
1. The Introduction of Quarks

About 70 years ago, only a small number of “elementary particles”,1 thought
to be the basic building blocks of matter, were known: the proton, the electron,
and the photon as the quantum of radiation. All these particles are stable (the
neutron is stable only in nuclear matter, the free neutron decays by beta decay:
n → p+ e− + ν̄). Owing to the availability of large accelerators, this picture of
a few elementary particles has profoundly changed: today, the standard reference
Review of Particle Properties2 lists more than 100 particles. The number is still
growing as the energies and luminosities of accelerators are increased.

1.1 The Hadron Spectrum

The symmetries known from classical and quantum mechanics can be utilized
to classify the “elementary-particle zoo”. The simplest baryons are p and n; the
simplest leptons e− and μ−. Obviously there are many other particles that must
be classified as baryons or leptons.

The symmetries are linked to conserved quantum numbers such as the
baryon number B, isospin T with z component T3, strangeness S, hypercharge
Y = B + S, charge Q = T3 +Y/2, spin I with z component Iz, parity π, and
charge conjugation parity πc. Conservation laws for such quantum numbers
manifest themselves by the absence of certain processes. For example, the hy-
drogen atom does not decay into two photons: e− +p → γ+γ, although this
process is not forbidden either by energy–momentum conservation or by charge
conservation. Since our world is built mainly out of hydrogen, we know from
our existence that there must be at least one other conservation law that is as
fundamental as charge conservation. The nonexistence of the decays n → p+ e−
and n → γ+γ also indicates the presence of a new quantum number. The proton
and neutron are given a baryonic charge B = 1, the electron B = 0. Similarly the
electron is assigned leptonic charge L = 1, the nucleons L = 0. From the prin-
ciple of simplicity it appears very unsatisfactory to regard all observed particles

1 For a detailed discussion of the content of this chapter see W. Greiner and B. Müller:
Symmetries (Springer, Berlin, Heidelberg 1994).

2 See the Review of Particle Physics by W.-M. Yao et al., Journal of Physics G 33
(2006) 1, and information available online at http://pdg.lbl.gov/
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Fig. 1.1. The mass spectra
of baryons. Plotted are the
average masses of the multi-
plets. For example, the state
N5/2+ at 1.68 MeV stands
for two particles, one pro-
tonlike and one neutronlike,
both with spin 5/2 and pos-
itive internal parity. The
figure contains 140 particle
states in total

Table 1.1. Quark charge (Q),
isospin (T, T3), and strange-
ness (S)

Q T T3 S

u 2
3

1
2

1
2 0

d − 1
3

1
2 − 1

2 0

s − 1
3 0 0 −1

c 2
3 0 0 0

t 2
3 0 0 0

b − 1
3 0 0 0

as elementary. To give an impression of the huge number of hadrons known to-
day, we have collected together the baryon resonances in Fig. 1.1. The data are

taken from the “Review of Particle Properties”. Particles for which there is only
weak evidence or for which the spin I and internal parity P have not been de-
termined have been left out. Note that each state represents a full multiplet. The
number of members in a multiplet is N = 2T +1 with isospin T . Thus the 13Δ
resonances shown correspond to a total of 52 different baryons.

When looking at these particle spectra, one immediately recognizes the sim-
ilarity to atomic or nuclear spectra. One would like, for example, to classify the
nucleon resonances (N resonances) in analogy to the levels of a hydrogen atom.
The 1
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2
, and so on.

Although one should not take this analogy too seriously, it clearly shows that
a model in which the baryons are built from spin- 1

2 particles almost automati-
cally leads to the states depicted in Fig. 1.1. The quality of any such model is
measured by its ability to predict the correct energies. We shall discuss specific
models in Sect. 3.1.

We therefore interpret the particle spectra in Fig. 1.1 as strong evidence that
the baryons are composed of several more fundamental particles and that most
of the observable baryon resonances are excitations of a few ground states. In
this way the excited states 3

2
−

and 1
2
−

are reached from the nucleon ground state

N(938 MeV) 1
2
+

by increasing the angular momentum of one postulated com-

ponent particle by one: 1
2
+

can be coupled with 1− to give 1
2
−

or 3
2
−

. As the
energy of the baryon resonances increases with higher spin (i.e., total angular
momentum of all component particles), one can deduce that all relative orbital
angular momenta vanish in the ground states.

To investigate this idea further, one must solve a purely combinatorial prob-
lem: How many component particles (called quarks in the following) are needed,
and what properties are required for them to correctly describe the ground states
of the hadron spectrum? It turns out that the existence of several quarks must be
postulated. The quantum numbers given in Table 1.1 must be given to them.
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The three light quarks u, d, s can be identified with the three states in the fun-
damental representation of SU(3). This is initially a purely formal act. It gains
importance only as one shows that the branching ratios of particle reactions and
the mass differences between stable baryons show – at least approximately – the
same symmetries. This means that the so-called flavor SU(3) can be interpreted
as the symmetry group of a more fundamental interaction.

Hadrons are therefore constructed as flavor SU(3) states. As the spin of
the quarks must also be taken into account, the total symmetry group becomes
SU(3)×SU(2). As an example we give the decomposition of the neutron into
quark states3:

|n↑〉 = 1√
18

(
2 |d↑〉 |d↑〉 |u↓〉−|d↑〉 |d↓〉 |u↑〉−|d↓〉 |d↑〉 |u↑〉

−|d↑〉 |u↑〉 |d↓〉+2 |d↑〉 |u↓〉 |d↑〉−|d↓〉 |u↑〉 |d↑〉
−|u↑〉 |d↑〉 |d↓〉−|u↑〉 |d↓〉 |d↑〉+2 |u↓〉 |d↑〉 |d↑〉

)
. (1.1)

Particularly interesting for the topic of this volume are the corresponding
decompositions of the statesΩ−, Δ++, and Δ− (see 3):

∣∣Ω−〉= |s↑〉 |s↑〉 |s↑〉 ,
∣∣Δ++〉= |u↑〉 |u↑〉 |u↑〉 ,
∣∣Δ−〉= |d↑〉 |d↑〉 |d↑〉 . (1.2)

To obtain the spin quantum numbers of hadrons, one must assume that the quarks
have spin 1

2 . This poses a problem: spin- 1
2 particles should obey Fermi statis-

tics, i.e., no two quarks can occupy the same state. So the three quarks in Ω−,
Δ++, and Δ− must differ in at least one quantum number, as we shall discuss
in Chapt. 4. Before proceeding to the composition of baryons from quarks, we
shall first repeat the most important properties of the symmetry groups SU(2)
and SU(3).

SU(2) and SU(3) are special cases of the group SU(N) the special uni-
tary group in N dimensions. Any unitary square matrix Û with N rows and
N columns can be written as (for more details see 3)

Û = ei Ĥ , (1.3)

where Ĥ is a Hermitian matrix. The matrices Û form the group SU(N) of unitary
matrices in N dimensions. Ĥ is Hermitian, i.e.,

Ĥ∗
ij = Ĥji . (1.4)

Of the N2 complex parameters (elements of the matrices), N2 real parameters
for Ĥ and hence for Û remain, owing to the auxiliary conditions (1.4). Since Û

3 W. Greiner and B. Müller: Quantum Mechanics: Symmetries (Springer, Berlin, Heidel-
berg, 1994).
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is unitary, i.e. Û†Û = 1, det Û† det Û = (det Û)∗ det Û = 1 and thus
∣∣∣det Û

∣∣∣= 1 . (1.5)

Owing to (1.4), tr
{

Ĥ
}

= α (α real) and

det Û = det
(

ei Ĥ
)

= eitrĤ = eiα . (1.6)

If we additionally demand the condition

det Û = +1 , (1.7)

i.e., α= 0 mod 2π, only N2 −1 parameters remain. This group is called the
special unitary group in N dimensions (SU(N)).

Let us now consider a group element Û of U(N) as a function of N2

parameters φμ (μ= 1, . . . , n). To this end, we write (1.3) as

Û(φ1, . . . , φn)= exp

(
−i
∑
μ

φμ L̂μ

)
, (1.8)

where L̂μ are for the time being unknown operators:

−i L̂μ = ∂Û(φ)

∂φμ

∣∣∣∣∣
φ=0

(1.9)

(φ = (φ1, . . . , φn)). For small φμ(δφμ) we can expand Û in a series (11 is the
N × N unit matrix):

Û(φ)≈ 11− i
n∑
μ=1

δφμ L̂μ− 1

2

∑
μ,ν

δφμδφν L̂μ L̂μ+ . . . . (1.10)

Boundary conditions (1.4) and (1.5) imply after some calculation that the
operators L̂i must satisfy the commutation relations[

L̂i, L̂ j

]
= cijk L̂k . (1.11)

Equation (1.11) defines an algebra, the Lie algebra of the group U(N).
The operators L̂i generate the group by means of (1.10) and are thus called

generators. Obviously there are as many generators as the group has parameters,
i.e., the group U(N) has N2 generators and the group SU(N) has N2 −1. The
quantities cijk are called structure constants of the group. They contain all the
information about the group. In the Lie algebra of the group (i.e., the L̂k), there
is a maximal number R of commutating elements L̂i (i = 1, . . . , R)[

L̂i, L̂ j

]
= 0 (i = 1, . . . , R) . (1.12)

R is called the rank of the group. The eigenvalues of the L̂i are, as we shall see,
used to classify elementary-particle spectra. We shall now discuss the concepts
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introduced here using the actual examples of the spin and isospin group SU(2)
and the group SU(3).

SU(2). U(2) is the group of lineary independent Hermitian 2×2 matrices.
A well-known representation of it is given by the Pauli matrices and the unit
matrix

σ̂1 =
(

0 1
1 0

)
, σ̂2 =

(
0 −i
i 0

)
, σ̂3 =

(
1 0
0 −1

)
, 11 =

(
1 0
0 1

)
. (1.13)

These span the space of Hermitian 2×2 matrices, i.e., they are linearly indepen-
dent. SU(2) has only three generators; the unit matrix is not used. From (1.3) we
can write a general group element of the group SU(2) as

Û(φ)= exp

(
−i

3∑
i=1

φi σ̂i

)
(1.14)

(or, using the summation convention, exp(−iφi σ̂i)). Here φ = (φ1, φ2, φ3) is
a shorthand for the parameter of the transformation. The Pauli matrices satisfy
the commutation relations
[
σ̂i, σ̂ j

]= 2iεijkσ̂k , (1.15)

with

εijk =

⎧⎪⎨
⎪⎩

0 for two equal indices,
1 for even permutations of the indices,

−1 for odd permutations of the indices.

Usually, instead of σ̂i , the Ŝi = 1
2 σ̂i are used as generators, i.e.

[
Ŝi, Ŝ j

]
= iεijk Ŝk .

According to (1.11), iεijk are the structure constants of SU(2). Equation (1.15)
shows that no generator commutes with any other, i.e., the rank of SU(2) is 1.
According to the Racah theorem, the rank of a group is equal to the number of
Casimir operators (i.e., those operators are polynomials in the generators and
commute with all generators). Thus there is one Casimir operator for SU(2),
namely the square of the well-known angular momentum (spin) operator:

ĈSU(2) =
3∑

i=1

Ŝ2
i . (1.16)

The representation of SU(2) given in (1.13) (and generally of SU(N)) by
2×2 matrices (generally N × N matrices) is called the fundamental represen-
tation of SU(2) (SU(N)). It is the smallest nontrivial representation of SU(2)
(SU(N)). It is a 2×2 representation for SU(2), a 3×3 representation for SU(3),
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Table 1.2. The nonvanish-
ing, completely antisymmet-
ric structure constants fijk
and the symmetric constants
dijk

ijk fijk ijk dijk

123 1 118 1√
3

147 1/2 146 1/2

156 −1/2 157 1/2

246 1/2 228 1√
3

257 1/2 247 −1/2

345 1/2 256 1/2

367 −1/2 338 1√
3

458
√

3
2 344 1/2

678
√

3
2 355 1/2

366 −1/2

377 −1/2

448 − 1
2
√

3

558 − 1
2
√

3

668 − 1
2
√

3

778 − 1
2
√

3

888 − 1√
3

and so on. From Schur’s first lemma the Casimir operators in the fundamental
representation are multiples of the unit matrix (see Exercise 1.1):

ĈSU(2) =
3∑

i=1

(
σ̂i

2

)2

= 3

4
11 . (1.17)

SU(3). The special unitary group in three dimensions has 32 −1 = 8 gen-
erators. In the fundamental representation they can be expressed by the
Gell-Mann matrices λ̂1, . . . , λ̂8:

λ̂1 =
⎛
⎝

0 1 0
1 0 0
0 0 0

⎞
⎠ , λ̂2 =

⎛
⎝

0 −i 0
i 0 0
0 0 0

⎞
⎠ , λ̂3 =

⎛
⎝

1 0 0
0 −1 0
0 0 0

⎞
⎠ ,

λ̂4 =
⎛
⎝

0 0 1
0 0 0
1 0 0

⎞
⎠ , λ̂5 =

⎛
⎝

0 0 −i
0 0 0
i 0 0

⎞
⎠ , λ̂6 =

⎛
⎝

0 0 0
0 0 1
0 1 0

⎞
⎠ ,

λ̂7 =
⎛
⎝

0 0 0
0 0 −i
0 i 0

⎞
⎠ , λ̂8 = 1√

3

⎛
⎝

1 0 0
0 1 0
0 0 −2

⎞
⎠ . (1.18)

The Gell-Mann matrices are Hermitian,

λ̂
†
i = λ̂i , (1.19)

and their trace vanishes,

tr
{
λ̂i

}
= 0 . (1.20)

They define the Lie algebra of SU(3) by the commutation relations
[
λ̂i, λ̂ j

]
= 2i fijkλ̂k , (1.21)

where the structure constants fijk are, like the εijk in SU(2), completely antisym-
metric, i.e.,

fijk = − f jik = − fik j . (1.22)

The anticommutation relations of the λ̂i are written as
{
λ̂i, λ̂ j

}
= 4

3
δij11+2dijkλ̂k . (1.23)

The constants dijk are completely symmetric:

dijk = d jik = dik j . (1.24)

The nonvanishing structure constants are given in Table 1.2.
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As in SU(2), generators F̂i = 1
2 λ̂i (“hyperspin”) are used instead of the λ̂i

with the commutation relations
[

F̂i , F̂j

]
= i fijk F̂k . (1.25)

One can easily check that among the F̂i only the commutators
[
F̂1, F̂8

]=[
F̂2, F̂8

]= [F̂3, F̂8
]= 0 vanish. As the F̂i , i = 1, 2, 3, do not commute with

each other, there are at most two commuting generators, i.e., SU(3) has rank
two (in general SU(N) has rank N −1), and hence two Casimir operators, one
of which is simply

Ĉ1 =
8∑

i=1

F̂2
i = −2i

3

∑
i, j,k

fijk F̂i F̂j F̂k . (1.26)

In the fundamental representation

(
Ĉ1

)
j�

= 1

4

8∑
i=1

3∑
k=1

(
λ̂i

)
jk

(
λ̂i

)
k�

= 4

3
δj� . (1.27)

From the structure constants fijk, new matrices Ûi can be constructed according
to
(

Ûi

)
jk

= −i fijk , (1.28)

which also satisfy the commutation relations
[
Ûi, Û j

]
= i fijkÛk . (1.29)

This representation of the Lie algebra of SU(3) is called adjoint (or regular). In
it (see Exercise 1.2)

(Ĉl)kl =
8∑

i=1

(Û2
i )kl =

∑
i, j

(Ûi)kj(Ûi)jl

= −
∑

i

∑
j

fikj fijl =
∑
i, j

fijk fijl (1.30)

= 3δkl .

A form of the complete SU(3) group element according to (1.3) is (Û(0)
designates in contrast to Ûi the transformation matrix from (1.3))

Û(θ)= e−iθ·F̂ , (1.31)

where F̂ is the vector of eight generators and θ the vector of eight parameters.
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After this short digression into the group structure of SU(2) and SU(3),
we return to the classification of elementary particles. As indicated above, the
eigenvalues of commuting generators of the group serve to classify the hadrons.
For SU(2) there is only one such operator among the T̂i (i = 1, 2, 3), usually
chosen to be T̂3 (the z component). The structure of SU(2) multiplets is thus
one-dimensional and characterized by a number T3. In the framework of QCD
the most important application of SU(2) is the isospin group (with genera-
tors T̂i) and the angular momentum group with the spin operator Ŝi . The small
mass difference between neutron and proton (0.14% of the total mass) leads to
the thought that both can be treated as states of a single particle, the nucleon.
According to the matrix representation

T̂3 = 1

2

(
1 0
0 −1

)
= 1

2
τ̂3 , (1.32)

one assigns the isospin vector Ψp =
(

1
0

)
to the proton and Ψn =

(
0
1

)
to the

neutron, so that the isospin eigenvalues T3 = ±1
2 are assigned to the nucleons:

T̂3

(
1
0

)
= +1

2

(
1
0

)
, (1.33)

T̂3

(
0
1

)
= −1

2

(
0
1

)
. (1.34)

Analogously one introduces

τ̂1 =
(

0 1
1 0

)
and τ̂2 =

(
0 −i
i 0

)
(1.35)

such that the

T̂k = 1

2
τ̂k (k = 1, 2, 3) (1.36)

satisfy the same commutation relations as the spin operators. One can check by
direct calculation that raising and lowering operators can be constructed from
the τ̂i :

τ̂+ = 1

2

(
τ̂1 + iτ̂2

)=
(

0 1
0 0

)
,

τ̂− = 1

2

(
τ̂1 − iτ̂2

)=
(

0 0
1 0

)
. (1.37)

They have the following well-known action on nucleon states:

τ̂+Ψp = 0 , τ̂+Ψn = Ψp ,

τ̂−Ψp = Ψn , τ̂−Ψn = 0 , (1.38)

i.e., the operators change nucleon states into each other (they are also called lad-
der operators). From (1.14) and (1.31), we can give the general transformation



1.1 The Hadron Spectrum 9

in the abstract three-dimensional isospin space

Û(φ)= Û(φ1, φ2, φ3)= e−iφμT̂μ , (1.39)

where the φμ represent the rotation angles in isospin space. The Casimir operator
of isospin SU(2) is

T̂ 2 = T̂ 2
1 + T̂ 2

2 + T̂ 2
3 . (1.40)

We can now describe each particle state by an abstract vector |TT3〉 (analogously
to the spin, as the isospin SU(2) is isomorphic to the spin SU(2)), where the
following relations hold:

T̂ 2 |TT3〉 = T(T +1) |TT3〉 , (1.41)

T̂3 |TT3〉 = T3 |TT3〉 . (1.42)

Thus the nucleons represent an isodoublet with T = 1
2 and T3 = ±1

2 . The pi-
ons (π±,π0) (masses m(π0)= 135 MeV/c2 and m(π±)= 139.6 MeV/c2, i.e.
a mass difference of 4.6 MeV/c2) constitute an isotriplet with T = 1 and T3 =
−1, 0, 1. Obviously there is a relation between isospin and the electric charge of
a particle. For the nucleons the charge operator is immediately obvious:

Q̂ = T̂3 + 1

2
11 (1.43)

in units of the elementary charge e, while one finds in a similarly simple way for
the pions

Q̂ = T̂3 . (1.44)

To unify both relations, one can introduce an additional quantum number Y (the
so-called hypercharge) and describe any state by T3 and Y :

Ŷ |YT3〉 = Y |YT3〉 , (1.45)

T̂3 |YT3〉 = T3 |YT3〉 . (1.46)

In this way the nucleon is assigned Y = 1 and the pion Y = 0, so that (1.42) and
(1.43) can be written as

Q̂ = 1

2
Ŷ + T̂3 . (1.47)

Relation (1.45) is the Gell-Mann–Nishijima relation. The hypercharge charac-
terizes the center of a charge multiplet. It is often customary to express Y by
the strangeness S and the baryon number B using Y = B + S. Here B = +1 for
all baryons, B = −1 for antibaryons, and B = 0 otherwise (in particular for
mesons). Thus Y = S for mesons. To classify elementary particles in the frame-
work of SU(3), it is customary to display them in a T3–Y diagram (see 3). The
baryons with spin 1

2 constitute an octet in this diagram (see Fig. 1.2).
The spectrum of antiparticles is obtained from this by reflecting the expres-

sion with respect to the Y and T3 axes. The heavier baryons and the mesons
Fig. 1.2. An octet of spin- 1

2
baryons
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can be classified analogously. We introduced the hypercharge by means of the
charge and have thus added another quantum number. SU(2) has rank 1, i.e., it
provides only one such quantum number. SU(3), however, has rank 2 and thus
two commuting generators, F̂3 and F̂8. We can therefore make the identification
T̂3 = F̂3 and Ŷ = 2/

√
3F̂8 and interpret the multiplets as SU(3) multiplets. The

SU(3)-multiplet classification was introduced by M. Gell-Mann and is initially
purely schematic. There are no small nontrivial representations among these
multiplets (with the exception of the singlet, interpreted as theΛ∗ hyperon with
mass 1405 MeV/c2 and spin 1

2 ). The smallest nontrivial representation of SU(3)
is the triplet. This reasoning led Gell-Mann and others to the assumption that
physical particles are connected to this triplet, the quarks (from James Joyce’s
Finnegan’s Wake: “Three quarks for Muster Mark”). Today we know that there
are six quarks. They are called up, down, strange, charm, bottom, and top quarks.
The sixth quark, the top quark, has only recently been discovered4 and has a large
mass5 mtop = 178.0±4.3 GeV/c2. The different kinds of quarks are called “fla-
vors”. The original SU(3) flavor symmetry is therefore only important for low
energies, where c, b, and t quarks do not play a role owing to their large mass. It
is, also, still relevant for hadronic ground-state properties.

All particles physically observed at this time are combinations of three quarks
(baryons) or a quark and an antiquark (mesons) plus, in each case, an arbitrary
number of quark–antiquark pairs and gluons. This requires that quarks have

(1) baryon number 1
3

(2) electric charges in multiples of ±1
3 .

Uneven multiples of charge 1
3 have never been conclusively observed in nature,

and there, therefore, seems to exist some principle assuring that quarks can exist
in bound states in elementary particles but never free. This is the problem of
quark confinement, which we shall discuss later. Up to now, we have considered
the SU(3) symmetry connected with the flavor of elementary particles. Until the
early 1970s it was commonly believed that this symmetry was the basis of the
strong interaction. Today the true strong interaction is widely acknowledged to
be connected with another quark quantum number, the color. The dynamics of
color (chromodynamics) determines the interaction of the quarks (which is, as
we shall see, flavor-blind).

Quantum electrodynamics is reviewed in the following chapter. Readers
familiar with it are advised to continue on page 77 with Chap. 3.

4 CDF collaboration (F. Abe et al. – 397 authors): Phys. Rev. Lett. 73, 225 (1994); Phys.
Rev. D50, 2966 (1994); Phys. Rev. Lett. 74, 2626 (1995).

5 D∅ collaboration (V. M. Abazov et al.): Nature 429, 638 (10 June 2004); the preprint
hep-ex/0608032 by the CDF and D∅ collaborations gives a mass of mtop = 171.4±
2.1 GeV/c2, resulting from a combined analysis of all data available in 2006.
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EXERCISE

1.1 The Fundamental Representation of a Lie Algebra

Problem. (a) What are the fundamental representations of the group SU(N)?
(b) Show that according to Schur’s lemma the Casimir operators in these
fundamental representations are multiples of the unit matrix.

Solution. (a) The fundamental representations are those nontrivial representa-
tions of a group that have the lowest dimension. All higher-dimensional repre-
sentations can be constructed from them. We shall demonstrate this using the
special unitary groups SU(N).
SU(2). As we have learned, its representation is characterized by the angular-
momentum quantum number j = 0, 1

2 , 1, 3
2 , . . . , and states are classified by

( j)≡ | jm〉, m = − j, . . . ,+ j. The scalar representation is j = 0. The lowest-
dimensional representation with j �= 0 would then be j = 1

2 . From it we can
construct all others by simply coupling one to another:

[
1

2

]
×
[

1

2

]
=
[

1

2

]2

= [1]+ [0] , (1a)

[
1

2

]
×
[

1

2

]
×
[

1

2

]
=
[

1

2

]3

=
[

3

2

]
+
[

1

2

]
+
[

1

2

]
. (1b)

“×” indicates the direct product, “+” the direct sum. The first two j = 1
2 rep-

resentations can be coupled to j = 0, 1. Adding another j = 1
2 , it couples with

j = 1 to give j = 3
2 , 1

2 and with j = 0 to give only j = 1
2 . In total,

[ 1
2

]3
contains

the representations
[3

2

]
,
[1

2

]
,
[1

2

]
. Figure 1.3 depicts this angular momentum

coupling graphically. It must be noted that a representation can appear more than
once, e.g.,

[1
2

]
appears twice in

[1
2

]3
and [1] thrice in

[1
2

]4
.

Fig. 1.3. Multiple coupling
of spins 1

2 to various total
spins J
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Exercise 1.1

Fig. 1.4. The quark weight
diagram

Fig. 1.5. The antiquark weight
diagram

In the next example, an alternative representation according to “maximal
weight” is of interest. For this, all operators in the algebra that commute with
each other are considered (Cartan subalgebra). Their eigenvalues classify states
in a representation. In the case of SU(2) there is only one operator commut-
ing with itself. This can be chosen to be any of the ji , usualy one takes j3,
the third component of the angular momentum vector. Its eigenvalues are m =
− j, . . . ,+ j. The “maximal weight” is mmax = j. In direct products

[1
2

]n
the

maximal weight is mmax = n
2 , which is the “maximal weight” of the “straight

coupling” (see Fig. 1.3).

SU(3). Its representations (multiplets) are classified by the eigenvalues of the
Casimir operators. These give us, in the case of SU(3), two numbers [p, q].
These are in turn connected to the rank of the algebra, i.e., the number of com-
muting generators in the algebra. In general, the representations of SU(N) are
characterized by N −1 numbers. Another possibility would be to classify repre-
sentations by their “maximal weight”. As is known, each state in a representation
of SU(3) (a multiplet) is labeled by the eigenvalues of the third component of
isospin T̂3 and hypercharge Ŷ . The weight is given by the tuple (T3,Y ). A weight
(T3,Y ) is higher than (T ′

3,Y
′) if

T3 > T ′
3 or T3 = T ′

3 and Y> Y ′ . (2)

The highest weight in a representation is given by the maximal value of T3, and,
if there is more than one, by the maximal value of Y . This is demonstrated by the
following examples:

(1) [p, q] = [1, 0] .
This is the representation whose “weight diagram” is depicted in Fig. 1.4. The
states carry the weights

(T3,Y )=
(

1

2
,

1

3

)
,

(
−1

2
,

1

3

)
,

(
0,−2

3

)
.

The tuple
( 1

2 ,
1
3

)
is the maximal weight.

(2) [p, q] = [0, 1] .
This is the representation of antiquarks with the “weight diagram” in Fig. 1.5.
The states carry the weights

(T3,Y )=
(

0,
2

3

)
,

(
1

2
,−1

3

)
,

(
−1

2
,−1

3

)
.

The state of maximal weight is
( 1

2 ,−1
3

)
.

In the case of SU(3), the trivial (scalar) representation is [p, q] = [0, 0]. The
first nontrivial representations are [1, 0] and [0, 1] of the same lowest dimension.
Mathematically, one of these representations, either [1, 0] or [0, 1], is sufficient
to construct all higher SU(3) multiplets by multiple coupling (see 3). Never-
theless, physically, one prefers to treat both representations [1, 0] and [0, 1]
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equivalently side by side. In this way, the quark [1, 0] and antiquark [0, 1] char-
acter of the multiplet states can be better revealed (see again 3 for more details).
Thus, by definition we have two fundamental representations. All others can be
constructed from these two representations! To do so, we must construct the
direct product of states

(1, 0)p(0, 1)q →
|T3(1)Y(1)〉 |T3(2)Y(2)〉 · · ·
|T3(p)Y(p)〉

∣∣T 3(1)Y(1)
〉 ∣∣T 3(2)Y(2)

〉 · · · ∣∣T 3(q)Y (q)
〉
. (3)

Here, (T3,Y) describe the quark and (T 3,Y) the antiquark quantum num-
bers, respectively. Owing to the additivity of the isospin component T̂3 and the
hypercharge Ŷ , it holds that

T̂3 =
∑

i

T̂3(i) , (4a)

Ŷ =
∑

i

Ŷ(i) . (4b)

Thus many-quark states have T3 and Y eigenvalues

(T3,Y )=
( p∑

i=1

T3(i)+
q∑

i=1

T 3(i),
p∑

i=1

Y(i)+
q∑

i=1

Y(i)

)
. (5)

In these, there is one state of maximal weight, namely the one that is com-
posed of p quarks of maximal weight

( 1
2 ,

1
3

)
and q antiquarks of maximal weight(1

2 ,−1
3

)
, i.e.,

(T3)max = p+q

2
, (Y )max = p−q

3
. (6)

It characterizes a representation contained in (5). If we subtract it, there is
a remainder. Within this there is another state (or several states) of maximal
weight. They are analogously given tuples [p, q], i.e., a multiplet. We repeat the
above steps until nothing is left, i.e., the direct product is completely reduced. In
this way we can construct all SU(3) decompositions (for more details, see 3).

We consider [p1, q1]× [p2, q2] = [1, 0]× [0, 1] and first add the two weight
diagrams, i.e., at each point of the one diagram, we add the other diagram (see
Fig. 1.6).

Fig. 1.6. Adding [1, 0] and
[0, 1] weight diagrams

Exercise 1.1
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Exercise 1.1 We are thus led to a weight diagram whose center is occupied three times!
The maximal weight appearing there is

(T3,Y )max = (1, 0) . (7)

For [p, q], it follows from (6) that

[p, q] = [1, 1] , (8)

corresponding to an octet with dimension 8. On subtracting the octet which is
twice degenerate at the center, only the singlet remains

(T3,Y )max = (0, 0) , (9a)

that is,

[p, q] = [0, 0] . (9b)

We thus obtain the following result:

[1, 0]× [0, 1] = [1, 1]+ [0, 0] . (10)

Note: Constructing [1, 0]× [1, 0] with this method, we obtain

[1, 0]× [1, 0] = [2, 0]+ [0, 1] . (11)

On the right-hand side, [0, 1] appears. This obviously means that mathemati-
cally, we can construct [0, 1] from [1, 0]. Thus one is inclined to call only [1, 0]
the fundamental representation. Physically, however, the right-hand of equation
(11) describes two-quark states and not, as [0, 1] does, antiquark states. In other
words, in order to keep the quark-antiquark structure side by side, we keep both
[1, 0] and [0, 1] as elementary multiplets.

SU(N). Its multiplet states are classified by N −1 numbers:

[h1, · · · , hN−1] . (12)

Analogously to SU(3), there is the scalar (trivial) representation

[0, · · · , 0] (13)

and N −1 fundamental representations

[1, 0, · · · , 0] ,
[0, 1, · · · , 0] ,

...

[0, · · · , 0, 1] . (14)

From these, all other multiplets in (12) can be constructed by direct products.
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Solution. (b) Schur’s lemma indicates that any operator Ĥ commuting with all
operators Û(α) (the components of α denote the group parameters), in particular
with the generators L̂i ,
[

Ĥ, Û(α)
]

= 0 ⇔
[

Ĥ, L̂i

]
= 0 ⇒

[
Ĥ, Ĉ(λ)

]
= 0 ,

has the property that every state in a multiplet of the group is an eigenvector and
that all states in a multiplet are degenerate. Ĉ(λ) is a Casimir operator of the
group in the irreducible representation λ.

Since Ĉ(λ) commutes with Ĥ , Ĉ(λ) and Ĥ can be simultaneously diago-
nalized, i.e., Ĉ(λ), too, is diagonal with respect to any state of the irreducible
representation (multiplet) of the group. Calling C(λ) the eigenvalues of Ĉ(λ),
Ĉ(λ) has the following form with respect to the irreducible representation of the
group:

Ĉ(λ)= C(λ)11(λ) , (15)

where 11λ is the unit matrix with the multiplet’s dimension. As the fundamental
representation is by construction irreducible, (15) holds. In matrix representa-
tion, the Casimir operator has the following form:

⎛
⎜⎜⎝

C(λ1)11(λ1) 0 0 · · ·
0 C(λ2)11(λ2) 0 · · ·
0 0 C(λ3)11(λ3) · · ·
...

...
...

. . .

⎞
⎟⎟⎠ .

Each diagonal submatrix appearing in it is of the form C(λ)11(λ) and character-
izes a representation (multiplet) of the same dimension as this multiplet.

EXERCISE

1.2 Casimir Operators of SU(3)

Problem. The regular (adjoint) representation of SU(3) is given by the eight
generators Ûi , i = 1, . . . , 8 with

(Ûi) jk = −i fijk (1)

(Ûi are 8×8 matrices). Show that for Ĉ1, one of the two Casimir operators of
SU(3) in the regular representation, it holds that

Ĉ1 =
8∑

i=1

Û2
i = 3118×8 . (2)

Exercise 1.1
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Exercise 1.2 Table 1.3. The eigenvalues of the Casimir
operator Ĉ1 for the regular representation

m
∑

ij f 2
ijm

1 2 f 2
123 +2 f 2

147 +2 f 2
156 = 3

2 2 f 2
123 +2 f 2

246 +2 f 2
257 = 3

3 2 f 2
123 +2 f 2

345 +2 f 2
367 = 3

4 2 f 2
246 +2 f 2

345 +2 f 2
147 +2 f458 = 3

5 2 f 2
156 +2 f 2

257 +2 f 2
345 +2 f458 = 3

6 2 f 2
156 +2 f 2

246 +2 f 2
367 +2 f678 = 3

7 2 f 2
147 +2 f 2

257 +2 f 2
367 +2 f678 = 3

8 2 f 2
458 +2 f 2

678 = 3

Solution. Each irreducible representation of SU(3) is uniquely determined by
the eigenvalues of its Casimir operators. Each state in a multiplet has the same
eignvalues with respect to Ĉ1. Thus this operator must be proportional to the unit
matrix. This is checked here using an example. Using (1) it follows for Ĉ1 that

(Ĉ1)lm = −
∑
i, j

filj fijm . (3)

From the Table 1.2 on page 6 of the fijk, one recognizes that filj �= 0 and fijm �=
0, which implies that l = m:

(Ĉ1)lm = +
∑
i, j

f 2
ijmδlm = 3δlm . (4)

This proves (2).
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