the role names pla-
ceOfResidence, birthplace, and town. An ambiguity arises if we add a new
association between Person and Town, such that the name of the role
played by Town is one of the other three. For example, the following
would not be admissible:

HasVisited (Person, Town)
It must be defined with different role names, such as

HasVisited (visitor:Person, visitedTown:Town)

72 3 Relationship Types

Supplies

Supplier Part

user

Project

Fig. 3.3. UML representation of a ternary relationship type

Similarly, we can navigate from Town to Person using the role names
resident, native, and person. As before, an ambiguity arises if we define a
new association between Person and Town, with Person playing a role
named placeOfResidence, birthplace, or person. Sometimes it is difficult
to find good role names.

UML represents n-ary relationship types as associations. An association
is drawn as a diamond, with a solid line for each participant connecting the
diamond to the corresponding entity type. The name of the association is
placed inside or near the diamond. The names of the roles are placed near
their corresponding entity types. An example is shown in Fig. 3.3.

In UML, it is not necessary to explicitly define the referential integrity
constraints. The symbol used to represent an association (either a line or a
diamond and lines) connects the participating entity types, and from here
those constraints are defined implicitly.

In UML, it is not possible to formalize whether a relationship type is
constant or permanent.> However, as we did for entity types, we can as-
sume that there are two constraint stereotypes (named constant and per-
manent), whose formalization is implicit. On the basis of this assumption,
we have only to attach the constraint stereotype to the corresponding par-
ticipant or association. In Fig. 3.2, we have defined that the association na-
tive-birthplace is constant with respect to native and permanent with re-
spect to birthplace.

As with entity types, in UML we represent association R; as a subtype
of R, using a solid-line path from R, to R, and a large hollow triangle at the
end of the path where it meets R,.

Normally, concrete relationships are not shown in diagrams. However,
if needed, UML provides a notation that can be used for showing relation-

2 UML 2.1 has a concept of changeability of association participants and attrib-
utes, but it is not expressive enough to capture the semantics of constant and
permanent constraints.

3.2 Representation in an Information System 73

Lives NewYork:
placeOfResidence | Town
resident
Arnold:
Person
native

birthplace | Barcelona:
Town

Fig. 3.4. Graphic representation of two links

ships in object diagrams. A concrete relationship is shown using the same
notation as for an association, but the solid path or paths connect entities
rather than entity types. In UML, instances of associations are called /inks.
The graphic representation of relationships is useful to illustrate a fragment
of complex schemas. Figure 3.4 shows two links of the associations de-
fined in Fig. 3.2.

The UML graphical representation of relationships may not be practical
when we want to show many links, because the figures become large. In
these cases, a tabular representation may be a better choice.

3.2.3.1 Ordered Participants

Consider the relationship type
WaitingList (Flight, passenger:Person)
shown in Fig. 3.5, with the pattern sentence
The person <Person> is in the waiting list of flight <Flight>

If a given flight has several people in its waiting list, there will be an in-
stance of WaitingList for each passenger in the list, but these instances are
unordered. We cannot assume that there is a first instance corresponding to
the first passenger in the list, a second one corresponding to the second,
and so on.

< InWaitingList passenger

Flight Person
{ordered}

Fig. 3.5. The passengers in the waiting list of a flight are ordered

74 3 Relationship Types

If we are interested in representing the order of people in the list, we can
add a third participant to the relationship type,

WaitingList (Flight, passenger:Person, order:Ordinal)
which now has a pattern sentence such as

The person <Person> is the <Order> in the waiting list of flight
<Flight>

This is an acceptable solution, but it is difficult to maintain in an informa-
tion base. One of the main problems is that when a passenger leaves a
waiting list, the order of the people that follow him changes. Another prob-
lem is that we need to define an integrity constraint requiring that, in a list,
the orders must be consecutive.

UML provides a construct that is useful in cases such as this one: or-
dered participants. In the above example, we would define a binary asso-
ciation and indicate that the passenger participant is ordered, using the
keyword ordered in braces. The meaning is that the passengers in the wait-
ing list of a flight are ordered. The passengers of a flight can be obtained in
the order in which they are in the list. A passenger can be added in any po-
sition of the list. When a passenger leaves a list, the order of the people
that follow him in the list is updated automatically. Using this construct,
the above constraint is not needed.

3.2.4 Properties of the Representation

In the previous chapter, we saw that, independently of the language used,
the representation of entities and their types in an information system must
satisfy a few properties, mainly completeness, correctness, nonempty
population, and nonredundancy. The same applies to the representation of
relationships and their types. In the following, we briefly describe each of
these properties.

3.2.4.1 Completeness

This property states that if a relationship 7 in the domain is considered to
be an instance of R at a given time, and we want to represent this fact in an
information system, then the information base must contain a representa-
tion of 7 and a representation of the classification of into R at that time.

3.3 Attributes 75

3.2.4.2 Correctness

This property states that if at some instant the information base contains a
classification of a relationship r into relationship type R, then in the do-
main it must be considered that 7 is an instance of R at that instant, and this
should be represented in the information system.

3.2.4.3 Nonempty Population

It must be possible for any relationship type defined in the schema to have
a nonempty population. Otherwise, that type would not have any instance
during the system’s lifetime. An example of a relationship type that would
always have an empty population is Writes (author:Person, Machine). As-
suming that nobody writes a machine, Writes would always have an empty
population. No valid instance of Writes may exist in the domain such that
its second participant is a machine.

A relationship type is satisfiable if it may have a nonempty population
at a certain time. Similarly, a relationship type is unsatisfiable if it must
always have an empty population.

3.2.4.4 Nonredundancy

Two relationship types are redundant if they must always have the same
population. A schema should not include redundant relationship types. For
example, a schema could include the following types:

Manages (boss:Employee, subordinate: Employee)

Supervises (supervisor:Employee, Employee)
If, using the logical representation, the following property must hold in the
information base,

Manages(b,s) <> Supervises(b,s)

then Manages and Supervises are redundant. One of them must be re-
moved from the schema. Redundancy must not be confused with the fact
that a given relationship type may have several alternative names (syno-
nyms).

3.3 Attributes

Besides relationship types, most conceptual models contain the concept of
an attribute of an entity type. Attributes are not strictly needed at a concep-

76 3 Relationship Types

tual level,® and they are very similar to binary relationship types. Thus it is
not clear whether attributes should be used or when.

In a binary relationship type there are two participants, each of which is
an entity type playing a role in that type. The two participants must be con-
sidered as “colleagues” in the relationship type, because they perform the
same function, and neither of them is subordinated to the other. This can
be illustrated by a type such as Reads (reader:Person, reading:Book): a
person cannot read without a text, nor can a book be read without a reader.
The order of the participants in the schema does not imply a relationship of
priority or subordination between them.

However, there are some relationship types in which users and designers
may consider a participant as a “characteristic” of the other. For example,
in the case of HasBalance (Account, balance:Money) someone might ar-
gue that the participant balance is a characteristic of account and is thus
subordinate to Account. The concept of an attribute allows this (subjective)
subordination of one participant to another to be defined.

An attribute is a binary relationship type R(p,:E1,p,:E,) in which partici-
pant p, is considered to be a characteristic of E|, or p, a characteristic of E,.
Therefore, an attribute is like a binary relationship, except that users and
designers add the interpretation that one participant is a characteristic of
the other. Sometimes we say that E| has attribute (p,:E,), that E, is the
value of the attribute p, of |, or that (p,:E,) is an attribute of E,.

We denote the schema of an attribute using P(E1,E,), which must be un-
derstood as equivalent to a relationship type R(E,p:E,). In the above ex-
ample, attribute Balance (Account, Money) is equivalent to the relationship
type HasBalance (Account, balance:Money).

Data types may have attributes too. An attribute of a data type is consid-
ered to be an immutable characteristic of its instances (values).

3.3.1 Conceptual Models Based on Attributes

Some conceptual models use attributes instead of relationship types. The
rationale, as we shall see in Chap. 6, is that all relationship types can be
transformed into binary ones and that attributes are binary relationship
types.

For any relationship type R(p::E,p,:E,) we can define one or two attrib-
utes, P,(E\,E,) and/or P\(E,E)). If we define two, then we must indicate
that they correspond to the same relationship type; this can be done by de-

3 There are conceptual modeling languages that do not use attributes. The most
prominent one is ORM (Halpin 2001).

3.3 Attributes 77

claring that one is the inverse of the other. For example, A, = Reader
(Book, Person) and A, = Reading (Person, Book) would be the two attrib-
utes that correspond to Reads (reader:Person, reading:Book). To this we
should add that 4, is the inverse attribute of 4,, and vice versa.

3.3.2 Attribute Pattern Sentence

Linguistically, instances of attributes can also be expressed by grammati-
cal sentences. The pattern sentence of an attribute gives the general struc-
ture of those sentences. For example, a pattern sentence of Balance (Ac-
count, Money) could be

The balance of account <Account> is the money <Money>
This produces sentences such as
The balance of account 12345 is the money 30_euros.

As we did for relationship types, we can also distinguish here between
implicit and explicit pattern sentences. For attributes, there is only one im-
plicit pattern sentence. If we choose the name of the attribute (P) sensibly,
the implicit pattern sentence may be enough in most cases. The general
structure of the implicit pattern sentence of attribute P(E),E,) is

(A | The) Pofe < E>is e < B>

In this sentence, we use the indefinite article if an instance of E; could
have several attribute values and the definite article otherwise.
Alternatively, the following structure might be preferable:

e, < Ey>is (a|the) Pofe <E;>
which, applied to the previous example, gives

The money <Money> is the balance of account <A4ccount>

3.3.3 Representation in UML

UML shows attributes in the middle compartment of the corresponding en-
tity type. Thus, the attribute P(E\,E,) is represented by including the ex-
pression p:E, in the middle compartment of). Figure 3.6 shows an entity
type Customer with three attributes. Textually, we sometimes use the nota-
tion E;::p to refer to attribute p of ;.

In UML, attributes may be marked as read-only, using the keyword {re-
adOnly} in braces. In our terminology, this keyword corresponds ap-

78 3 Relationship Types

Customer River
- {«constant»}
name: String
birthday: Date length:Length
balance: Money {«constant»}

Fig. 3.6. Representation of attributes in UML

proximately to attributes constant with respect to £,. In Fig. 3.6, we indi-
cate that the lengths of rivers are constant. We define that an attribute is
permanent with respect to E| by attaching a constraint stereotyped perma-
nent to it. Attributes of data types are always constant, and we may assume
that there is a constraint stereotyped constant attached to them.

The attributes of a given entity type must have different names. For
navigation purposes, the name of an attribute of entity type £ should not be
the same as the role name of any of the participants of the associations in
which E participates.

When we want to depict a particular entity in an object diagram we can
also show the value of its attributes, as illustrated in Fig. 3.7. The text at-
tribute name = value defines the concrete attribute values of the entity.

aCustomer:Customer

name = Marc
birthday = 1974-05-04
balance = $4

Fig. 3.7. Representation of concrete entities and attribute values in UML

3.3.4 On the Use of Attributes

As we have seen, in the case of UML, when a conceptual model uses both
relationship types and attributes their graphical representation is different.
The graphical representations of relationship types show the entity types
that participate in them. The whole schema shows clearly all the relation-
ship types in which an entity type participates. This representation helps
users and designers to understand the schema, especially when it is large.
The graphical representation of attributes, on the other hand, shows
them in the context of the entity type of which they are a characteristic.

3.3 Attributes 79

Employee «dataType»
name:String Money
saIgw:Money quantity:Decimal
assignment: currency:Currency

Department
Department Performs Project
name:String name:String

Fig. 3.8. An example of attribute misuse. The attribute assignment is best
modeled by an association

This representation also helps one to understand the meaning of an entity
type.

A problem arises when an entity type £ is the value of the attribute of
another type E', because the diagram does not show a line connecting £
and E£'. The relationship between £ and £’ is not shown in the same way as
the others. Figure 3.8 shows three examples. String is the value of the at-
tribute name of Employee, Department, and Project. The diagram does not
have three lines connecting Employee, Department and Project with
String. In fact, String does not appear in the diagram. Money is the value of
the attribute salary of Employee, but the diagram does not show this with a
line connecting Employee and Money. There is a line connecting Depart-
ment and Project to show the association Performs, but there is no line be-
tween Employee and Department to show the attribute assignment. The
visual treatment of String, Money, and Department is different from that of
Employee and Project.

This problem can be solved by distinguishing between two kinds of en-
tity type: those that are specific to the domain being modeled and those
that are independent of it. The former are entity types that must be defined
completely in our schema: users and designers must reach agreement on
their meaning. The latter are defined instead in other schemas, and they are
only used (or reused) in our schema. In general, data types are domain-
independent. In the example in Fig. 3.8, we assume that String and Money
are domain-independent, while Department is considered particular to the
domain being modeled.

On the basis of this distinction, a guideline for the use of attributes
could be that the values of attributes should be entity types defined outside
our schema. If we apply this guideline to Fig. 3.8, name can be an attribute

80 3 Relationship Types

in the three entity types and salary can be an attribute of Employee. How-
ever, assignment must be defined as an association between Employee and
Department.

A variant of this guideline is to use attributes for data types and associa-
tions for ordinary entity types.

This is not a strict guideline, but it does help to make schemas easier to
understand. We can define attributes whose values are entity types defined
elsewhere, because their meaning must be sought outside our schema. In
the above example, it does not seem sensible to assume that our schema
must include a definition of what is meant by String and Money. On the
other hand, we should not define attributes whose values are entity types
particular to our domain (such as Department), because this makes it more
difficult to see the relationships between these types and the others.

3.4 Bibliographical Notes

As we noted in the preceding chapter, only a few books describe relation-
ship types in detail without focusing on particular languages. Two notable
exceptions are (Kent 1978) and (Tsichritzis and Lochovsky 1982). In con-
trast, many books addressing a particular language or method give interest-
ing explanations of particular topics, particularly (Nijssen and Halpin
1989, Batini et al. 1992, Martin and Odell 1995, and Halpin 2001). The
material presented in this chapter is a synthesis of those texts and other
journal and conference papers. One of the most seminal of these was
Chen’s paper (1976) on the entity—relationship language, which is the basis
of this chapter. Wand et al. (1999) provided a thorough analysis of the re-
lationship type concept based on Bunge’s ontology.

Chen (1983) gave one of the first analyses of the correspondence be-
tween relationship types and English sentences. Rolland and Proix (1992)
discussed the correspondence in both senses: from natural language to re-
lationship types (and other schema constructs), and the generation of natu-
ral-language sentences from a schema. Hofstede et al. (1997) discussed the
uses of verbalizations of fact types in conceptual modeling.

A few languages require a pattern sentence of relationship types to be
defined, including OSA (Embley et al. 1992), YSM (Yourdon 1993) and
ORM (Halpin 2001). Unary relationship types are allowed in ORM (Hal-
pin 2001) (where they are called unary fact types) and HERM (Thalheim
2000).

The first two properties of the representation of classification
(correctness and completeness) are normally implicit and very few works

3.5 Exercises 81

mention them explicitly. Two exceptions are Greenspan et al. (1994), who
called them property induction constraints, and Martin and Odell (1995).

The nonempty population and nonredundancy properties are presented
in Parsons and Wand (1997). The temporal properties of relationship types
were presented by Costal et al. (1997).

The guideline on the use of attributes mentioned in Sect. 3.2.4 is well
known in conceptual modeling. It has become part of the UML Reference
Manual (Rumbaugh et al. 2005, p. 189)

3.5 Exercises

3.1 Define at least ten relationship types found in the domain of a library
that deal with books, authors, the order of the authors of a book, titles,
publishers, number of pages, and so on. At least one of them must be n-
ary. Give the implicit (and if necessary the explicit) pattern sentences.
Give the representation of the relationship types in logic and in UML.
Also, give the representation in logic and in UML of the relationship
“James Rumbaugh is the first author of the book The UML Reference
Manual”.

3.2 Define a schema with at least ten relationship types found in the do-
main of persons and their relatives. At least one of them must be n-ary.
Give the implicit (and if necessary the explicit) pattern sentences. Give the
representation of the relationship types in logic and in UML.

3.3 Determine the schema of a relationship type whose instances can be
expressed by sentences such as the following:

o Sudha was a General chair of the 25th edition of the ER conference.

e David was a Program chair of the 25th edition of the ER conference.

e Oscar was the Program chair of the 17th edition of the CAiSE confer-
ence.

e Colette was the General chair of the 13th edition of the RE conference.

Show the UML representation of this relationship type and of the four in-
stances. Give an explicit pattern sentence.

3.4 Determine the relationship types needed in a conceptual schema for a
domain consisting of partially or completely filled-in Sudoku (also known
as Number Place) puzzles. You will easily find the rules on the Internet.
Each puzzle has a code that identifies it. Assume that the entity types

82 3 Relationship Types

needed include Grid, Row, Column, Region, and Cell. Other types may
also be necessary. Give the implicit (and if necessary the explicit) pattern
sentences. Give the representation of the relationship types in UML.

3.5 The periodic table is a tabular display of the known chemical elements.
Consider the data depicted in the standard table (to be found in Wikipedia,
for example). Determine entity and relationship types in a schema that are
able to represent the data depicted in the standard table. Define the schema
in UML. Give the explicit pattern sentences where necessary. Show
graphically the instantiation of your schema for the element californium
(Cf, atomic number 98).

3.6 The population of a recursive binary relationship type R(p::E,p,:E) can
be constrained, like any other. Give an example of each of the following
cases:

1. R is permanent with respect to p; and constant with respect to p,.
2. R is permanent with respect to p, and p,.
3. R is constant with respect to p; and p,.

Indicate in each case whether the population of E is constant, permanent,
or unconstrained.

2 Springer
http://www.springer.com/978-3-540-39389-4

Conceptual Modeling of Information Systems
Olive, A.

2007, ¥V, 455 p. 185 illus., Hardcover
ISBN: 978-3-540-30389-4

