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The Turaev–Viro Invariants

8.1 The Turaev–Viro Invariants

These invariants were first described by Turaev and Viro [126]. They possess
two important properties. First, just like homology groups, they are easy
to calculate. Only the limitations of the computer at hand may cause some
difficulties. Second, they are very powerful, especially if used together with
the first homology group.

8.1.1 The Construction

We divide the construction of the Turaev–Viro invariants into six steps.
Step 1. Fix an integer N ≥ 1.
Step 2. Consider the set C = {0, 1, . . . , N − 1} of integers. We will think

of them as representing colors. To each integer i = 0, 1, . . . , N − 1 assign a
complex number wi called the weight of i.

Step 3. Let E be a butterfly, see Fig. 1.4. Recall that it has six wings.
We will color the wings by colors from the palette C in order to get different
colored butterflies. The butterfly admits exactly N6 different colorings.

Definition 8.1.1. Two colored butterflies are called equivalent if there exists
a color preserving homeomorphism between them.

The number of different colored butterflies up to equivalence is significantly
less than N6. It is because the butterfly is very symmetric: it inherits all the
24 symmetries of the regular tetrahedron, see Fig. 1.5. It is convenient also to
present a colored butterfly by coloring the edges of a regular tetrahedron ∆.
The body of the butterfly is the cone over the vertices of ∆ while its wings
are the cones over corresponding edges and have the same colors.

Step 4. To each colored butterfly, assign a complex number called the
weight of the butterfly. There arises a problem: how to denote colored butter-
flies and their weights? Let us call two wings of a butterfly opposite if their
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Fig. 8.1. The butterfly and its boundary graph

intersection is the vertex (not an edge). Note that any colored butterfly is
determined (up to equivalence) by:

(a) Three pairs (i, l), (j,m), (k, n) of colors that correspond to three pairs of
opposite wings.

(b) A triple (i, j, k) of representatives of each pair that correspond to wings
having a common edge.

An example of a colored butterfly and its boundary graph are shown in
Fig. 8.1.

For typographic convenience, and following some earlier conventions, such
a butterfly will be denoted by the (2 × 3)-matrix(

i j k
l m n

)
,

where the top row gives the colors of three adjacent wings and each column
gives colors of opposite pairs of wings. The weight associated with the above
butterfly is denoted by ∣∣∣∣ i j k

l m n

∣∣∣∣
and called a (q−6j)-symbol, for reasons we will not go into here. An interested
reader is referred to [125,126] and references therein.

The (q − 6j)-symbol has many symmetries, corresponding to the symme-
tries manifest in the butterfly. The symmetry group of a butterfly presented
as the cone over one-dimensional skeleton ∆(1) of a regular tetrahedron is iso-
morphic to the symmetric group S4 on four elements 1, 2, 3, 4 that correspond
to the vertices of ∆(1). Assume that the edges (1,2), (1,3), (1,4), (3,4), (2,4),
and (2,3) have colors i, j, k, l,m, n, respectively. Then the following equalities
correspond to generators (the transposition (2,3) and the cyclic permutation
(1,2,3,4)) of S4: ∣∣∣∣ i j k

l m n

∣∣∣∣ =
∣∣∣∣ j i k
m l n

∣∣∣∣ ,

∣∣∣∣ i j k
l m n

∣∣∣∣ =
∣∣∣∣n m i
k j l

∣∣∣∣ .

Step 5. Let P be a special polyhedron, V (P ) the set of its vertices, and
C(P ) the set of its 2-cells.



8.1 The Turaev–Viro Invariants 385

Definition 8.1.2. A coloring of P is a map ξ : C(P ) → C.

Denote by Col(P ) the set of all possible colorings of P . It consists of N#C(P )

elements, where N is the number of colors and #C(P ) is the number of 2-cells
in P . To each coloring ξ ∈Col(P ) assign a weight w(ξ) by the rule

w(ξ) =
∏

v∈V (P )

∣∣∣∣ i j k
l m n

∣∣∣∣
v

∏
c∈C(P )

wξ(c). (8.1)

Note that any coloring ξ determines a coloring of a neighborhood of every
vertex v ∈ V (P ). It means that in a neighborhood of v we see a colored
butterfly (

i j k
l m n

)
v

with the (q − 6j)-symbol
∣∣∣∣ i j k
l m n

∣∣∣∣
v

.

Every 2-cell c of P is painted in the color ξ(c) having the weight wξ(c).
Thus the right-hand part of the formula (8.1) is the product of all the symbols
and the weights of all used colors (with multiplicity).

Definition 8.1.3. Let P be a special polyhedron. Then the weight of P is
given by the formula

w(P ) =
∑

ξ∈Col(P )

w(ξ).

Step 6. Certainly, the weight of a special polyhedron P depends heavily on
the weights wi of colors and the values of (q − 6j)-symbols. We will think of
them as being variables; thus we have finitely many variables. If we fix their
values, we get a well defined invariant of the topological type of P . Now let
us try to subject the variables to constraints so that the weight of a special
polyhedron will be invariant with respect to T -moves. In order to do that, let
us write down the following system of equations:

∣∣∣∣ i j k
l m n

∣∣∣∣
∣∣∣∣ i j k
l′ m′ n′

∣∣∣∣ =
∑

z

wz

∣∣∣∣ i m n
z n′ m′

∣∣∣∣
∣∣∣∣ j l n
z n′ l′

∣∣∣∣
∣∣∣∣k l m
z m′ l′

∣∣∣∣ , (8.2)

where i, j, k, l,m, n, l′,m′, n′ run over all elements of the palette C.
The geometrical meaning of the equations is indicated in Fig. 8.2 and

explained in the proof of Theorem 8.1.4. We emphasize that the system is
universal, i.e., it depends neither on manifolds nor on their spines.

In order to get a feeling of the system, let us estimate the number of vari-
ables and the number of equations. If we ignore the symmetries of symbols,
then the number of variables is N +N6: there are N weights of colors and N6

symbols. The equations are parameterized by 9-tuples (i, j, k, l,m, n, l′,m′, n′)
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Fig. 8.2. Geometric presentation of equations

of colors. Therefore, we have N9 equations (if we ignore symmetries of equa-
tions). In general, the system appears over-determined, but, as we shall see,
solutions exist.

Let us show that every solution determines a 3-manifold invariant. Let M
be a 3-manifold. Construct a special spine P of M having ≥ 2 vertices, and
define an invariant TV (M) by the formula TV (M) = w(P ), where w(P ) is
the weight of P , see Definition 8.1.3.

Theorem 8.1.4. If the (q − 6j)-symbols and weights wi are solutions of the
system (8.2), then w(P ) does not depend on the choice of P . Therefore,
TV (M) is a well defined 3-manifold invariant.

Proof. According to Theorem 1.2.5, it is sufficient to show that w(P ) is
invariant with respect to T -moves. Let a special polyhedron P2 be obtained
from a special polyhedron P1 by exactly one T -move, i.e., by removing a frag-
ment ET and inserting a fragment E′

T , see Definition 1.2.3. For any coloring
ξ of P1, let Colξ(P2) be the set of colorings of P2 that coincide with ξ on
P1\ET = P2\E′

T . Since only one 2-cell of the fragment E′
T (the middle disc)

has no common points with ∂E′
T , the set Colξ(P2) can be parameterized by

the color z of this 2-cell. It follows that the set Colξ(P2) consists of N colorings
ζz, 0 ≤ z ≤ N − 1.

Because of distributivity, the equation of the system (8.2) that corresponds
to the 9-tuple (i, j, k, l,m, n, l′,m′, n′) implies the equality w(ξ) =

∑
z w(ζz),

see Fig. 8.2. To see this, multiply both sides of the equation by the constant
factor that corresponds to the contribution made to the weights by the exte-
riors of the fragments. Summing up the equalities w(ξ) =

∑
z w(ζz) over all

colorings of P1, we get w(P1) = w(P2).

Definition 8.1.5. Any 3-manifold invariant obtained by the above construc-
tion will be called an invariant of Turaev–Viro type. The number r = N + 1,
where N is the number of colors in the palette C, will be called the order of
the invariant.

8.1.2 Turaev–Viro Type Invariants of Order r ≤ 3

There are no Turaev–Viro type invariants of order 1, since r = N + 1 and
N ≥ 1. If r = 2, then N = 1. Hence we have a very poor palette consisting of
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only one color 0, and there is only one colored butterfly
(

0 0 0
0 0 0

)
.

Denote by w0 and x the weight of the unique color and the symbol of the
butterfly, respectively. In this case the system (8.2) consists of one equation
x2 = w0x

3. If x = 0, we get solutions that produce the trivial 3-manifold
invariant TV (M) ≡ 0. Otherwise, we get a set of solutions {x = z−1, w0 =
z} parameterized by nonzero numbers z. Each of the solutions produces a
3-manifold invariant TV (M) = zχ(P ) (one should point out here that χ(P ) =
χ(M) if ∂M �= ∅, and χ(P ) = 1 if M is closed). Indeed, by Definition 8.1.3
we have TV (M) = w(P ) = z−V (P )zC(P ) = zC(P )−V (P ), where V (P ) is the
number of vertices of a special spine P ⊂ M and C(P ) is the number of its
2-cells. Since every vertex of P is incident to exactly four edges, the number
of edges of P is equal to 2V (P ). It follows that C(P ) − V (P ) = χ(P ).

Let us investigate the case N = 2, when there are two colors: 0 and 1.
We will call them white and black, respectively. There are 11 different col-
ored butterflies. Their symbols together with the weights w0, w1 of the colors
form a set of 13 variables. Note that the transposition {0, 1} ↔ {1, 0} of the
colors induces an involution i on the set of variables. See Fig. 8.3, where the
butterflies are presented by their boundary graphs. The lower indices of the
corresponding variables show the number of black-colored wings. The weights
of the black and white colors are also indicated.

It turns out that there are 74 equations. They correspond to different
colorings of the boundary graph of the fragment ET . See Fig. 8.4 for an
example of a graphically expressed equation that corresponds to the equation

∣∣∣∣ i j k
l m n

∣∣∣∣
∣∣∣∣ i j k
l′ m′ n′

∣∣∣∣ =
∑

z

wz

∣∣∣∣ i m n
z n′ m′

∣∣∣∣
∣∣∣∣ j l n
z n′ l′

∣∣∣∣
∣∣∣∣k l m
z m′ l′

∣∣∣∣
of system (8.2) for i = k = 1, j = l = m = n = l′ = m′ = n′ = 0.

Fig. 8.3. Thirteen variables for N = 2
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Fig. 8.4. An example of an equation

There are too many equations to list them all here, so we will take a
shortcut. To simplify the calculations, we subject the symbols to the following
constraints: if a butterfly contains one black and two white wings adjacent to
the same edge, then the symbol must be zero. In other words, we assume that
the symbols of the type ∣∣∣∣ 0 0 1

∗ ∗ ∗

∣∣∣∣ ,

that is, the variables x1, x2, y2, x3, z3, and x4 are zeros. The motivation for this
restriction was triangle inequality conditions of Turaev–Viro, see Sect. 8.1.4.
My former student Maxim Sokolov had verified that, in case N = 2, only
restricted solutions of system (8.2) were interesting (unpublished). In other
words, unrestricted solutions do not give any additional invariants. So we are
left with seven variables x0, y3, y4, x5, x6, and w0, w1. It is easy to see that this
leaves only 14 equations:

(1) x2
0 = w0x

3
0; (8) x2

5 = w1y4x
2
5;

(2) x0y3 = w1y
3
3 ; (9) y3x5 = w1y3x

2
5;

(3) y2
3 = w0x0y

2
3 ; (10) y4x5 = w1x

3
5;

(4) y2
4 = w0y

2
3y4; (11) x2

5 = w0x5y
2
3 ;

(5) y3y4 = w1y3y
2
4 ; (12) x2

5 = w0y4x
2
5 + w1x5x

2
6;

(6) y2
3 = w0y

3
4 + w1x

3
5; (13) x5x6 = w1x

2
5x6;

(7) 0 = w0y
2
4x5 + w1x

2
5x6; (14) x2

6 = w0x
3
5 + w1x

3
6.

They correspond to the colorings of ∂ET shown in Fig. 8.5.
Let us solve the system. It follows from (4) and (8) that if y3 = 0, then

y4 = x5 = 0. This leaves only two equations x2
0 = w0x

3
0, x

2
6 = w1x

3
6. Just

as in the case N = 1, one can show that then we get the sum TV (M) =
w

χ(M)
0 + w

χ(M)
1 of the two-order 2 invariants. Hence one may assume that

y3 �= 0 and, as it follows from the third equation, x0 �= 0. Note that the
system is quasihomogeneous in the following sense: if we divide all xi and yj
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Fig. 8.5. Fourteen equations for N = 2

by x0 and multiply w0, w1 by the same factor, we get an equivalent system.
Hence we may assume that x0 = 1 and, by the first equation, w0 = 1.

The further events depend on whether or not x5 = 0. Let x5 = 0. Recall
that x0 = w0 = 1. Set w1 = u. It is easy to see that (2), (4), and (6) imply
y3 = u−1/2, y4 = u−1, and u2 = 1. All the other equations become identities
except the last equation x2

6 = ux3
6. We get two solutions:

x0 = w0 = 1, w1 = u, y3 = u−1/2, y4 = u−1, x5 = x6 = 0; (8.3)

x0 = w0 = 1, w1 = u, y3 = u−1/2, y4 = u−1, x5 = 0, x6 = u−1, (8.4)

where u = ±1 and for y3 one may take any square root of u−1.
Let x5 �= 0. Set w1 = ε. Just as before, we get y3 = ε−1/2 and y4 = ε−1.

From (9) and (7) one gets x5 = ε−1 and x6 = −ε−2. All other equations
become identities except (6), (12), (14), that are equivalent to ε2 = 1 + ε. We
get a new solution:

x0 = w0 = 1, w1 = ε, y3 = ε−1/2, y4 = ε−1, x5 = ε−1, x6 = −ε−2, (8.5)

where ε = (1 ±
√

5)/2.
Denote by TV±(M) the invariants corresponding to solution (8.3) for

u = ±1. Let us describe a geometric interpretation of them. Any special poly-
hedron contains only finitely many different closed surfaces. Denote by ne(P )
and no(P ) the total number of surfaces in P having even and, respectively,
odd Euler characteristics.

Lemma 8.1.6. For any special spine P of M we have TV±(M) = ne(P ) ±
no(P ).

Proof. There is a natural bijection between closed surfaces in P and black–
white colorings of P with nonzero weights. Indeed, if we paint a surface F ⊂ P
in black, and the complement P\F in white, we get a coloring ξ of P such
that it admits only three types of butterflies: the totally white butterfly
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Fig. 8.6. Three butterflies having nonzero symbols

(
0 0 0
0 0 0

)
,

and butterflies (
0 0 0
1 1 1

)
,

(
0 1 1
0 1 1

)
,

see Fig. 8.6.
Since their symbols

x0 =
∣∣∣∣ 0 0 0
0 0 0

∣∣∣∣ , y3 =
∣∣∣∣ 0 0 0
1 1 1

∣∣∣∣ ,

and

y4 =
∣∣∣∣ 0 1 1
0 1 1

∣∣∣∣
are nonzero, the weight w(ξ) is also nonzero.

Conversely, let ξ be a black–white coloring of P with a nonzero weight

w(ξ) =
∏

v∈V (P )

∣∣∣∣ i j k
l m n

∣∣∣∣
v

∏
c∈C(P )

wξ(c).

Denote by F (ξ) the union of all black cells in P . Then F (ξ) inherits the local
structure of black parts of butterflies. Since w(ξ) �= 0, the butterflies have
nonzero symbols. In the case of solution (8.3), only the butterflies shown in
Fig. 8.6 come into consideration. Hence F (ξ) is a closed surface.

It turns out that the weight w(ξ) �= 0 of a coloring ξ is closely related to
the Euler characteristic χ(F ) of the corresponding surface F = F (ξ). Let us
show that w(ξ) = uχ(F ). Denote by k3 and k4 the numbers of butterflies in
P having the symbols y3 and y4, respectively. Then F inherits from P the
cell structure with k3 + k4 vertices, (3k3 + 4k4)/2 edges, and some number of
2-cells, which we denote by c2(F ). It follows that χ(F ) = −k3/2−k4 + c2(F ).
Taking into account that w1 = u, y3 = u−1/2, and y4 = u−1, we get that
w(ξ) = w

c2(F )
1 yk3

3 yk4
4 = u−k3/2−k4+c2(F ) = uχ(F ).
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To conclude the proof, denote by ξ1, . . . , ξn the colorings of P with nonzero
weights. Then w(P ) =

∑n
i=1 w(ξi) =

∑n
i=1 uχ(F (ξi)) = ne ± no for u = ±1.

It turns out that the invariants TV±(M) admit a very nice homological
interpretation, see [126]. Note that for any compact 3-manifold M the homol-
ogy group H2(M ;Z2) is finite, and any homology class α ∈ H2(M ;Z2) can be
presented by an embedded closed surface. We say that α is even or odd if it
can be presented by an embedded surface in M having an even or odd Euler
characteristic, respectively. Denote by ne(M) and no(M) the number of even
and, respectively, odd homology classes.

Proposition 8.1.7. For any 3-manifold M we have:

(a) TV+(M) = ne(M) + no(M) (= the order of H2(M ;Z2));
(b) TV−(M) = ne(M) − no(M);
(c) In case M is orientable either TV−(M) = TV+(M) or TV−(M) = 0

depending on whether or not M contains an odd surface.

Proof. Choose a special spine P of M . Denote by F(P) the set of all closed
surfaces in P . Each surface F ∈ F(P) represents an element of H2(P ;Z2).
Thus we have a map ϕ : F(P ) → H2(P ;Z2) = H2(M ;Z2). It is easy to see
that, due to the nice local structure of simple polyhedra, ϕ is a bijection.
We may apply Lemma 8.1.6 and get TV±(M) = ne(P ) ± no(P ). Since P
is a deformation retract of M , we have ne(P ) = ne(M), no(P ) = no(M),
that implies (a) and (b). To get (c), consider the map H2(M ;Z2) → Z2 that
takes even classes to 0 and odd classes to 1. If M is orientable, the map is
a homomorphism. Hence even elements of H2(M ;Z2) form a subgroup that
either coincides with H2(M ;Z2) or has index 2 (if there is at least one odd
element). It follows that either no = 0 (and we get TV−(M) = TV+(M)) or
ne = no (and we get TV−(M) = 0).

Examples. The values of TV±-invariants for some 3-manifolds are given
in the following table. The list contains all closed orientable prime manifolds
of complexity ≤ 2 (see Chap. 2), and two nonorientable manifolds: S1 × RP 2

and K2 × S1, where K2 is the Klein bottle.

M TV+ TV− M TV+ TV−
S3 1 1 L8,3 2 2
S2 × S1 2 2 L5,2 1 1
RP 3 2 0 L5,1 1 1
L3,1 1 1 L7,2 1 1
L4,1 2 2 S3/Q8 4 4
S1 × RP 2 4 2 K2 × S1 8 4

Note that TV−-invariant distinguishes S2 × S1 and RP 3 even though the
manifolds have isomorphic homology groups with coefficients in Z2. Never-
theless, it does not distinguish between L3,1 and S3, or some other pairs from
among the manifolds listed above.
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Remark 8.1.8. In view of Proposition 8.1.7, the first five lines of the table
are evident, since the corresponding 3-manifolds are orientable and only RP 3

contains an odd surface. Let us explain the last statement. The manifold
S1×RP 2 contains four homologically distinct surfaces that realize elements of
H2(M ;Z2): the empty surface, projective plane {∗}×RP 2, the torus S1×RP 1,
and the Klein bottle S1×̃RP 1. The best way to imagine S1×̃RP 1 ⊂ S1×RP 2

is to let a point x ∈ S1 move around S1, rotating simultaneously {x} × RP 1

inside {x}×RP 2 such that the total rotation angle would be 180◦. Since only
one of the surfaces (projective plane) has an odd Euler characteristic, no = 1
and ne = 3. It follows from Proposition 8.1.7 that TV+(S1 × RP 2) = 4 and
TV−(S1 × RP 2) = 2. The following conjecture was stated by Kauffman and
Lins:

Conjecture [60]. Consider an arbitrary closed 3-manifold M , and let X
be a special spine for M . Let ne be the number of closed surfaces contained in
X that have even Euler characteristic and no the number of closed surfaces
in X that have odd Euler characteristic. Then either ne = no or no = 0.

Moreover, ne = no if and only if the same is true for all special spines
of M , and no = 0 if and only if the values of Turaev–Viro invariants for
θ = (2 ± 1)π/4 are integers and equal.

As we have seen above, for orientable manifolds the first part of the con-
jecture is true while the manifold S1 ×RP 2 disproves it for the nonorientable
case. The second part of the conjecture is also wrong, see [113] and Sect. 8.1.5.

Let us turn now our attention to solution (8.4). One can easily see that it
gives nothing new, since we get the sum of the TV±-invariant and of an order
two invariant uχ(P ). The reason is that if the weight w(ξ) of a black–white
coloring ξ of a special polyhedron P is nonzero, then the black part of P
is either a closed surface or coincides with P . Thus solution (8.4) produces
invariants TV±(M)+(±1)χ(P ). On the contrary, the invariants corresponding
to the solution (8.5) are very interesting since they are actually the simplest
nontrivial invariants of Turaev–Viro type. We consider them in Sect. 8.1.3.

8.1.3 Construction and Properties of the ε-Invariant

We start with an alternative description of the new invariant. Let P be a
simple polyhedron. Denote by F(P) the set of all simple subpolyhedra of P
including P and the empty set.

Lemma 8.1.9. F(P) is finite.

Proof. It is easy to see that if a simple subpolyhedron F ⊂ P contains at least
one point of a 2-component α of P , then α ⊂ F . It follows that for describing
F it is sufficient to specify which 2-components of P are contained in F . Thus
the total number of simple subpolyhedra of P is no greater than 2n, where n
is the number of 2-components in P .
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Let us associate to each simple polyhedron F its ε-weight

wε(F ) = (−1)V (F )εχ(F )−V (F ),

where V (F ) is the number of vertices of F , χ(F ) is its Euler characteristic,
and ε is a solution of the equation ε2 = ε + 1. One may take ε = (1 +

√
5)/2

as well as ε = (1 −
√

5)/2.

Definition 8.1.10. The ε-invariant t(P ) of a simple polyhedron P is given
by the formula t(P ) =

∑
F∈F(P) wε(F ).

Below we will prove that the ε-invariant of a special polyhedron P coincides
with the weight w(P ) that corresponds to solution (8.5), see Sect. 8.1.2. Hence
it is invariant under T -moves. Nevertheless, we prefer to give an independent
proof since it reveals better the geometric nature of the invariance.

Theorem 8.1.11. t(P ) is invariant under T -moves.

Proof. Let a simple polyhedron P2 be obtained from a simple polyhedron P1

by the move T . Denote by ET the fragment of P1 which is cut out and replaced
by a fragment E′

T of P2. It is convenient to assume that the complement
P1\ET of ET and the complement P2\E′

T of the fragment E′
T do coincide.

Let us analyze the structures of ET and E′
T .

The fragment ET consists of two cones and three sheets called wings. Each
cone consists of three-curved triangles. E′

T consists of six-curved rectangles,
the middle disc, and three wings. Let us divide the set F(P∞) of all simple
subpolyhedra of P1 into two subsets. A simple subpolyhedron F ∈ F(P1) is
called rich (with respect to ET ), if F ∩ ET contains all six triangles of ET ,
and poor otherwise.

We wish to arrange a finite-to-(one or zero) correspondence between simple
subpolyhedra of P2 and those of P1 such that the correspondence respects
ε-weights.

(a) Let F1 be a poor subpolyhedron of P1. Since ET without a triangle is
homeomorphic to E′

T without the corresponding rectangle, there exists exactly
one simple subpolyhedron F2 of P2 such that F1∩(P1−ET ) = F2∩(P2−E′

T ).
Moreover, F2 is homeomorphic to F1 and hence has the same ε-weight.

(b) Let F1 be a rich subpolyhedron of P1. Then there exist exactly two
simple subpolyhedra F ′

2 and F ′′
2 of P2 such that F1 ∩ (P1 \ ET ) = F ′

2 ∩ (P2 \
E′

T ) = F ′′
2 ∩ (P2 \E′

T ), namely, the one that contains the middle disc, and the
other that does not. The intersection F1∩ET can contain 0, 2, or 3 wings. It is
easy to verify that in all three cases the equation wε(F1) = wε(F ′

2) + wε(F ′′
2 )

is equivalent to ε2 = ε + 1. See Fig. 8.7 for the case of 0 wings: C denotes
the product of weights and symbols that correspond to 2-cells and vertices
outside ET and E′

T .
(c) We have not considered simple subpolyhedra of P2 the intersec-

tions of which with E′
T contain six rectangles and exactly one wing. The

set of such polyhedra can be decomposed onto pairs F ′
2, F

′′
2 such that
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Fig. 8.7. The behavior of a rich surface that does not contain wings

F ′
2 ∩ (P2 \ E′

T ) = F ′′
2 ∩ (P2 \ E′

T ), and exactly one of the subpolyhedra F ′
2, F

′′
2

contains the middle disc. For each such pair we have wε(F ′
2) + wε(F ′′

2 ) = 0.
We can conclude that t(P1) = t(P2).

Theorems 8.1.11 and 1.2.5 show that the following definition makes sense.

Definition 8.1.12. Let M be a compact 3-manifold. Then the ε-invariant
t(M) of M is given by the formula t(M) = t(P ), where P is a special spine
of M .

Now we relate the ε-invariant to the TV -invariant that corresponds to
solution (8.5) in Sect. 8.1.11.

Proposition 8.1.13. The ε-invariant coincides with the TV-invariant corre-
sponding to solution (8.5).

Proof. We use the same ideas as in the proof of Lemma 8.1.6. Assign to any
black–white coloring ξ of a special spine P the union F (ξ) of all black cells
of P . Note that the black part of any butterfly has a singularity allowed for
simple polyhedra if and only if the corresponding symbol (with respect to
solution (8.5)) is nonzero. Hence the assignment ξ → F (ξ) induces a bijection
between colorings with nonzero weights and simple subpolyhedra of P .

Now, let us verify that the ε-weight wε(F ) of a simple subpolyhedron
F = F (ξ) ⊂ P coincides with the weight w(ξ) of the coloring ξ. Denote
by k3, k4, k5, k6 the numbers of butterflies in P with symbols y3, y4, x5, x6,
respectively. Clearly, k6 is the number of totally black butterflies in P and
thus coincides with the number V (F ) of true vertices of F . Note that the
first butterfly has three black edges while the other three have four black
edges each. F (ξ) inherits from P the cell structure with k3 + k4 + k5 + k6

vertices, (3k3 + 4k4 + 4k5 + 4k6)/2 edges, and some number of 2-cells that
we denote by c2(F ). It follows that χ(F ) = −k3/2 − k4 − k5 − k6 + c2(F ).
Taking into account that w1 = ε, y3 = ε−1/2, y4 = x5 = ε−1, and x6 = −ε−2,
we have w(ξ) = w

c2(F )
1 y

k3/2
3 yk4

4 xk5
5 xk6

6 = (−1)V (P )εχ(F )−V (P ). Taking sums of
the weights, we get the conclusion.

Example. Let us compute “by hand” the ε-invariant of S3. One should
take a special spine of S3, no matter which one. Let us take the Abalone A,
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see Fig. 1.1.4. It contains two 2-cells; one of them is the meridional disc D of
the tube. There are three simple subpolyhedra of A:

1. The empty subpolyhedron with the ε-weight 1.
2. The whole Abalone with the ε-weight (−1)V εχ(A)−V (A) = −1, since

V (A) = 1 and χ(A) = 1.
3. The subpolyhedron A\Int D, i.e., the subpolyhedron covered by the

remaining 2-cell. It contains no vertices and has zero Euler characteristic.
Hence it has ε-weight 1.

Summing up, we get t(S3) = 1.

One can see from this example that the calculation of the ε-invariant is
theoretically simple, but may be cumbersome in practice, especially when the
manifold is complicated. Sokolov wrote a computer program that, given a
special spine, calculates the ε-invariant of the corresponding 3-manifold. The
results are presented in Table 8.1.

8.1.4 Turaev–Viro Invariants of Order r ≥ 3

As we have seen in Sect. 8.1.1, the number of variables of the system (8.2)
grows as N6, where N = r − 1 is the number of colors in the palette C
= {0, 1, . . . , N − 1}. One may decrease the number of variables by imposing
some constraints on butterflies with nonzero symbols.

Definition 8.1.14. An unordered triple i, j, k of colors taken from the palette
C is called admissible if

1. i + j ≥ k, j + k ≥ i, k + i ≥ j ( triangle inequalities).
2. i + j + k is even.
3. i + j + k ≤ 2r − 4.

Remark 8.1.15. In the original paper [126], where this definition is taken
from, Turaev and Viro used the half-integer palette {0, 1/2, . . . , (r − 2)/2}.
There are some deep reasons behind this choice but we prefer to consider the
integer palette C. In any case, this is only a problem of notation.

Let us give a geometric interpretation of admissibility. Consider a disc D
with three adjacent strips that contain i, j, and k strings, respectively. Then
the triple (i, j, k) satisfies conditions 1, 2 if and only if the strings can be
joined together in a nonsingular way as shown in Fig. 8.8.

To be more precise, the united strings should be disjoint and no string
should return to the strip it is coming out of. The third condition i + j + k ≤
2r − 4 is of technical nature and can be avoided.

Definition 8.1.16. A coloring ξ of a special polyhedron P is called admissible
if the colors of any three wings adjacent to the same edge form an admissible
triple. The set of all admissible colorings will be denoted by Adm(P ).
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Table 8.1. ε-Invariants of closed irreducible orientable 3-manifolds up to
complexity 5

ci M t(M) ci M t(M)

01 S3 1 52 L13,2 ε + 1

02 RP 3 ε + 1 53 L16,3 1

03 L3,1 ε + 1 54 L17,3 ε + 1

11 L4,1 1 55 L17,4 ε + 1

12 L5,2 0 56 L19,4 1

21 L5,1 ε + 2 57 L20,9 ε + 2

22 L7,2 ε + 1 58 L22,5 ε + 1

23 L8,3 ε + 1 59 L23,5 ε + 1

24 S3/Q8 ε + 3 510 L23,7 ε + 1

31 L6,1 1 511 L24,7 1

32 L9,2 1 512 L25,7 0

33 L10,3 0 513 L25,9 ε + 2

34 L11,3 1 514 L26,7 1

35 L12,5 ε + 1 515 L27,8 ε + 1

36 L13,5 ε + 1 516 L29,8 1

37 S3/Q12 ε + 3 517 L29,12 1

41 L7,1 ε + 1 518 L30,11 ε + 2

42 L11,2 1 519 L31,12 1

43 L13,3 ε + 1 520 L34,13 1

44 L14,3 ε + 1 521 S3/Q8 × Z5 ε + 2

45 L15,4 ε + 2 522 S3/Q12 × Z5 ε + 2

46 L16,7 1 523 S3/Q16 × Z3 ε + 1

47 L17,5 ε + 1 524 S3/Q20 3ε + 2

48 L18,5 ε + 1 525 S3/Q20 × Z3 −ε + 2

49 L19,7 1 526 S3/D40 −ε + 2

410 L21,8 1 527 S3/D48 ε + 3

411 S3/Q8 × Z3 2ε + 3 528 S3/P24 × Z5 ε + 2

412 S3/Q16 1 529 S3/P48 ε + 1

413 S3/D24 2ε + 3 530 S3/P ′
72 ε + 3

414 S3/P24 2ε + 3 531 S3/P120 3ε + 2

51 L8,1 ε + 1
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Fig. 8.8. Disjoint strings without returns

Similarly, one may speak about admissible butterflies: a colored butterfly
(

i j k
l m n

)

is admissible if all the triples (i, j, k), (k, l,m), (m,n, i), (j, l, n) are admissible
(they represent the wings that meet together along the four edges of the
butterfly).

The constraint on butterflies we have mentioned above is the following:

The symbols of nonadmissible butterflies must be zeros.

Another way of saying this is that we define the weight (see Definition 8.1.3)
of a special polyhedron P by taking the sum over admissible colorings only:

w(P ) =
∑

ξ∈Adm(P )

w(ξ)

The following nonrigorous considerations show that the system (8.2) (sub-
jected to the admissibility restrictions from Definition 8.1.14) should not have
too many solutions (if any). For simplicity assume that the symbols of all
admissible butterflies are nonzero. Since all equations are quasihomogeneous,
we may assume w0 = 1 (see Sect. 8.1.2). Denote by sk the symbol

∣∣∣∣ 0 0 0
k k k

∣∣∣∣ =
∣∣∣∣k 0 k
0 k 0

∣∣∣∣ .

(a) Write down an equation of system (8.2) for the case l = 0. If j �= n or
k �= m, all terms in both sides of the equation contain symbols of nonadmissi-
ble butterflies (this is because a triple of the type (0, x, y) is admissible if and
only if x = y). This annihilates the equation. We may assume therefore that
n = j and m = k. Similarly, l′ = z, and we get the equation
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∣∣∣∣ i j k
0 k j

∣∣∣∣
∣∣∣∣ i j k
z m′ n′

∣∣∣∣ = wz

∣∣∣∣ i k j
z n′ m′

∣∣∣∣
∣∣∣∣ j 0 j
z n′ z

∣∣∣∣
∣∣∣∣k 0 k
z m′ z

∣∣∣∣ ,

that after dividing both sides by
∣∣∣∣ i j k
z m′ n′

∣∣∣∣ =
∣∣∣∣ i k j
z n′ m′

∣∣∣∣
gives ∣∣∣∣ i j k

0 k j

∣∣∣∣ = wz

∣∣∣∣ j 0 j
z n′ z

∣∣∣∣
∣∣∣∣k 0 k
z m′ z

∣∣∣∣ .

(b) Taking z = 0, we get n′ = n = j,m′ = m = k, and
∣∣∣∣ i j k
0 k j

∣∣∣∣ = sjsk.

This converts the preceding equation to sjsk = wzsjszsksz or, equiva-
lently, to wz = s−2

z .
(c) Next, let us write down the equation of system (8.2) for i = j = k = 0.

The admissibility implies that l′ = m′ = n′ and l = m = n. Taking into
account that

∣∣∣∣ 0 l l
z l′ l′

∣∣∣∣ =
∣∣∣∣ z l′ l
0 l l′

∣∣∣∣ = slsl′ ,

we get the equation slsl′ =
∑

z wz(slsl′)3, which is equivalent to wlwl′ =∑
z wz (both sums are taken over all z ≤ r − 2 such that the triple (l, l′, z) is

admissible). In particular, for l′ = 1 and 1 ≤ l ≤ r − 2 we get the system

w1w1 = w0 + w2

w2w1 = w1 + w3

. . .
wr−3w1 = wr−4 + wr−2

wr−2w1 = wr−3

To solve it, present w1 in the form

w1 = −(q + q−1) = −q2 − q−2

q − q−1
,

where q is a new variable. Since

qi+1 − q−i−1

q − q−1
=

qi − q−i

q − q−1
(q + q−1) − qi−1 − q−i+1

q − q−1
,

we get inductively

wi = (−1)i q
i+1 − q−i−1

q − q−1
for 1 ≤ i ≤ r − 2 and

qr − q−r

q − q−1
= 0.
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We can conclude that the solutions of the system have the form

wi = (−1)i q
i+1 − q−i−1

q − q−1
, 1 ≤ i ≤ r − 2,

where q runs over all roots of unity of degree 2r.
It follows from the above considerations that system (8.2) is very restric-

tive because a very small part of it allows us to find the weights wi of all
colors and some symbols. It is surprising that any solutions exist! Below we
present solutions found by Turaev and Viro [126]. To adjust our notation
to the original one (see Remark 8.1.15), we adopt the following notational
convention:

k̂ = k/2

for any integer k. Let q be a 2r-th root of unity such that q2 is a primitive
root of unity of degree r. Note that q itself may not be primitive.

For an integer n set

[n] =
qn − q−n

q − q−1
. (8.6)

Note that all [n] are real numbers and [n] = 0 if and only if n = 0 mod r.
Define the quantum factorial [n]! by setting

[n]! = [n][n − 1] . . . [2][1].

In particular, [1]! = [1] = 1. Just as for the usual factorial, set by definition,
[0]! = 1.

For an admissible triple (i, j, k) put

∆(i, j, k) =

(
[̂i + ĵ − k̂] ! [ĵ + k̂ − î]! [k̂ + î − ĵ]!

[̂i + ĵ + k̂ + 1]!

)1/2

.

Remark 8.1.17. As we will see later, it does not matter, which square root
of the expression in the round brackets is taken for ∆(i, j, k). The resulting
3-manifold invariant will be the same.

Now we are ready to present the solution. The weights of colors from the
palette C = {0, 1, . . . , r − 2} are given by

wi = (−1)i[i + 1]. (8.7)

The symbol
∣∣∣∣ i j k
l m n

∣∣∣∣
of the butterfly

(
i j k
l m n

)
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is given by
∣∣∣∣ i j k
l m n

∣∣∣∣ =
∑

z

(−1)z[z + 1]!A(i, j, k, l,m, n)

B

(
z,

(
i j k
l m n

))
C

(
z,

(
i j k
l m n

)) , (8.8)

where

A(i, j, k, l,m, n) = i(i+j+k+l+m+n)∆(i, j, k)∆(i,m, n)∆(j, l, n)∆(k, l,m),

B

(
z,

(
i j k
l m n

))
= [ẑ− î− ĵ− k̂]! [z− î−m̂− n̂]! [z− ĵ− l̂− n̂]! [z− k̂− l̂−m̂]!,

C

(
z,

(
i j k
l m n

))
= [̂i + ĵ + l̂ + m̂− z]! [̂i + k̂ + l̂ + n̂− z]! [ĵ + k̂ + m̂ + n̂− z]!,

and the sum is taken over all integer z such that all expressions in the square
brackets are nonnegative. In other words, one should have α ≤ z ≤ β, where

α = max(̂i + ĵ + k̂, î + m̂ + n̂, ĵ + l̂ + n̂, k̂ + l̂ + m̂),

β = min(̂i + ĵ + l̂ + m̂, î + k̂ + l̂ + n̂, ĵ + k̂ + m̂ + n̂)

(it follows from the triangle inequalities that α ≤ β).

Remark 8.1.18. The bold letter i in the above expression for A(i, j, k, l,m, n)
is the imaginary unit (do not confuse with the symbol i denoting a color from
the palette C). If we replace i by −i, we get a different solution producing
the same 3-manifold invariant. It is because for any coloring with a nonzero
weight the number of butterflies

(
i j k
l m n

)

with an odd number (i + j + k + l + m + n) is even.

Why do the presented values of variables form a solution to the sys-
tem (8.2)? Turaev and Viro proved this by a reference to a paper of Kirillov
and Reshetikhin [64], who had used the so-called Biederharn-Elliot iden-
tity [10,27] to obtain a solution to a similar system. Meanwhile there appeared
many different ways to prove the existence of the invariants. Probably, one of
the simplest approaches is based on remarkable results of Kauffman, Lickor-
ish and others, and belongs to Roberts, see [108] and references therein. An
exhaustive exposition of the subject along with deep connections to quantum
groups, motivating ideas in physics and to other areas of mathematics can be
found in the fundamental monograph [125].



8.1 The Turaev–Viro Invariants 401

Definition 8.1.19. The 3-manifold invariant corresponding to the above
solution will be called the order r Turaev–Viro invariant and denoted by
TVq(M).

Remark 8.1.20 (On the Terminology). We distinguish between invari-
ants of Turaev–Viro type and Turaev–Viro invariants TVq(M). The former
correspond to arbitrary solutions (that potentially would be found in future),
the latter are related to the particular solutions given by (8.7) and (8.8). For
example, the ε-invariant is of Turaev–Viro type but it is not a Turaev–Viro
invariant.

Remark 8.1.21. One should point out that our exposition of results in [126]
differs from the original approach. In the first place, to simplify the con-
struction, we do not pay any attention to the relative case, which is very
important from the point of view of category theory. In particular, we do
not reveal the functorial nature of the invariants, nor how they fit into the
conception of Topological Quantum Field Theory (TQFT) [7]. On the other
hand, it is sometimes convenient to consider (as we do) absolute invariants of
not necessarily closed 3-manifolds

Secondly, our version of the invariants is S3-normalized, i.e., TVq(S3) = 1
for all q. The invariant | M | presented in [126] for a degree 2r root of unity
q = q0 is related to TVq(M) by the formula

| M |= − (q − q−1)2

2r
TVq(M).

Thirdly, the solution given by (8.7) and (8.8) satisfies additional equations
of the type ∑

z

wz

∣∣∣∣ i l m
z m′ l′

∣∣∣∣
∣∣∣∣ j l m
z m′ l′

∣∣∣∣ = δi
j ,

where i, j, l,m, l′,m′ run over all elements of the palette C and δi
j is the

Kronecker symbol. These equations guarantee that the weight of a simple
polyhedron is invariant under lune moves, see Fig. 1.16. Moreover, one can cal-
culate the invariants starting from any simple (not necessarily special) spine
of a manifold. The only difference is that one should take into account the
Euler characteristics of 2-components by defining the weight of a coloring ξ by

w(ξ) =
∏

v∈V (P )

∣∣∣∣ i j k
l m n

∣∣∣∣
v

∏
c∈C(P )

w
χ(c)
ξ(c) ,

instead of corresponding formula (8.1) for the case of disc 2-components.
Finally, for the solution given by (8.7) and (8.8), the following holds:

there exists a number w (it is equal to −2r/(q − q−1)2) such that for all j

wj = w−1
∑
(k,l)

wkwl,
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where the sum is taken over all k, l such that the triple (j, k, l) is admissi-
ble. This condition guarantees that performing a bubble move on a simple
polyhedron is equivalent to multiplying its weight by w.

8.1.5 Computing Turaev–Viro Invariants

Just after discovering the invariants, Turaev and Viro calculated all of them
for the sphere S3, real projective space RP 3, for S2 × S1, and the lens space
L3,1. The calculation was facilitated by the fact that these manifolds have
simple spines without vertices. For example, L3,1 admits a spine consisting of
one 2-cell and having one triple circle. It can be presented as the identification
space of a disc by a free action of the group Z3 on the boundary. Sometimes it
is called triple hat. Note that the three wings adjacent to any segment of the
triple circle belong to the same 2-cell, and hence have the same color i ∈ C
(for any coloring). The admissibility conditions (see Definition 8.1.14) imply
that i must be even and no greater than (2r − 4)/3. It follows that

TVq(L3,1) =
∑

i

wi, (8.9)

where the sum is taken over all even i such that 0 ≤ i ≤ (2r − 4)/3.
If every simple spine of a given 3-manifold contains vertices, obtaining

explicit expressions for order r Turaev–Viro invariants (as functions on q) for
all r is difficult, see [137] for the case of lens spaces. On the other hand, if
r is fixed, the problem has a purely combinatorial nature and can be solved
by means of a computer program. One should construct a special spine of the
manifold and, using formulas (8.6)–(8.8), calculate the weights and symbols.
Then one can enumerate all colorings and find out the value of the invariant
by taking the sum of their weights. Extensive numerical tables of that kind
can be found in [60,113].

Let us make a digression. Soon after the discovery of the invariants, many
mathematicians (and certainly Turaev and Viro) noticed that the invariants
of M were actually sums of invariants of pairs (M,h), where M is a 3-manifold
and h ∈ H2(M ;Z2). We describe this observation in detail. Let ξ be an admis-
sible coloring of a special spine P of a 3-manifold M by colors taken from the
palette C = {0, 1, . . . , N −1}. Reducing all colors mod 2, we get a black–white
coloring ξ mod 2 that happens to be also admissible owing to condition 2
of Definition 8.1.14. As we know from the proof of Lemma 8.1.6, admissible
black–white colorings correspond to black (i.e., colored by the color 1) surfaces
in P or, what is just the same, to elements of H2(M ;Z2). This decomposes
the set of all admissible colorings of P into classes corresponding to elements
of H2(M ;Z2): two colorings belong to the same class Adm(P, h) if their mod
2 reductions determine the same homology class h ∈ H2(M ;Z2) (and hence
the same surface in P ).

Assume now that the pair (M,h) and a special spine P of M are given.
Define an invariant TVq(M,h) by setting TVq(M,h) = w(P, h), where the
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h-weight w(P, h) is given by

w(P, h) =
∑

ξ∈Adm(P,h)

w(ξ).

The same proof as given for Theorem 8.1.4 shows that this definition is cor-
rect, i.e., TVq(M,h) does not depend on the choice of P . We need only one
additional observation. Let a special spine P2 of M be obtained from a spe-
cial spine P1 by exactly one T -move, i.e., by removing a fragment ET and
inserting a fragment E′

T , see Definition 1.2.3. For any admissible coloring ξ of
P1, let Colξ(P2) be the set of admissible colorings of P2 that coincide with ξ
on P1\ET = P2\E′

T . Then all the colorings in Colξ(P2) determine the same
homology class h ∈ H2(M ;Z2) as the coloring ξ.

It follows from the definition of TVq(M,h) that the Turaev–Viro invariant
TVq(M) is the sum of TVq(M,h) taken over all h ∈ H2(M ;Z2). Especially
important is the homologically trivial part TVq(M)0 of the Turaev–Viro
invariant that corresponds to the zero element of H2(M ;Z2). Recall that
h ∈ H2(M ;Z2) is even or odd, if it can be realized by a closed surface in
M having the Euler characteristic of the same parity. We follow [113] and
denote by TVq(M)1 the odd part of TVq(M), that is equal to the sum of
TVq(M,h) over all odd elements h ∈ H2(M ;Z2). Similarly, by TVq(M)2 we
denote the sum of TVq(M,h) taken over all even elements h ∈ H2(M ;Z2)
different from 0. Clearly, TVq(M) = TVq(M)0 + TVq(M)1 + TVq(M)2.

Remark 8.1.22. Note that since any special spine P ⊂ M is two-dimensional,
the 2-cycle group C2(P,Z2) coincides with H2(P ;Z2). Therefore, the mod 2
reduction of an admissible coloring ξ ∈ Adm(P ) determines the trivial element
of H2(P ;Z2) if and only if just even colors 0, 2, . . . have been used. Thus, the
only difference between TVq(M) and its homologically trivial part TVq(M)0
is that we consider all admissible colorings in the first case and only even ones
in the second.

At the end of the book we reproduce from [116] (with notational modifi-
cations) tables of Turaev–Viro invariants of order ≤7 and their summands for
all closed orientable irreducible 3-manifolds up to complexity 6 (Table A.1;
see Chap. 2 for the definition of complexity). We subject q to the following
constraint: q must be a primitive root of unity of degree 2r. This constraint is
slightly stronger than the one in the definition of Turaev–Viro invariants, see
Sect. 8.1.4. Nevertheless, we do not lose any information because of the follow-
ing relation proved in [116]: TVq(M)ν = (−1)νTV−q(M)ν , where ν ∈ {0, 1, 2}.

The invariants are presented by polynomials of q. This presentation is much
better than the numerical form since we simultaneously encode the invariants
evaluated at all degree 2r primitive roots of unity, and avoid problems with the
precision of calculations. For the sake of compactness of notation, we write
σk instead of qk + q−k. For instance, we set σ1 = q + q−1, σ2 = q2 + q−2,
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Table 8.2. Turaev–Viro invariants of order r ≤ 7 and their summands for closed
orientable irreducible 3-manifolds of complexity ≤ 2

M ν\r 3 4 5 6 7

0 1 1 1 1 1
S3 1 0 0 0 0 0

2 0 0 0 0 0∑
1 1 1 1 1

0 1 2 σ2 + 2 4 −σ3 + 2σ2 + 3
RP 3 1 −1 −σ1 −σ2 − 2 −2σ1 σ3 − 2σ2 − 3

2 0 0 0 0 0∑
0 −σ1 + 2 0 −2σ1 + 4 0

0 1 1 σ2 + 2 3 σ2 + 2
L3,1 1 0 0 0 0 0

2 0 0 0 0 0∑
1 1 σ2 + 2 3 σ2 + 2

0 1 2 1 4 σ2 + 2
L4,1 1 0 0 0 0 0

2 1 0 1 0 σ2 + 2∑
2 2 2 4 2σ2 + 4

0 1 1 0 1 −σ3 + 2σ2 + 3
L5,2 1 0 0 0 0 0

2 0 0 0 0 0∑
1 1 0 1 −σ3 + 2σ2 + 3

0 1 1 σ2 + 3 1 −σ3 + 2σ2 + 3
L5,1 1 0 0 0 0 0

2 0 0 0 0 0∑
1 1 σ2 + 3 1 −σ3 + 2σ2 + 3

0 1 1 σ2 + 2 1 0
L7,2 1 0 0 0 0 0

2 0 0 0 0 0∑
1 1 σ2 + 2 1 0

0 1 2 σ2 + 2 4 1
L8,3 1 0 0 0 0 0

2 1 2 σ2 + 2 0 1∑
2 4 2σ2 + 4 4 2

0 1 4 σ2 + 4 10 2σ2 + 7
S3/Q8 1 0 0 0 0 0

2 3 6 3σ2 + 12 18 6σ2 + 21∑
4 10 4σ2 + 16 28 8σ2 + 28

For each M the first three lines present TVq(M)ν ; the fourth line contains the values
of TVq(M). For brevity, we write σk instead of qk + q−k
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and so on. For your convenience, a small part of the table (for manifolds of
complexity ≤ 2) is given.

Items (1–4) below are devoted to analysis of the table and commentaries.

(1) Selected testing has shown that the table agrees with the ones presented
in [60, 61, 63], as well as with the above-mentioned calculations made by
the authors of the invariants.

(2) The manifold 412 = S3/Q16 disproves the second part of the Kauffman–
Lins Conjecture (see Remark 8.1.8). We see from Table A.9 that TVq

(S3/Q16) is equal to 6 for every primitive root of unity q of degree 8,
including q = exp((2 ± 1)π/4). Nevertheless, since TVq(S3/Q16)1 �= 0,
there is at least one surface with odd Euler characteristic. Therefore, no �=
0.

(3) Let us call 3-manifolds twins if their Turaev–Viro invariants of order ≤ 7
have the same triples of summands. The distribution of twins is shown in
Fig. 8.9. Each line of the table consists of twin manifolds. Cells painted in
gray contain genuine twins, i.e., manifolds having the same TV-invariants
of all orders. They cannot be distinguished by Turaev–Viro invariants.

Let us comment on the table. There are no twins up to complexity 3. First two
pairs of twins appear on the level of complexity ≤ 4: manifold 34 (= L11,3) is
a twin of 42 (= L11,2), and 36 (= L13,5) is a twin of 43 (= L13,3). At the level
of complexity ≤ 5 there appear new twin pairs and twin triples, and at the
level ≤ 6 we can find even a 7-tuple of twins.

Note that TVq(M)1 and TVq(M)2 are not invariants of Turaev–Viro type
(see Definition 8.1.5) since the constraints on mod 2 reduction of colorings

Fig. 8.9. Each line of the table contains twin manifolds. Cells painted in gray
contain genuine twins (manifolds having the same TV-invariants of all orders)
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have global nature. On the other hand, one can extract from Table A.9
that TVq(M)1 and TVq(M)2 add actually nothing to information given by
TVq(M)0 and TVq(M). For that reason, for manifolds of complexity 6 we
include only values of TVq(M) and TVq(M)0.

(4) Analyzing the tables, we can notice that TV3(M)TVq(M)0 = TVq(M)
for odd r the following holds: In fact, this equality is always true and fol-
lows from the similar formula of Kirby and Melvin for Reshetikhin–Turaev
invariants [63], and the Turaev–Walker theorem saying that each Turaev–
Viro invariant is equal to the square of the absolute value of the corresponding
Reshetikhin–Turaev invariant (see, for instance, [108,125]).

(5) It is not difficult to observe that all coefficients in the polynomials
presenting Turaev–Viro invariants in our tables are integers. This is not an
accident. Robers and Masbaum gave in [75] an elegant proof that values of
Turaev–Viro invariants are algebraic integers.

(6) As we have mentioned above, there exist explicit expressions for
Turaev–Viro invariants for lens spaces. Using Yamada’s formulas [137], Soko-
lov found a simple solution to the following interesting problem: Which lens
spaces can be distinguished by Turaev–Viro invariants?

For any integer v define a characteristic function hv : Z → Z2 by setting
hv(k) = 1 if k = ±1 mod v, and hv(k) = 0, otherwise.

Theorem 8.1.23. [117] Lens spaces Lp1,q1 and Lp2,q2 have the same Turaev–
Viro invariants of all orders if and only if p1 = p2 and for any divisor v > 2
of p1 we have hv(q1) = hv(q2).

Sokolov noticed also that if p1 �= p2, then Lp1,q1 and Lp2,q2 can be distin-
guished by Turaev–Viro invariant TVq of some order r ≤ 2R, where R is the
minimal natural number such that R is coprime with p1, p2, and p1 �= p2 mod
R. In case p1 = p2 it is sufficient to consider only invariants of order r ≤ p1.
If p is prime, then the criterion is especially simple.

Corollary 8.1.24. If p is prime, then Lp,q1 and Lp,q2 have the same Turaev–
Viro invariants if and only if for i = 1, 2 either qi = ±1 mod p or qi �= ±1
mod p.

Note that all lines of the table in Fig. 8.9 except the last three contain only
lens spaces. Thus Theorem 8.1.23 and the above corollary are sufficient for
selecting genuine twins among them. See Remark 8.2.15 in Sect. 8.2 for an
explanation why the last three lines contain genuine twin pairs.

Remark 8.1.25. It is interesting to note that if p is prime, then Reshetikhin–
Turaev invariants can distinguish any two nonhomeomorphic lens spaces Lp,q1

and Lp,q2 , see [51].
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8.1.6 More on ε-Invariant

Comparing Tables 8.1 and A.9, one can see that ε-invariant coincides with
the homologically trivial part TVq(M)0 of order 5 Turaev–Viro invariant. Let
us prove that.

Theorem 8.1.26. [89] Let M be a closed 3-manifold. Then ε(M) = TVq(M)0,
where ε = (1+

√
5)/2 for q = exp(±π

5 i) and ε = (1−
√

5)/2 for q = exp(± 3π
5 i).

Proof. The values of q and ε presented above are related by the equality
ε = q2 + 1 + q−2. Indeed, q10 = 1 implies

q5 − q−5

q + q−1
= q4 + q2 + 1 + q−2 + q−4 = 0,

which is equivalent to (q2 + 1 + q−2)2 = (q2 + 1 + q−2) + 1. Recall that for
calculating ε-invariant we use two colors: 0 and 1. For calculating TVq(M)0 in
the case r = 5 we use even colors from the palette {0, 1, 2, 3}, i.e., two colors
0 and 2 (see Remark 8.1.22). It remains to verify that the correspondence
(0, 1) → (0, 2) transforms weights of colors and symbols for ε-invariant (see
solution (8.5) on page (389)) to those for TVq(M)0 (see formulas (8.7) and
(8.8) on page 399). For instance, the weight of the color 1, in the case of ε-
invariant, equals ε while the weight of the color 2, in the case of Turaev–Viro
invariant, equals q2 + 1 + q−2.

Let us discuss briefly the relation between ε-invariant and TQFT. A three-
dimensional TQFT is a functor F from the three-dimensional cobordism cate-
gory to the category of vector spaces. The functor should satisfy some axioms,
see [7]. In particular, “quantum” means that F takes the disjoint union of
surfaces to the tensor product of vector spaces. In our case the base field
corresponding to the empty surface is the field R of real numbers. It follows
that to every closed 3-manifold there corresponds a linear map from R to R,
that is, the multiplication by a number. This number is an invariant of the
manifold.

As explained in [126], Turaev–Viro invariants fit into conception of TQFT.
The only difference is that instead of the cobordism category one should con-
sider a category whose objects have the form (F, Γ ), where F is a surface
and Γ is a fixed one-dimensional special spine of F . Here a one-dimensional
special polyhedron is a regular graph of valence 3. Morphisms between objects
(F−, Γ−), (F+, Γ+) have the form (M, i−, i+), where M is a 3-manifold with
boundary ∂M presented as the union of two disjoint surfaces ∂−M , ∂+M+,
and i± : F± → ∂±M are homeomorphisms.

The ε-invariant, as any other Turaev–Viro type invariant, admits a similar
interpretation. From general categorical considerations (see [126, Sect. 2.4]) it
follows that there arises a homomorphism Φ from the mapping class group of
the two-dimensional torus T 2 = S1×S1 to the matrix group GL5(R). Given a
homomorphism h : T 2 → T 2, we construct the cobordism (T 2 × I, i−, i+(h)),
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Fig. 8.10. Five black–white colorings for a spine of a torus

where i− : T 2 → T 2×{0} ⊂ T 2×I is the standard inclusion and i+(h) : T 2 →
T 2×{1} ⊂ T 2×I is the inclusion induced by h. We assume that T 2 is equipped
with a fixed special spine Θ. By definition, put Φ(h) = F(T 2 × I, i−, i+(h)),
where F is the functor corresponding to the ε-invariant. Then Φ(h) is a linear
map R5 → R5. The dimension is 5, since Θ admits exactly five black–white
colorings (see Fig. 8.10) that are admissible in the following sense: one black
and two white edges never meet at the same vertex.

The mapping class group of the torus is generated by twists τm and τl

along a meridian and a longitude, respectively. The twists satisfy the rela-
tions τmτlτm = τlτmτl and (τmτlτm)4 = 1. Denote by a and b the matrices
of the corresponding linear maps R5 → R5. One can verify that a5 = 1,
(aba)2 = 1 and that the group 〈a, b | aba = bab, (aba)2 = 1, a5 = 1〉 is
finite. Actually, the presentation coincides with the standard presentation
〈a, b | aba = bab, (a2b)2 = a5 = 1〉 of the alternating group A5.

The following theorem is a direct consequence of this observation [89]:

Theorem 8.1.27. Let F be a closed surface and n a nonnegative integer.
Denote by M(F, n) the set of all Seifert manifolds over F with n exceptional
fibers. Then the set {t(M),M ∈ M(F, n)} of the values of the ε-invariant is
finite.

The number 60n (60 is the order of the alternating symmetric group A5)
serves as an upper estimate for the number of values of t(M). Certainly, the
estimate is very rough. More detailed considerations show that for lens spaces
the number of values of ε-invariant is equal to 4. We give without proof an
exact expression for the ε-invariant of the lens space L(p, q).

Theorem 8.1.28.

t(Lp,q) =

⎧⎪⎪⎨
⎪⎪⎩

1, if p ≡ ±1 mod 5;
ε + 1, if p ≡ ±2 mod 5;
ε + 2, if p ≡ 0 mod 5 and q ≡ ±1 mod 5;

0, if p ≡ 0 mod 5 and q ≡ ±2 mod 5.
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8.2 3-Manifolds Having the Same Invariants
of Turaev–Viro Type

This section is based on the following observation of Lickorish [69]: if two
3-manifolds M1,M2 have special spines with the same incidence relation
between 2-cells and vertices (in a certain strong sense), then their Turaev–Viro
invariants of all orders coincide. Manifolds having spines as above are called
similar. We construct a simple example of similar 3-manifolds with different
homology groups, and present a result of Nowik and the author [88] stating
that under certain conditions similar manifolds are homeomorphic.

Let P be a special spine of a 3-manifold M and V = V (P ) the set of its
vertices. Denote by N(V, P ) a regular neighborhood of V in P . It consists
of some number of disjoint copies of the butterfly E. The intersection of the
union of all open 2-cells in P with each butterfly consists of exactly six wings.

Definition 8.2.1. Two special polyhedra P1 and P2 are called similar if there
exists a homeomorphism ϕ : N(V (P1), P1) → N(V (P2), P2) such that for any
two wings w1 and w2 of P1 the following condition holds: w1 and w2 belong
to the same 2-cell of P1 if and only if ϕ(w1) and ϕ(w2) belong to the same
2-cell of P2. The homeomorphism ϕ is called a similarity homeomorphism.

A good way to think of it is the following: let us paint the 2-cells of P1 in
different colors and the corresponding 2-cells of P2 in the same colors. Then
the similarity homeomorphism ϕ is required to preserve the colors of wings.
In other words, P2 must contain exactly the same colored butterflies as P2.

Definition 8.2.2. Two 3-manifolds M1 and M2 are said to be similar if a
special spine of M1 is similar to a special spine of M2.

Examples of similar but nonhomeomorphic 3-manifolds will be presented
later. The following proposition is based on an idea of Lickorish [69]. It is
related to all invariants of Turaev–Viro type, not only to Turaev–Viro ones
(see Definition 8.1.5 and Remark 8.1.20).

Proposition 8.2.3. Similar manifolds have the same invariants of Turaev–
Viro type.

Proof. Let us look carefully through the construction of Turaev–Viro type
invariants (Sect. 8.1.1). We come to the conclusion that all what we need to
know to calculate the invariants is just the number of vertices and 2-cells, and
the incidence relation between vertices and 2-cells, see Definition 8.2.1. For
similar spines these data coincide and hence produce the same invariants.

Below we describe moves on special polyhedra and moves on manifolds
that transform them into similar ones. We start with moves on manifolds.

Let M be a (not necessarily orientable) 3-manifold and F ⊂ Int M a
closed connected surface such that F is two-sided in M and χ(F ) ≥ 0. The
last condition means that F is homeomorphic to S2, RP 2, T 2 = S1 × S1, or
to the Klein bottle K2. Choose a homeomorphism r : F → F such that:
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(1) If F = S2, then r reverses the orientation.
(2) If F = RP 2, then r is the identity.
(3) If F = T 2 or F = K2, then r induces multiplication by −1 in H1(F ;Z).

It is clear that r is unique up to isotopy. In case (3) one can explicitly
describe it as follows: present the torus or the Klein bottle as a square with
identified opposite edges. Then r is induced by the symmetry of the square
with respect to the center.

Now cut M along F and repaste the two copies of F thus obtained ac-
cording to the homeomorphism r. We get a new 3-manifold M1.

Definition 8.2.4. We say the new 3-manifold M1 arising in such a way is
obtained from M by the manifold move along F .

Remark 8.2.5. The manifold move along RP 2 does not change the manifold,
and neither does the move along any trivial (i.e., bounding a ball) 2-sphere.
Suppose F = T 2 and F bounds a solid torus in M . Since r : T 2 → T 2 can
be extended to the interior of the solid torus, we have M1 = M . The same is
true for any Klein bottle that bounds in M a solid Klein bottle S1×̃D2.

Now let us turn our attention to moves on special polyhedra. Let G be a
connected graph with two vertices of valence 3. There exist two such graphs:
a theta-curve (a circle with a diameter) and an eyeglass curve (two circles
joined by a segment). Choose a homeomorphism � : G → G such that:

(1) If G is a theta-curve, then � = �1, where �1 : G → G permutes the vertices
and takes each of the three edges into itself.

(2) If G is an eyeglass curve, then � = �2, where �2 : G → G leaves the joining
segment fixed and inverses both loops, see Fig. 8.11.

Definition 8.2.6. An one-dimensional subpolyhedron G of a special polyhe-
dron P is called proper if a regular neighborhood N(G,P ) of G in P is a
twisted or untwisted I-bundle over G. If N(G,P ) ≈ G × I, then G is called
two-sided.

Let G ⊂ P be a two-sided theta-curve or an eyeglass curve in a special
polyhedron P . Cut P along G and repaste the two copies of G thus obtained
according to the homeomorphism �. We get a new special polyhedron P1.

Fig. 8.11. Involution � on the theta-curve and eyeglass curve
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Definition 8.2.7. We say the new special polyhedron P1 is obtained from P
by a spine move σi along G, where i = 1 if � = �1 and i = 2 if � = �2.

Proposition 8.2.8. Spine moves transform special polyhedra to similar ones.

Proof. Let G ⊂ P be a two-sided theta-curve or a two-sided eyeglass curve
in a special polyhedron P . The edges of G decompose some 2-cells of P into
smaller parts that are glued together to new 2-cells. Since � takes each edge of
G to itself, the boundary curves of the new 2-cells run along the same edges as
before, although may pass along them in a different order. Nothing happens
near vertices. It follows that the new special polyhedron is similar to P .

Recall that we have two types of spine moves: theta-move σ1 and glasses-
move σ2. It is convenient to introduce the third move σ3.

Let G ⊂ P be a proper theta-curve with edges l1, l2, l3 such that

(1) G separates P .
(2) l1 and l2 belong to the same 2-cell C of P .

Choose a homeomorphism �3 : G → G such that �3 leaves l3 fixed and
permutes l1 and l2. Cut P along G and repaste the two copies of G thus
obtained according to �3. We say that the new special polyhedron P1 arising
in such a way is obtained from P by the move σ3.

Lemma 8.2.9. σ3 can be expressed through σ1 and σ2.

Proof. Let l1, l2 be the two edges of G which are contained in the same 2-cell
C such that σ3 transposes them. Then there exists a simple arc l ⊂ C such
that l ∩ G = ∂l and l connects l1 with l2. Consider a regular neighborhood
N = N(G ∪ l) of G ∪ l in P . Since G separates P , it has a neighborhood
homeomorphic to G × [0, 1]. Hence N can be presented as G × [0, 1] with a
twisted or an untwisted band B attached to G × {1}, see Fig. 8.12.

Fig. 8.12. Two types of N = (G × [0, 1]) ∪ B; the rotation by 180◦ determines a
homeomorphism of N
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Fig. 8.13. Spine move across e: we cut out the region A and paste it back by
a homeomorphism that permutes the white and black vertices and is invariant on
edges

If the band is untwisted, then N is bounded by G1 and G2, where G1

is a theta-curve isotopic to G and G2 is an eyeglass curve. There exists a
homeomorphism h : N → N such that h|G1 = �3 and h|G2 = �2 (h can
be visualized as the symmetry in the vertical plane shown on Fig. 8.12). It
follows that the move σ3 along G1 (and along G) is equivalent to the move σ2

along G2.
Let the band be twisted. Then N is bounded by two theta-curves G1 and

G2, where G1 is isotopic to G. There exists a homeomorphism h : N → N
(this time the rotation by 180◦ around the vertical axis) such that h

∣∣
G1

= �1�3

and h
∣∣
G2

= �1. Hence, the superposition of the moves σ1 and σ3 along G1 is
equivalent to the move σ1 along G2. Taking into account that �2

1 = 1, we can
conclude that the move σ3 along G is equivalent to the superposition of the
move σ1 along G1 and the move σ1 along G2.

Suppose the boundary curve of a 2-cell C of a special spine P passes along
an edge e of P three times. Choose two points on e and join them by three
arcs in C as it is shown on Fig. 8.13. The union G of the arcs is a proper
two-sided theta or an eyeglass curve in P . One can consider the spine move
along G. To distinguish this type of spine move we supply it with a special
name.

Definition 8.2.10. Let G be a proper two-sided theta-curve or an eyeglass
curve in a special polyhedron P such that both vertices of G lie in the same
edge. Then the spine move along G is called a spine move across e.

Our next goal is to prove that spine moves induce moves on manifolds,
and vice versa, manifold moves can be realized by spine moves.

Lemma 8.2.11. Let G be a proper theta or an eyeglass curve in a special
spine P of a closed 3-manifold M . Then there exists a closed connected surface
F ⊂ M such that χ(F ) ≥ 0, F ∩ P = G, and F is transversal to the singular
graph SP of P .
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Proof. Let N = N(P,M) be a regular neighborhood of P in M . Present N
as the mapping cylinder Cf = P ∪ (∂N × [0, 1])/ ∼ of an appropriate locally
homeomorphic map f : ∂N → P . Then F1 = (f−1(G)× [0, 1])/ ∼ is a surface
in N such that

(1) F1 ∩ ∂N = ∂F1, F1 ∩ P = G, and F1 is transversal to SP .
(2) G is a spine of F1.

To obtain F , attach disjoint 2-cells contained in the 3-cell M \ N to the
boundary components of F1. Since χ(F1) = χ(G) = −1, we have χ(F ) ≥ 0.

Proposition 8.2.12. Let P be a special spine of a closed 3-manifold M , and
let G ⊂ P be a two-sided theta-curve or a two-sided eyeglass curve. Denote by
P1 the special polyhedron obtained from P by the spine move along G. Then

(1) P1 is a spine of a closed 3-manifold M1.
(2) M1 can be obtained from M by a manifold move.

Proof. Let F ⊂ M be the surface constructed in Lemma 8.2.11. Since G is two-
sided, F is also two-sided. The homeomorphism � : G → G can be extended
to a homeomorphism r : F → F . It is clear that r satisfies conditions (1)–(3)
preceding Definition 8.2.4 of a manifold move. Denote by M1 the 3-manifold
obtained from M by the manifold move along F . Since r

∣∣
G

= �, P1 is a spine
of M1.

Proposition 8.2.13. Let a closed 3-manifold M1 be obtained from a closed
3-manifold M by a manifold move along a surface F ⊂ M . Then M and M1

are similar.

Proof. Let us construct a special spine P of M such that G = P ∩ F is a
proper two-sided theta-curve. To do it, remove an open ball D3 from M such
that D = D3 ∩ F consists of one open disc if F = T 2,K2, and of three open
discs if F = S2. We do not take F = RP 2 since in this case the manifold move
is trivial. Denote by F1 the surface F \ D. Starting from F1 × ∂I, collapse
a regular neighborhood N = F1 × I in M \ D3 onto G × I, where G is a
theta-graph in F1. The collapsing can be easily extended to a collapsing of
M \ D3 onto a special spine P ⊃ G × I.

Apply to P the spine move along G. It follows from Proposition 8.2.12
that the special polyhedron P1 thus obtained is a spine of M1. Since P and
P1 are similar, the same is true for M and M1.

Example 8.2.14. We are ready now to construct two similar manifolds with
different homology groups. Take M1 = S1 × S1 × S1 and consider the torus
T 2 = S1×S1×{∗} ⊂ M . To construct M2, perform the manifold move on M1

along T 2. By Proposition 8.2.13, M2 is similar to M1. A simple calculation
shows that H1(M1;Z) = Z ⊕ Z ⊕ Z, and H1(M2;Z) = Z2 ⊕ Z2 ⊕ Z.
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Remark 8.2.15. According to Preposition 8.2.3, manifolds M1 and M2 above
have the same Turaev–Viro invariants. For instance, if q = exp(π

7 i), then
TVq(M1) = TVq(M2) = −63q3 +189q2 +378+189q−2−63q−3, see Table A.1,
where M1, M2 have names 670, 671, and Fig. 8.9, where they are shown as
genuine twins. Manifolds 665, 667 as well as 668, 669 occupying the neighboring
lines, also form genuine twin pairs since they are related by the same manifold
move.

It is interesting to recall here that Turaev–Viro invariants of order 2 de-
termine the order of the second homology group with coefficients Z2, see
Sect. 8.1.7. This agrees with the observation that H2(M1;Z2) = H2(M2;Z2) =
Z2 ⊕ Z2 ⊕ Z2.

As we have claimed at the beginning of this section, under certain condi-
tions similarity of 3-manifolds implies homeomorphism. The idea of the proof
is to transform a special spine P1 of the first manifold into a similar special
spine P2 of the second one step by step. Our first goal is to define graph moves
for transforming the singular graph of P1 to the one of P2.

Let Γ be a finite (multi)graph. Fix a finite set A. By a coloring of Γ by
A we mean a map c : E(Γ ) → A, where E(Γ ) is the set of all open edges
of Γ . Denote by V (Γ ) the set of vertices of Γ and by N(V, Γ ) a regular
neighborhood of V in Γ . The intersection of open edges with N(V, Γ ) consists
of half-open 1-cells, which are called thorns.

Definition 8.2.16. Two colored graphs Γ1 and Γ2 are called similar, if there
exists a homeomorphism ϕ : N(V (Γ1), Γ1) → N(V (Γ2), Γ2) preserving the
colors of thorns. The homeomorphism ϕ is called a similarity homeomorphism.

Let Γ be a colored graph. Choose two edges e1 and e2 of the same color and
cut each of them in the middle. Repaste the four “half edges” thus obtained
into two new edges which do not coincide with the initial ones.

Definition 8.2.17. We say the new colored graph Γ1 arising in such a way is
obtained from Γ by a graph move along e1 and e2. The graph move is called
admissible, if Γ and Γ1 are connected.

Remark 8.2.18. For any given e1 and e2 there exist two different graph
moves along e1 and e2. Suppose Γ is connected and Γ \ Int (e1 ∪ e2) con-
sists of two connected components such that each of them contains one vertex
of each edge. Then precisely one of the moves is admissible, see Fig. 8.14. If
Γ \ Int (e1 ∪ e2) is connected, then both moves are admissible.

Lemma 8.2.19. Let Γ1 and Γ2 be similar colored graphs. If they are con-
nected, then one can pass from Γ1 to Γ2 by a sequence of admissible graph
moves.
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Fig. 8.14. Admissible and nonadmissible graph moves

Proof. It follows from Definition 8.2.16 that there exists a homeomorphism
ϕ : N(V (Γ1), Γ1) → N(V (Γ2), Γ2) preserving the colors of thorns. We call
an edge e in Γ1 correct if ϕ maps the two thorns t1 and t2 contained in
it into the same edge f in Γ2. The thorns t1 and t2, the edge f and the
thorns ϕ(t1), ϕ(t2) ⊂ f are also called correct . The homeomorphism ϕ can be
extended to an edge e if and only if e is correct, so to prove Lemma 8.2.19
it is sufficient to show that the number of correct edges can be increased by
admissible graph moves on Γ1 and Γ2.

Let t1 be an incorrect thorn in Γ1 and let t2, t3, . . . , t2n be all other
incorrect thorns of the same color (say, red). We shall say that a thorn ti,
2 ≤ i ≤ 2n, is good (with respect to t1), if t1 and ti belong to the same edge
or if they can be transferred to the same edge by an admissible graph move on
Γ1. Denote by T the set {τi = ϕ(ti), 1 ≤ i ≤ 2n} of all red incorrect thorns
in Γ2. We shall say that a thorn τi, 2 ≤ i ≤ 2n, is good , if τ1 and τi belong to
the same edge or if they can be transferred to the same edge by an admissible
graph move on Γ2.

Consider two subsets A1 and A2 of the set T . The subset A1 ⊂ T consists of
the images of good thorns in Γ1, the subset A2 ⊂ T is the set of all good thorns
in Γ2. Let #X denote the number of elements in X. Since any red incorrect
edge in Γ1 and Γ2 contains at least one good thorn, we have #A1 ≥ n and
#A2 ≥ n. Note that #T = 2n and, because t1 and τ1 = ϕ(t1) are not good,
τ1 does not belong to A1 ∪ A2. Hence, #(A1 ∪ A2) < 2n, and A1 ∩ A2 �= ∅.
We can conclude that there exist i and j, 2 ≤ i, j ≤ 2n, such that ti and
τj are good. By definition of good edges, we can perform admissible graph
moves such that after these moves t1 and t2 belong to the same edge and τ1

and τ2 also belong to the same edge. The moves are performed along incorrect
edges. Hence, all correct edges are preserved, but now a new correct edge has
appeared (just the one containing t1 and t2).

Our next step is to prove Proposition 8.2.22 below stating that under
certain conditions any similarity homeomorphism between neighborhoods of
vertices of special spines can be extended to the union of edges. We need two
lemmas.
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Lemma 8.2.20. Let P be a special spine of a closed 3-manifold M . Suppose
that every surface F ⊂ M with χ(F ) ≥ 0 separates M . Then each proper theta
or eyeglass curve G ⊂ P separates P .

Proof. Let F ⊂ M be the surfaces constructed in Lemma 8.2.11. Since F
separates M and P is a spine of M , Γ = F ∩ P separates P .

Suppose P is a special spine of a closed 3-manifold M . Let us color the
2-cells of P in different colors. At each edge of P three 2-cells meet, and
so to each edge there corresponds some unordered triplet of colors (possibly
with multiplicity). We call this triplet the tricolor of the edge. Thus, we may
consider SP as a colored graph. Note that each spine move on P induces an
admissible graph move on SP . It turns out that under certain conditions all
admissible graph moves can be obtained in this way.

Lemma 8.2.21. Let P be a special spine of a 3-manifold M . If every surface
F ⊂ M with χ(F ) ≥ 0 is separating, then each admissible graph move γ on
SP is induced by a spine move on P .

Proof. Let γ be performed along edges e1 and e2. Then e1 and e2 have the
same tricolor. Connect the middle points of e1 and e2 by three disjoint arcs
lj ⊂ P (j = 1, 2, 3) in such a way that G = l1 ∪ l2 ∪ l3 is a proper theta-
curve. If the tricolor has multiplicity, this is also possible. By Lemma 8.2.20,
G separates P into two parts such that each part contains one vertex of e1

and one vertex of e2. Denote by σ1 the spine move along G. Then σ1 induces
an admissible graph move along e1 and e2. Since such a move is unique (see
Remark 8.2.18), it coincides with γ.

Recall that if a closed 3-manifold M is irreducible, then any compressible
torus or Klein bottle in M bounds a solid torus or Klein bottle, respectively.
There exist no compressible projective planes at all. It follows that if an irre-
ducible M contains no closed incompressible surfaces with nonnegative Euler
characteristic, then the following holds:

(1) Every surface F ⊂ M with χ(F ) ≥ 0 separates M .
(2) Every manifold move on M produces a homeomorphic manifold, see

Remark 8.2.5.

Proposition 8.2.22. Let M1 and M2 be similar closed 3-manifolds. Suppose
M1 is irreducible and does not contain closed incompressible surfaces with
nonnegative Euler characteristic. Then there exist special spines Pi of Mi

(i = 1, 2) and a homeomorphism ψ : N1 ∪ SP1 → N2 ∪ SP2 such that ψ|N1 :
N1 → N2 is a similarity homeomorphism, where Ni = N(V (Pi), Pi).

Proof. Let ϕ : N1 → N2 be a similarity homeomorphism, where P1 and P2

are special spines of M1 and M2, respectively. We imagine the 2-cells of P1

and P2 as being painted in different colors such that ϕ preserves the colors of
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wings. As above, we paint also each edge in the corresponding tricolor. Then
ϕ induces a similarity homeomorphism between SP1 and SP2. If all edges of
SP1 are correct, then ϕ can be extended to a homeomorphism ψ satisfying the
conclusion of the proposition. If not, we use Lemma 8.2.19 to correct them by
a sequence of graph moves. By Lemma 8.2.21 this sequence can be realized by
a sequence of spine moves. It remains to note that each move on a spine of M1

produces a spine of the same manifold, so we do not violate the assumption
on M .

Let P1 and P2 be special spines of M1 and M2, and let a homeomorphism
ψ : N1 ∪ SP1 → N2 ∪ SP2 induce a similarity homeomorphism ψ′ between
N1 = N(V (P1), P1) and N2 = N(V (P2), P2). Identify N1 ∪SP1 and N2 ∪SP2

via ψ. We obtain two special spines P1 and P2 such that their singular graphs
and wings coincide.

Let e be an edge of P1. It contains two thorns t1, t2. Let ω
(i)
1 , ω

(i)
2 , ω

(i)
3 be

the wings adjacent to ti, i = 1, 2. A regular neighborhood N(e\Int (t1∪t2), P1)
of a middle part of e in P1 is homeomorphic to Y × I, where Y is a wedge of
three segments. Hence, we have a natural bijection a1e : {ω(1)

1 , ω
(1)
2 , ω

(1)
3 } →

{ω(2)
1 , ω

(2)
2 , ω

(2)
3 }. In the same way a direct product structure on N(e \

Int (t1 ∪ t2), P2) determines a natural bijection a2e : {ω(1)
1 , ω

(1)
2 , ω

(1)
3 } →

{ω(2)
1 , ω

(2)
2 , ω

(2)
3 }. Denote by βe the permutation a−1

2e a1e.

Definition 8.2.23. An edge e is called even (odd) if βe is an even (odd)
permutation.

Let C be a 2-cell of P1. Denote by EC the collection of edges incident to
C. We allow multiplicity, so if the boundary curve of C passes along an edge
e two (three) times, then e is included in EC two (three) times. Note that EC

coincides with the set of edges incident to the 2-cell of P2 having the same
color.

Lemma 8.2.24. For any 2-cell C of P1 the collection EC contains an even
number of odd edges.

Proof. Regular neighborhoods N(V (Pi),Mi) (i = 1, 2) consist of 3-balls.
Choose orientations of the 3-balls such that the similarity homeomorphism
ψ′ : N(V (P1), P1) → N(V (P2), P2) is extendible to an orientation preserv-
ing homeomorphism between N(V (P1),M1) and N(V (P2),M2). The orienta-
tions induce a cyclic order on the set {ω(j)

1 , ω
(j)
2 , ω

(j)
3 } of wings adjacent to

each thorn of P1 or P2. We shall say that an edge e is orientation reversing
with respect to Pi, if the corresponding bijection aie : {ω(1)

1 , ω
(1)
2 , ω

(1)
3 } →

{ω(2)
1 , ω

(2)
2 , ω

(2)
3 } preserves the cyclic order, i = 1, 2. Since the boundary curve

of each 2-cell in a 3-manifold is orientation preserving, EC contains an even
number of orientation reversing edges with respect to P1 and an even number
of orientation reversing edges with respect to P2. It remains to note that e is
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odd if and only if e is orientation reversing with respect to one of spines P1,
P2, and orientation preserving with respect to the other.

Theorem 8.2.25. Let M1 and M2 be similar closed 3-manifolds. Suppose M1

is irreducible and does not contain closed incompressible surfaces with non-
negative Euler characteristics. Then M1 and M2 are homeomorphic.

Proof. According to Proposition 8.2.22, there exist special spines Pi of Mi

(i = 1, 2) and a homeomorphism ψ : N1 ∪ SP1 → N2 ∪ SP2 such that ψ
∣∣
N1

:
N1 → N2 is a similarity homeomorphism, where Ni = N(V (Pi), Pi). As above,
identify N1∪SP1 with N2∪SP2 via ψ. We define an edge e of P1 to be strongly
correct (SC) if the corresponding permutation βe is trivial. In other words, e is
SC if and only if the identification ψ can be extended to a neighborhood of e in
P1. Note that if all edges are SC, then ψ can be extended to a homeomorphism
between P1 and P2 and to a homeomorphism between M1 and M2. We claim
that one can perform spine moves on P1 until all edges become SC. This will
prove Theorem 8.2.25, because each spine move can be extended to a manifold
move on M1 that does not change its homeomorphism type.

As above, we paint the 2-cells of P1 and P2 in different colors and the edges
in tricolors. Note that if the tricolor of an edge e consists of three different
colors, then e is obviously SC. Assume that the tricolor of e is bichromatic
(i.e., it has the form (x, y, y), x �= y), and that e is not SC. Then e is odd.
It follows from Lemma 8.2.24 that there is another non-SC edge e′ of tricolor
(x, z, z) (possibly z = x or z = y). Assuming first that z �= y, we construct a
proper eyeglass curve G with the vertices on e and e′ (this is also possible when
z = x). By Lemma 8.2.20, G is two-sided, and the spine move σ2 along G can
be performed. The edge e will now be SC. If z = y, there are two possibilities
for the relative displacement of e and e′ along the boundary curve of y-colored
2-cell: the displacement (e, e, e′, e′) and the displacement (e, e′, e, e′). In the
first case we can still construct an eyeglass curve with vertices on e and e′ and
perform σ2. In the second case we construct a proper theta-curve G with the
vertices on e and e′. The move σ3 along G makes e strongly correct.

Assume now e is a monochromatic non-SC edge of tricolor (x, x, x), and
assume that there is another edge e′ with the same tricolor. Denote by Cx the
x-colored 2-cell of P1. We shall say that e and e′ are linked if the boundary
curve of Cx cannot be decomposed into two arcs d and d′, such that d passes
three times along l and d′ passes three times along l′. Suppose that l and l′

are linked. In order to make l strongly correct, we use spine moves σ3 along
theta-curves with vertices on l and l′. Each such move changes βe by some
permutation. It is sufficient to show that each transposition τ of wings can be
achieved. In essence, there are two possibilities for the relative displacement
of e and e′ on the boundary curve of Cx. It is clear that in both cases τ can
be realized by a move σ3 along the theta-curve G = l1 ∪ l2 ∪ l3, see Fig. 8.15.

Suppose now that each two non-SC edges of tricolor (x, x, x) are unlinked.
If e is an odd edge with tricolor (x, x, x), then there is another odd edge e′
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Fig. 8.15. Two linked and one unlinked positions of edges e, e′ in the boundary of
a 2-cell

Fig. 8.16. Decomposition of wings into pairs

with the same tricolor. We use the manifold move along G = l1 ∪ l2 ∪ l3 (see
Fig. 8.15) to make e and e′ even.

It remains to consider the following situation: all non-SC edges are mono-
chromatic and even, and there are no linked edges among them. Let e be a
non-SC edge with tricolor (x, x, x). Denote by P3 the spine obtained from P1

by the spine move across e, see Definition 8.2.10. Let t1 and t2 be the thorns
in e and let w

(i)
1 , w

(i)
2 , w

(i)
3 be the wings adjacent to ti, i = 1, 2. The direct

product structures on regular neighborhoods of e\Int (t1∪t2) in Pi determine
natural bijections aie : {w(1)

1 , w
(1)
2 , w

(1)
3 } → {w(2)

1 , w
(2)
2 , w

(2)
3 }, i = 1, 2, 3. It is

sufficient to prove that a2e coincides with a3e, because this means that the
spine move across e makes e strongly correct.

Consider a regular neighborhood N of SP1\e in P1. The difference N \SP1

consists of some number of half-open annuli and precisely three x-colored half-
open discs. Each of the discs contains two wings from the set W = {w(i)

j , 1 ≤
j ≤ 3, i = 1, 2}. Thus, we have a decomposition of the set W into three
pairs. In Fig. 8.16 the wings forming each pair are marked with similar signs.
Taking P2 or P3 instead of P1, we obtain two other decompositions. A very
important observation: since all non-monochromatic edges are SC and e is not
linked with any other edge, these three decompositions coincide.
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At least one pair of the decomposition contains a wing adjacent to the pair,
1 ≤ j, k ≤ 3. Since each of the spines P1, P2, P3 contains only one x-colored
2-cell, we have aie(w

(1)
j ) �= w

(2)
k , 1 ≤ i ≤ 3. Hence, among a1e(w

(1)
j ), a2e(w

(1)
j ),

a3e(w
(1)
j ) at least two wings coincide. Taking into account that any two dif-

ferent bijections a1e, a2e, a3e differ on an even permutation, we can conclude
that at least two of them do coincide. Since e is not SC and since the spine
move across e changes the corresponding bijection, we have a1e �≡ a2e and
a1e �≡ a3e. It follows that a2e ≡ a3e.
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