
9 Geophysics and Radio-Astronomy:
VLBI – Very Long Base Interferometry

VLBI is an interferometry technique used in radio astronomy, in which two
or more signals, coming from the same astronomical object, are received by
antennas that are very distant from each other, recorded and then correlated
in deferred time (Fig. 9.1). Due to the very long distance between the receivers
and the fact that the resolution is proportional to that distance, a very high
resolution can be obtained (see, for instance [26]).

In conventional interferometry techniques, the signals received by the an-
tennas are directly transmitted via a physical link to the correlator, which
produces the interference fringe in real-time; the antennas are physically con-
nected to the correlator.

In VLBI, the received signals cannot be transmitted directly and in real-
time to the correlator; the propagation time fluctuations in the physical links
would completely cancel the correlation between them.

On the contrary, the signals are combined in differed time; they are con-
verted to a lower standard frequency (IF) and recorded at each telescope
on magnetic tape or hard disk, with a precise time base. The recorded

Fig. 9.1. The principle of VLBI
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signals are then sent to a correlating centre, where they are synchronized,
and due to the timing information, played together and combined just
as if they were coming in real-time from the antennas. The correlated
data can then, for instance, be turned into images using any appropriate
software.

This is possible only if the phase noise of the local oscillators that down
convert the signal frequency does not blur the interference fringe, and if the
timestamps are accurate and stable during the duration of the experiment.
In fact, only very stable atomic frequency standards can meet these require-
ments.

VLBI is most often performed at radio wavelengths and the following de-
scription is limited to radio signals; however, the technique has been extended
to optics. The principle is very simple. Let

– AB be the baseline of an array of two antennas. It is the vector position
of one antenna (B) with respect to the other (A).

– s be a unit vector in the direction of the source.

The time interval τAB (between the arrival of a wave front) to the antennas
is

τAB =
B • u

c
, (9.1)

where c is the light velocity.
The measurement of τAB can provide one of the following types of infor-

mation:

– the component of s along AB if this vector is known, or
– the component of AB along s if this vector is known.

Consequently, the applications of VLBI apply to the geodesic domain as well
as the astronomic domain.

If the uncertainty on the measurement of τAB is 1 ps (1 × 10−12 s), (9.1)
shows that

– if the position of the source is perfectly known, the uncertainty on the
value of the baseline length is of the order of 1 mm, and

– if the baseline is perfectly known, the uncertainty on the position of the
source is of the order of 1 × 10−9 rd (≈ 10−3 arcsecond) for a baseline
length of 1 000 km.

9.1 Principle of VLBI

The following description of astronomical interferometry is limited to 1D
models but can easily be extended to the 2D model.
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9.1.1 Interferometry

The application of interference methods to provide better resolution in as-
tronomical measurements (in both optical and radio domains) is not a new
concept (see, for instance [93, 108]).

The principle is the following: Consider two (optical or radio) receivers A
and B, separated by a distance D and receiving the electromagnetic radiation
emitted by a point source whose direction is at an angle α (see Fig. 9.2).

Fig. 9.2. The principle of interferometric measurements

Monochromatic Plane Waves

Consider in a first step that the incoming wave is plane and perfectly
monochromatic, the frequency is ν, the wavelength is λ, the wave number
is k = 2π

λ and the amplitude is X . The source is very far from Earth and its
direction is indicated by the unit vector s. The direction of the wave propaga-
tion is given by the unit vector e = −s. The equation of the wave is as follows:

x(t, r) = X exp
[
2πν

(
t − r · e

c

)]
. (9.2)

The vector r = OM corresponds to a point M in the vicinity of the Earth.
The origin O of r is the barycenter of the geoid, for instance. The two receivers
are located at points A and B, respectively.
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Supposing that the wave front is not perturbed by the atmosphere, the
antennas receive the signals xA(t) and xB(t),

xA(t) = X exp
[
2jπν

(
t − rA · e

c

)]
(9.3)

and

xB(t) = X exp
[
2jπν

(
t − rB · e

c

)]
(9.4)

= xA exp
[
−2jπν

(
AB · e

c

)]
(9.5)

= xA exp [j (AB · k)] . (9.6)

The vector k is

k =
2π

λ
e (9.7)

= ke . (9.8)

xA(t) and xB(t) can also be expressed as functions of the baseline length D
and the direction of the source α,

xB(t) = xA exp
(
−2jπ

D sin(α)
λ

)
(9.9)

= xA exp (−jkD sin(α)) . (9.10)

Using the small angle approximation, which is of course not necessary (the
source position angle α being supposed small),

xB(t) = xA exp (−jkDα) . (9.11)

The two signals xA(t) and xB(t) are added to give x(t),

x(t) = xA(t) + xB(t) (9.12)
= xA × [1 + exp (−jAB · k)] (9.13)
= xA × [1 + exp (−jkDα)] (9.14)

= 2xA exp
(
−j

kDα

2

)
× cos

(
kDα

2

)
(9.15)

= 2xA exp
(
−j

AB · k
2

)
× cos

(
AB · k

2

)
. (9.16)

The output of the square law detector is, consequently,

y(α) = 4X2 cos2
(

kDα

2

)
(9.17)

= 4X2 cos2
(

AB · k
2

)
(9.18)

= 2X2[1 + cos(AB · k)] . (9.19)
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This is the classical interference pattern for monochromatic radiation. The
central fringe is obtained for α = 0 (τAB = 0).

For α �= 0, the value of τAB can be measured by introducing in one of the
arms of the interferometer a delay τAB′ = ±τAB, which compensates τAB.

Due to the rotation of the Earth, the value of α (or AB) varies continu-
ously and a series of configurations can consequently be studied.

Quasi-Monochromatic Plane Wave

In fact, the radiation emitted by the source is never perfectly monochromatic.
Phase and amplitude fluctuations occur,

x(t, r) = X(t) exp
[
2jπν

(
t − r · e

c

)]
(9.20)

with

X(t) = X0[1 + a(t)] exp[jφ(t)] , (9.21)

where a(t) represents the relative amplitude fluctuations and φ(t) the phase
fluctuations. These fluctuations are small,

|a(t)| � 1 , (9.22)∣∣∣∣dφ(t)
dt

∣∣∣∣ � 2πν . (9.23)

The signals received by the two antennas are

xA(t) = X
(
t − rA · e

c

)
exp

[
2jπν

(
t − rA · e

c

)]
(9.24)

= X (t − τA) exp [2jπν (t − τA)] (9.25)
= X (tA) exp (2jπνtA) (9.26)

and

xB(t) = X
(
t − rB · e

c

)
exp

[
2jπν

(
t − rB · e

c

)]
(9.27)

= X (tA − τAB) exp [2jπν (tA − τAB)] . (9.28)

In these expressions,

τA =
rA · e

c
, tA = t − τA , τB =

rB · e
c

, τAB = τB − τA =
AB · e

c
. (9.29)
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The sum of the two signals xA(t) and xB(t) is

xA(t) + xB(t) = X (tA) exp [2jπν (tA)]
+ X (tA − τAB) exp [2jπν (tA − τAB)] (9.30)

= [X (tA) + X (tA − τAB) exp (−2jπντAB)]
× exp (2jπνtA) . (9.31)

The output of the square law detector is

|xA(t) + xB(t)|2 = |X (tA)|2 + |X (tA − τAB)|2 (9.32)
+ X (tA)X∗ (tA − τAB) exp (2jπντAB) (9.33)
+ X∗ (tA)X (tA − τAB) exp (−2jπντAB) . (9.34)

This result is integrated over a time Δt, chosen much longer than the period
of the signals but much shorter than the characteristic time of variation of
the direction α of the source due to the Earth’s rotation. The output y(τAB)
of the interferometer is, consequently,

y(τAB) =
〈
|X (tA)|2

〉
+
〈
|X (tA − τAB)|2

〉

+ 〈X (tA) X∗ (tA − τAB)〉 exp (2jπντAB)
+ 〈X∗ (tA)X (tA − τAB)〉 exp (−2jπντAB) . (9.35)

The mean value of the amplitude is constant,〈
|X (tA)|2

〉
=
〈
|X (tA − τAB)|2

〉
= X2

0 . (9.36)

The mean values of the products

X∗ (tA)X (tA − τAB)

and

X (tA) X∗ (tA − τAB)

are related to the autocorrelation function γX(t) of X(t),

γX(t) = 〈X∗(τ)X(t + τ)〉 . (9.37)

Consequently,

y(τAB) = 2X2
0

+ γX(τAB) exp (2jπντAB)
+ γX(−τAB) exp (−2jπντAB) . (9.38)

The following property of the autocorrelation function results from its defi-
nition (the autocorrelation is a Hermitian operator):

γX(−t) = γ∗
X(t) . (9.39)
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Consequently,

y(τAB) = 2X2
0 + 2�{γX(τAB) exp (2jπντAB)} , (9.40)

where �(z) is the real part of the complex number z.
Notice that

γX(τAB) exp (2jπντAB) = γx(τAB) , (9.41)

where γx(t) is the autocorrelation function of x(t, r).
Finally,

y(τAB) = 2X2
0 + 2�{γx(τAB)} . (9.42)

The conclusions are the following:

1. The useful information is contained in the periodic part of y(τAB), which
is the autocorrelation function γx(τAB) of the plane wave emitted by the
point source.

2. The time delay τAB that connects the baseline and the source position
appears in the value of γx(τAB).

3. The ratio of the periodic part of y(τAB) to its constant one is called the
complex fringe visibility. It is proportional to the autocorrelation function
of the plane wave.

4. The autocorrelation function γx(t) is maximal for t = 0. This means that
the fringe visibility is reduced when the delay τAB increases, this is due
to the limited coherence time of the radiation, related to its linewidth.
The autocorrelation function is linked to the spectral density of the line
(the Wiener–Khinchin theorem). If C(t) is the autocorrelation function
of a time function f(t) whose Fourier transform is F (ν), then C(t) is the
Fourier transform of the absolute square of F (ν), which is the spectral
density of f(t).
Consequently, the order of magnitude of the coherence time of the in-
coming wave is given by the inverse of its linewidth. This will ultimately
limit the resolution of the observation. For instance, a linewidth of 1 kHz
gives an upper limit of only 1.6 × 10−4 s for τAB, corresponding to

|AB • s| ≈ 5 km

and, for a baseline length of 5 000 km, to α = 1 × 10−3 rd.
In fact, since the signals are correlated in deferred time, it is possible to
shift one record until the time difference is canceled and the correlation
function is maximal. The shift gives the value of the time difference τAB.

5. The main part of the processing of the signals received by any array of
radio antennas is consequently the calculation of their correlation.
Although the signals received by different antennas come from the same
source, the quantity computed is called the cross-correlation, taking into
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account the fact that each signal may have been modified in a different
and non-correlated way (atmospheric perturbations, additive noise of the
receiver, etc.). This calculation is made by a specialized data processing
system called the correlator.

Extended Source

If the radiation source is extended around the incoming direction e0, but is
incoherent (different points of the source radiate independently), there is no
interference between the contribution of the different points and their power
contributions are simply added.

The following model is limited to a one-dimensional source. It is easy to
extend the model to the real case of two-dimensional sources.

The position of each point of the source is characterized by the unit vec-
tors e (from the source) or s = −e (toward the source) or by the angle α
between the perpendicular to the baseline and s.

The sky brightness B(α) of the point in the direction α is proportional
to the square of the mean amplitude X0(α) of the incoming radiation from
that direction and the total brightness is Bt =

∫
α B(α)dα.

The output yc of the correlator is the sum of the elementary cross-
correlation functions corresponding to all the points of the source,

yc =
∫

α

γx(α, τα)dα

=
∫

α

γX(α, τα) exp (j2πντα)dα . (9.43)

The integral is to be taken over the radio source. Every point of the source
corresponds to a value of α,

α = α0 + δα (9.44)

with

δα � 1 , (9.45)

where α0 corresponds to an arbitrary reference point of the source, τα is the
value of τAB for the value α of the angle between the perpendicular to the
baseline, and s

τα = −D sin α

c

= −D sin α0

c
− D cosα0

c
δα , (9.46)

2πντα = −2π
D

λ
sinα0 − 2π

D

λ
cosα0δα , (9.47)
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where λ is the wavelength of the radiation. γX(δα, τδα) is the correlation
function of the sky brightness in the direction α = α0 + δα. Consequently,

yc =
∫

δα

γX(δα, τδα) exp
(
−j2π

D sin α0

λ

)

× exp
(
−j2π

D cosα0

λ
δα

)
d(δα) . (9.48)

This expression shows that the output of the correlator is the Fourier trans-
form of the function of δα,

γX,α0(δα, τδα) = γX(δα, τδα) exp
(
−j2π

D sinα0

λ

)
. (9.49)

This function is closely related to the correlation function of the sky bright-
ness [117],

yc

(
D cosα0

λ

)
= Fα[γX,α0(α, τα)]

(
D cosα0

λ

)
. (9.50)

The conclusions are the following:

1. The correlator gives the Fourier transform of the cross-correlation func-
tion of the amplitude X(α, tAB) of the signal emitted by the source. This
correlation function is calculated for the delay tAB between the two re-
ceivers.

2. The sky brightness can be calculated from this result if this Fourier trans-
form is known for different sampled values of its parameter D cos α0

λ , i.e.
for different values of D, the distance between the two receivers involved
in the calculation of the Fourier transform and/or different values of α0.
In the first case, an array of receivers is used, in the second case, the
motion of the vector AB due to the rotation of the Earth is used.

Examples

In the following simple examples

1. α0 � 1: cosα0 = 1 and sinα0 = 0.
Consequently, (9.48) simplifies to

yc =
∫

δα

γX(δα, τδα) × exp
(
−j2π

D

λ
δα

)
d(δα) (9.51)

and the output of the correlator is the Fourier transform of the cross-
correlation function γX(δα, τδα).

2. The linewidth of the radiation emitted by the source is supposed to
be narrow enough so that the cross-correlation function γX(δα, τδα) is
(a monochromatic wave)

γX(δα, τδα) = X2
0 (δα) . (9.52)
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The Rectangular Sky Brightness Function

The object is centered at −α0/2 � 1 and its width is 2Δα,

X2
0 (δα) =

⎧⎪⎪⎨
⎪⎪⎩

0

{
δα < −α0/2 − Δα

δα > −α0/2 + Δα
,

X2
0 −α0/2 − Δα ≤ δα ≤ −α0/2 + Δα .

(9.53)

The Fourier transform Fα[γX(α, τα)]
(

D
λ

)
is

Y

(
D

λ

)
= 2X2

0δα exp
(
−j2π

D

λ
× −α0

2

)
sinc

(
2π

D

λ
δα

)
. (9.54)

The complex fringe visibility Γ (D/λ) is

Γ

(
D

λ

)
= exp

(
−j2π

D

λ
× −α0

2

)
sinc

(
2π

D

λ
δα

)
. (9.55)

The modulus of the complex visibility is consequently maximal for small
values of the ratio

δα

λ/D
,

i.e. for objects whose angular diameter is of the order of or smaller than λ/D;
VLBI is used to observe very compact sources.

A Pair of Rectangular Sky Brightness Functions

As a second example, consider a pair of rectangular sky brightness functions
centered at ±α0/2 and having width 2Δα,

X2
0 (δα) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0

⎧⎪⎪⎨
⎪⎪⎩

δα < −α0/2 − Δα

−α0/2 + Δα < δα < +α0/2 − Δα

δα > +α0/2 + Δα

,

X2
0

{
−α0/2 − Δα ≤ δα ≤ −α0/2 + Δα

+α0/2 − Δα ≤ δα ≤ +α0/2 + Δα .

(9.56)

In this case, the Fourier transform Y2

(
D
λ

)
of the sky brightness function is

Y2

(
D

λ

)
= 2X2

0δα sinc
(

2π
D

λ
δα

)

×
[
exp

(
−j2π

D

λ
× −α0

2

)
+ exp

(
−j2π

D

λ
× +α0

2

)]
(9.57)

= 4X2
0δα sinc

(
2π

D

λ
δα

)
cos

(
2π

D

λ
× α0

2

)
. (9.58)
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The complex fringe visibility Γ
(

D
λ

)
is

Γ

(
D

λ

)
= sinc

(
2π

D

λ
δα

)
cos

(
2π

D

λ
× α0

2

)
. (9.59)

The conclusions are the following:

1. As in the previous example, the modulus of the complex visibility is
maximal for small values of the ratio

δα

λ/D
.

2. The modulus of the complex visibility is maximal for small values of the
quantity (2πDα0)/(2λ), i.e. for

λ

D
< πα0 . (9.60)

The resolution of the interferometer is consequently given by the ratio of
the distance between the two receivers to the wavelength of the radiation.

9.1.2 Processing of the Signals

The previous discussions show that processing the signal received by the
antennas allows one to

– produce an image of an astronomical object (aperture synthesis);
– precisely determine the relative position of the antennas if the emitting

object is distant and stable (geodesy);
– precisely determine the position of a ground or space radio source if the

positions of the antennas are known;
– determine the spectra of the radio emission.

Processing at Each Antenna

The data received by the antennas are processed in the following way before
being correlated (many steps of the process, such as amplification, filtering,
etc. are omitted in this schematic description).

1. They are down converted to a baseband signal by mixing them with
a local oscillator. The accuracy and stability of this local oscillator must
be consistent with the phase shifts to be measured.
Suppose we have an input signal

x(t) = X exp [j(2πνt + φ)
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and a local oscillator

xLO = XLO exp [j(2πνLOt + φLO)] .

Mixing these two signals uses a non-linear operator, which produces out-
put components at various frequencies, the sum and difference of the
multiples of the frequencies ν and νLO. From these components, it is easy
to select, with a filter, the one whose frequency is νIF = ν−νOL (this fre-
quency is called the intermediate frequency) and whose phase is φ−φLO
(these relations apply in the case where νLO < ν). The baseband is cen-
tered on this frequency ν − νLO. The phase fluctuations of the IF signal
are consequently the sum of that of the signal and of the local oscillator,

xIF = KXXLO exp j([2π(ν − νLO)t + φ − φLO] . (9.61)

This is not a problem if all the signals of the interferometer are down
converted using the same local oscillator, since it is the phase differ-
ence between them that is the pertinent information. On the contrary,
in the case of a VLBI, the signals from different antennas are down con-
verted using a different local oscillator, located in the same station as
the antenna; the phase of each local oscillator must consequently be very
precisely defined.

2. The resulting signal is sampled and recorded in a digital media, along
with a precise timestamp.

3. The recorded data are then sent to the correlator to be further processed.

Delay Compensation

Due to the delay between the two antennas whose signal are to be correlated
and to the finite linewidth of the line being studied, the fringe visibility is
decreased (see Sect. 9.1.1). This can be compensated, since it is possible to
shift the two recorded data to optimize the value of their cross-correlation.

Digital Correlator

The correlator is the masterpiece of VLBI signal processing. Extensive de-
scriptions can be found, for instance, in [27, 107].

In the case of a digital processing, the cross-correlation of the discrete-
time process function of f(n) and g(n) is easily computed,

γ(n) = f � g(n) =
∞∑

p=−∞
f∗(p)g(n + p) . (9.62)

A schematic block diagram of a cross-correlator is shown in Fig. 9.3. It uses
memory to implement delays of a multiple of the sampling time Ts, multipliers
and accumulators.

In fact, the summation does not extend from −∞ to +∞ and the output
of the device is an estimator of the cross-correlation.
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Fig. 9.3. Schematic block diagram of a cross-correlator

9.2 Applications of VLBI

It was shown in Sect. 9.1 that VLBI may have various applications in astron-
omy (position, spectra and imaging of astronomical objects) and in geodesy
(the relative position of the antennas, absolute position relative to reference
astronomical objects, rotation of the Earth).

9.2.1 Astronomy

VLBI was developed first as a radio-astronomical tool and remains a pow-
erful and high resolution tool for observing radio sources. It allows sub-
milliarcsecond imaging [73, 60] and detection [118] of extragalactic objects.

9.2.2 Geodesy

In this kind of application, the astronomical sources are known and used as
references to determine some parameters of the Earth.
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Rotation of the Earth

Very distant quasars provide an inertial reference frame that is much more
accurate than the fundamental catalog of fix stars FK5 [126].

The antennas of a VLBI array are then in a situation that may be com-
pared to that of a differential GPS experiment; they receive the signal emitted
by the same source. Nevertheless, in the case of VLBI, the astronomic sources
appear as a point-source with no motion. There is consequently no need to
construct a model for their motion.

Since the radio telescopes are fixed on the rotating Earth, VLBI measures
the orientation of the Earth in the inertial reference frame defined by these
quasars as a function of time, monitoring the Earth rotation and orientation.
It is consequently possible to measure all the components of the Earth’s
rotation:

– the position of the Earth’s spin axis in space,
– the position of the Earth’s spin axis relative to the Earth crust, and
– the velocity of the rotation, which allows one to connect the two time

scales UT and UTC (see Sect. 7.1).

This information allow one to perform orbit controls of satellites, including
GPS satellites (see, for instance [110, 95]).

Monitoring of Plate Potions

This application of VLBI, joined to the GPS technique, is well known. These
space geodetic techniques allow the direct measurements of plate motions.
Motions of a few cm per year are clearly visible (see, for instance [49, 7, 47]).
The results of these measurements are used in Earthquake research.

Precise Localization on the Earth

The precise measurement of the position of the VLBI and GPS stations allow
one to maintain the realization of the International Terrestrial Reference
System (see, for instance [59, 88]).
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