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The Turaev—Viro Invariants

8.1 The Turaev—Viro Invariants

These invariants were first described by Turaev and Viro [126]. They possess
two important properties. First, just like homology groups, they are easy
to calculate. Only the limitations of the computer at hand may cause some
difficulties. Second, they are very powerful, especially if used together with
the first homology group.

8.1.1 The Construction

We divide the construction of the Turaev—Viro invariants into six steps.

Step 1. Fix an integer N > 1.

Step 2. Consider the set C = {0,1,..., N — 1} of integers. We will think
of them as representing colors. To each integer ¢ = 0,1,..., N — 1 assign a
complex number w; called the weight of 7.

Step 3. Let E be a butterfly, see Fig.1.4. Recall that it has six wings.
We will color the wings by colors from the palette C in order to get different
colored butterflies. The butterfly admits exactly N¢ different colorings.

Definition 8.1.1. Two colored butterflies are called equivalent if there exists
a color preserving homeomorphism between them.

The number of different colored butterflies up to equivalence is significantly
less than NS. It is because the butterfly is very symmetric: it inherits all the
24 symmetries of the regular tetrahedron, see Fig. 1.5. It is convenient also to
present a colored butterfly by coloring the edges of a regular tetrahedron A.
The body of the butterfly is the cone over the vertices of A while its wings
are the cones over corresponding edges and have the same colors.

Step 4. To each colored butterfly, assign a complex number called the
weight of the butterfly. There arises a problem: how to denote colored butter-
flies and their weights? Let us call two wings of a butterfly opposite if their
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Fig. 8.1. The butterfly and its boundary graph

intersection is the vertex (not an edge). Note that any colored butterfly is
determined (up to equivalence) by:

(a) Three pairs (4,1), (j,m), (k,n) of colors that correspond to three pairs of
opposite wings.

(b) A triple (i, 4, k) of representatives of each pair that correspond to wings
having a common edge.

An example of a colored butterfly and its boundary graph are shown in
Fig. 8.1.

For typographic convenience, and following some earlier conventions, such
a butterfly will be denoted by the (2 x 3)-matrix

17k
(l m n) ’
where the top row gives the colors of three adjacent wings and each column
gives colors of opposite pairs of wings. The weight associated with the above
butterfly is denoted by
ik
Ilmmn

and called a (¢—63)-symbol, for reasons we will not go into here. An interested
reader is referred to [125,126] and references therein.

The (g — 6j)-symbol has many symmetries, corresponding to the symme-
tries manifest in the butterfly. The symmetry group of a butterfly presented
as the cone over one-dimensional skeleton AM) of a regular tetrahedron is iso-
morphic to the symmetric group Sy on four elements 1, 2, 3, 4 that correspond
to the vertices of A, Assume that the edges (1,2), (1,3), (1,4), (3,4), (2,4),
and (2,3) have colors 14, j, k, l, m, n, respectively. Then the following equalities
correspond to generators (the transposition (2,3) and the cyclic permutation
(1,2,3,4)) of Sy:

nmi

kgl

1 j k
Ilmmn

ijk
Ilmn

_|Jik
T imln

)

Step 5. Let P be a special polyhedron, V(P) the set of its vertices, and
C(P) the set of its 2-cells.
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Definition 8.1.2. A coloring of P is a map & : C(P) — C.

Denote by Col(P) the set of all possible colorings of P. It consists of N#C(P)
elements, where N is the number of colors and #C'(P) is the number of 2-cells
in P. To each coloring ¢ € Col(P) assign a weight w(&) by the rule

we) = ] I weor (5.)

veV(P) vV ceC(P)

ij k
Ilmmn

Note that any coloring £ determines a coloring of a neighborhood of every
vertex v € V(P). It means that in a neighborhood of v we see a colored

butterfly
i j k
( I m n ) Y

ij k
Ilmmn

with the (¢ — 67)-symbol

v

Every 2-cell ¢ of P is painted in the color £(c) having the weight we(c).
Thus the right-hand part of the formula (8.1) is the product of all the symbols
and the weights of all used colors (with multiplicity).

Definition 8.1.3. Let P be a special polyhedron. Then the weight of P is
given by the formula

¢eCol(p)

Step 6. Certainly, the weight of a special polyhedron P depends heavily on
the weights w; of colors and the values of (¢ — 6)-symbols. We will think of
them as being variables; thus we have finitely many variables. If we fix their
values, we get a well defined invariant of the topological type of P. Now let
us try to subject the variables to constraints so that the weight of a special
polyhedron will be invariant with respect to T-moves. In order to do that, let
us write down the following system of equations:

=D v
z

where 4, j,k,1,m,n,l’,m’,n' run over all elements of the palette C.

The geometrical meaning of the equations is indicated in Fig.8.2 and
explained in the proof of Theorem 8.1.4. We emphasize that the system is
universal, i.e., it depends neither on manifolds nor on their spines.

In order to get a feeling of the system, let us estimate the number of vari-
ables and the number of equations. If we ignore the symmetries of symbols,
then the number of variables is N + NO: there are N weights of colors and N
symbols. The equations are parameterized by 9-tuples (¢, j, k, I, m,n, ', m’,n’)

k1l m
zm' 1l

im n
zn' m

jln
zn' l

i 5k
Ilmmn

i ok
U!'m' n'

; (8.2)




386 8 The Turaev—Viro Invariants

Fig. 8.2. Geometric presentation of equations

of colors. Therefore, we have N equations (if we ignore symmetries of equa-
tions). In general, the system appears over-determined, but, as we shall see,
solutions exist.

Let us show that every solution determines a 3-manifold invariant. Let M
be a 3-manifold. Construct a special spine P of M having > 2 vertices, and
define an invariant V(M) by the formula TV(M) = w(P), where w(P) is
the weight of P, see Definition 8.1.3.

Theorem 8.1.4. If the (q — 67)-symbols and weights w; are solutions of the
system (8.2), then w(P) does not depend on the choice of P. Therefore,
TV (M) is a well defined 3-manifold invariant.

Proof. According to Theorem 1.2.5, it is sufficient to show that w(P) is
invariant with respect to T-moves. Let a special polyhedron P, be obtained
from a special polyhedron P; by exactly one T-move, i.e., by removing a frag-
ment Ep and inserting a fragment E/., see Definition 1.2.3. For any coloring
¢ of Pi, let Col¢(P,) be the set of colorings of P, that coincide with & on
P \Er = P,\E’.. Since only one 2-cell of the fragment E/. (the middle disc)
has no common points with OE/., the set Col¢(P;) can be parameterized by
the color z of this 2-cell. It follows that the set Col¢(P,) consists of N colorings
(;,0<z<N-1.

Because of distributivity, the equation of the system (8.2) that corresponds
to the 9-tuple (i, j, k,1,m,n,lI’,m’',n") implies the equality w(§) = >, w((.),
see Fig. 8.2. To see this, multiply both sides of the equation by the constant
factor that corresponds to the contribution made to the weights by the exte-
riors of the fragments. Summing up the equalities w(§) = >, w((.) over all
colorings of Py, we get w(P;) = w(Ps).

Definition 8.1.5. Any 3-manifold invariant obtained by the above construc-
tion will be called an invariant of Turaev—Viro type. The number r = N + 1,
where N is the number of colors in the palette C, will be called the order of
the invariant.

8.1.2 Turaev—Viro Type Invariants of Order r < 3

There are no Turaev—Viro type invariants of order 1, since r = N + 1 and
N > 1.If r =2, then N = 1. Hence we have a very poor palette consisting of
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only one color 0, and there is only one colored butterfly

000
000/
Denote by wg and x the weight of the unique color and the symbol of the
butterfly, respectively. In this case the system (8.2) consists of one equation

22 = woad. If £ = 0, we get solutions that produce the trivial 3-manifold

invariant TV (M) = 0. Otherwise, we get a set of solutions {x = 271, wy =
z} parameterized by nonzero numbers z. Each of the solutions produces a
3-manifold invariant TV (M) = 2X(F) (one should point out here that y(P) =
X(M) if OM # 0, and x(P) = 1 if M is closed). Indeed, by Definition 8.1.3
we have TV (M) = w(P) = z=V(P)0F) = ;C(P)=V(P) ' \where V(P) is the
number of vertices of a special spine P C M and C(P) is the number of its
2-cells. Since every vertex of P is incident to exactly four edges, the number
of edges of P is equal to 2V (P). It follows that C'(P) — V(P) = x(P).

Let us investigate the case N = 2, when there are two colors: 0 and 1.
We will call them white and black, respectively. There are 11 different col-
ored butterflies. Their symbols together with the weights wg, w; of the colors
form a set of 13 variables. Note that the transposition {0,1} < {1,0} of the
colors induces an involution 4 on the set of variables. See Fig. 8.3, where the
butterflies are presented by their boundary graphs. The lower indices of the
corresponding variables show the number of black-colored wings. The weights
of the black and white colors are also indicated.

It turns out that there are 74 equations. They correspond to different
colorings of the boundary graph of the fragment FEp. See Fig.8.4 for an
example of a graphically expressed equation that corresponds to the equation

=D v
z

of system (8.2) fori=k=1,j=l=m=n=0I'=m'=n"=0.

DY
POQC 4

k'l m
zm' U

im n
zn' m'

i jk
Ilmn

ik
U!'m' n'

jln
zn'

1

Fig. 8.3. Thirteen variables for N = 2
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2_ 2 2
Xy=W, X, X, + WX,y

Fig. 8.4. An example of an equation

There are too many equations to list them all here, so we will take a
shortcut. To simplify the calculations, we subject the symbols to the following
constraints: if a butterfly contains one black and two white wings adjacent to
the same edge, then the symbol must be zero. In other words, we assume that
the symbols of the type
001

* ok % |

that is, the variables x1, 2, y2, T3, 23, and x4 are zeros. The motivation for this
restriction was triangle inequality conditions of Turaev—Viro, see Sect. 8.1.4.
My former student Maxim Sokolov had verified that, in case N = 2, only
restricted solutions of system (8.2) were interesting (unpublished). In other
words, unrestricted solutions do not give any additional invariants. So we are
left with seven variables xg, y3, Y4, 5, Tg, and wq, wy . It is easy to see that this
leaves only 14 equations:

(1) 22 = woxd; (8) 22 = wiysx?;
ToYs = W1Ys; Y3Ts5 = W1Y3T5;
(2) 3 9)
(3) y3 = wozoy3; (10) yazs = wixs;
Yy = WoY3Y4; Ty = WoT5Y3;
(4) 2 2 (11) 2 2
(5) Ysya = w1ysy3; (12) 22 = woyaz? + wiwsxd;
(6) y3 = woy; + wyxd; (13) zsz6 = wiTiTs;
(7) 0 = woyiws + wiziws; (14) 22 = woad + wiad.

They correspond to the colorings of dF7 shown in Fig. 8.5.

Let us solve the system. It follows from (4) and (8) that if y3 = 0, then
ys = x5 = 0. This leaves only two equations 22 = wozd, 22 = wiad. Just
as in the case N = 1, one can show that then we get the sum TV (M) =
wl™) 4 wX¥™) of the two-order 2 invariants. Hence one may assume that
ys # 0 and, as it follows from the third equation, zy # 0. Note that the

system is quasihomogeneous in the following sense: if we divide all ; and y;
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CNCUS Y
50 0 a0

5 6 7 8 9
10 11 12 13 14

Fig. 8.5. Fourteen equations for N = 2

by z¢ and multiply wg,w; by the same factor, we get an equivalent system.
Hence we may assume that zo = 1 and, by the first equation, wy = 1.

The further events depend on whether or not x5 = 0. Let x5 = 0. Recall
that zp = wo = 1. Set wy = w. It is easy to see that (2), (4), and (6) imply
ys = u~ Y2, ys = u~', and u? = 1. All the other equations become identities
except the last equation 2 = uzd. We get two solutions:

-1

(EOZ’LUO:].,wl:U,y3:U_1/2,y4:U , x5 = 26 = 0; (8.3)

—1/2 -1

To=wo=1,wi =u,y3 =1u s =u"t w5 =026 =u?, (8.4)

where u = £1 and for y3 one may take any square root of u !

Let x5 # 0. Set w; = . Just as before, we get y3 = ¢ /2 and yy, = ¢~
From (9) and (7) one gets x5 = ¢! and 2 = —e~2. All other equations
become identities except (6), (12), (14), that are equivalent to e = 1+¢. We
get a new solution:

1

—1/2 -1 -1 —2
o =wo = 1l,wy =¢,y3 =¢ /,y4:<€ ,T5 =€ ,T = —€ °, (8.5)

where ¢ = (14 +/5)/2.

Denote by TVy (M) the invariants corresponding to solution (8.3) for
u = £1. Let us describe a geometric interpretation of them. Any special poly-
hedron contains only finitely many different closed surfaces. Denote by n.(P)
and n,(P) the total number of surfaces in P having even and, respectively,
odd Euler characteristics.

Lemma 8.1.6. For any special spine P of M we have TV (M) = n.(P) £
no(P).

Proof. There is a natural bijection between closed surfaces in P and black—
white colorings of P with nonzero weights. Indeed, if we paint a surface F' C P
in black, and the complement P\F' in white, we get a coloring £ of P such
that it admits only three types of butterflies: the totally white butterfly
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g

Fig. 8.6. Three butterflies having nonzero symbols
000
000/’
000
111)°
011
011/’

and butterflies

see Fig. 8.6.
Since their symbols
_looo| _|0o00
=000 T 111
and
o1t
171011

are nonzero, the weight w(§) is also nonzero.
Conversely, let € be a black—white coloring of P with a nonzero weight

w(§) = H H We(e)-
)

veV(P) VeeC(P

17k
Ilmn

Denote by F'(§) the union of all black cells in P. Then F'(£) inherits the local
structure of black parts of butterflies. Since w(§) # 0, the butterflies have
nonzero symbols. In the case of solution (8.3), only the butterflies shown in
Fig.8.6 come into consideration. Hence F'(§) is a closed surface.

It turns out that the weight w(§) # 0 of a coloring ¢ is closely related to
the Euler characteristic x(F') of the corresponding surface F' = F(£). Let us
show that w(¢) = uX¥). Denote by ks and k4 the numbers of butterflies in
P having the symbols y3 and y4, respectively. Then F inherits from P the
cell structure with k3 + k4 vertices, (3ks + 4k4)/2 edges, and some number of
2-cells, which we denote by co(F). It follows that x(F) = —k3/2 — k4 + co(F).
Taking into account that w; = wu,y3 = w2, and y, = u™', we get that
w(§) = wiz(F)y?yim — y—ks/2=katea(F) _ 4 x(F)
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To conclude the proof, denote by &1, ..., &, the colorings of P with nonzero
weights. Then w(P) = Y7L w(&) = Y, wXFED) = ng £, for u = +1.

It turns out that the invariants T'Vy (M) admit a very nice homological
interpretation, see [126]. Note that for any compact 3-manifold M the homol-
ogy group Ho(M; Zs) is finite, and any homology class o € Ho(M; Zs) can be
presented by an embedded closed surface. We say that « is even or odd if it
can be presented by an embedded surface in M having an even or odd Euler
characteristic, respectively. Denote by n.(M) and n,(M) the number of even
and, respectively, odd homology classes.

Proposition 8.1.7. For any 3-manifold M we have:

(a) TVL(M)=neM)+n,(M) (= the order of Hy(M; Z2));

(b) TV (M) = n.(M) - n(M);

(¢) In case M is orientable either TV_(M) = TV (M) or TV_(M) = 0
depending on whether or not M contains an odd surface.

Proof. Choose a special spine P of M. Denote by F(P) the set of all closed
surfaces in P. Each surface F' € F(P) represents an element of Hy(P; Zs).
Thus we have a map ¢ : F(P) — Hy(P;Zs) = Ha(M; Zs). Tt is easy to see
that, due to the nice local structure of simple polyhedra, ¢ is a bijection.
We may apply Lemma 8.1.6 and get TV (M) = n.(P) £ no(P). Since P
is a deformation retract of M, we have n.(P) = n.(M),n,(P) = no(M),
that implies (a) and (b). To get (c), consider the map Hy(M; Z3) — Zs that
takes even classes to 0 and odd classes to 1. If M is orientable, the map is
a homomorphism. Hence even elements of Hy(M; Z3) form a subgroup that
either coincides with Hy(M; Z3) or has index 2 (if there is at least one odd
element). It follows that either n, = 0 (and we get TV_(M) = TV, (M)) or
ne =n, (and we get TV_(M) = 0).

Examples. The values of T'Vy-invariants for some 3-manifolds are given
in the following table. The list contains all closed orientable prime manifolds
of complexity < 2 (see Chap. 2), and two nonorientable manifolds: S* x RP?
and K2 x S', where K2 is the Klein bottle.

M TV, |TV_[M TV, |TV_
53 1| 1 |Lss 2 1 2
S2 X Sl 2 2 L572 1 1
RP3 2 | 0 |Lsy 1|1
L3y 1| 1 [L7a 1] 1
L471 2 2 53/Q8 4 4
STxRP?[ 4 | 2 |[K?2xST[ 8 | 4

Note that TV_-invariant distinguishes S? x S! and RP? even though the
manifolds have isomorphic homology groups with coefficients in Z5. Never-
theless, it does not distinguish between L3 ; and S, or some other pairs from
among the manifolds listed above.
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Remark 8.1.8. In view of Proposition 8.1.7, the first five lines of the table
are evident, since the corresponding 3-manifolds are orientable and only RP?
contains an odd surface. Let us explain the last statement. The manifold
S x RP? contains four homologically distinct surfaces that realize elements of
Ho(M; Z3): the empty surface, projective plane {*} x RP?, the torus S x RP?,
and the Klein bottle S'x RP!. The best way to imagine S'x RP' C S' x RP?
is to let a point x € S* move around S!, rotating simultaneously {x} x RP!
inside {z} x RP? such that the total rotation angle would be 180°. Since only
one of the surfaces (projective plane) has an odd Euler characteristic, n, = 1
and n, = 3. It follows from Proposition 8.1.7 that TV, (S* x RP?) = 4 and
TV_(S' x RP?) = 2. The following conjecture was stated by Kauffman and
Lins:

Conjecture [60]. Consider an arbitrary closed 3-manifold M, and let X
be a special spine for M. Let n. be the number of closed surfaces contained in
X that have even FEuler characteristic and n, the number of closed surfaces
in X that have odd Euler characteristic. Then either n, =n, or n, = 0.

Moreover, ne = n, if and only if the same is true for all special spines
of M, and n, = 0 if and only if the values of Turaev—Viro invariants for
0 = (24 1)/4 are integers and equal.

As we have seen above, for orientable manifolds the first part of the con-
jecture is true while the manifold S' x RP? disproves it for the nonorientable
case. The second part of the conjecture is also wrong, see [113] and Sect. 8.1.5.

Let us turn now our attention to solution (8.4). One can easily see that it
gives nothing new, since we get the sum of the TV -invariant and of an order
two invariant uX(). The reason is that if the weight w(¢) of a black—white
coloring ¢ of a special polyhedron P is nonzero, then the black part of P
is either a closed surface or coincides with P. Thus solution (8.4) produces
invariants TV (M) 4+ (£1)X("). On the contrary, the invariants corresponding
to the solution (8.5) are very interesting since they are actually the simplest
nontrivial invariants of Turaev—Viro type. We consider them in Sect. 8.1.3.

8.1.3 Construction and Properties of the e-Invariant

We start with an alternative description of the new invariant. Let P be a
simple polyhedron. Denote by F(P) the set of all simple subpolyhedra of P
including P and the empty set.

Lemma 8.1.9. F(P) is finite.

Proof. 1t is easy to see that if a simple subpolyhedron F' C P contains at least
one point of a 2-component « of P, then o« C F'. It follows that for describing
F it is sufficient to specify which 2-components of P are contained in F. Thus
the total number of simple subpolyhedra of P is no greater than 2", where n
is the number of 2-components in P.
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Let us associate to each simple polyhedron F' its e-weight

we(F) = (=1)VE) x(F)=V(F)

where V(F) is the number of vertices of F', x(F) is its Euler characteristic,
and ¢ is a solution of the equation €2 = £ + 1. One may take ¢ = (1 +v/5)/2
as well as e = (1 —+/5)/2.

Definition 8.1.10. The e-invariant t(P) of a simple polyhedron P is given
by the formula t(P) =} pe rp) we ().

Below we will prove that the e-invariant of a special polyhedron P coincides
with the weight w(P) that corresponds to solution (8.5), see Sect. 8.1.2. Hence
it is invariant under T-moves. Nevertheless, we prefer to give an independent
proof since it reveals better the geometric nature of the invariance.

Theorem 8.1.11. ¢(P) is invariant under T-moves.

Proof. Let a simple polyhedron P, be obtained from a simple polyhedron Py
by the move T'. Denote by Er the fragment of P; which is cut out and replaced
by a fragment E}. of P». It is convenient to assume that the complement
P \Er of Ep and the complement P,\E/. of the fragment E/. do coincide.
Let us analyze the structures of Ep and E/..

The fragment Er consists of two cones and three sheets called wings. Each
cone consists of three-curved triangles. E/. consists of six-curved rectangles,
the middle disc, and three wings. Let us divide the set F(Ps) of all simple
subpolyhedra of P; into two subsets. A simple subpolyhedron F € F(Py) is
called rich (with respect to Er), if F N Er contains all six triangles of Er,
and poor otherwise.

We wish to arrange a finite-to-(one or zero) correspondence between simple
subpolyhedra of P, and those of P; such that the correspondence respects
e-weights.

(a) Let F; be a poor subpolyhedron of P;. Since Er without a triangle is
homeomorphic to B/ without the corresponding rectangle, there exists exactly
one simple subpolyhedron F» of P such that Fy N (P, — Er) = FoN(Py— EY).
Moreover, F5 is homeomorphic to F} and hence has the same e-weight.

(b) Let Fy be a rich subpolyhedron of P;. Then there exist exactly two
simple subpolyhedra Fj and Fj of P, such that Fy N (P, \ Er) = F5N (P2 \
El) = FJ N (P, \ Ef), namely, the one that contains the middle disc, and the
other that does not. The intersection F} N Ep can contain 0, 2, or 3 wings. It is
easy to verify that in all three cases the equation w.(F)) = w.(Fy) + we(Fy)
is equivalent to €2 = £ + 1. See Fig.8.7 for the case of 0 wings: C denotes
the product of weights and symbols that correspond to 2-cells and vertices
outside Ep and Ef..

(¢) We have not considered simple subpolyhedra of P, the intersec-
tions of which with Ef. contain six rectangles and exactly one wing. The
set of such polyhedra can be decomposed onto pairs Fj, Fj such that
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C ce™? C e

Fig. 8.7. The behavior of a rich surface that does not contain wings

—

F;N (P, \ EL) = F) N (P2 \ Ef), and exactly one of the subpolyhedra Fy, Fy
contains the middle disc. For each such pair we have w.(Fj) + w.(F3') = 0.
We can conclude that ¢(Py) = t(Ps).

Theorems 8.1.11 and 1.2.5 show that the following definition makes sense.

Definition 8.1.12. Let M be a compact 3-manifold. Then the e-invariant
t(M) of M is given by the formula t(M) = t(P), where P is a special spine
of M.

Now we relate the e-invariant to the T'V-invariant that corresponds to
solution (8.5) in Sect. 8.1.11.

Proposition 8.1.13. The e-invariant coincides with the T'V-invariant corre-
sponding to solution (8.5).

Proof. We use the same ideas as in the proof of Lemma 8.1.6. Assign to any
black-white coloring £ of a special spine P the union F(£) of all black cells
of P. Note that the black part of any butterfly has a singularity allowed for
simple polyhedra if and only if the corresponding symbol (with respect to
solution (8.5)) is nonzero. Hence the assignment £ — F(£) induces a bijection
between colorings with nonzero weights and simple subpolyhedra of P.

Now, let us verify that the e-weight w.(F) of a simple subpolyhedron
F = F(§) C P coincides with the weight w(§) of the coloring £. Denote
by ks, k4, ks, kg the numbers of butterflies in P with symbols y3, y4, T5, Zg,
respectively. Clearly, kg is the number of totally black butterflies in P and
thus coincides with the number V(F') of true vertices of F. Note that the
first butterfly has three black edges while the other three have four black
edges each. F (&) inherits from P the cell structure with ks + k4 + k5 + kg
vertices, (3ks + 4ky + 4ks + 4ks)/2 edges, and some number of 2-cells that
we denote by co(F). It follows that x(F) = —ks/2 — kg — ks — ke + co(F).
Taking into account that wy = ¢,ys = 5_1/2, ya=x5 =€ ', and g = — 2,
we have w(§) = wiz(F)yggﬂyf“:c’g%}gG = (=1)V@P)X(F)=V(P) Taking sums of
the weights, we get the conclusion.

Example. Let us compute “by hand” the e-invariant of S3. One should
take a special spine of S3, no matter which one. Let us take the Abalone A,
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see Fig.1.1.4. It contains two 2-cells; one of them is the meridional disc D of
the tube. There are three simple subpolyhedra of A:

1. The empty subpolyhedron with the e-weight 1.

2. The whole Abalone with the e-weight (—1)VeX(H)=V(A) = 1 since
V(A)=1and x(A) = 1.

3. The subpolyhedron A\Int D, i.e., the subpolyhedron covered by the
remaining 2-cell. It contains no vertices and has zero Euler characteristic.
Hence it has e-weight 1.

Summing up, we get t(S%) = 1.

One can see from this example that the calculation of the e-invariant is
theoretically simple, but may be cumbersome in practice, especially when the
manifold is complicated. Sokolov wrote a computer program that, given a
special spine, calculates the e-invariant of the corresponding 3-manifold. The
results are presented in Table 8.1.

8.1.4 Turaev—Viro Invariants of Order r» > 3

As we have seen in Sect.8.1.1, the number of variables of the system (8.2)
grows as N where N = 7 — 1 is the number of colors in the palette C
={0,1,..., N — 1}. One may decrease the number of variables by imposing
some constraints on butterflies with nonzero symbols.

Definition 8.1.14. An unordered triple i, j, k of colors taken from the palette
C is called admissible if

li+j>kj+k>ik+i>j (triangle inequalities).
2.1+ 7+ k is even.
3 i+ j+k<2r—4.

Remark 8.1.15. In the original paper [126], where this definition is taken
from, Turaev and Viro used the half-integer palette {0,1/2,...,(r — 2)/2}.
There are some deep reasons behind this choice but we prefer to consider the
integer palette C. In any case, this is only a problem of notation.

Let us give a geometric interpretation of admissibility. Consider a disc D
with three adjacent strips that contain 4, j, and k strings, respectively. Then
the triple (i, 7, k) satisfies conditions 1, 2 if and only if the strings can be
joined together in a nonsingular way as shown in Fig. 8.8.

To be more precise, the united strings should be disjoint and no string
should return to the strip it is coming out of. The third condition ¢ + j + k <
2r — 4 is of technical nature and can be avoided.

Definition 8.1.16. A coloring & of a special polyhedron P is called admissible
if the colors of any three wings adjacent to the same edge form an admissible
triple. The set of all admissible colorings will be denoted by Adm(P).
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Table 8.1. e-Invariants of closed irreducible orientable 3-manifolds up to
complexity 5

C; M t(M) C; M t(M)
0, S3 1 |59 Lizo e+1
02 RP3 e+1] 53 Lis,3 1
03 L3 e+1 |54 Lizs e+1
1h Laa 1 55 Li74 e+1
1z Ls 2 0 |56 Lig,4 1
2y L5 eE+2 |57 L2o,9 e+2
22 L7 e+1 | 5s Lo e+1
23 Lg 3 e+1 | 5o Loz s e+1
24 5% /Qs e+3 | 510 L3 7 e+1
31 Lg 1 1 511 Loz 1
32 Lg 2 1 512 Los7 0
33 Lio,3 0 |513 Las o e+2
34 Li13 1 514 Lag 7 1
35 Lios e+1 |55 Loz s e+1
36 Li3s e+1 |56 Lag s 1
37 SS/QlQ e+3 517 Log, 12 1
44 L7, e+1 |bis L3011 e+2
4o Li12 1 |51 L3112 1
43 Lis3 e+1 |5 L3a 3 1
44 Liss3 e4+1 (521 S%/Qsx Zz e+42
45 Lis4 e+2 522 S%/QiaxZ5 £+2
46 Lie,7 1 523 S°/Que X Z3 £+ 1
47 Li7 5 e+1 |52 S%/Q20  3e+2
4g Ligs e+ 1 [5as S%/Qa0 X Z3 —+2
49 Lig,7 1 526 S%/Dyy  —e+2
410 Lo 1 Sa7 S?/Das e+3
411 S%/Qs x Z3 26 +3|Bog S°/Poy X Z5 €+ 2
412 5% /Que 1 529 S? [ Pys e+1
413 S%/Das 2e+ 3530 S?/PL, e+3
414 53/P24 2 + 3| 531 SS/Plzo 3e+ 2
51 Lg e+1
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Fig. 8.8. Disjoint strings without returns

Similarly, one may speak about admissible butterflies: a colored butterfly

15k

Ilmmn
is admissible if all the triples (i, 7, k), (k,1,m), (m,n,i), (4,1,n) are admissible
(they represent the wings that meet together along the four edges of the

butterfly).
The constraint on butterflies we have mentioned above is the following:

The symbols of nonadmissible butterflies must be zeros.

Another way of saying this is that we define the weight (see Definition 8.1.3)
of a special polyhedron P by taking the sum over admissible colorings only:

wP)=" > w)
¢e Adm(p)

The following nonrigorous considerations show that the system (8.2) (sub-
jected to the admissibility restrictions from Definition 8.1.14) should not have
too many solutions (if any). For simplicity assume that the symbols of all
admissible butterflies are nonzero. Since all equations are quasihomogeneous,
we may assume wg = 1 (see Sect. 8.1.2). Denote by sj the symbol

il

kOEk
kkk ’

0kO

(a) Write down an equation of system (8.2) for the case [ = 0. If j # n or
k # m, all terms in both sides of the equation contain symbols of nonadmissi-
ble butterflies (this is because a triple of the type (0, z,y) is admissible if and

only if x = y). This annihilates the equation. We may assume therefore that
n = j and m = k. Similarly, I’ = z, and we get the equation
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i gklli g k| ik j|lio j|lko k
0kjllzm' n'|  Flzn' m'||z 0 2z||z m 2|’
that after dividing both sides by
i j k| _|ik
zm' | |zn' m
gives
ikl |0 gllko k
0kj| Zlznz||lz m z|

(b) Taking z =0, we get n’ =n = j,m’ =m =k, and

i jk
0k j

’ = S5;Sk-

This converts the preceding equation to sjsp = w.s;s.s,5, or, equiva-
lently, to w, = s; 2.

(c) Next, let us write down the equation of system (8.2) fori = j =k = 0.
The admissibility implies that I’ = m’ = n’ and | = m = n. Taking into

account that

z 11
oLl

011
z U

= S1517,

we get the equation s;sp = > _w,(s;s1)®, which is equivalent to wywy =
>, w (both sums are taken over all z < r — 2 such that the triple (1,1, z) is
admissible). In particular, for I’ =1 and 1 <1 <r — 2 we get the system

WiwW1 = Wo + W2
waw1 = w1 + Ws
Wyr—3W1 = Wr—g + Wr—2
Wr_2W] = Wr—_3

To solve it, present wy in the form

_qz s

wi=—(g+q") = ——— T,
q—q!

where ¢ is a new variable. Since
gt — git ¢ —q - g1 — g+l
1 = 1 (q +q 1) P

q7—q q—q q—q
we get inductively
il —ie1 I —
w= (1)L "% fp1<i<r—2and L% .

q—qt q—qt
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We can conclude that the solutions of the system have the form

i+l gmisl
q—q!
where g runs over all roots of unity of degree 2r.

It follows from the above considerations that system (8.2) is very restric-
tive because a very small part of it allows us to find the weights w; of all
colors and some symbols. It is surprising that any solutions exist! Below we
present solutions found by Turaev and Viro [126]. To adjust our notation
to the original one (see Remark 8.1.15), we adopt the following notational

convention:

i 4

w; = (—1) J1<i<r—2,

k=k/2

for any integer k. Let ¢ be a 2r-th root of unity such that ¢ is a primitive
root of unity of degree r. Note that ¢ itself may not be primitive.
For an integer n set
n —n
) = g
q9—q
Note that all [n] are real numbers and [n] = 0 if and only if n =0 mod r.
Define the quantum factorial [n]! by setting

(]! = [n][n — 1]... [2)[1].

(8.6)

In particular, [1]! = [1] = 1. Just as for the usual factorial, set by definition,
[0]! = 1.
For an admissible triple (4, j, k) put

Aa » A > T Aoa 1/2

[f+g—K!'g+k—a'k+2—J]
(47 +k+1) '

Remark 8.1.17. As we will see later, it does not matter, which square root

of the expression in the round brackets is taken for A(i, j, k). The resulting
3-manifold invariant will be the same.

A(Zv.]vk) = <

Now we are ready to present the solution. The weights of colors from the
palette C = {0,1,...,r — 2} are given by

w; = (—1)"[i +1]. (8.7)
The symbol

i ]k
Ilmmn

i j k
Il mn

of the butterfly
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is given by

175k
Ilmmn

1)z + 11 A(2, 4, k,l,m,n
Ly Dl 1A )

p(= (i) (1)

A(i, g, kylymyn) = gCHTTREEME A5k A7, m,n) AG, 1, n) Ak, 1,m),

(8.8)

where

B (2 (Z J k)) i M —i— i)l [p— =l — Al [r— k]!,

Ilmmn

] ] k o “ T ~ o > > A ~ 7 ~ ~
C <z, (37271)) =h+g+l+m—z)i+k+l+n—2][j+k+m+n—2z],
and the sum is taken over all integer z such that all expressions in the square
brackets are nonnegative. In other words, one should have a < z < 3, where

o=max(i+ ]+ k,i+m—+n,]+1+nk+1+m),
B=min(i+ )+ 1+ m,i+k+1+7,j]+k+m+n)

(it follows from the triangle inequalities that o < f3).

Remark 8.1.18. The bold letter ¢ in the above expression for A(3, j, k,1, m,n)
is the imaginary unit (do not confuse with the symbol ¢ denoting a color from
the palette C). If we replace ¢ by —i, we get a different solution producing
the same 3-manifold invariant. It is because for any coloring with a nonzero
weight the number of butterflies
ik
<l m n)

with an odd number (i +j +k + 1+ m +n) is even.

Why do the presented values of variables form a solution to the sys-
tem (8.2)7 Turaev and Viro proved this by a reference to a paper of Kirillov
and Reshetikhin [64], who had used the so-called Biederharn-Elliot iden-
tity [10,27] to obtain a solution to a similar system. Meanwhile there appeared
many different ways to prove the existence of the invariants. Probably, one of
the simplest approaches is based on remarkable results of Kauffman, Lickor-
ish and others, and belongs to Roberts, see [108] and references therein. An
exhaustive exposition of the subject along with deep connections to quantum
groups, motivating ideas in physics and to other areas of mathematics can be
found in the fundamental monograph [125].
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Definition 8.1.19. The 3-manifold invariant corresponding to the above
solution will be called the order r Turaev—Viro invariant and denoted by
TV,(M).

Remark 8.1.20 (On the Terminology). We distinguish between invari-
ants of Turaev-Viro type and Turaev—Viro invariants TV, (M). The former
correspond to arbitrary solutions (that potentially would be found in future),
the latter are related to the particular solutions given by (8.7) and (8.8). For
example, the e-invariant is of Turaev—Viro type but it is not a Turaev—Viro
invariant.

Remark 8.1.21. One should point out that our exposition of results in [126]
differs from the original approach. In the first place, to simplify the con-
struction, we do not pay any attention to the relative case, which is very
important from the point of view of category theory. In particular, we do
not reveal the functorial nature of the invariants, nor how they fit into the
conception of Topological Quantum Field Theory (TQFT) [7]. On the other
hand, it is sometimes convenient to consider (as we do) absolute invariants of
not necessarily closed 3-manifolds

Secondly, our version of the invariants is S3-normalized, i.e., TV, (S%) = 1
for all ¢g. The invariant | M | presented in [126] for a degree 2r root of unity
q = qo is related to TV, (M) by the formula
qg—q')?

| M |= _{ o TVa(M).

Thirdly, the solution given by (8.7) and (8.8) satisfies additional equations
of the type
o

where ,7,1,m,l’,m’ run over all elements of the palette C and 53 is the
Kronecker symbol. These equations guarantee that the weight of a simple
polyhedron is invariant under lune moves, see Fig. 1.16. Moreover, one can cal-
culate the invariants starting from any simple (not necessarily special) spine
of a manifold. The only difference is that one should take into account the
Euler characteristics of 2-components by defining the weight of a coloring £ by

w© = ]I [T«

n
veV(P) VeceC(P)

il m
zm' 1l

7L m

=4
Zm/ ll J°

ijk

instead of corresponding formula (8.1) for the case of disc 2-components.
Finally, for the solution given by (8.7) and (8.8), the following holds:
there exists a number w (it is equal to —27/(q — ¢~1)?) such that for all j

-1 } :
w; =w WEwi,

(k1)
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where the sum is taken over all k,[ such that the triple (j,k,1) is admissi-
ble. This condition guarantees that performing a bubble move on a simple
polyhedron is equivalent to multiplying its weight by w.

8.1.5 Computing Turaev—Viro Invariants

Just after discovering the invariants, Turaev and Viro calculated all of them
for the sphere S3, real projective space RP3, for S% x S, and the lens space
L3 1. The calculation was facilitated by the fact that these manifolds have
simple spines without vertices. For example, L3 ; admits a spine consisting of
one 2-cell and having one triple circle. It can be presented as the identification
space of a disc by a free action of the group Z3 on the boundary. Sometimes it
is called triple hat. Note that the three wings adjacent to any segment of the
triple circle belong to the same 2-cell, and hence have the same color i € C
(for any coloring). The admissibility conditions (see Definition 8.1.14) imply
that ¢ must be even and no greater than (2r — 4)/3. It follows that

TV,(L3.1) = Zw (8.9)

where the sum is taken over all even ¢ such that 0 < i < (2r —4)/3.

If every simple spine of a given 3-manifold contains vertices, obtaining
explicit expressions for order r Turaev—Viro invariants (as functions on ¢) for
all r is difficult, see [137] for the case of lens spaces. On the other hand, if
r is fixed, the problem has a purely combinatorial nature and can be solved
by means of a computer program. One should construct a special spine of the
manifold and, using formulas (8.6)—(8.8), calculate the weights and symbols.
Then one can enumerate all colorings and find out the value of the invariant
by taking the sum of their weights. Extensive numerical tables of that kind
can be found in [60,113].

Let us make a digression. Soon after the discovery of the invariants, many
mathematicians (and certainly Turaev and Viro) noticed that the invariants
of M were actually sums of invariants of pairs (M, h), where M is a 3-manifold
and h € Hy(M; Z3). We describe this observation in detail. Let £ be an admis-
sible coloring of a special spine P of a 3-manifold M by colors taken from the
palette C = {0,1,..., N —1}. Reducing all colors mod 2, we get a black—white
coloring ¢ mod 2 that happens to be also admissible owing to condition 2
of Definition 8.1.14. As we know from the proof of Lemma 8.1.6, admissible
black—white colorings correspond to black (i.e., colored by the color 1) surfaces
in P or, what is just the same, to elements of Hy(M; Z3). This decomposes
the set of all admissible colorings of P into classes corresponding to elements
of Hy(M; Z5): two colorings belong to the same class Adm(P, h) if their mod
2 reductions determine the same homology class h € Hy(M; Z3) (and hence
the same surface in P).

Assume now that the pair (M, h) and a special spine P of M are given.
Define an invariant TV, (M, h) by setting TV,(M,h) = w(P,h), where the
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h-weight w(P, h) is given by

wPh) = S w).

ce Adm(p,h)

The same proof as given for Theorem 8.1.4 shows that this definition is cor-
rect, i.e., TV,(M,h) does not depend on the choice of P. We need only one
additional observation. Let a special spine P, of M be obtained from a spe-
cial spine P; by exactly one T-move, i.e., by removing a fragment Ep and
inserting a fragment E’., see Definition 1.2.3. For any admissible coloring £ of
Py, let Col¢(P2) be the set of admissible colorings of P that coincide with &
on P\Er = P,\E/.. Then all the colorings in Col¢(P,) determine the same
homology class h € Ho(M; Zs) as the coloring £.

It follows from the definition of TV, (M, h) that the Turaev—Viro invariant
TV, (M) is the sum of TV (M, h) taken over all h € Hy(M;Zs). Especially
important is the homologically trivial part TVy(M)o of the Turaev-Viro
invariant that corresponds to the zero element of Ho(M;Zs). Recall that
h € Hy(M;Z5) is even or odd, if it can be realized by a closed surface in
M having the Euler characteristic of the same parity. We follow [113] and
denote by TV,(M), the odd part of TV,(M), that is equal to the sum of
TV,(M,h) over all odd elements h € Hy(M; Zs). Similarly, by TV, (M), we
denote the sum of TV, (M, h) taken over all even elements h € Hay(M; Zs)
different from 0. Clearly, TV, (M) = TV, (M)o + TVy(M)1 + TV, (M)a.

Remark 8.1.22. Note that since any special spine P C M is two-dimensional,
the 2-cycle group C(P, Z3) coincides with Hy(P; Zs). Therefore, the mod 2
reduction of an admissible coloring ¢ € Adm(P) determines the trivial element
of Hy(P; Z5) if and only if just even colors 0,2, ... have been used. Thus, the
only difference between TV, (M) and its homologically trivial part TV, (M)o
is that we consider all admissible colorings in the first case and only even ones
in the second.

At the end of the book we reproduce from [116] (with notational modifi-
cations) tables of Turaev—Viro invariants of order <7 and their summands for
all closed orientable irreducible 3-manifolds up to complexity 6 (Table A.1;
see Chap.2 for the definition of complexity). We subject ¢ to the following
constraint: ¢ must be a primitive root of unity of degree 2r. This constraint is
slightly stronger than the one in the definition of Turaev—Viro invariants, see
Sect. 8.1.4. Nevertheless, we do not lose any information because of the follow-
ing relation proved in [116]: TV, (M), = (=1)*TV_,(M),, where v € {0, 1,2}.

The invariants are presented by polynomials of ¢q. This presentation is much
better than the numerical form since we simultaneously encode the invariants
evaluated at all degree 2r primitive roots of unity, and avoid problems with the
precision of calculations. For the sake of compactness of notation, we write

o) instead of qk + q_k. For instance, we set 09 = q + q_l,ag = q2 + q_2,
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Table 8.2. Turaev—Viro invariants of order r < 7 and their summands for closed
orientable irreducible 3-manifolds of complexity < 2

M |v\r| 3 4 5 6 7
01 1 1 1 1

s 1110 0 0 0 0
210 0 0 0 0
! 1 1 1 1
0 1 2 0'2—|—2 4 —0’3—|—20’2+3

RP3 |1 |-1| -1 |—-02—-2| =201 | 03—202-3
210 0 0 0 0
S0 |—01+2 0 —201 +4 0
011 1 o2 + 2 3 o2+ 2

Ls;p | 110 0 0 0 0
210 0 0 0 0
Sl 1 o2+ 2 3 o2+ 2
01 2 1 4 o2 + 2

Lip |10 0 0 0 0
211 0 1 0 o2 +2
S 2 2 2 4 200 + 4
01 1 0 1 —03+ 202+ 3

Lso | 1|0 0 0 0 0
210 0 0 0 0
! 1 0 1 —o3+ 202+ 3
0 1 1 o2+ 3 1 —03 + 202 + 3

Lsi | 1]0 0 0 0 0
210 0 0 0 0
Z 1 1 o2+ 3 1 —03 + 202 + 3
011 1 o2 + 2 1 0

Lo | 110 0 0 0 0
210 0 0 0 0
St 1 o2 + 2 1 0
011 2 o2+ 2 4 1

Lgz | 1]0 0 0 0 0
211 2 o2+ 2 0 1
S 2 4 200 + 4 4 2
01 4 o2 +4 10 200 + 7

S3/Qs| 1|0 0 0 0 0
213 6  [300+12] 18 602 + 21
Sl 4 10 |402+ 16| 28 802 + 28

For each M the first three lines present TV, (M), ; the fourth line contains the values
of TV, (M). For brevity, we write oy instead of ¢® + ¢=*
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and so on. For your convenience, a small part of the table (for manifolds of
complexity < 2) is given.
Ttems (1-4) below are devoted to analysis of the table and commentaries.

(1) Selected testing has shown that the table agrees with the ones presented
in [60,61,63], as well as with the above-mentioned calculations made by
the authors of the invariants.

(2) The manifold 415 = S3/Q16 disproves the second part of the Kauffman—
Lins Conjecture (see Remark 8.1.8). We see from Table A.9 that T'V,
(83/Q16) is equal to 6 for every primitive root of unity ¢ of degree 8,
including ¢ = exp((2 £ 1)m/4). Nevertheless, since TV, (S®/Q16)1 # 0,
there is at least one surface with odd Euler characteristic. Therefore, n, #
0.

(3) Let us call 3-manifolds twins if their Turaev—Viro invariants of order < 7
have the same triples of summands. The distribution of twins is shown in
Fig. 8.9. Each line of the table consists of twin manifolds. Cells painted in
gray contain genuine twins, i.e., manifolds having the same TV-invariants
of all orders. They cannot be distinguished by Turaev—Viro invariants.

Let us comment on the table. There are no twins up to complexity 3. First two
pairs of twins appear on the level of complexity < 4: manifold 34 (= L11,3) is
a twin of 49 (= L11,2), and 3¢ (= L13,5) is a twin of 43 (= L13,3). At the level
of complexity < 5 there appear new twin pairs and twin triples, and at the
level < 6 we can find even a 7-tuple of twins.

Note that TV, (M), and TV, (M), are not invariants of Turaev—Viro type
(see Definition 8.1.5) since the constraints on mod 2 reduction of colorings

0 I 2 3 4 5 6
0, 16 517 6 626 657 628
3, 6,
3 | 4 9] 613 014
3(, 3 5 039
47| 50 55
49 S5 6;
5i5] 0o
50| 01
% S| 6 6, Oy 033
016 617
023 N
0% 667
Ocs 069
650 621

Fig. 8.9. Each line of the table contains twin manifolds. Cells painted in gray
contain genuine twins (manifolds having the same TV-invariants of all orders)
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have global nature. On the other hand, one can extract from Table A.9
that TV, (M), and TV, (M), add actually nothing to information given by
TV,(M)o and TV,(M). For that reason, for manifolds of complexity 6 we
include only values of TV, (M) and TV, (M)o.

(4) Analyzing the tables, we can notice that TV3(M)TV,(M)o = TVy(M)
for odd r the following holds: In fact, this equality is always true and fol-
lows from the similar formula of Kirby and Melvin for Reshetikhin—Turaev
invariants [63], and the Turaev—Walker theorem saying that each Turaev—
Viro invariant is equal to the square of the absolute value of the corresponding
Reshetikhin-Turaev invariant (see, for instance, [108,125]).

(5) Tt is not difficult to observe that all coefficients in the polynomials
presenting Turaev—Viro invariants in our tables are integers. This is not an
accident. Robers and Masbaum gave in [75] an elegant proof that values of
Turaev—Viro invariants are algebraic integers.

(6) As we have mentioned above, there exist explicit expressions for
Turaev—Viro invariants for lens spaces. Using Yamada’s formulas [137], Soko-
lov found a simple solution to the following interesting problem: Which lens
spaces can be distinguished by Turaev-Viro invariants?

For any integer v define a characteristic function h, : Z — Zs by setting
hy(k) =1if k = £1 mod v, and h, (k) = 0, otherwise.

Theorem 8.1.23. [117] Lens spaces Ly, 4, and Ly, 4, have the same Turaev—
Viro invariants of all orders if and only if py = p2 and for any divisor v > 2
of p1 we have hy(q1) = hy(g2).

Sokolov noticed also that if p; # ps, then Ly, 4, and Ly, 4, can be distin-
guished by Turaev—Viro invariant 7'V, of some order » < 2R, where R is the
minimal natural number such that R is coprime with p1, p2, and p; # p2 mod
R. In case p; = po it is sufficient to consider only invariants of order r < p;.
If p is prime, then the criterion is especially simple.

Corollary 8.1.24. If p is prime, then Ly 4, and Ly, 4, have the same Turaev—
Viro invariants if and only if for i = 1,2 either ¢; = £1 mod p or ¢; # +1
mod p.

Note that all lines of the table in Fig.8.9 except the last three contain only
lens spaces. Thus Theorem 8.1.23 and the above corollary are sufficient for
selecting genuine twins among them. See Remark 8.2.15 in Sect.8.2 for an
explanation why the last three lines contain genuine twin pairs.

Remark 8.1.25. It is interesting to note that if p is prime, then Reshetikhin—
Turaev invariants can distinguish any two nonhomeomorphic lens spaces Ly, 4,
and Ly, 4,, see [51].
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8.1.6 More on e-Invariant

Comparing Tables 8.1 and A.9, one can see that e-invariant coincides with
the homologically trivial part 7'V, (M )g of order 5 Turaev—Viro invariant. Let
us prove that.

Theorem 8.1.26. [89] Let M be a closed 3-manifold. Then e(M) = TV, (M)o,
where e = (14++/5) /2 for ¢ = exp(£Zi) ande = (1—V/5)/2 for g = exp(+371).

Proof. The values of ¢ and e presented above are related by the equality
e =¢%>+ 1+ ¢ 2 Indeed, ¢'° =1 implies
¢oa

=Tl IS R AR

which is equivalent to (¢> + 1+ ¢~ 2)? = (¢> + 1+ ¢~2) + 1. Recall that for
calculating e-invariant we use two colors: 0 and 1. For calculating TV, (M), in
the case r = 5 we use even colors from the palette {0,1, 2,3}, i.e., two colors
0 and 2 (see Remark 8.1.22). It remains to verify that the correspondence
(0,1) — (0,2) transforms weights of colors and symbols for e-invariant (see
solution (8.5) on page (389)) to those for TV, (M)o (see formulas (8.7) and
(8.8) on page 399). For instance, the weight of the color 1, in the case of e-
invariant, equals € while the weight of the color 2, in the case of Turaev—Viro
invariant, equals ¢% + 1+ ¢~ 2.

Let us discuss briefly the relation between e-invariant and TQFT. A three-
dimensional TQFT is a functor F from the three-dimensional cobordism cate-
gory to the category of vector spaces. The functor should satisfy some axioms,
see [7]. In particular, “quantum” means that F takes the disjoint union of
surfaces to the tensor product of vector spaces. In our case the base field
corresponding to the empty surface is the field R of real numbers. It follows
that to every closed 3-manifold there corresponds a linear map from R to R,
that is, the multiplication by a number. This number is an invariant of the
manifold.

As explained in [126], Turaev—Viro invariants fit into conception of TQFT.
The only difference is that instead of the cobordism category one should con-
sider a category whose objects have the form (F,I"), where F' is a surface
and I is a fixed one-dimensional special spine of F. Here a one-dimensional
special polyhedron is a regular graph of valence 3. Morphisms between objects
(F_,I'_),(F4,I'y) have the form (M,i_,i4), where M is a 3-manifold with
boundary OM presented as the union of two disjoint surfaces 0_ M, 0, M+,
and iy : Fy — 0+ M are homeomorphisms.

The e-invariant, as any other Turaev—Viro type invariant, admits a similar
interpretation. From general categorical considerations (see [126, Sect. 2.4]) it
follows that there arises a homomorphism @ from the mapping class group of
the two-dimensional torus 7% = S* x S! to the matrix group G'Ls(R). Given a
homomorphism h : T? — T2, we construct the cobordism (T2 x I,i_, i, (h)),
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Fig. 8.10. Five black-white colorings for a spine of a torus

where i : T? — T? x {0} C T? x I is the standard inclusion and i (h) : T? —
T?x {1} C T?xI is the inclusion induced by h. We assume that T2 is equipped
with a fixed special spine ©. By definition, put ®#(h) = F(T? x I,i_, i, (h)),
where F is the functor corresponding to the e-invariant. Then @(h) is a linear
map R®> — R5. The dimension is 5, since © admits exactly five black—white
colorings (see Fig.8.10) that are admissible in the following sense: one black
and two white edges never meet at the same vertex.

The mapping class group of the torus is generated by twists 7, and 7
along a meridian and a longitude, respectively. The twists satisfy the rela-
tions 7, TiTm = TiTmT; and (TmTle)4 = 1. Denote by a and b the matrices
of the corresponding linear maps R® — R®. One can verify that a® = 1,
(aba)? = 1 and that the group (a,b | aba = bab, (aba)?® = 1,a®> = 1) is
finite. Actually, the presentation coincides with the standard presentation
{a,b | aba = bab, (a*b)? = a® = 1) of the alternating group As.

The following theorem is a direct consequence of this observation [89]:

Theorem 8.1.27. Let F' be a closed surface and n a nonnegative integer.
Denote by M(F,n) the set of all Seifert manifolds over F with n exceptional
fibers. Then the set {t(M), M € M(F,n)} of the values of the e-invariant is
finite.

The number 60™ (60 is the order of the alternating symmetric group As)
serves as an upper estimate for the number of values of t(M). Certainly, the
estimate is very rough. More detailed considerations show that for lens spaces
the number of values of e-invariant is equal to 4. We give without proof an
exact expression for the e-invariant of the lens space L(p, q).

Theorem 8.1.28.
1, ifp==+1 mod 5;
e+1, if p=42 mod 5;

HULp,q) = e+2, ifp=0mod5 and ¢ = +1 mod 5;
0, if p=0mod 5 and q==+2 mod 5.
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8.2 3-Manifolds Having the Same Invariants
of Turaev—Viro Type

This section is based on the following observation of Lickorish [69]: if two
3-manifolds M7, My have special spines with the same incidence relation
between 2-cells and vertices (in a certain strong sense), then their Turaev—Viro
invariants of all orders coincide. Manifolds having spines as above are called
similar. We construct a simple example of similar 3-manifolds with different
homology groups, and present a result of Nowik and the author [88] stating
that under certain conditions similar manifolds are homeomorphic.

Let P be a special spine of a 3-manifold M and V = V(P) the set of its
vertices. Denote by N(V, P) a regular neighborhood of V in P. It consists
of some number of disjoint copies of the butterfly E. The intersection of the
union of all open 2-cells in P with each butterfly consists of exactly six wings.

Definition 8.2.1. Two special polyhedra Py and P> are called similar if there
exists a homeomorphism ¢ : N(V(Py), P1) — N(V(P2), P2) such that for any
two wings wy and we of Py the following condition holds: wy and ws belong
to the same 2-cell of Py if and only if o(w1) and @(ws) belong to the same
2-cell of Py. The homeomorphism ¢ is called a similarity homeomorphism.

A good way to think of it is the following: let us paint the 2-cells of P; in
different colors and the corresponding 2-cells of P, in the same colors. Then
the similarity homeomorphism ¢ is required to preserve the colors of wings.
In other words, P, must contain exactly the same colored butterflies as Ps.

Definition 8.2.2. Two 3-manifolds My and Ms are said to be similar if a
special spine of My is similar to a special spine of Ms.

Examples of similar but nonhomeomorphic 3-manifolds will be presented
later. The following proposition is based on an idea of Lickorish [69]. Tt is
related to all invariants of Turaev—Viro type, not only to Turaev—Viro ones
(see Definition 8.1.5 and Remark 8.1.20).

Proposition 8.2.3. Similar manifolds have the same invariants of Turaev—
Viro type.

Proof. Let us look carefully through the construction of Turaev—Viro type
invariants (Sect.8.1.1). We come to the conclusion that all what we need to
know to calculate the invariants is just the number of vertices and 2-cells, and
the incidence relation between vertices and 2-cells, see Definition 8.2.1. For
similar spines these data coincide and hence produce the same invariants.

Below we describe moves on special polyhedra and moves on manifolds
that transform them into similar ones. We start with moves on manifolds.

Let M be a (not necessarily orientable) 3-manifold and F C Int M a
closed connected surface such that F' is two-sided in M and x(F) > 0. The
last condition means that F is homeomorphic to S?, RP?, T? = S' x S', or
to the Klein bottle K2. Choose a homeomorphism 7 : F — F such that:
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(1) If F = S?, then r reverses the orientation.
(2) If F = RP?, then r is the identity.
(3) If F =T? or F = K?, then r induces multiplication by —1 in H;(F; Z).

It is clear that r is unique up to isotopy. In case (3) one can explicitly
describe it as follows: present the torus or the Klein bottle as a square with
identified opposite edges. Then r is induced by the symmetry of the square
with respect to the center.

Now cut M along F' and repaste the two copies of F' thus obtained ac-
cording to the homeomorphism . We get a new 3-manifold M;.

Definition 8.2.4. We say the new 3-manifold My arising in such a way is
obtained from M by the manifold move along F'.

Remark 8.2.5. The manifold move along RP? does not change the manifold,
and neither does the move along any trivial (i.e., bounding a ball) 2-sphere.
Suppose F' = T? and F bounds a solid torus in M. Since r : T? — T? can
be extended to the interior of the solid torus, we have M; = M. The same is
true for any Klein bottle that bounds in M a solid Klein bottle S'x D2,

Now let us turn our attention to moves on special polyhedra. Let G be a
connected graph with two vertices of valence 3. There exist two such graphs:
a theta-curve (a circle with a diameter) and an eyeglass curve (two circles
joined by a segment). Choose a homeomorphism ¢ : G — G such that:

(1) If G is a theta~curve, then p = g1, where p; : G — G permutes the vertices
and takes each of the three edges into itself.

(2) If G is an eyeglass curve, then o = go, where g : G — G leaves the joining
segment fixed and inverses both loops, see Fig. 8.11.

Definition 8.2.6. An one-dimensional subpolyhedron G of a special polyhe-
dron P is called proper if a regular neighborhood N(G,P) of G in P is a
twisted or untwisted I-bundle over G. If N(G,P) ~ G x I, then G is called
two-sided.

Let G C P be a two-sided theta-curve or an eyeglass curve in a special
polyhedron P. Cut P along G and repaste the two copies of G thus obtained
according to the homeomorphism p. We get a new special polyhedron P;.

Fig. 8.11. Involution p on the theta-curve and eyeglass curve
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Definition 8.2.7. We say the new special polyhedron Py is obtained from P
by a spine move o; along G, where i =1 if o =01 and i =2 if 0 = 2.

Proposition 8.2.8. Spine moves transform special polyhedra to similar ones.

Proof. Let G C P be a two-sided theta-curve or a two-sided eyeglass curve
in a special polyhedron P. The edges of G decompose some 2-cells of P into
smaller parts that are glued together to new 2-cells. Since p takes each edge of
G to itself, the boundary curves of the new 2-cells run along the same edges as
before, although may pass along them in a different order. Nothing happens
near vertices. It follows that the new special polyhedron is similar to P.

Recall that we have two types of spine moves: theta-move o7 and glasses-
move os. It is convenient to introduce the third move o3.
Let G C P be a proper theta-curve with edges [y, ls,[3 such that

(1) G separates P.
(2) 11 and I belong to the same 2-cell C' of P.

Choose a homeomorphism o3 : G — G such that p3 leaves I3 fixed and
permutes [; and lp. Cut P along G and repaste the two copies of G thus
obtained according to p3. We say that the new special polyhedron P; arising
in such a way is obtained from P by the move os.

Lemma 8.2.9. o3 can be expressed through o1 and os.

Proof. Let ly, 15 be the two edges of G which are contained in the same 2-cell
C such that o3 transposes them. Then there exists a simple arc [ C C' such
that NG = 0l and [ connects I; with . Consider a regular neighborhood
N = N(GUI) of GU! in P. Since G separates P, it has a neighborhood
homeomorphic to G x [0,1]. Hence N can be presented as G x [0,1] with a
twisted or an untwisted band B attached to G x {1}, see Fig.8.12.

180°

Fig. 8.12. Two types of N = (G x [0,1]) U B; the rotation by 180° determines a
homeomorphism of N
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Fig. 8.13. Spine move across e: we cut out the region A and paste it back by
a homeomorphism that permutes the white and black vertices and is invariant on
edges

If the band is untwisted, then N is bounded by G; and G2, where G,
is a theta-curve isotopic to G and Gs is an eyeglass curve. There exists a
homeomorphism h : N — N such that hlg, = 03 and h|g, = 02 (h can
be visualized as the symmetry in the vertical plane shown on Fig.8.12). It
follows that the move o3 along G1 (and along G) is equivalent to the move oy
along Ga.

Let the band be twisted. Then N is bounded by two theta-curves G; and
Gs, where (G is isotopic to G. There exists a homeomorphism h : N — N
(this time the rotation by 180° around the vertical axis) such that h‘Gl = 0103

and h|G2 = 01. Hence, the superposition of the moves o1 and o3 along Gy is

equivalent to the move oy along Gy. Taking into account that ¢ = 1, we can
conclude that the move o3 along G is equivalent to the superposition of the
move o7 along Gy and the move o; along Gs.

Suppose the boundary curve of a 2-cell C' of a special spine P passes along
an edge e of P three times. Choose two points on e and join them by three
arcs in C' as it is shown on Fig.8.13. The union G of the arcs is a proper
two-sided theta or an eyeglass curve in P. One can consider the spine move
along G. To distinguish this type of spine move we supply it with a special
name.

Definition 8.2.10. Let G be a proper two-sided theta-curve or an eyeglass
curve in a special polyhedron P such that both vertices of G lie in the same
edge. Then the spine move along G is called a spine move across e.

Our next goal is to prove that spine moves induce moves on manifolds,
and vice versa, manifold moves can be realized by spine moves.

Lemma 8.2.11. Let G be a proper theta or an eyeglass curve in a special
spine P of a closed 3-manifold M. Then there exists a closed connected surface
F C M such that x(F) >0, FNP =G, and F is transversal to the singular
graph SP of P.



8.2 3-Manifolds Having the Same Invariants 413

Proof. Let N = N(P, M) be a regular neighborhood of P in M. Present N
as the mapping cylinder Cy = P U (ON x [0,1])/ ~ of an appropriate locally
homeomorphic map f : N — P. Then Fy = (f~1(G) x [0,1])/ ~ is a surface
in N such that

(1) FyNON =0F,, F; NP =G, and F is transversal to SP.
(2) G is a spine of Fy.

To obtain F, attach disjoint 2-cells contained in the 3-cell M \ N to the
boundary components of Fj. Since x(F1) = x(G) = —1, we have x(F') > 0.

Proposition 8.2.12. Let P be a special spine of a closed 3-manifold M, and
let G C P be a two-sided theta-curve or a two-sided eyeglass curve. Denote by
Py the special polyhedron obtained from P by the spine move along G. Then

(1) Py is a spine of a closed 3-manifold M, .
(2) My can be obtained from M by a manifold move.

Proof. Let FF C M be the surface constructed in Lemma 8.2.11. Since G is two-
sided, F' is also two-sided. The homeomorphism ¢ : G — G can be extended
to a homeomorphism r : F — F. It is clear that r satisfies conditions (1)—(3)
preceding Definition 8.2.4 of a manifold move. Denote by M; the 3-manifold
obtained from M by the manifold move along F. Since r| o = 0, P1 is a spine
of M1 .

Proposition 8.2.13. Let a closed 3-manifold M be obtained from a closed
3-manifold M by a manifold move along a surface FF C M. Then M and M,
are similar.

Proof. Let us construct a special spine P of M such that G = PN F is a
proper two-sided theta-curve. To do it, remove an open ball D3 from M such
that D = D3 N F consists of one open disc if F = T2, K2, and of three open
discs if F' = S2. We do not take F' = RP? since in this case the manifold move
is trivial. Denote by Fj the surface F'\ D. Starting from F; x 0I, collapse
a regular neighborhood N = F; x I in M \ D? onto G x I, where G is a
theta-graph in Fj. The collapsing can be easily extended to a collapsing of
M \ D3 onto a special spine P D G x I.

Apply to P the spine move along G. It follows from Proposition 8.2.12
that the special polyhedron P; thus obtained is a spine of Mj. Since P and
Py are similar, the same is true for M and M;.

Example 8.2.14. We are ready now to construct two similar manifolds with
different homology groups. Take M; = S! x S! x S and consider the torus
T? = S x S'x {*} € M. To construct M, perform the manifold move on M;
along T?2. By Proposition 8.2.13, My is similar to M;. A simple calculation
shows that Hl(Ml; Z) =Z®7D Z, and Hl(MQ; Z) = ZQ D ZQ e 7.
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Remark 8.2.15. According to Preposition 8.2.3, manifolds M7 and M> above
have the same Turaev-Viro invariants. For instance, if ¢ = exp(%i), then
TV,(My) =TV, (M) = —63¢>+189¢* + 378 + 189¢~2? — 63¢ >, see Table A.1,
where M;, M, have names 67, 671, and Fig.8.9, where they are shown as
genuine twins. Manifolds 645, 667 as well as 6gg, 669 occupying the neighboring
lines, also form genuine twin pairs since they are related by the same manifold
move.

It is interesting to recall here that Turaev—Viro invariants of order 2 de-
termine the order of the second homology group with coefficients Zs, see
Sect. 8.1.7. This agrees with the observation that Ho(My; Z2) = Hao(Ma; Zs) =
Zy ® Zy @ Zs.

As we have claimed at the beginning of this section, under certain condi-
tions similarity of 3-manifolds implies homeomorphism. The idea of the proof
is to transform a special spine P; of the first manifold into a similar special
spine P, of the second one step by step. Our first goal is to define graph mowves
for transforming the singular graph of P; to the one of P;.

Let I' be a finite (multi)graph. Fix a finite set A. By a coloring of I" by
A we mean a map ¢ : E(I') — A, where E(I') is the set of all open edges
of I'. Denote by V(I') the set of vertices of I" and by N(V,I") a regular
neighborhood of V' in I'. The intersection of open edges with N(V, I") consists
of half-open 1-cells, which are called thorns.

Definition 8.2.16. Two colored graphs 17 and I35 are called similar, if there
exists a homeomorphism ¢ : N(V(I1),I1) — N(V(I3),I3) preserving the
colors of thorns. The homeomorphism ¢ is called a similarity homeomorphism.

Let I" be a colored graph. Choose two edges e; and eg of the same color and
cut each of them in the middle. Repaste the four “half edges” thus obtained
into two new edges which do not coincide with the initial ones.

Definition 8.2.17. We say the new colored graph Iy arising in such a way is
obtained from I' by a graph move along e; and es. The graph move is called
admissible, if I and Iy are connected.

Remark 8.2.18. For any given e; and ey there exist two different graph
moves along e; and es. Suppose I' is connected and I' \ Int (e; U e2) con-
sists of two connected components such that each of them contains one vertex
of each edge. Then precisely one of the moves is admissible, see Fig. 8.14. If
I'\ Int (e; Ueg) is connected, then both moves are admissible.

Lemma 8.2.19. Let I7 and Iy be similar colored graphs. If they are con-
nected, then one can pass from I to I's by a sequence of admissible graph
moves.
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Fig. 8.14. Admissible and nonadmissible graph moves

Proof. 1t follows from Definition 8.2.16 that there exists a homeomorphism
¢ N(V(I1),I1) — N(V(Iv),I3) preserving the colors of thorns. We call
an edge e in I correct if ¢ maps the two thorns ¢; and t; contained in
it into the same edge f in I,. The thorns ¢; and to, the edge f and the
thorns o(t1),¢(t2) C f are also called correct. The homeomorphism ¢ can be
extended to an edge e if and only if e is correct, so to prove Lemma 8.2.19
it is sufficient to show that the number of correct edges can be increased by
admissible graph moves on I} and I5.

Let ¢t; be an incorrect thorn in I} and let to,t3,...,t2, be all other
incorrect thorns of the same color (say, red). We shall say that a thorn ¢;,
2 < i < 2n, is good (with respect to t1), if ¢; and ¢; belong to the same edge
or if they can be transferred to the same edge by an admissible graph move on
I'y. Denote by T the set {r; = ¢(t;), 1 < i < 2n} of all red incorrect thorns
in I's. We shall say that a thorn 7;, 2 < ¢ < 2n, is good, if 7y and 7; belong to
the same edge or if they can be transferred to the same edge by an admissible
graph move on I5.

Consider two subsets A1 and As of the set T'. The subset A; C T consists of
the images of good thorns in 7, the subset Ay C T is the set of all good thorns
in I's. Let #X denote the number of elements in X. Since any red incorrect
edge in Iy and I contains at least one good thorn, we have #A4; > n and
#As > n. Note that #T = 2n and, because ¢; and 71 = @(t1) are not good,
71 does not belong to A; U As. Hence, #(A; U A2) < 2n, and Ay N Ay # 0.
We can conclude that there exist ¢ and j, 2 < 4, j < 2n, such that ¢; and
7; are good. By definition of good edges, we can perform admissible graph
moves such that after these moves ¢; and ¢, belong to the same edge and 7
and 7o also belong to the same edge. The moves are performed along incorrect
edges. Hence, all correct edges are preserved, but now a new correct edge has
appeared (just the one containing ¢ and t2).

Our next step is to prove Proposition 8.2.22 below stating that under
certain conditions any similarity homeomorphism between neighborhoods of
vertices of special spines can be extended to the union of edges. We need two
lemmas.
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Lemma 8.2.20. Let P be a special spine of a closed 3-manifold M. Suppose
that every surface F C M with x(F) > 0 separates M. Then each proper theta
or eyeglass curve G C P separates P.

Proof. Let F C M be the surfaces constructed in Lemma 8.2.11. Since F
separates M and P is a spine of M, I' = F' N P separates P.

Suppose P is a special spine of a closed 3-manifold M. Let us color the
2-cells of P in different colors. At each edge of P three 2-cells meet, and
so to each edge there corresponds some unordered triplet of colors (possibly
with multiplicity). We call this triplet the tricolor of the edge. Thus, we may
consider SP as a colored graph. Note that each spine move on P induces an
admissible graph move on SP. It turns out that under certain conditions all
admissible graph moves can be obtained in this way.

Lemma 8.2.21. Let P be a special spine of a 3-manifold M. If every surface
F C M with x(F) > 0 is separating, then each admissible graph move v on
SP is induced by a spine move on P.

Proof. Let v be performed along edges e; and e;. Then e; and ey have the
same tricolor. Connect the middle points of e; and ey by three disjoint arcs
l; C P (j=1,23) in such a way that G = l; Uly Ul3 is a proper theta-
curve. If the tricolor has multiplicity, this is also possible. By Lemma 8.2.20,
G separates P into two parts such that each part contains one vertex of ey
and one vertex of es. Denote by o7 the spine move along G. Then o; induces
an admissible graph move along e; and es. Since such a move is unique (see
Remark 8.2.18), it coincides with +.

Recall that if a closed 3-manifold M is irreducible, then any compressible
torus or Klein bottle in M bounds a solid torus or Klein bottle, respectively.
There exist no compressible projective planes at all. It follows that if an irre-
ducible M contains no closed incompressible surfaces with nonnegative Euler
characteristic, then the following holds:

(1) Every surface F' C M with x(F) > 0 separates M.
(2) Every manifold move on M produces a homeomorphic manifold, see
Remark 8.2.5.

Proposition 8.2.22. Let M; and My be similar closed 3-manifolds. Suppose
M is irreducible and does mot contain closed incompressible surfaces with
nonnegative Fuler characteristic. Then there exist special spines P; of M;
(1 = 1,2) and a homeomorphism 1 : Ny USP, — Ny U SPy such that ¥|n, :
Ny — Ny is a similarity homeomorphism, where N; = N(V(P;), P;).

Proof. Let ¢ : Ni — N3 be a similarity homeomorphism, where P; and P;
are special spines of My and Ms, respectively. We imagine the 2-cells of P;
and P, as being painted in different colors such that ¢ preserves the colors of



8.2 3-Manifolds Having the Same Invariants 417

wings. As above, we paint also each edge in the corresponding tricolor. Then
 induces a similarity homeomorphism between SP; and SPs. If all edges of
S P, are correct, then ¢ can be extended to a homeomorphism v satisfying the
conclusion of the proposition. If not, we use Lemma 8.2.19 to correct them by
a sequence of graph moves. By Lemma 8.2.21 this sequence can be realized by
a sequence of spine moves. It remains to note that each move on a spine of M,
produces a spine of the same manifold, so we do not violate the assumption
on M.

Let P, and P, be special spines of My and Ms, and let a homeomorphism
Y : Ny USP; — Ny USP, induce a similarity homeomorphism 1)’ between
N1 = N(V(P1)7P1) and N2 = N(V(PQ),PQ) Identify N1 USPl and NQUSPQ
via ¢. We obtain two special spines P, and P, such that their singular graphs
and wings coincide.

Let e be an edge of P;. It contains two thorns t1,t5. Let w( 2 w2 , W ) be
the wings adjacent to ¢;, i = 1,2. A regular neighborhood N(e\Int (t1 Utg) P)
of a middle part of e in P, is homeomorphic to Y x I, where Y is a wedge of
three segments. Hence, we have a natural bijection ai. : {wgl),wgl),wgl)} —

{w§2) éz) §2)}. In the same way a direct product structure on N(e \

Int (1 U tg),Pg) determines a natural bijection ag. : {wgl),wél),wél)} —
{w(2) w2 §2)}. Denote by . the permutation a,'a;..

Definition 8.2.23. An edge e is called even (odd) if B. is an even (odd)
permutation.

Let C be a 2-cell of P;. Denote by E¢c the collection of edges incident to
C. We allow multiplicity, so if the boundary curve of C' passes along an edge
e two (three) times, then e is included in E¢ two (three) times. Note that Ex
coincides with the set of edges incident to the 2-cell of P, having the same
color.

Lemma 8.2.24. For any 2-cell C of Py the collection Ec contains an even
number of odd edges.

Proof. Regular neighborhoods N(V(F;), M;) (i = 1,2) consist of 3-balls.
Choose orientations of the 3-balls such that the similarity homeomorphism
' N(V(P1),P1) — N(V(P), P,) is extendible to an orientation preserv-
ing homeomorphism between N(V(Py), M;) and N(V(Py), Ms). The orienta-

tions induce a cyclic order on the set {w(J ) wéj ) éj )} of wings adjacent to

each thorn of P; or P,. We shall say that an edge e is om'entation reversing
with respect to P;, if the corresponding bijection a;. {w(l) ,w:(,,l)} —
{w?) ég) §2)} preserves the cyclic order, ¢« = 1, 2. Since the boundary curve
of each 2-cell in a 3-manifold is orientation preserving, E¢ contains an even
number of orientation reversing edges with respect to P; and an even number
of orientation reversing edges with respect to P,. It remains to note that e is
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odd if and only if e is orientation reversing with respect to one of spines P,
P5, and orientation preserving with respect to the other.

Theorem 8.2.25. Let My and My be similar closed 3-manifolds. Suppose M,
is irreducible and does not contain closed incompressible surfaces with non-
negative Fuler characteristics. Then My and My are homeomorphic.

Proof. According to Proposition 8.2.22; there exist special spines P; of M;
(i = 1,2) and a homeomorphism 1 : Ny USP; — Ny U SP, such that 1/J|N1 :
N; — Ns is a similarity homeomorphism, where N; = N(V(P;), P;). As above,
identify N1 US P, with NoUS P, via v. We define an edge e of P; to be strongly
correct (SC) if the corresponding permutation [, is trivial. In other words, e is
SC if and only if the identification v can be extended to a neighborhood of e in
P . Note that if all edges are SC, then v can be extended to a homeomorphism
between P; and P, and to a homeomorphism between M7 and My. We claim
that one can perform spine moves on P; until all edges become SC. This will
prove Theorem 8.2.25, because each spine move can be extended to a manifold
move on M; that does not change its homeomorphism type.

As above, we paint the 2-cells of P, and P; in different colors and the edges
in tricolors. Note that if the tricolor of an edge e consists of three different
colors, then e is obviously SC. Assume that the tricolor of e is bichromatic
(i.e., it has the form (z,y,y), * # y), and that e is not SC. Then e is odd.
It follows from Lemma 8.2.24 that there is another non-SC edge €’ of tricolor
(x,2,2) (possibly z = x or z = y). Assuming first that z # y, we construct a
proper eyeglass curve G with the vertices on e and ¢’ (this is also possible when
z = x). By Lemma 8.2.20, G is two-sided, and the spine move o5 along G can
be performed. The edge e will now be SC. If z = y, there are two possibilities
for the relative displacement of e and ¢’ along the boundary curve of y-colored
2-cell: the displacement (e,e,e’,e’) and the displacement (e,e’,e,e’). In the
first case we can still construct an eyeglass curve with vertices on e and ¢’ and
perform o5. In the second case we construct a proper theta-curve GG with the
vertices on e and €’. The move o3 along G makes e strongly correct.

Assume now e is a monochromatic non-SC edge of tricolor (z,z,z), and
assume that there is another edge e’ with the same tricolor. Denote by C,, the
x-colored 2-cell of P;. We shall say that e and ¢’ are linked if the boundary
curve of C, cannot be decomposed into two arcs d and d’, such that d passes
three times along | and d’ passes three times along I’. Suppose that [ and I’
are linked. In order to make [ strongly correct, we use spine moves o3 along
theta-curves with vertices on [ and I’. Each such move changes 3. by some
permutation. It is sufficient to show that each transposition 7 of wings can be
achieved. In essence, there are two possibilities for the relative displacement
of e and €’ on the boundary curve of C,. It is clear that in both cases 7 can
be realized by a move o3 along the theta-curve G =1y Uls Ul3, see Fig. 8.15.

Suppose now that each two non-SC edges of tricolor (z,z,x) are unlinked.
If e is an odd edge with tricolor (z,z,z), then there is another odd edge e’
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Fig. 8.15. Two linked and one unlinked positions of edges e, e’ in the boundary of
a 2-cell

Fig. 8.16. Decomposition of wings into pairs

with the same tricolor. We use the manifold move along G =13 Uly Ul3 (see
Fig.8.15) to make e and €’ even.

It remains to consider the following situation: all non-SC edges are mono-
chromatic and even, and there are no linked edges among them. Let e be a
non-SC edge with tricolor (z,x,z). Denote by Ps the spine obtained from Py
by the spine move across e, see Definition 8.2.10. Let ¢; and ¢35 be the thorns
in e and let wgl),wél),wéz) be the wings adjacent to t;, ¢ = 1,2. The direct
product structures on regular neighborhoods of e\ Int (¢; Uts) in P; determine
natural bijections a;e : {wgl),wél),wg)} — {w?),wém,wf)}, i=1,2,3. It is
sufficient to prove that as. coincides with ag., because this means that the
spine move across e makes e strongly correct.

Consider a regular neighborhood N of SP;\e in P;. The difference N\ SP;
consists of some number of half-open annuli and precisely three x-colored half-
open discs. Each of the discs contains two wings from the set W = {wg-z), 1<
j < 3,1 =1,2}. Thus, we have a decomposition of the set W into three
pairs. In Fig.8.16 the wings forming each pair are marked with similar signs.
Taking P, or Pj3 instead of P;, we obtain two other decompositions. A very
important observation: since all non-monochromatic edges are SC and e is not
linked with any other edge, these three decompositions coincide.
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At least one pair of the decomposition contains a wing adjacent to the pair,
1 < j, k < 3. Since each of the spines Pj, P>, P3 contains only one z-colored
2-cell, we have aie(wél)) #* w,(f), 1 < i < 3. Hence, among a1, (w§1)), age(wél)),
age(wj(-l)) at least two wings coincide. Taking into account that any two dif-
ferent bijections aie, @oe, aze differ on an even permutation, we can conclude
that at least two of them do coincide. Since e is not SC and since the spine
move across e changes the corresponding bijection, we have a1, # ag. and
a1e Z age. It follows that age = ase.
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