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Summary 

We here investigate potentials and limitations of Griffith's energy release 
rate criterion to describe effective stress-strain behavior of brittle materials 
damaged by mode I type propagating microcracks. For this purpose stiff-
ness estimates for representative volume elements (RVEs) of a microcra-
cked material (based on continuum micromechanics) are combined with 
the energy release rate criterion for the behavior of one single penny-
shaped crack embedded in an infinite matrix subjected to remote uniform 
stresses (taken from linear-elastic fracture mechanics). This combination 
allows for studying the effect of stable (quasi-static) mode I propagation of 
open microcracks on the macroscopic behavior of microcracked material 
volumes subjected to different types of macroscopic loading. As regards 
uniaxial tension, the combined fracture-micromechanics approach predicts 
macroscopic strain-softening, resulting from propagation of cracks 
perpendicular to the loading direction. As regards uniaxial compression, 
consideration of non-zero crack openings is mandatory in order to predict a 
typical relation between tensile and compressive strengths, amounting to 
about 1:12. Thereby, uniaxial compressive failure is related to axial split-
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ting, i.e. to propagation of open cracks in the loading direction. As regards 
axial splitting caused by confined compression, additional strength increa-
se because of lateral confinement can be represented at least qualitatively. 
However, it turns out to be necessary to combine Griffith's energy release 
rate criterion with a stress criterion taking into account the sign of the 
microstresses in the vicinity of the crack edge. 

1 Introduction 

Microcracking is the dominant failure mechanism of brittle materials. 
Specific types of macroscopic loading lead to propagation of microcracks 
along their planes, while the relative displacement between the two crack 
surfaces is perpendicular to the crack growth direction. This type of crack 
propagation, referred to as cracking mode I, is observed under macrosco-
pic uniaxial tension, macroscopic uniaxial compression, and macroscopic 
axial compression with lateral confinement. It is the central issue of the 
present paper. 

Uniaxial tension experiments on brittle materials are very sensitive to 
imperfections [33]. Therefore, such experiments require very accurate and 
experienced handling of the specimen, the loading machine, and the 
measurement equipment [33]. In the post-peak regime of a uniaxial tension 
experiment, strain-softening is observed. Thereby, crack propagation is 
concentrated in a localization zone, i.e. to a narrow crack band [1]. The 
crack propagation direction is perpendicular to the direction of the applied 
tension. At the end of a uniaxial tension test on a brittle specimen, the 
sample splits up into two parts. 

In uniaxial compression experiments with carefully lubricated interfaces 
between load platens and specimen, characterized by approximately uni-
form stress states within the tested sample, open cracks propagate in the 
direction of axial loading, through a predominantly mode I cracking 
mechanism [37]. In the post-peak regime of such a test, crack propagation 
is accompanied by strain-softening. Thereby, the number of cracks deve-
loping within a certain volume is rather large [36]. At the end of a uniaxial 
compression test on a brittle specimen, the sample splits up into many 
slender "columns", and final failure is due to buckling and bending, or 
tilting and sliding of these columns [37]. 

Complementing uniaxial compression experiments by lateral confine-
ment pressure results in different failure mechanisms, related to different 
levels of confinement pressure: 
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• At small confinements, strain-softening is observed after the onset of 
axial splitting, and the final failure mode is the same as in unconfined 
uniaxial compression experiments. 

• At moderate confinements, axial splitting is first associated with strain 
hardening, i.e. an increase of stress with increasing strain. Subsequently, 
strain softening and final failure is caused by shear-mode propagation of 
closed cracks which are inclined to the axis of uniaxial loading. This 
type of failure is referred to as faulting [19]. 

• At large confinements a transition from brittle failure to ductile material 
behavior is observed [19]. 
 
In this paper, we investigate whether effective macroscopic stress-strain 

behavior under uniaxial tension, uniaxial compression, and axial compres-
sion with lateral confinement, respectively, can be predicted by combining 
Griffith's energy release rate criterion for mode I crack propagation (taken 
form linear-elastic fracture mechanics) with the Mori-Tanaka stiffness 
estimate specified for microcracked materials (taken from continuum 
micromechanics). In Section 2, we shortly revisit Griffith's energy release 
rate criterion and determine, in the framework of the equivalent inclusion 
method, the energy release associated with the growth of a single crack 
embedded in an infinite matrix subjected to remote uniform stress states, 
namely uniaxial tensile stresses acting perpendicular to the crack plane, 
uniaxial compressive stresses acting parallel to the crack plane, and triaxial 
compressive stresses acting both parallel and perpendicular to the crack 
plane. Section 3 deals with continuum micromechanics. There, we give 
details on the Mori-Tanaka estimation of the effective stiffness of a 
representative material volume damaged by microcracks. Employing the 
simple concentration procedure proposed by Zaoui [39, 40, 41], we recall 
how these estimates can be derived on the basis of the strain state in a 
single penny-shaped crack surrounded by an infinite matrix subjected to 
fictitious remote (uniform) strains. The explicit consideration of these 
fictitious remote strains provides the link between continuum micromecha-
nics and classical fracture mechanics, i.e. the link between the crack 
propagation criteria at the level of a single crack and the damage evolution 
at the level of the microcracked (“damaged”) material. This link is worked 
out in detail for macroscopic uniaxial tension, uniaxial compression, and 
axial compression with lateral confinement in Section 4: Through the 
aforementioned upscaling technique, we study the effect of stable (quasi-
static) mode I propagation of open microcracks on the macroscopic 
behavior of a microcracked material volume. 
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2 Single Crack Mechanics 

2.1 Short Review of Griffith’s Crack Propagation Criterion 

Linear-elastic fracture mechanics deals with the behavior of a single crack 
embedded in an infinite matrix subjected to remote uniform stresses Σ∞ 
(Fig. 2.1). Griffith [12] and Irwin [21] related crack propagation to the 
energy 

 
 
Fig. 2.1. Problem of linear-elastic fracture mechanics: A single penny-shaped 
crack (Fig. 2.2) is embedded in an infinite matrix subjected to remote uniform 
stresses Σ∞ 
 
 
ε released upon an increase of the crack area A from zero to its current 
size, ε= ε(Σ∞, A). The driving force for crack propagation is the energy 
release rate G, which is obtained by derivation of ε with respect to A. 

( ) ( )
A

AAG
∂
Σ∂

=Σ
∞

∞ ,, ε
 (2.1) 

The material resistance against crack propagation is referred to as Gc. 
Comparison of G(Σ∞, A) with Gc allows for identifying different types of 
crack behavior: 
• a crack is stationary, i.e. it does not propagate, if 

( ) cA G,G <Σ∞
 (2.2) 
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• onset of cracking occurs, if 

( ) cA G,G =Σ∞
 (2.3) 

• stable (quasi-static) crack propagation occurs, if (2.3) is satisfied and if 

00 >=
∂

∂
+Σ

Σ∂

∂
= ∞

∞ dAanddA
A

dd
GG

G  (2.4) 

• and instable (dynamic) crack growth is associated with 

( ) cA GG >Σ∞ ,  (2.5) 

Since we restrict our considerations throughout the paper to penny-
shaped cracks with crack radius a and crack half-opening c (Fig. 2.2), it is 
convenient to reformulate the expression of the energy release rate (2.1) as 
[26] 

α
ε

απ
α
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ε

∂
∂

=
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∂

∂
∂

=
2

1G
A

 (2.6) 

where, instead of the crack area A = a2π, the crack radius a is introduced as 
the parameter describing the size of the crack. 

2.2 Energy Released by Penny-Shaped Cracks Propagating in Mode I 
under Uniaxial and Triaxial Stress States 

The energy ε, released upon crack growth from zero to its current size, can 
be determined in the framework of the equivalent inclusion method [9, 27, 
18]. This method deals with two different types of subdomains within an 
infinite, linear-elastic matrix: inhomogeneities and inclusions (see, e.g., 
[27]). An inhomogeneity has an elastic stiffness Ci differing from the ma-
trix stiffness Cm (Fig. 2.3a); whereas an inclusion has the same stiffness as 
the matrix, but exhibits eigenstrains ε* [27] (Fig. 2.3b), also called stress -
free strains [9]. 
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Fig. 2.2. Spatial dimensions of a penny-shaped crack (inhomogeneity) with unit 
normal to the crack plane n, and definition of the crack coordinate system (r, φ, z) 
 
 

 
 
 
Fig. 2.3. Eshelby's equivalent inclusion problem: the behavior of (a) a single 
ellipsoidal inhomogeneity with stiffness Ci, embedded in a 3D infinite matrix of 
stiffness Cm, which is subject to remote uniform strain E∞, is modeled by (b) an 
ellipsoidal inclusion with equivalent eigenstrain ε*, embedded in a homogeneous 
infinite body of stiffness Cm,, which is subject to remote uniform strain E∞ 
 
 
 

In case of remote uniform loading, either in terms of strains E∞ or of 
stresses 

∞∞ =Σ ECm :  (2.7) 

the mechanical behavior of an infinite matrix containing a single ellipso-
idal inhomogeneity is equivalent to that of an infinite matrix containing an 
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equally-shaped inclusion with eigenstrains ε* [9] (Figs. 2.3a and 2.3b), 
reading as [13]. 

( )[ ] ∞−−−+−= ECCC mmi
m
i ::$

11*ε  (2.8) 

where m
i$ denotes the so-called Eshelby tensor, relating the eigenstrains ε* 

to the difference between the total inclusion strains εi (eigenstrains plus 
elastic strains resulting from constraints of the inclusion by the surround-
ding matrix) and the remote uniform strains E∞ [39]. 

*:$ εε m
i

i E =−= ∞
 (2.9) 

ε* enters the expression for the difference between the potential energy W 
of a ∞Σ -loaded matrix with an inhomogeneity and that of the same matrix 
without any inhomogeneity, W0, [27]. 

*
0 2

1 ε∞Σ=−=∆ iVWWW  (2.10) 

where Vi denotes the volume of the inhomogeneity. The energy difference 
∆W is called interaction energy. 

For an open crack, represented as an ellipsoidal inclusion with vanishing 
stiffness Ci =0, the equivalent eigenstrains follow from (2.8) as 

( ) ∞−
−Ι= Em

c :$ 1*ε  (2.11) 

where I denotes the fourth-order unity tensor, Iijkl = 1/2 (δikδjl + δilδkj), with 
δij denoting the Kronecker delta. For a penny-shaped crack (Fig. 2.2) with 
unit normal n pointing in the x3 direction (θ=0, Fig. 2.4), embedded in an 
isotropic matrix, the non-zero components of m

c$ read as [18, 27]. 
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(2.12) 

and with vm as the Poisson's ratio of the matrix. The crack interaction ener-
gy ∆W i.e. the change in potential energy because of the presence of the 
crack, is identical to Griffith's energy E released upon an increase of the 
crack radius a from zero to its current size, so that [compare (10)] 

E 
*

2
1 ε∞Σ= cV  (2.13) 

where Vc denotes the volume of the crack: 

caVc
2

3
4π

=  (2.14) 

In the following, we consider three specific remote uniform stress states 
∞Σ (i) uniaxial tension acting orthogonal to the crack plane, (ii) uniaxial 

 



Bernhard Pichler, Christian Hellmich and Luc Dormieux   253                                                      

 

 
 
Fig. 2.4. Definition of the unit vector n as a function of the angular coordinate θ 
 
 
compression acting parallel to the crack plane, and (iii) a triaxial stress 
state where compressive stresses act both orthogonal as well as parallel to 
the crack plane. 

For remote uniaxial tensile stress acting perpendicular to the crack plane 
(Fig. 2.1). 

0, 333333 ≥Σ⊗Σ=Σ ∞∞∞ gg  (2.15) 

E follows from specification of (2.13) for (2.14), (2.15), (2.11), (2.12), 
and (2.7) as 

E
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and the energy release rate follows from insertion of (2.16) into (2.6) as 
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(2.17) 

In case of (c/a)<<1, the first term of (2.17) is significantly larger than the 
following terms, such that the energy released by a slightly opened crack 
(a >> c ≠ 0) can be approximated by that released by a sharp crack (c= 0). 

For remote uniaxial compressive stress acting parallel to the crack plane 
(Fig. 2.1). 

0, 111111 ≤Σ⊗Σ=Σ ∞∞∞ gg  (2.18) 

E follows from specification of (2.13) for (2.14), (2.18), (2.11), (2.12), 
and (2.7) as 
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and the energy release rate follows from insertion of (2.19) into (2.6) as 
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Hence, energy release requires at least slight opening of the crack; and 
no energy is released if a sharp crack (c = 0) propagates. 

For remote triaxial stress states in the form of compressive stress ∞Σ11  
acting parallel to the crack plane and confinement stress ∞Σ33 acting both 
parallel and perpendicular to the crack plane (Fig. 2.1). 

( ) 0,0, 331113322331111 ≤Σ≤Σ⊗+⊗Σ+⊗Σ=Σ ∞∞∞∞∞ gggggg  (2.21) 

E follows from specification of (2.13) for (2.14), (2.21), (2.11), (2.12), 
and (2.7) as 
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and the energy release rate follows from insertion of (2.22) into (2.6) as 
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For very small confinements ∞Σ33 << ∞Σ11 , the first two terms on the right-
hand side in (2.23), containing as factors (c/α)0 = 1 and (c/α)1, respectively, 
are of the same magnitude; otherwise the confinement pressure ∞Σ33 governs 
the energy release rate in (2.23). 
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3 Representative Volume Elements Damaged by many 
Interacting Microcracks 

3.1 Representative Volume Element (RVE) and Material Phases [17, 
40, 31] 

To study the mechanical behavior of a deformable solid with the help of 
continuum (micro)mechanics, constitutive material elements must be labe-
led and their geometrical evolution must be followed [40, 31]. A 
representative volume element (RVE) of a micro-heterogeneous material 
must be homogeneous on a macroscopic scale [17], which implies that the 
characteristic length l of a RVE satisfies the condition 

l b>>  (3.1) 

where b denotes the characteristic length of heterogeneities within the 
RVE, see Figs. 5b, 6b, and 6c for RVEs containing penny-shaped micro-
cracks. Furthermore, in order to render differential calculus applicable in 
continuum mechanics, the condition 

{ }>>PL, l  (3.2) 

 

 
 
Fig. 3.1. Separation of scales: (a) Structure containing a fracture process zone 
ahead of a macrocrack and (b) RVE of a microcracked (damaged) material with 
cracks of identical size and orientation, subjected to displacements ξ related to 
“homogeneous strains” E at the boundary 
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Fig. 3.2. (a) Microcracked sample tested in a uniaxial compression device,             
              (b) and (c) sections through a RVE of a microcracked (damaged) material   
              with equally-sized penny-shaped cracks, axisymmetrically distributed  
              with respect to the x1 axis 
 
 
must be satisfied, where L denotes the characteristic length of the structure 
containing the RVE, and P stands for the characteristic length of structure 
excitations such as, e.g., surface-loads or wave lengths (Figs. 3.1a and 
3.2a).  

In general, the microstructure within each RVE is so complicated that it 
cannot be described in complete detail. Therefore, quasi-homogeneous 
sub-domains with known physical quantities (such as volume fractions and 
elastic properties) are reasonably chosen. They are called material phases. 
As regards microcracked (damaged) media, the introduction of two phases 
is most common in the open literature [5, 13, 23, 29, 30, 32]: (1) the sane 
(uncracked) matrix, and (2) the cracks in form of penny-shaped inhomoge-
neities. 

For the sake of simplicity, we deal with RVEs comprising penny-shaped 
cracks with identical size. In case of uniaxial tension, we consider cracks 
of identical orientation where the crack normal n is aligned with the di-
rection of tensile loading. Notably, the problem of strain localization, as 
observed, e.g., in a uniaxial tension test on a brittle material, is beyond the 
scope of this paper. Moreover, we do not deal with macrocracking, and in 
particular not with the influence of many microcracks on the behavior of a 
macrocrack, such as done in [10, 20, 28, 8].We rather describe the 
behavior of a material volume element (Fig. 3.1b) inside the localization 
zone (narrow crack band [1]) observed in a uniaxial tension experiment or 
inside the fracture process zone ahead of a macrocrack (Fig. 3.1). In case 
of axial compression (with and without lateral confinement), we consider 
axisymmetrically distributed cracks with normals n orthogonal to the 
direction of the predominant axial compressive loading (Fig. 3.2). 
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3.2 Stress / Strain Averaging and Concentration [17, 39, 40, 41] 

For studying deformation states of the RVE, a position vector x is introdu-
ced. It labels, with resolution b, locations within the RVE and on its boun-
dary. Subjecting the boundary ∂V of the RVE to displacements 

( ) Vonxx ∂⋅Ε=ξ  (3.3) 

(Hashin boundary condition [15]), implies 

( ) ( )[ ] mmcc
V

fdnfdVx
V

εθθε
θ

εε
θ

+===Ε ∫∫
*

0
*

11
 (3.4) 

with ( )∫•=• dVV/1: as the volume average. mf and cf denote the volume 

fraction of the matrix and of the cracks, respectively. εm and εc[n(θ)] deno-
te the (average) strains of the matrix and of cracks with normals n defined 
by the angular coordinate θ (Fig. 2.4), respectively. The integral over dθ in 
(3.4) accounts for different crack orientations. Cracks of identical orienta-
tion, as observed under uniaxial tension (Fig. 3.1b), correspond to θ* → 0. 
An axisymmetrical distribution of cracks, as observed under axial com-
pression with and without lateral confinement (Figs. 3.2b and 3.2c), refers 
to θ* = π. 

Linear-elastic behavior of the cracks and of the matrix is considered 

mmmccc CandC εσεσ :: ==  (3.5) 

with Cc and Cm as the stiffness of the cracks and of the matrix, respective-
ly. Consequently, the superposition principle implies the existence of a 
linear relationship between macroscopic strains E and (“microscopic”) 
strains εm and εc (θ) [17]. 

( )[ ] ( )[ ] ΕΑ=ΕΑ= :: mmcc andnn εθθε  (3.6) 

with Am as the fourth-order concentration tensors of the matrix and 
Ac[n(θ)] as the fourth-order concentration tensors of the cracks with nor-
mal n defined by θ. (3.4) and (3.6) imply that 

( )[ ] Ι=Α+Α∫ mmcc fdnf
*

0
*

1 θ

θθ
θ

 (3.7) 

Insertion of (3.6) into (3.5), averaging over the resulting expressions for 
σc [n(θ)] and σm according to 
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( )[ ] mmcc fdnf σθθσ
θ

σ
θ

+==Σ ∫
*

0
*

1
 (3.8) 

(with Σ as the macroscopic stress tensor), and accounting for (3.7) yields 
the macroscopic constitutive law 

Ε=Σ :homC  (3.9) 

with 

( ) ( )[ ]∫ Α−+=
*

0
*hom :1 θ

θθ
θ

dnCCfCC cmccm  (3.10) 

as the homogenized (macroscopic) elasticity tensor. We are left with the 
determination of the strain concentration tensors Ac[n(θ)], which are un-
known so far. However, they can be estimated from Eshelby's matrix-
inclusion problem. 

3.3 Stiffness Estimation on the Basis of Eshelby’s Matrix - Inclusion 
Problem [39, 40, 41] 

The concentration tensors Ac[n(θ)] can be estimated on the basis of matrix-
inclusion problems [39, 40, 41], such as the ones of Eshelby [9] or Laws 
[24, 25]. The stiffness of the sane matrix of the (microcracked) RVE, Cm, 
is introduced as the stiffness of the matrix in the Eshelby problem (Figs. 
3.1b and 2.3). Following Zaoui's concentration procedure [39, 40, 41], the 
average strains of each phase, εc[n(θ)] and εm , are set equal to the strains in 
a single ellipsoidal inclusion (with stiffness Cc and Cm, respectively) em-
bedded in an infinite matrix of stiffness Cm, subjected to fictitious (uni-
form) strains E∞ at infinity [39, 40, 41]. Accordingly, the average strains of 
penny-shaped microcracks embedded in a RVE follow as [39, 13]. 

( )[ ] ( )[ ] ( )[ ] ∞−− Ε−+Ι= :::$ 11
mcm

m
cc CCCnn θθε  (3.11) 

as can be shown from (2.8) and (2.9). In the same sense, the average 
strains of the matrix phase of the RVE are set equal to those prevailing in 
an inclusion of stiffness Cm, resulting in the trivial relation [39, 40, 41]. 

∞Ε=mε  (3.12) 
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The strains E∞, prescribed at infinity to a matrix surrounding a single 
crack, must be related appropriately to the macroscopic strains E, imposed 
as uniform boundary condition onto the RVE. 

Assuming the case of a non-dilute concentration of cracks, their inter-
action needs to be considered. The simplest consideration of crack inter-
action consists of defining the fictitious remote strains E∞ such that the 
strain average rule (3.4) is satisfied [39, 40, 41], i.e. by insertion of (3.11) 
and (3.12) into (3.4). 
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Back-substitution of (3.12) into (3.10), while considering (3.6.1), yields 
the Mori-Tanaka estimate for the concentration tensors Ac[n(θ)]. 
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Finally, insertion of (3.14) into (3.10) yields the Mori-Tanaka stiffness 
estimate of a material with microcracks [2, 3, 4, 11] 
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Evidence for the suitability of considering crack interaction through 
(3.15) was gained in 2D, see [22]. There, it is shown that the 2D equivalent 
to the 3D Mori-Tanaka stiffness estimate used in this paper is quasi-identi-
cal to effective stiffnesses determined from a series of full structural com-
putations (computer experiments [22]) of solids with different crack confi-
gurations (Fig. 3.3). These numerical analyses precisely accounted for (i) 
the load-carrying behavior of the matrix between the cracks and, hence, for 
(ii) crack interaction. The self consistent scheme and the differential sche-
me (for the latter see also [16]), however, overestimate the stiffness 
decrease with increasing crack density parameter (Fig. 3.3). This is the 
motivation to restrict our considerations to the Mori-Tanaka scheme. 
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Fig. 3.3. Illustration of results of [22]: Young's modulus of a microcracked mate-
rial over Young's modulus of the uncracked (sane) matrix, as a function of the 
(2D) crack density parameter; for (a) randomly orientated cracks and (b) parallel 
cracks. The vertical bars refer to the scatter interval of computed effective stiffnes-
ses obtained from 15 numerical simulations with the same crack density, but with 
different, randomly generated configurations of interacting cracks. 

3.4 Open and Empty Penny-Shaped Cracks 

Specification of (3.15) for open and empty penny-shaped cracks, chara-
cterized by Cc = 0, yields 
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Based on (2.14), the crack volume fraction reads as 

caNNVf cc
2

3
4π

==  (3.17) 

with N denoting the number of cracks per unit volume. 
As regards microcracking under uniaxial tension, we deal with RVEs 

comprising penny-shaped cracks of identical orientation (Fig. 3.1b) with   
n = n (θ=0). The corresponding stiffness estimate is obtained from specifi-
cation of (3.16) for the limit case θ*→0. When also considering (3.17) and 
fm = 1- fc, it reads as 
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=−Ι+Ι−−= θnffCfC m

cccmc
MT

 (3.18) 
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where the non-vanishing components of ( )[ ]0$ =θnm
c , which are function 

of the crack aspect ratio c/α, are given in (2.12). For the limit case of sharp 
open cracks, characterized by the crack aspect ratio tending to zero: 
c/α→0, the stiffness estimate (3.18) reduces to [6, 7] 
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Thereby, the tensor T, introduced by Dormieux and Kondo [6, 7], is de-
fined as 
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The non-vanishing components of T, exhibiting the symmetries Tijkl = 
Tjikl = Tijlk , read as [6, 7] 
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As regards microcracking under axial compression (with and without la-
teral confinement), we consider cracks with normals n, oriented perpendi-
cular to the direction of loading, i.e. n ⊥ e1. The corresponding stiffness 
estimate is obtained from specification of (3.16) for θ*= π. When also 
considering (3.17) and fm = 1- fc, this yields 
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The secant-stiffness estimates of (3.19) and (3.22) depend on the actual 
degree of damage within the RVE, described by the crack volume fraction 
fc [see (3.22)] or Budiansky's crack density parameter Na3 [see (3.19)], 
respectively. For fc = const or Na3 = const, respectively, they describe the 
behavior of stationary (non-propagating) cracks. Estimation of the homo-
genized stiffness during microcrack propagation requires quantification of 
the evolution of fc or Na3, respectively, i.e. a damage evolution law is ne-
eded, which is derived subsequently. To end up with a fully micromecha-
nics-based damage model for brittle materials, we will consider onset of 
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cracking and crack propagation of every single microcrack embedded in a 
RVE containing many such cracks. 

3.5 Linking Macroscopic Stresses to Single-Crack Related Crack 
Propagation Criteria 

In the following, we describe a link between the single-crack related crack 
propagation criteria of Section 2 and the macroscopic stresses Σ imposed 
as uniform boundary conditions on a microcracked RVE. This link allows 
for investigation of the influence of the propagation of single cracks on the 
progressive reduction of the effective stiffness of a material comprising 
numerous propagating cracks. The key to this link is that both micro-
mechanics and fracture-mechanics rely on matrix-inclusion problems 
(Figs. 2.3 and 2.1) dealing with a single crack embedded in an infinite 
matrix subjected to remote uniform loading: Zaoui's concentration proce-
dure [39, 40, 41] provides a relation between the macroscopic strains E 
(Fig. 3.1b) acting on the boundary of the RVE of a damaged material with 
numerous microcracks and the strains E∞ (Fig. 2.3) imposed (at infinity) 
on a matrix surrounding a single microcrack: 
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as follows from specification of (3.13) for Cc=0. Setting the fictitious 
strains E∞ equal to the ones caused by Σ∞ in the fracture mechanics pro-
blem of Fig. 2.1, i.e. 

∞−∞ Σ=Ε :1
mC  (3.24) 

establishes the aforementioned link between micromechanics and fracture- 
mechanics: (3.24), together with (3.23), allow for relating the remote 
stresses Σ∞ “felt” by one single microcrack to the macroscopic strains E 
prevailing on the RVE of the material with numerous microcracks. Addi-
tional consideration of (3.9) delivers the relation between Σ∞ and the ma-
croscopic stresses Σ acting on the RVE, reading, with )(

homhom
MTCC = from 

(3.16), as 

cm ff −
Σ

=
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1
 (3.25) 
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Particularly, (3.25) provides the link between the RVE-related quantity 
Σ and the fracture-mechanics related quantity Σ∞, playing the governing 
role in the criteria for single-crack propagation (2.2)-(2.5), see also (2.17), 
(2.20), and (2.23). 

4 Effective Stress-Strain Behavior of Microcracked Brittle Mate-
rials – Assessment of Griffith’s Energy Release Rate Criterion 

While the stiffness estimates (3.19) and (3.22) define the effective stress-
strain behavior in the elastic regime, the link (3.25), together with single-
crack related propagation criteria (2.2)-(2.4) mark the limit of this regime, 
and give access to the effective stress-strain behavior during stable mode-
I-type propagation of the microcracks; i.e. during evolving damage of the 
material defined on the RVE. Thereby, they relate the macroscopic stress 
imposed on the RVE to the characteristics of the microcracks inside the 
RVE (i.e. α, c, and N). 

Comparison of model predictions with the behavior of brittle materials 
observed in corresponding experiments will allow for assessing the perfor-
mance of Griffith's energy release rate criterion in the framework of mode 
I type microcracking in brittle materials. 

4.1 Uniaxial Macroscopic Tension – Tensile Mode I Micro-cracking 

To study tensile microcracking, we consider a RVE (Fig. 3.1b) subjected 
to the macroscopic uniaxial tensile stress state 

0, 333333 >Σ⊗Σ=Σ ee  (4.1) 

In order to represent the crack patterns observed in corresponding expe-
riments [33, 34], we consider cracks of identical orientation with normals 
n (Fig. 2.2) pointing in the direction of loading (n = e3 in Fig. 3.1b). Consi-
deration of sharp cracks (c = 0), as relevant approximation for slightly 
opened cracks under tensile mode-I-type loading (see (2.17) and discus-
sion below), implies fc = 0 [see (3.17)], and, hence, Σ∞ = Σ [see (3.25)]. 
Therefore, the expression of GI for every single of the many microcracks 
embedded in the considered RVE follows from replacing ∞Σ33 by 33Σ in 
(2.17), i.e. 
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The relation (4.2), together with the crack propagation criteria (2.2)-
(2.4), allows for testing whether or not macroscopic loading Σ33 on the 
RVE of the microcracked material leads to propagation of the individual 
microcracks in the material. If the criterion (2.2) is satisfied: 
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the microcracks do not propagate, i.e. α = αini = const., where αini denotes 
the initial radius of the penny-shaped cracks. The damaged material beha-
ves linear elastically, according to the specification of (3.9) for (3.19) and 
(4.1) 
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If, however, (2.3) and (2.4) are satisfied: 
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the cracks propagate such that the crack radius increases (dα > 0) while the 
equality (4.5) remains satisfied. This renders the uniaxial macroscopic 
stress Σ33 as a function of the crack radius α. 
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When assuming that N = const. during crack propagation, the corre-
sponding strain E33 = E33(α) follows from substitution of (4.6) into the 
stress-strain relation (4.4), 
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(4.6) and (4.7) describe stress-strain relations in parameter form, with the 
crack radius a as the parameter, see descending crack propagation paths in 
Fig. 4.1a and 4.2b. 



Bernhard Pichler, Christian Hellmich and Luc Dormieux   265                                                      

 

 

 
 
Fig. 4.1. Effective stress-strain behavior in uniaxial tension of a microcracked brit-
tle material (Fig. 3.1b), predicted by combined fracture-micromechanics model on 
the basis of material constants of Silurian sedimentary rock (Table 4.1): (a) effect 
of initial crack radius αini and (b) effect of number of cracks per unit volume, N 
 
 
Table 4.1. Material constants, uniaxial tensile strength, and uniaxial compressive 
strength of Silurian sedimentary rock [14] 
 

][GPaEm  ][−mv  ][ mMPaKIc  [ ]2/mJGc  ][MPatuΣ  ][MPacuΣ  

49.4 0.24 1.74 57.76 13.6 158 
 
 
(4.6) and (4.7) propose that materials with the same number of differently 
sized microcracks exhibit identical softening paths in the Σ33-E33 space 
(Fig. 4.1a). However, the peak stresses (theoretical tensile strengths) of 
such materials decrease with increasing initial crack radius αini (Fig. 4.1a). 
On the other hand, materials with different numbers of equally sized mi-
crocracks exhibit identical peak stresses (Fig. 4.1b). Related softening 
paths are, however, the steeper the fewer cracks are contained in the RVE 
(Fig. 4.1b). Summarizing these results, effective strain-softening under 
uniaxial tension can be, at least qualitatively, predicted by a combined 
fracture micromechanics model based on Griffith's energy release rate 
criterion. 

4.2 Uniaxial Macroscopic Compression – Axial Splitting 

To study axial splitting, we consider a RVE subjected to the macroscopic 
uniaxial compressive stress state 
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0, 111111 <Σ⊗Σ=Σ ee  (4.8) 

In order to represent the crack patterns observed in corresponding expe-
riments [35, 36, 37], we consider cracks with normals n (Fig. 2.2) perpen-
dicular to the direction of loading (n(θ) ⊥ e1 ⇔ θ ∈[0, π] in Fig. 2.4), i.e. 
we introduce microcracks with orientations axisymmetrically distributed 
with respect to the axis of loading, the x1 axis in Fig. 3.2. Opposed to the 
situation in Subsection 4.1, consideration of the crack opening (c ≠ 0) is 
mandatory for appropriate determination of the energy release (see (2.20) 
and discussion below), even if the crack is only slightly opened. Accordin-
gly, the released energy E for every single of many axisymmetrically 
distributed microcracks embedded in the considered RVE follows from 
insertion of (3.25), relating ∞Σ11 to ( )cf−Σ 1/11 , into (2.19), yielding 
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Calculation of GI requires derivation of E with respect to α [see (2.6)]. 
Thereby, the dependence of fc on α [see (3.17)] must be taken into account, 
which yields 
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Since c/α << 1, quadratic and higher-order terms in c/α may be neglect-
ed, rendering GI as 

m
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The relation (4.11), together with the crack propagation criteria (2.2)-
(2.4), allows for testing whether or not macroscopic loading Σ11 on the 
RVE of the microcracked material leads to propagation of the individual 
microcracks in the material. If the criterion (2.2) is satisfied: 
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the cracks do not propagate, i.e. α = αini = const., and the damaged material 
behaves linear elastically, according to the specification of (3.9) for (3.22) 
and (4.8): 
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If, however, (2.3) and (2.4) are satisfied: 
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the cracks propagate such that the crack radius increases (dα > 0) while the 
equality (4.14) remains satisfied. Since (4.14) does not depend on α, it 
follows that stable crack propagation (increase of α) requires a constant 
macroscopic stress: Σ11 = const. (Fig. 4.2). This is a remarkable difference 
to macroscopic uniaxial tension where stable microcrack propagation re-
quires a decreasing loading of the RVE (Figs. 4.1a and 4.1b). (4.14) deli-
vers the macroscopic stress Σ11 associated to microcrack propagation as 
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c
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When assuming that N = const during crack propagation, the correspond-
ding strain E11 = E11(α) follows from substitution of (4.15) into the stress-
strain relation (4.13), 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=

3
41

2
3 2

11
cNa

c
EGaE mc π

 (4.16) 

(4.15) and (4.16) describe stress-strain relations in parameter form, with 
the crack radius α as the parameter. Related crack propagation paths yield 
a stress plateau in the Σ11- E11 space (Fig. 4.2). Thereby, the absolute value 
of the bearable compressive stress increases with decreasing crack half 
opening width (Fig. 4.2). However, Griffith's energy release rate criterion 
does not predict strain-softening under uniaxial compression. In this line, 
the experimentally observed strain-softening behavior [36] would have to 
be caused by failure effects after the sample has split up into many slender 
“columns”, i.e. by buckling and bending and/or tilting and sliding of these 
columns. Experimental observations of [38] foster this argumentation: The 
characteristic stress strain curve referring to unconfined axial compression 
shows, before the stress drop beyond the peak load, a region of almost 
vanishing inclination of the stress strain curve, i.e. a quasi-plateau, such as 
predicted by our model. In this region of the stress strain curve, a large 
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number of isolated fractures are formed, and fracturing clearly predomina-
tes along the direction of loading [38]. 
 

 
 
Fig. 4.2. Effective stress-strain behavior in uniaxial compression of a micro-
cracked brittle material (Figs. 3.2b and 3.2c), predicted by combined fracture-
micromechanics model on the basis of material constants of Silurian sedimentary 
rock (Table 4.1): effect of initial crack half opening width cini 

4.3 Determination of the Initial Microcrack Radius and of the Initial 
Microcrack Half-Opening from the Uniaxial Tensile Strength and the 
Uniaxial Compressive Strength 

By example of brittle Silurian sedimentary rock [14] (Table 4.1), experi-
mentally determined uniaxial strength values in tension and compression, 
Σtu and Σcu, will be used for identification of the (initial) geometric pro-
perties of the microcracks: The initial crack radius aini follows from setting  
Σ33 ≡Σtu and in (4.5) and solving the resulting expression for a, yielding 
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according to the material constants listed in Table 4.1. The initial crack 
half-opening cini follows from setting the stress Σ11 ≡Σcu in (4.14) and sol-
ving the resulting expression for c, yielding 
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according to the material constants listed in Table 4.1. Remarkably, (4.17) 
and (4.18) imply that the ratio between the uniaxial compressive strength 
and the uniaxial tensile strength depends on the Poisson's ratio of the ma-
trix and on the initial crack aspect ratio cini/aini (Fig. 4.3). 
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This is a key result of the combined fracture-micromechanics approach 
of Subsection 3.5. According to (4.17) and (4.18), the Silurian sedimentary 
rock, described in [14], is characterized by an initial microcrack aspect ra-
tio equal to cini=αini = 1/75. 
 
 

 
 
Fig. 4.3. Ratio between the uniaxial compressive strength Σcu and the uniaxial ten-
sile strength Σtu as a function of the crack aspect ratio c/α and Poisson's ratio of the 
matrix, vm, predicted by the combined fracture-micromechanics approach 
 
cini = 0.17mm may appear as quite large, however, one should take into ac-
count that cini is the half opening of an equivalent penny-shaped crack. 
Real crack surfaces in rocks are not plane but have some kind of micro-
roughness (Fig. 4.4), and the initial opening of real cracks might be well 
below 0.17mm. If such a crack is modeled by an equivalent (ideal) penny-
shaped microcrack, the initial opening of the latter accounts for both the 
microroughness and the initial opening of the real crack (Fig. 4.4). There-
fore, modeled crack openings are always larger than the real ones. 
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Fig. 4.4. Representation of (a) a realistic crack shape with microroughness by (b) 
an equivalent elliptic crack 

4.4 Confined Macroscopic Compression – Axial Splitting 

To study axial splitting under confined compression, we consider a RVE 
subjected to the macroscopic triaxial compressive stress state 

( ) 0,0, 33113322331111 ≤Σ≤Σ⊗+⊗Σ+⊗Σ=Σ eeeeee  (4.20) 

where Σ11 is the predominant axial compressive stress and Σ33 is the lateral 
confinement pressure. In order to represent the crack patterns observed in 
corresponding experiments [35, 36, 37], we again consider cracks with axi-
symmetric orientation and non-vanishing crack half-opening widths, c ≠0, 
as in Subsection 4.2 (Fig. 3.2). The released energy E for every single of 
many axisymmetrically distributed microcracks embedded in the conside-
red RVE follows from insertion of (3.25), relating ∞Σ11 to ( )cf−Σ 1/11 and 

( )cf−Σ 1/33 , into (2.22), yielding 
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Calculation of GI requires derivation of E with respect to a [see (2.6)]. 
Thereby, the dependence of fc on a [see (3.17)] must be taken into account: 
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In order to assess whether or not Griffith's energy release rate criterion 
has the potential to satisfactorily predict material damage under confined 
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compression, it is useful to consider onset of microcracking, by inserting 
GI from (4.22) into the condition (2.3), yielding 
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when having neglected the higher-order terms O(c/α)2 in (4.22). Solving 
(4.23) for Σ11 delivers the predominant axial compressive stress at onset of 
microcracking, denoted by cr

11Σ , as a function of the lateral confinement 
pressure Σ33. 
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Evaluation of (4.24) for the material parameters of Table 4.1 and for αini 
and cini according to (4.17) and (4.18), proposes that an increase of lateral 
confinement pressure from zero up to 1% of Σcu increases the predominant 
axial compressive stress at onset of axial splitting, but only by less than 
1% (Fig. 4.5). Further increase of the confinement pressure is predicted to 
decrease the predominant axial compressive stress at onset of axial split-
ting, which contradicts experimental findings. 
 

 
 
Fig. 4.5. Predominant axial compressive stress at onset of microcracking as a fun-
ction of the lateral confinement pressure, predicted by combined fracture-micro-
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mechanics model on the basis of material constants of Silurian sedimentary rock 
(Table 4.1) 
 
 

This contradiction is due to the fact that we do not account for the sign 
of the microstress component σzz in the vicinity of the crack edge (Fig. 
2.1). In case of uniaxial compression parallel to the crack plane, these 
stresses are tensile. If confinement stresses orthogonal to the crack plane 
are additionally applied, the initially tensile stresses σzz become compressi-
ve, already at very small confinement pressures. Consequently, crack pro-
pagation becomes impossible and (4.23) as well as (4.24) are no longer 
valid. Hence, the presented approach proposes that, under such confine-
ments, brittle failure is not associated with mode I propagation of cracks in 
the direction of predominant compressive axial loading, but with propaga-
tion of closed, inclined cracks. This shear mode type of crack propagation, 
however, is not the topic of the present paper. Summarizing these results, 
Griffith's crack propagation criterion based on energy release rate is seen 
to be applicable also to compressive stress states, but it is mandatory to 
account for the sign of the normal stresses in the vicinity of the crack edge, 
acting in the crack normal direction. 

5 Conclusions 

The aim of this paper was to assess the potentials and the limitations of 
Griffith's energy release rate criterion to predict effective stress-strain 
behavior of brittle materials damaged by microcracks propagating in 
cracking mode I. For this purpose, Griffith's energy release rate criterion, 
related to a single penny-shaped crack embedded in an infinite matrix 
subjected to remote uniform stresses, was combined with stiffness estima-
tes for RVEs of damaged (microcracked) materials taken from continuum 
micromechanics. As regards uniaxial tension, this combination allows for 
modeling macroscopic strain-softening as a result of propagation of 
microcracks, i.e. as a microstructural effect. Hence, Griffith's energy 
release rate criterion has the potential to predict, at least qualitatively, the 
behavior of microcracked materials under uniaxial tension. Thereby, the 
microcracks may be modeled as sharp cracks (as commonly introduced in 
fracture mechanics), since sharp cracks release (during tensile crack 
propagation) an amount of energy similar to that released by slightly 
opened cracks. As for uniaxial compression, however, the non-vanishing 
opening width of the microcracks must be taken into account, even though 
it is commonly by orders of magnitude smaller than the in-plane crack 



Bernhard Pichler, Christian Hellmich and Luc Dormieux   273                                                      

 

diameter. There, the described combination of fracture and micromecha-
nics proposes that macroscopic axial splitting under uniaxial compression 
is characterized by a constant stress level. Remarkably, the proposed 
model reveals that the ratio between the uniaxial tensile strength and the 
uniaxial compressive strength is a function of the crack aspect ratio, i.e. the 
ratio between the crack half-opening width and the crack radius. 
Therefore, the combined fracture-micromechanics approach accounts for 
the basic strength properties of brittle materials simply by introducing 
geometric properties of the microcracks within the RVE. However, 
Griffith's energy release rate criterion does not have the potential to predict 
effective strain-softening under uniaxial compression. The latter would 
have to be explain-ned by buckling or tilting of slender columns after 
disintegration of the material. As a further limitation, Griffith's energy 
release rate criterion alone was found to be insufficient for prediction of 
axial splitting caused by confined compression: A complementary stress 
criterion accounting for the sign of the microstresses in the vicinity of the 
crack edge would be necessary. 
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Summary 

In this paper the essential mechanical behavior of rockfill materials is 
modeled using a hypoplastic continuum approach. Critical states are inclu-
ded in the model for large shearing. With respect to a pressure dependent 
relative density the model can capture the essential mechanical properties 
of initially loose and dense granular materials with a single set of 
constants. While the calibration and application of hypoplastic models has 
already been extensively investigated for fine-grained materials like sand 
and powders, the present application to weathered rockfill materials is a 
first attempt to describe coarse-grained materials with a low and decree-
sing grain hardness. Particular attention is paid to modeling the influence 
of the initial density, the pressure and the moisture content of weathered 
broken rock on the incremental stiffness. An increase of the compressibi-
lity and a decrease of the limit void ratios with an increase of the moisture 
content of the grains is modeled in a simplified manner using only a 
moisture dependent granular hardness. The comparison of the numerical 
simulations of isotropic compression tests and triaxial compression test 
with experiments shows that the model captures the essential properties of 
weathered rockfill materials for both dry and water saturated grains. The 
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possibility of spontaneous shear band bifurcation under plane strain 
compression is analyzed and discussed for different initial densities. 

1 Introduction 

The mechanical behavior of rockfill materials is mainly determined by the 
grain hardness, the grain shape, the grain size distribution, the packing 
density, the orientation of contact planes, the stress state and the loading 
history. Stiffness and shear strength are influenced by the pressure level, 
the packing density and the rate of deformation and are therefore not 
material constants, e.g. [12]. The mechanical behavior of broken rock is 
different for unweathered or weathered grains. The degree of geological 
disintegration, i.e. by chemical weathering or by the intensity and the 
orientation of micro-cracks, has a significant influence on the granular 
hardness and as a consequence on the evolution of grain abrasion, grain 
breakage and grain size distribution. Depending on the state of weathering 
the propagation of micro-cracks due to water-induced stress corrosion can 
be strongly influenced by the moisture content of the grains [24]. Under 
higher stress levels the disintegration of grains can be accelerated by 
moisture, which leads to a reduction of the resistance to compaction and 
shearing [19, 20, 23]. 

The focus of the present paper is on modeling the mechanical behavior 
of broken rock materials using a hypoplastic continuum approach. In 
hypoplasticity the evolution equation for the stress tensor is formulated 
with a nonlinear isotropic tensor-valued function depending on the current 
state quantities and the rate of deformation. Unlike the classical concept of 
elasto-plasticity no decomposition of the deformation into elastic and 
plastic parts is needed in hypoplasticity [13, 21]. In order to model 
inelastic material properties the rate of deformation tensor is incorporated 
in the constitutive equation in a nonlinear formulation. With a pressure 
dependent density factor the influence of pressure and density on the 
incremental stiffness, the peak friction angle and the dilatancy can be 
modeled for an initially loose or dense state using a single set of constants 
[2, 15, 33, 34]. Limit states or so-called critical states are included in the 
constitutive equation for a simultaneous vanishing of the stress rate and 
volume strain rate. Originally hypoplastic material models were developed 
and calibrated for dry and cohesionless granular materials like sand. A 
comprehensive historical review can be found for instance in Wu and 
Kolymbas [37], Bauer and Herle [6]. 
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While in the hypoplastic model by Gudehus [15] and Bauer [2] for 
granular materials with unweathered grains the so-called granular hardness 
is assumed to be constant, an extension of this version with a granular 
hardness depending on the moisture content is discussed for applications to 
weathered broken rock materials in the present paper.  Herein the granular 
hardness is related to the grain assembly in the sense of a continuum 
description and does not mean the hardness of an individual grain. It is 
demonstrated that with the moisture content as an additional state variable 
the extended model captures the essential properties of weathered rockfill 
materials with a single set of constants for both dry and moisture grains. 
The model is calibrated for a weathered broken granite and the results 
obtained from the numerical simulation of element tests are compared with 
experiments. Finally the possibility of a spontaneous shear band 
bifurcation under plane strain compression is analyzed for different initial 
densities and for dry and wet conditions.  

Throughout the paper compression stresses and strains are defined as 
negative. Bold lower case, bold upper case and calligraphic letters denote 
vectors, tensors of second order and of fourth order, respectively. In parti-
cular, the identity tensor of second order is denoted by I  and the identity 
tensor of fourth order is denoted byΙ . For vector and tensor components 
indices notation with respect to a rectangular Cartesian basis ie ( 3,2,1=i ) 
is used. Operations and symbols are defined as: iiba=ab , ijijbA eAb = , 

jijiba eeba ⊗=⊗ , jiij eeI ⊗= δ , lkjijlik eeee ⊗⊗⊗= δδI , 

lkjiklij BA eeeeBA ⊗⊗⊗=⊗ , jikjik BA eeAB ⊗= , iiA=AI : , and 

jiklijkl BA eeB ⊗=:A . Herein ikδ denotes the Kronecker delta and the 
summation convention over repeated indices is employed. A superimposed 
dot indicates a time derivatives, i.e. tdd AA =& , and the symbol [ ][ ]A  
denotes the jump of the field quantity A  at the discontinuity. 

2 Granular Hardness and Pressure Dependent Limit Void 
Ratios 

It is experimentally evident that for weathered rockfill materials the com-
pressibility is higher for a wet than for a dry material as illustrated in Fig. 
(2.1). For a pre-compressed material under dry conditions (path A-B) a 
following wetting leads to an additional settlement along the path B-C. For 
a continuing loading the load-displacement curve (path C-D) follows the 
curve A-D obtained for an initially wet material, i.e. the memory of the 
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material of the pre-compaction under dry conditions is swept out if the 
load-displacement curve obtained for the wet material (path A-D) starts 
from the same initial density. In this context it is important to note that for 
different initial densities the compression curves are different for both dry 
and wet states of the material [20]. 

 
 

Fig. 2.1. Compression behavior of weathered broken rock in dry and wet states 

 
In the following the compression behavior is first discussed for a dry 

granular material and modeled using a relation between the void ratio e  
and the mean pressure 3: TI−=p  where T  denotes the Cauchy stress 
tensor. The evaluation of numerous tests has shown that the compression 
behavior of various cohesionless materials can be approximated with the 
following exponential function [1]:  

⎥
⎥
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⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

n

sh
pee 3exp0 . (2.1) 

Herein the constant 0e  denotes the void ratio for 0≈p , sh  has the 
dimension of stress and n  is a dimensionless constant. The quantity of sh  
is called granular hardness [15] which is related to the grain aggregate 
under isotropic compression and different from the hardness of an 
individual grain. Experimental investigations show that the quantity of sh  
reflects the isotropic pressure where grain crushing becomes dominant. 
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More precisely, sh  represents the isotropic pressure p3 at which the 
compression curve in a semi-logarithmic representation shows the point of 
inflection while the exponent n  is related to the inclination of the 
corresponding tangent (Figure 2.2a). For high pressures the void ratio in 
Eq. (2.1) tends to zero, which can be explained by grain plastification and 
grain crushing. Relation (2.1) is consistent within a very wide pressure 
range with the exception of states ∞→p , which are characterized by a 
phase transition of the material.  
 

 
 

Fig. 2.2. (a) Isotropic compression relation (1) in a semi-logarithmic representa-
tion, (b) Pressure dependence of the maximum void ratio ie , minimum void ratio 

de  and critical void ratio ce  

 
For the evolution of the current void ratio e  the assumption is made that 

the volume change of the solid material can be neglected. To this end, the 
rate of the void ratio can be directly derived from the mass balance, which 
yields: 

( ) .:1 DIe e+=&  (2.2) 

Herein the rate of deformation D  is defined as the symmetric part of the 
velocity gradient of the grain skeleton. It can be noted that relation (2) is 
not restricted to granular materials with permanent rigid grains because the 
requirement of a constant solid volume is also fulfilled for a volume 
constant deformation of individual grains, grain crushing and abrasion. 
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Under the same pressure cohesionless granular materials can show 
differrent packing densities of the grain assembly so that the void ratio can 
range between a maximum void ratio ie  and a minimum void ratio de . In 
order to represent the range of possible void ratios for a given granular 
material it is convenient to consider the so-called phase diagram of grain 
skeletons [16] as sketched in Figure (2.2b). Herein the limit void ratios ie  
and de  are pressure dependent and they decrease with an increase of the 
mean pressure p . The upper bound, ie , can be related to an isotropic com-
pression starting from the loosest possible skeleton with grain contacts, i.e. 
there exists no homogeneous deformation which goes beyond iee = . 
Values of de  will be achieved by cyclic shearing with very low amplitudes 
and nearly fixed mean pressure. By contrast, large monotonic shearing 
leads to a stationary state, which is characterized by a constant stress and 
constant void ratio. The void ratio in such a limit state, which is called 
critical void ratio, ce , is not a material constant. Experimental observations 
with sand specimens (e.g. [8]) indicate that the critical void ratio decreases 
with the pressure p . It was suggested by Gudehus [15] to postulate that 
the maximum void ratio ie , the minimum void ratio de  and the critical 
void ratio ce  decrease with the mean pressure according to  

⎥
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e 3exp , (2.3) 

where ioe , doe , and coe  are the corresponding values for 0≈p as shown 
in Figure (2.2b).  

In order to model the influence of disintegration of a stressed rockfill by 
a reaction with water a degradation of the granular hardness with an 
increase of the moisture content ω  of the solid material is assumed in the 
following. To this end the constant granular hardness sh  in Eq.(2.3) is 
replaced by the moisture dependent quantity ∗

sh , i.e. [7] 

( )ωψsos hh =∗ . (2.4) 

Herein soh  is the value of the granular hardness obtained for the dry 
material, i.e. soh  is related to 1=ψ , and ( ) 1≤ωψ  denotes the 
disintegration factor depending on the moisture content ω  of the grain 
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material. A lower value of ∗
sh  means a higher compressibility of the 

material as illustrated in Fig. (2.3a). 
 

 
 

Fig. 2.3. Influence of the moisture content (solid curves: dry state, dashed curve: 
wet state) on (a) compression behavior, (b) limit void ratios 

 
A specific representation of the scalar function ( )ωψ  can be obtained by 

curve fitting experimental data. Due to the lack of experimental data for 
states with intermediary moisture contents, only a distinction between the 
granular hardness in the dry and the water-saturated state will be 
considered in the present paper. Then the disintegration factor ( )ωψ  can be 
obtained by comparing the compression behavior for the dry material with 
the water saturated material using the compression relation (2.3) for the 
maximum void ratio ie , i.e. ( ) 1=ωψ  for the dry state and the value 
obtained for the water-saturated state must be ( ) 1≤ωψ .  It is obvious that 
with a degradation of the granular hardness according to relation (2.4) the 
pressure dependent limit void ratios and the critical void ratio obtained 
from relation (2.3) are lower for ( ) 1≤ωψ  as illustrated in Fig. (2.3b). 



   E. Bauer, K. Kast, S. F. Tantono and W. Cen 

 

284 

3 Hypoplastic Model 

3.1 Inelastic Material Properties 

In hypoplasticity inelastic material properties are modeled with a constitu-
tive equation of the rate type where the objective stress rate 

o

T is expressed 
by an isotropic tensor-valued function consisting of the sum of the tensor 
function D:A , which is linear in the rate of deformation D , and the tensor 
function DDB : , which is nonlinear in D , i.e. 

DDBDT :: += A
o

 (3.1) 

Herein A  and B are tensor-valued functions of the fourth order and 
second order, respectively. In the simplest case A  and B  only depend on 
the current Cauchy stress tensor T , i.e.  )(TAA =  and )(TBB = , but for 
a refined modeling of the material behavior it may also depend on 
additional state quantities as outlined in the following sections. The 
constitutive equation (3.1) is positively homogeneous of the first order in 
D , thus the material behavior to be described is rate independent. With the 
nonlinearity in D  an inelastic material behavior is modeled in 
hypoplasticity with a single constitutive equation and there is no need to 
distinguish between elastic and plastic parts of the deformation explicitly 
[21]. Limit states are included in the constitutive equation for states in 
which 0≠D  and 0=

o

T . In particular for a vanishing stress rate 
o

T it 
follows from the constitutive equation (3.1) that T  and D  in the limit 
state satisfy the relation 

0:: =+ DDBDA . (3.2) 

The normalized rate of deformation, D̂ , can be obtained from Eq.(3.2) 
to: 

B
DD

DD :
:

ˆ 1−−== A . (3.3) 

Inserting Eq.(3.3) into the identity 1ˆ:ˆ =DD  leads to the stress limit 
condition [10]: 

01):(:):( =−−− BB 11 AA  (3.4) 

The set of all stresses which fulfill this condition can be represented by a 
surface in the stress space which is called limit stress surface, e.g. [35]. It 
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is worth noting that Eq.(3.4) first fulfills only the requirement for a 
vanishing stress rate and it is only related to critical stress states if the 
second requirement for a vanishing volume strain rate is also fulfilled, i.e. 

0):(:ˆ: == − BIDI 1A . (3.5) 

In order to model critical states for any deviatoric stress direction Eqs. 
(3.4) and (3.5) are necessary conditions for specific representations of A  
and B  as firstly discussed by Bauer [1] and von Wolffersdorff [30]. 
Furthermore in a stationary state the right-hand side of Eq. (3.3) must be 
homogeneous of degree zero in T , otherwise the critical stress ratio would 
not be invariant with regard to the stress level. 

3.2 Density, Pressure and Moisture Dependent Properties 

In order to take into account the influence of the density, the pressure and 
the disintegration of the granular hardness on the incremental stiffness the 
state quantities of the tensor functions A  and B  of the constitutive Eq. 
(3.1) are extended with the current void ratio e  and the moisture 
dependent granular hardness ∗

sh , i.e. )( Tp,,he, s
∗= AA  and 

),,,( TBB phe s
∗= . Herein the mean pressure is defined as 3: TI−=p . 

To specify these tensor functions a factorized representation is used in a 
way similar to those proposed by Gudehus [15] and Bauer [2]. In particular 
with  )ˆ(),,( TLA phef ss

∗=   and  )ˆ(),,(),,( TNB phefphef sdss
∗∗=   the 

extended constitutive equation can be written as: 

[ ]DDTNDTT :)ˆ(),,(:)ˆ(),,( phefphef sdss
∗∗ += L

o

 (3.6) 

In Eq. (10) the scalar factors sf  and df  are called stiffness factor and 

density factor, respectively. The fourth order tensor )ˆ(TL  and the second 
order tensor )ˆ(TN  are isotropic tensor-valued functions of the normalized 
stress tensor ):(ˆ TITT =  and the corresponding deviatoric part 

3ˆˆ * ITT −= . The requirements (3.4) and (3.5) for modeling critical states 
are satisfied for the following specific functions [5]: 

TTT ˆˆˆ)ˆ( 2 ⊗+= IL a , (3.7) 

( )*2 ˆˆˆ)ˆ( TTTN += a . (3.8) 
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b
i

s f
e
e

f
TT ˆ:ˆ

1β

⎟
⎠

⎞
⎜
⎝

⎛
= , (3.9) 

α

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=
dc

d
d ee

ee
f . (3.10) 

Herein â  is related to the stress limit condition in critical states as 
outlined later on and 5.0<α  and 1>β  are constitutive constants. In 
relations (3.9) and (3.10) the current void ratio e  is related to the 
maximum void ratio ie , the minimum void ratio de  and the critical void 
ratio ce . According to the relations (2.3) and (2.4) the quantities ie , de  and 

ce  decrease with the mean pressure p  and they are lower for a smaller 
granular hardness ∗

sh  (Fig. 2.3b). Factor sf  models the influence of the 
pressure, density and granular hardness on the incremental stiffness while 
factor df  triggers the dilatancy behavior and the peak friction angle. 
Under shearing a stress peak is defined for a vanishing stress rate and for 

1≠df . A closer inspection shows that for an initially dense material, i.e. 

cee <  and 1<df , the part DTN )ˆ(),,( phef sd
∗  in (3.6) decreases and a 

higher peak friction angle is obtained. As a consequence of dilatancy the 
void ratio increases after the peak and it tends towards the critical void 
ratio ce . Shearing of an initially loose material, i.e. cee >  and 
consequently 1>df , leads a densification towards the critical void ratio, 
but no stress peak appears. In a critical state, cee = , the value of the 
density factor 1=df  and it is independent of the initial void ratio, the 
pressure level and the granular hardness. It can be proved that for 
unlimited monotonic shearing a stationary stress state cT  and void ratio ce  
is reached asymptotically both for an initially dense and for an initially 
loose state [1]. By substituting the conditions for critical states, i.e. 

0=c
o

T , 0: == cDIec&   and  1=df , into the constitutive equation (3.6) 
the following relation for the stress limit condition in critical states is 
obtained [1,5]: 

0ˆ:ˆˆ =− *
c

*
c TTca . (3.11) 
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Fig. 3.1. (a) Critical stress surface in the space of principal stress component, (b) 
contour of the stress limit condition in the π -plane 

 
By substituting the identity 3ˆˆ ITT*

c −=  into (3.11) it is obvious that in 
the space of principal stress components the stress limit condition 
representts a conical surface with its apex at the origin of the stress space 
(Fig. 3.1a). The scalar câ  in (3.11) can be interpreted as the radius of the 
trace of the critical stress surface in the π -plane, i.e. câ  is equal to the 
Euclidean norm of the normalized stress deviator (Fig. 3.1b). Apparently 
the size and shape of the critical stress surface is fully determined by factor 
â  of the constitutive equation. By choosing suitable representations for â  
the reproduction of various conical limit surfaces is possible without loss 
of the general form of the constitutive equation (3.6) as outlined in detail 
by Bauer [5]. In the present paper the stress limit condition given by 
Matsuoka and Nakai [22] is considered, which can be modeled by factor â  
as: 

⎥⎦
⎤

⎢⎣
⎡ −

−
= ** ˆ:ˆ

sin3
sinˆ TTba

φ
φ ,  

with   
( ) ( ) ( ) ( )

( ) ( )θ
θ

3cosˆ:ˆ231

3cosˆ:ˆ23ˆ:ˆ338
21**

23****

TT

TTTT

+

+−
=b . 

(3.12) 

Herein φ  denotes the critical friction angle and θ  is the Lode-angle, 
which is defined as: 
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( ) .
]ˆ:[

ˆ:63cos
232*

3*

TI

TI
−=θ  (3.13) 

Since â  is embedded in the constitutive equation (3.6) it is always 
effective and only for cases where ** ˆˆ

cTT =  the value of â  obtained from 
Eq. (3.12) is equal to the limit condition given by Matsuoka and Nakai, i.e. 

**** ˆ:ˆˆ)ˆˆ(ˆ cccc aa TTTT === .  
In order to link Eq. (3.6) with Eq.(2.1) it was postulated by Gudehus [15] 

that the response of the constitutive equation (3.6) for an isotropic 
compression starting from the loosest state, i.e. ioee = , must coincide with 
the proposed compression law (2.1). This condition permits the direct 
determination of factor bf  in (3.9), yielding: 

n

si

i

i

s
b h

p
e

e
hn

h
f

−

∗

∗

⎟
⎟
⎠

⎞
⎜
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⎝

⎛+
=

1
31

, 

with   
( )

α

φ
φ

φ
φ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

−
−+

−
=

doco

doio
i ee

ee
h

sin3
sin221

sin3
sin8

2

2

. 

(3.14) 

It follows from relation (3.14) that the stiffness factor sf  in (3.9) is 
proportional to the moisture dependent granular hardness ∗

sh . Therefore 
the moisture content of the solid material is not only taken into account for 
the isotropic compression behavior and the pressure dependent limit void 
ratios in relation (2.3), it generally influences the incremental stiffness 
modeled by the constitutive equation (3.6).  

The present hypoplastic model for cohesionless granular materials 
includes 9 constants which can be determined from simple index and 
element tests [2, 18]. In particular soh  and n  can be determined from the 
compression behavior of the dry material, ψ  depends on the moisture con-
tent ω . The quantities φ  and coe  are related to the critical state in triaxial 
compression, α  and β  depend on the peak friction angle, and ioe  and doe  
are the limit void ratios for a nearly stress free state. Since the current void 
ratio e  is related to the pressure dependent limit void ratios by the 
functions sf  and df , the constitutive constants are not restricted to a 
certain initial density. In the present paper the calibration of the constants 
is based on the experiments carried out by Kast [20] with weathered 
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broken granite. The following values were obtained: 042=φ , 
MPa75=soh , 1=ψ  for dry states and 34.0=ψ  for the water saturated 

state of the solid material, 6.0=n ,  85.0=ioe , 39.0=coe , 2.0=doe , 
125.0=α  and 05.1=β . It should be noted that in the present model the 

critical friction angle φ  is assumed to be a constant because the experi-
ments used for the present calibration did not show a clear influence of the 
moisture content on the critical friction angle.  

3.3 Comparison of Numerical Simulations with Experiments 

The results obtained from the numerical simulation of homogeneous 
element tests are compared with experiments carried out by Kast [20] for 
isotropic compression (Fig. 3.2) and triaxial compression (Fig. 3.3 and Fig. 
3.4). Under isotropic compression starting from an initial void ratio of 

46.00 =e  the densification is significantly higher for the water-saturated 
state of the solid material (Fig. 3.2b) than for the dry state (Fig. 3.2a). 
 

 
 

Fig. 3.2. Isotropic compression starting from an initial void ratio of 
46.00 =e : (a) dry state ( 1=ψ ), (b) saturated state ( 34.0=ψ ) 

 
For a mean pressure of MPa8.0=p  the corresponding void ratios are 

418.0=e  for the dry material and 378.0=e  for the saturated solid 
material. These are the initial states for the triaxial compression under a 
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constant mean pressure of MPa8.0=p as shown in Fig.(3.3). As the 
initial void ratio is higher than the corresponding pressure dependent 
critical one, i.e. for 34.0MPa8.0 =→= cep  for the dry material and 

31.0=ce  for the saturated material, the triaxial compression leads to a 
further densification for both the dry material and the saturated material. 

 
 

 
 

Fig. 3.3. Triaxial compression under constant mean pressure starting from an 
initial void ratio of: (a) 418.00 =e  for the dry state ( 1=ψ ), (b) 387.00 =e  for 
the saturated state ( 34.0=ψ ) 

 
The increase of the mobilized friction angle mobφ  with the vertical strain 

22ε  is more pronounced for the dry material (Fig. 3.3a) than for the satu-
rated one (Fig. 3.3b), which is also in agreement with the experiments. In 
order to study the influence of an initially dense material the experiments 
for triaxial compression under a constant mean pressure of MPa8.0=p  
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starting from 29.0=e  for the dry material and 285.0=e  for the saturated 
solid material are compared with the prediction of the hypoplastic model in 
Fig.(3.4). 

A comparison of Fig. (3.3) with Fig. (3.4) shows that the volume-strain 
behavior is strongly influenced by the initial density and it differs for the 
dry and saturated states of the solid material. The additional densification 
is less pronounced and the maximum mobilized friction angle is higher for 
the initially dense material. A clear peak state for mobφ  can only be de-
tected for the dry and initially dense material (Fig. 3.4a). After the peak the 
value of mobφ  slightly decreases with advanced vertical compression and it 
is accompanied by dilatancy. For the saturated and initially dense state of 
the material the dilatancy is less pronounced. 
 

 
 

Fig. 3.4. Triaxial compression under constant mean pressure starting from an 
initial void ratio of: (a) 29.00 =e  for the dry state ( 1=ψ ), (b) 285.00 =e  for the 
saturated state ( 34.0=ψ ) 
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4 Shear Band Analysis or Plane Strain Compression 

In this section the possibility of a spontaneous shear band formation under 
plane strain compression at a constant lateral pressure is studied. Of parti-
cular interest is the influence of the density, pressure level and granular 
hardness on the lowest stress ratio and the inclination angle of the shear 
band at the onset of shear band formation. The present investigation is 
based on the general bifurcation theory [17, 25, 26, 29]. The bifurcation 
condition is derived in a way similar to the ones outlined for hypoplastic 
models in earlier publications (e.g. [3, 4, 9, 10, 11, 14, 31, 32, 36]). A 
comprehensive historical review of the individual contributions can be 
found for instance in Tamagnini et al. [27, 28]. 
 

 
 

Fig. 4.1. Orientation ϑ  of the shear band under plane strain compression 

 

In the following the possibility of a spontaneous formation of a shear 
band is studied for discrete states ( e , ∗

sh , T ) with respect to a fixed 
Cartesian co-ordinate system as sketched in Fig. (4.1). The shear plane or 
so-called discontinuity plane is characterized by a different velocity 
gradient v∇  on either side of this plane. The jump of the velocity gradient 
can be represented by the dyadic product of the unit normal n  of the 
discontinuity plane and a vector g  defining the discontinuity mode of the 
velocity gradient [4], i.e. 
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[ ][ ] 0≠⊗=∇ ngv . (4.1) 

The condition for a continuing equilibrium across the discontinuity 
requires the jump of the stress rate normal to the discontinuity plane to be 
zero [25]: 

0]][[ =nT& . (4.2) 

Herein the jump of the stress rate can be related to the jump of the 
Jaumann stress rate, i.e.  

]][[]][[]][[]][[ WTTWTT −+=
o

& . (4.3) 

where 
o

T  is the response of the hypoplastic model (3.6) and W  denotes 
the antisymmetric part of the velocity gradient. Inserting the Jaumann 
stress rate into Eq.(4.2) leads to the relation: 

[ ][ ]( ) [ ][ ] [ ][ ] 0: =−++ nWTnTWNnnD dss fff λL , 

with: 

[ ][ ]
2

gnngD ⊗+⊗
= ,       [ ][ ]

2
gnngW ⊗−⊗

= , 

]]:[[ DD=λ . 

(4.4) 

At the onset of a shear band bifurcation the quantities sf , df , L  and 
N of Eq.(3.6) are the same on either side of the discontinuity plane and 
they are independent of the velocity gradient. It is a peculiarity in 
hypoplasticity that the possibility of different incremental stiffnesses due 
to a different velocity gradient on either side of the discontinuity is taken 
into account by the single relation (4.4) and there is no need to distinguish 
whether the material outside the shear band undergoes loading or 
unloading (e.g. [3, 9, 31]). Relation (4.4) can be rewritten as rgK λ= or: 

rKg 1−= λ , (4.5) 

with: 

21 bbK
2
1

+= sf ,                    

( ) ( )( )TnnTnnIb1
ˆˆ

2
1ˆ 2 ⊗+⊗+= a , 

( )( ) ( ) ( )nnTTTnnITnnb2 ⊗+−⊗−=  

(4.6) 
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and  

( )nTTr *ˆˆˆ +−= aff ds . (4.7) 

Inserting relation (4.5) for g  into the norm of [ ][ ]D , i.e. 

[ ][ ] [ ][ ] γ=
+

=
2

)()(
:

2nggg
DD  (4.8) 

leads to the bifurcation condition: 

( ) ( )( ) ( )[ ] 0
2

2
=−+=

−−−

λ
γθ nrKrKrK 111

f . (4.9) 

The components of the unit normal n  of the discontinuity plane are 
related to the unknown shear band inclination angle ϑ , i.e. 

[ ]sin , cos , 0 Tϑ ϑ= −n  with respect to the co-ordinate system in Fig. (4.1). 

K  and r  depend on the current state quantities: e , ∗
sh , and T . In order to 

find the lowest possible bifurcation stress ratio the value of λγ  can be 
set equal to 1 as discussed for instance by Wu et al. [32] and Bauer [4]. 
Thus, relation (4.9) represents an equation for the unknown ϑ , whereby 
only real solutions to (4.9) indicate the possibility of a shear band 
bifurcation. 

For a homogeneous plane strain compression under a constant lateral 
stress of MPa8.011 −=T  the results are shown for an initial loose material 
(Fig. 4.2a) and an initially dense material (Fig. 4.2b) for both dry state 
( 1=ψ ) and water saturated state ( 34.0=ψ ) of the solid material. In all 
the tests an initially isotropic stress state was assumed. The stress-strain 
curves and volume-strain curves show a strong influence of the initial void 
ratio and they are different for the dry and the water saturated material. In 
particular the incremental stiffness at the beginning of compression is 
higher for an initially dense material and a dry state. The densification is 
more pronounced in the case of an initially looser material and for 
saturated states. Dilatancy can only be detected for the initially dense and 
dry material. 

Starting from the isotropic state the bifurcation criterion (4.9) was 
examined for the individual stress paths. In Fig. (4.2) the first possibility 
where a shear band can appear is marked with a dot. Therefore the bold 
part of the curves denotes states in which a spontaneous shear band 
bifurcation is not possible. But states above the first bifurcation point 
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(dotted curves) again fulfill criterion (4.9) also for λγ >  as discussed in 
detail for an inherently isotropic material by Bauer [4]. It can clearly be 
seen that the smallest stress ratio for a possible shear band bifurcation 
occurs before the peak state. The stress ratio is lower for the initially 
higher void ratio and for the saturated state of the material. But for the 
same initial density the difference of the predicted stress ratio for the dry 
state and the saturated state of the material is not very pronounced. The 
shear band inclination ϑ  is higher for the initially denser material and the 
dry state. 
 

 
 

Fig. 4.2. Onset of shear band bifurcation under plane strain compression starting 
from an initial void ratio of: (a) 418.00 =e  for the dry state ( 1=ψ ), 387.00 =e  
for the saturated state ( 34.0=ψ ), (b) 29.00 =e  for the dry state ( 1=ψ ), 

285.00 =e  for the saturated state ( 34.0=ψ )  
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5 Conclusions 

A hypoplastic continuum model is presented to describe the essential 
properties of weathered rockfill materials. In particular an increase of the 
compressibility and a decrease of the limit void ratios with an increase of 
the moisture content of the solid material is modeled in a simplified 
manner using only a moisture dependent granular hardness. The 
constitutive equation for the evolution of the stress is based on nonlinear 
tensor-valued functions depending on the current void ratio, the stress, a 
moisture dependent granular hardness and the rate of deformation. As the 
hypoplastic concept does not need to distinguish between elastic and 
plastic deformation the calibration of the constitutive constants is rather 
easy. The calibration is carried out based on experiments for a weathered 
broken granite. It is demonstrated in this paper that the mechanical 
behavior of an initially loose and dense material can be captured with a 
single set of constants. The comparison of the numerical simulations of 
isotropic compression and triaxial compression with experiments shows 
that the model captures the essential properties of weathered rockfill 
materials for both dry and water saturated grains. For a homogeneous 
plane strain compression under a constant lateral stress the possibility of 
spontaneous shear band bifurcation is analyzed for different initial states. It 
can be concluded that the lowest possible bifurcation stress ratio occurs 
before the peak and the stress ratio and shear band inclination is higher for 
dry and an initially dense state of the material.   
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Summary 

We consider a mechanism of macroscopic crack growth and failure in rock 
and rock mass in compression based on three-dimensional patterns of 
stress non-uniformity associated with generation of multitudes of wing 
cracks. In 3D each wing crack has a limiting ability to grow and hence 
cannot produce sample failure on its own. Neither the crack coalescence 
can form 3D patterns that can evolve into a macroscopic crack. Instead 
opening and shearing of the wing cracks produce additional stress 
disturbance. The combined effect of the stress disturbances from all wing 
cracks results in a non-uniform stress field spatially varying in a random 
fashion. The main feature of such a field is that any plane running through 
the sample can potentially have parts subjected to tensile stress alongside 
with the parts under compression (the average stress equal to the applied 
external load acting on this plane). As the load increases, these stress 
variations become stronger and, eventually, produce a macroscopic tensile 
crack at the place where the tension was maximal. Further growth of the 
macrocrack proceeds by initiating new segments, offset from the main 
crack plane in order to avoid the places under compression. This 
apparently en-echelon fracture is formed through a specific mechanism of 
tensile crack growth rather than coalescence. The macroscopic crack is 
inclined to the direction of axial compression at the angle maximising the 
average magnitude of the tensile parts of the stress field. This angle depend 
upon the ratio between total normal opening (dilatancy) and shear of the 
wing cracks, which in its own term depends upon the material micro-
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structure and the confining pressure. When this ratio is above a certain 
threshold, the macrocrack will be parallel to the direction of axial 
compression producing splitting. When the ratio is below the threshold, the 
macrocrack will be inclined and look like shear fracture.  

1 Introduction 

Failure in compression of heterogeneous materials such as rocks and, at 
large scales the Earth’s crust, is characterised by two major modes (see 
Germanovich et al. 1994 and the literature cited there): (1) splitting or 
columnar failure, predominantly observed in uniaxial compression; (2) 
shear or oblique failure observed in triaxial compression and, often in 
uniaxial compression. In the latter case the sample is broken by what 
appears as shear cracks. 

The most popular approach to describe shear failure is to use the Mohr-
Coulomb theory or its various modifications, which adequately represent 
experimental data related to the oblique failure. In this theory, as well 
known, the direction of the future fracture is determined as the one at 
which the shear stress reaches the friction stress at the least load magnitude 
the latter being referred to as the compressive strength. The drawbacks of 
this theory are also well known. Firstly, it has a contradiction in itself since 
it is based on friction properties of a not yet existing interface. This 
immediately turns the Mohr-Coulomb criterion into an empirical one in 
which the friction parameters are treated as internal material parameters to 
be back calculated from the results of compressive tests. Subsequently, the 
application of the criterion becomes limited to the cases allowing direct 
testing, which often excludes in-situ characterisation since direct transfer 
of laboratory data to large-scale situations is precluded by the scale effect. 
The second drawback is the inability of the Mohr-Coulomb theory to 
explain the splitting. In view of these drawbacks a considerable effort was 
devoted to developing micromechanical models of failure. 

The majority of models developed to explain splitting are based on the 
concept of wing crack – the crack generated by a local stress concentrator 
(a pre-existing shear crack or pore or a certain type of grain contact) 
assuming that the wing crack can grow extensively at least under uniaxial 
compression as observed in 2D experiments (e.g., Brace and Bombolakis 
1986, Horii and Nemat-Nasser 1986). The failure is attributed either to the 
growth of one of the wing cracks throughout the whole sample or to 
unstable crack growth caused by interaction between the cracks (e.g., 
Ashby and Hallam 1986, Germanovich and Dyskin 1988, Kemeny 1991). 
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These 2D models fail however to recognise the fact that the real three 
dimensional wing cracks have an intrinsic limitation to the growth 
preventing the wing elongation beyond the size of the initial shear crack 
even in the most favourable case of uniaxial compression, Fig. 1.1. 

 

2D wing crack 3D wing crack

(a) (b)
 

 

Fig. 1.1. Wing crack growth in uniaxial compression: (a) 2D wing crack growth. 
The wings are capable of extensive growth and can reach lengths macroscopic as 
compared to the length of the initial crack; (b) 3D wing crack growth. The wings 
have intrinsic limitations to their growth. Their maximum dimensions are 
comparable with the size of the initial crack, Dyskin et al. (2003). 

 
 
Modelling of shear failure in compression, that takes into account the 

fact that the shear cracks do not propagate in their own plane, but rather 
kink, is based on considering various mechanisms of wing crack 
coalescence (e.g., Wittmann 1981, Stavrogin and Tarasov 2001) or en-
echelon formation (e.g., Horii and Nemat-Nasser 1986, Schulson 1990, 
Reches and Lockner 1994). A typical model of en-echelon crack is shown 
in Fig. 1.2a. The main feature of models of this kind is that they are two-
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dimensional. As soon as one returns to a real 3D situation the picture 
becomes complicated. Indeed, a direct three-dimensional analogue of the 
en-echelon model is an arrangement sketched in Fig. 1.2b. Two conditions 
should be satisfied to make such an arrangement possible. Firstly, all wing 
cracks or the corresponding parts of the wings participating in the 
formation of the en-echelon crack should be more or less parallel to each 
other. Secondly, since the wings are more or less equiaxial, the ones 
forming the en-echelon crack should have suitable spatial arrangement.  

In order to make the idea of en-echelon crack formation viable, it is 
therefore necessary to identify the mechanism(s) ensuring these arrange-
ments. If one hypothesises that the cracks forming en-echelon constitute 
only a portion of all cracks then, inevitably, extremely high concentrations 
of such cracks should be assumed. In particular, given that the dimensions 
of the wing cracks in rocks are often of the order of the grain size, the first 
of the above conditions demands that the grains happened to be in the 
place of future en-echelon crack be already separated from the rest of the 
rock volume. Indeed, while the wings separate the grain from the sides, the 
initial crack that initiated the wings separates the grain from above or 
below (the compression direction being vertical). This obviously 
contradicts the experimental observations according to which the 
formation of macroscopic shear fracture does not yet lead to full rock 
separation. 

The above consideration suggests that the cracks forming en-echelon 
were not there initially, but rather were formed in the process of 
propagation of the macrocrack.  

Direct finite element simulations of failure in heterogeneous materials 
are based on specifying failure criteria for each finite element (e.g., Zou et 
al. 1996). In essence, these criteria are usually chosen similar to the ones 
deduced from the tests on macroscopic samples. Therefore, the question of 
the failure criterion is simply shifted from macroscopic to microscopic 
scale without actually producing the relevant failure mechanism. Models 
treating the shear cracks as planes of strain localisation (e.g., Rudnicki and 
Rice 1975) face the same problem: the material behaviour at the micro 
level should resemble the macroscopic behaviour the model is set to 
explain. To complicate the matter further, the direct numerical simulations 
suffer from mesh-dependence which renders the simulations unusable. 

Dyskin (1999) noticed that the wing cracks create considerable stress 
non-uniformity (spatial stress fluctuations) with the material in some 
places subjected to tensile stresses and therefore capable of generating 
tensile cracks. Based on this idea a 3D model of splitting crack formation 
and propagation was proposed. In this paper we extend this idea to model 
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the formation and propagation of inclined tensile cracks which produce 
oblique (shear-like) failure. 

 

2D en-echelon 3D analogue?

(a) (b)
 

 

Fig. 1.2. ‘En-echelon’ crack: (a) 2D en-echelon crack as depictured following 
cross-section observations in rock samples or the Earth’s crust; (b) a schematics of 
possible 3D analogue of en-echelon crack. It is assumed that the vertical fractures 
being parts of wing cracks are approximately equiaxial, as shown in Fig. 1.1. The 
broken line shaded area signifies a cross-section of observation, while two 
inclined broken lines indicate the position of traces of the en-echelon crack in the 
cross-section. 

2 Mechanism of Crack Propagation in Non-Uniform Stress 
Fields 

The stress field generated by wing cracks as well as other heterogeneities 
is non-uniform and random owing to their random locations, orientations, 
shapes and dimensions. In the parts of the sample where the stress 
variations become tensile new cracks can be generated and grown to 
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macrocracks, Dyskin (1999). Fig. 2.1 explains a possible mechanism of 
tensile macrocrack formation and propagation. Fig. 2.1a shows a possible 
realisation of random field of a normal stress component σ33; the stress 
increasing from dark to white, such that the dark areas correspond to 
compression, while the white areas correspond to tension. For the 
illustration purpose, only a section parallel to the (x2, x3) plane is shown. 
Obviously, the first crack (crack 1) is generated at the area with the 
maximum tensile stress. This crack will propagate until it is arrested in the 
areas subjected to compression. As the applied load increases, so does the 
amplitude of the stress variations. Further propagation of crack 1 will 
however be prevented by similarly increased compression; instead a new 
crack (crack 2) will be generated where the original stress distribution 
showed no compression. This will result in a discontinuous offset-type 
trajectory of crack growth, which in the real 3D case will look like the one 
shown in Fig. 2.1b. Essentially, the crack segments will be situated at 
places where no compressive stresses acted. On average, the magnitude of 
these stresses is equal to the mathematical expectation of positive (tensile) 
values 

( ) σσσ=σ ∫+ df )(0,max  (2.1) 

where σ denotes the relevant stress component, f(σ) is the probability 
density function. 
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Direction of macrocrack growth
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(a)

(c)

(b)
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x3
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Fig. 2.1. Macroscopic crack formation and growth under spatially random stress 
field: (a) a realisation of the random stress field σ33; the maximum compression is 
shown in black, the tension - in white. The first crack segment (crack 1) appears at 
the place of maximum tension. Crack 2 is then generated at the closest place 
where the compressive stress is minimal (whitish spot), then other segments 
(cracks 3 and 4) are generated in the same fashion; (b) a 3D structure of the 
compound (en-echelon) macrocrack; (c) the macrocrack is modelled as a crack (a 
cross-section is shown) with Winkler layer of stiffness k that depends upon the 
size and the density of the segment cracks 

 
 

We will model such a complex compound (en-echelon) crack, macrosco-
pically, as a planar crack with Winkler layer, i.e. we will assume that 
opening of the crack is resisted by linear links between the faces, Fig. 2.1c. 
These linear links model the action of intact material between the crack 
segments. The Winkler layer is characterised by stiffness k that locally 
relate the mutual normal displacement of the crack faces v∆ and the 
normal stress σ , vk∆=σ , the stiffness k being dependent upon the crack 
segment sizes and concentration. We will also assume that the faces of the 
macroscopic crack are subjected to a uniform load σ+ associated with the 
action of stress fluctuations. We assume further that the macro-crack is 
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disk-like of a radius R. We will characterise the conditions of its growth 
using the macroscopic scale, where we can employ the conventional 
criterion of crack propagation IcI KK = . Here IcK is the macroscopic 
fracture toughness which characterise the conditions of creation of the new 
crack segments. 

Since the macrocrack is much larger than the characteristic size of the 
Winkler layer, kE , where E is the Young’s modulus of the rock, the 
stress intensity factor has the following form, Shifrin (1988)  

( )21 ν−π
σ= + k

EKI  (2.2) 

One can see that the stress intensity factor is independent of the 
macrocrack size, i.e. the macrocrack can support its own growth without 
an increase in the load. 

A remark should be made with respect to the concept introduced. 
Macroscopically, the considered crack grows as an open tensile crack. 
However, it is also subjected to shear stress. The corresponding shear 
component of the relative displacement of the crack faces creates tensile 
stresses on one side of the macrocrack contour and compressive on the 
other. In the process of the macrocrack growth the tensile stress 
concentration leads to the appearance of small tensile cracks 
approximately oriented in the vertical direction and predominantly located 
on one side of the macrocrack, Fig. 2.2. It is these cracks that create 
impression of en-echelon nature of the macrocrack. It has also been 
observed on sample cross-sections by Moore and Lockner (1995) that 
these vertical cracks are biased to one side of the macrocrack. 

We shall now introduce a method for estimating the fluctuation-induced 
stress σ+. Suppose the random stress is Gaussian with the uniform 
mathematical expectation, σav and standard deviation, Σ. Then direct 
calculations give: 

( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

π
+⎥⎦

⎤
⎢⎣
⎡ ξ−Φ−ξΣ=σ

ξ
−

+
2

2

2
1

2
1 e

∫
−

π
=Φ

Σ
σ

=ξ
x

x
av dxex

0
2

2

2
1)(,  

(2.3) 

Therefore, in order to determine the fluctuation-induced stress one needs 
to know the statistical properties of the Gaussian stress fluctuations. These 
will be determined in the following section. 

 



  A. V. Dyskin and E. Pasternak   309 
 

 

Direction of macrocrack growth

Direction of macrocrack growth
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vertical cracks

 
 

Fig. 2.2. Formation of secondary tensile cracks in the process of macrocrack 
growth. These secondary cracks may be responsible for the en-echelon 
appearance. 

3 Statistical Properties of Non-Uniform Stress Field Created by 
Many Wing Cracks 

In order to quantify the mechanism by which this field produces and drives 
macrocracks we need to determine the mathematical expectation and 
variance of this field.  

Suppose that the rock volume is loaded such that in a similar homo-
geneous volume a uniform stress field σik

0 (i,k=1,2,3) would be produced. 
In the case of compression of magnitude p in x3 direction (see the co-
ordinate frame on Fig. 3.1) and confining pressure of magnitude q in the 
normal directions 

0,, 0
21

0
13

0
12

0
33

0
22

0
11 ===−=−== σσσσσσ pq  (3.1) 
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The actual stress field σik is of course different from the uniform one, 
predominantly owing to the effect of wing cracks with some contribution 
from other heterogeneities. Nevertheless its volumetric average over the 
whole sample, ijσ , is equal to 0

ijσ . Indeed, suppose a volume V is 

loaded at its external surface S by tractions jij n0σ , where in  is the external 
normal vector to S, while its internal surfaces (e.g., pores or cracks) are 
free from external load (only contact forces can act there). We will also 
neglect the body forces. 

We use the following identity which is based on the divergence theorem 

( ) ( )( ) ( ) ( )∫∫∫∫ δσ+σ=σ=σ
V

jkik
V

jkik
V

kjik
S

kjik dVdVxdVxdSnx xxx xxxx ,,
0

 
(3.2) 

The first integral in the right-hand part is equal to zero because of the 
equations of equilibrium with zero body forces. Because the actual and 
uniform stress fields corresponds to the same tractions at S, one obtains 

( ) ( )

( ) 000

0

0

1

11

ijij
S

kjik

S
kjik

V
ijij

dSnx
V

dSnx
V

dV
V

σ=σ=σ=

σ=σ=σ

∫

∫∫

x

xx x

 
 

(3.3) 

Furthermore, assuming ergodicity, the mathematical expectation of this 
random stress field can be found 

0
ikikik σσσ ==  (3.4) 

In order to estimate the variance of the stress field generated by the wing 
cracks we model each crack by a dislocation loop, Fig. 3.1, with the shear 
component of the Burgers vector, bt, directed parallel to the axial load and 
the normal component, bn, directed perpendicular to the axial load. The 
shear component reflects the contribution of the wing crack to the non-
linear part of axial strain, while the normal component reflects the wing 
crack contribution to dilatancy. As further simplification, in order to 
account for the collective effect of the wing cracks while neglecting the 
peculiarities of the shape of each crack, we replace the dislocation loops 
with point defects. It will be done by limiting transition of the loop area, A, 
to zero keeping the corresponding volumes, Ut=btA, Un=bnA, constant.  
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Fig. 3.1. Wing crack evolved form an initial inclined shear crack (left) and its 
model as a dislocation loop (right) with Burgers vector (bt,bn). 

 
We represent, following Landau and Lifshitz (1959), the dislocation loop 

through equivalent body forces 

( )[ ] klmmliklmi bnbnf ,2
1 )(ζδ+λ= , (3.5) 

where nm and bm are the components of unit normal vector to the loop and 
the Burgers vector respectively, )(ζδ  is the delta-function of coordinate 
ζ along the normal vector, )(,k  denotes differentiation with respect to kx  

(summation is presumed over repeated indexes) and iklmλ  is the tensor of 
elastic moduli. For isotropic rock with the Young’s modulus E and 
Poisson’s ratio ν it has the form: 

( ) ⎥⎦
⎤

⎢⎣
⎡ δδ

ν−
ν

+δδ+δδ
ν+

=λ lmikklimkmiliklm
E

212
1

1
 (3.6) 

We now represent the crack as a point defect located at a point 
M,,1, K=µµx , where M is the number of wing cracks in the rock 

volume and take into account that in this representation the Burgers 
vectors are constant 

3itini UnUb δ+= . (3.7) 

Here we considered that the normal vector, according to Fig. 3.1 is 
always perpendicular to the 3x  axis. As a result, we come up with the 
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following expression for the body forces through the volumes of crack 
opening/shear 

( ) klmmliklmi bnbnf ,2
1 )( µ−δ+λ= xx  (3.8) 

Now, using identity (3.2) and the equilibrium equations  

0, =+σ jiij f , (3.9) 

with the body forces (3.8) one can express the volumetric average of the 
stress field generated by these point defects, which is the average stress 
field outside the wing cracks. It reads 
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 (3.10) 

where σik
0 is the applied load, V is the rock volume, M is the number of 

wing cracks in the volume (this number can grow as loading progresses), 
the superscript index µ refers to a particular wing crack. It is important to 
distinguish between this stress field which essentially represents the 
stresses generated at a distance from the wing cracks (since this 
approximation relates to the scale from which the wing cracks are seen as 
point defects) with the full stress field (that includes stresses in immediate 
neighbourhoods of the wing cracks) which volumetric average is given by 
equation (3.4).  

Direct computations of the correlation function for the stress fields in the 
point defect approximation, Dyskin (1999), suggested that the correlation 
length is of the order of the wing crack size. Based on this observation, we 
break the sample volume V into M parts Vλ, λ=1,..,M such that the 
averages over Vλ,  <σik>λ are approximately independent from each other. 
Then from the ergodicity, the variance Var(<σik>λ) can be expressed 
through the variance of the full volumetric average, Var(<σik>). We 
assume that the latter is adequately represented by the variance of (3.10). 
For wing cracks uniformly oriented in the (x1, x2) plane, assuming that the 
average values of shear ‘volume’ Ut and volume of opening of wing cracks 
Un are independent, one obtains  

( ) ( )[ ]

( ) ( )ν+
=κ

ν+
=

δδ−δ+δ+δδ−κ=σ
λ

12
,

12

21
2 333333

2
2

nt

kikikiik

NEUtNEUt

tVar
 (3.11) 
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where N is the number of wing cracks per unit volume, κ has the meaning 
of the ratio between dilatancy and inelastic part of the axial strain. 

4 A Mechanism of Splitting and Oblique Failure in Compression 

Consider a plane inclined at an angle ψ to the x3 axis and determine the 
average tensile stress σ+ acting on that plane. Substituting (3.1), (3.11) into 
(2.3) one obtains 

( ) ( )

( )
ψ+κ

ψ+
−=ξ

⎥⎦
⎤

⎢⎣
⎡ ξ−Φ−ψ+ψ−ψ+κψ

π
=σ
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−

+

22

2

222222

tan2

tan2
2
1cossintan2cos

2
1

2

2

t

pq

qpet

 

(4.1) 

Fig. 4.1 shows stress (4.1) for t=p and for different q and κ. It is seen that 
for κ=1 stress σ+ reaches maximum at ψ=0, which corresponds to splitting. 
Small values of κ lead to oblique failure. Since for q>0 mainly oblique 
failure is observed, κ should be small as compared to tan(ψ).  
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Fig. 4.1. Dependence of average tensile stress acting on a plane vs. the angle of its 
inclination for various values of the lateral compression q 
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For uniaxial compression the critical value of κ has the form 

122
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2

+
π

+
π

−=κ
t
p

t
p

cr
 (4.2) 

Subsequently, crκ>κ corresponds to splitting, while crκ<κ  corre-
sponds to oblique or ‘shear’ failure. 

We now assume that the opening of the wing cracks is mainly controlled 
by sliding of their shear part and for that reason the average opening is 
proportional to the deviatoric stress acting on them such that 

)( qpt −η= , where η is a factor. We also assume that the macrocrack 
start propagating when the positive component of stress fluctuations acting 
in its plane reaches a certain critical value: crσ=σ+ . For the case of low 
values of κ, such that ψ≈ψ+κ tan2tan2 22 , we can rearrange expression 
(4.1) in the following way: 

( ) ( ) ϕψ+ψ+=ψψ− tancossincossin 22 qpcqp  (4.3) 

where 

( ) 22

22

2
2
1tan,

2 ξξ

η
σπ

⎥⎦
⎤

⎢⎣
⎡ ξ−Φ−=ϕ

η
σπ

= eec crcr  (4.4) 

This is an expression similar to Coulomb-Mohr criterion. In general its 
parameters are not independent of p and q. If, in addition, t>>p the 
Coulomb-Mohr parameters will change little and can be considered 
independent of the loads p and q. 

The values of parameters depend upon the factors associated with the 
wing cracks, their sizes and distributions. However, the mechanism itself is 
scale-independent.  

5 Conclusions 

It is demonstrated that the random stress non-uniformity created by the 
multitude of wing cracks is sufficient to induce tensile cracks and then 
make them grow as a macroscopic tensile fracture. Its structure – a set of 
crack-segments as well as vertical cracks induced by shear stresses in the 
process of its growth create an appearance of en-echelon fracture. The 
macroscopic fracture is inclined to the direction of axial compression at the 
angle maximising the average magnitude of the tensile parts of the stress 
field. This angle depends upon the ratio between total normal opening 
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(dilatancy) and shear of the wing cracks. When this ratio is above a certain 
threshold, the macrocrack will be parallel to the direction of axial 
compression producing splitting. When the ratio is below the threshold, the 
macrocrack will be inclined and look like shear fracture. 
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Summary 

The paper presents results of numerical simulations of the behaviour of 
quasi-brittle materials (like concrete) under plane strain conditions. Two 
boundary value problems with a dominating failure mode I were 
simulated: uniaxial tension and a three-point bending test for concrete 
beams with a different size. To model the material behaviour, two different 
continuum approaches were used: elasto-plastic and an isotropic damage 
constitutive model with non-local softening. Attention was focused of the 
effect of a characteristic length on the width of strain localization and load-
displacement curve, and an identification of a characteristic length on the 
basis of the load-displacement curves only from size effect tests. 

1 Introduction 

The analysis of concrete elements is complex due to occurrence of strain 
localization which is a fundamental phenomenon under both quasi-static 
and dynamic conditions [5], [9], [17], [48], [50]. It can occur in the form of 
cracks (if cohesive properties are dominant) or shear zones (if frictional 
properties prevail). The determination of the width and spacing of strain 
localization is crucial to evaluate the material strength at peak and in the 
post-peak regime. The concrete behaviour can be modeled within 
continuum mechanics models using, e.g.: non-linear elasticity [34], 
fracture [4], [24], endochronic theory [3], [8], micro-plane theory [7], [27], 
plasticity [11], [33], [38], [48], damage theory [11], [16], [20], [37] and 
coupled plastic-damage approach [14], [26], [32], [42], and discrete 
models using a lattice approach [23], [30], [43], [49] and DEM [18], [19], 
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[41]. To describe properly strain localization within continuum mechanics, 
the models should be enhanced by a characteristic length of micro-
structure [13]. There are several approaches within continuum mechanics 
to include a characteristic length and to preserve the well-posedness of the 
underlying incremental boundary value problem in engineering materials 
as: second-gradient [17], [35], [36], [37], non-local [2], [10], [16], [39] and 
viscous ones [13], [45]. Owing to them, objective and properly convergent 
numerical solutions for localized deformation (mesh-insensitive load-
displacement diagram and mesh-insensitive deformation pattern) are 
achieved. Otherwise, FE-results are completely controlled by the size and 
orientation of the mesh and thus produce unreliable results, i.e. strain 
localization becomes narrower upon mesh refinement (element size 
becomes the characteristic length) and computed force-displacement 
curves change considerably depending on the width of the calculated 
localization. In addition, a premature divergence of incremental FE-
calculations is often met. 

The aim of the present paper is to compare the FE-results of the width of 
strain localization in concrete elements (characterized by a failure mode I) 
during uniaxial tension and three-point bending using two different 
continuum models enhanced by an internal length of microstructure: 
isotropic elasto-plastic model and isotropic damage model both with non-
local softening. The FE-results with respect to the load-displacement 
curves were compared to some laboratory experiments and the size effect 
law by Bazant [5]. Attention was focused of the effect of a characteristic 
length on the width of strain localization and load-displacement curve, and 
an identification of a characteristic length on the basis of the measured 
load-displacement curves only. 

2  Constitutive Models for Concrete 

2.1  Elasto-Plastic Model 

An elasto-plastic model with isotropic hardening and softening using two 
yield conditions was assumed. In a compression regime, a Drucker-Prager 
criterion was defined as [1]  

( )1 1
1tan 1 tan ,
3 cf q p ϕ ϕ σ κ⎛ ⎞= + − −⎜ ⎟

⎝ ⎠
 (2.1) 
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where q – von Mises equivalent stress, p – mean stress, ϕ  – the internal 
friction angle, σc – uniaxial compression yield stress and κ1 – hardening 
(softening) parameter equal to plastic vertical strain in uniaxial 
compression p

11ε . The invariants p and q were defined as  

1 3        and        , 
3 2kk ij jip q s sσ= =  (2.2) 

where σij is the stress tensor and sij stands for the deviatoric stress tensor. 
The flow potential function was taken as 

1 tan ,g q p ψ= +  (2.3) 

where ψ is the dilatancy angle. In a tensile regime, a Rankine criterion was 
assumed with the yield function  

{ } ( )2 1 2 3 2max , , ,tf σ σ σ σ κ= −  (2.4) 

where σ1, σ2 and σ3 – principal stresses, σt – the tensile yield stress and κ2 – 
softening parameter (equal to the maximum principal plastic strain p

1ε ). 
The associated flow rule was assumed. 

2.2 Damage Model 

An isotropic damage continuum model describes the degradation of the 
material due to micro-cracking with the aid of a single scalar damage 
parameter D growing from zero (undamaged state) to one (completely 
damaged state). The stress-strain function is represented by the following 
relationship 

( )1 ,
ijkl

e
ij klD Cσ ε= −  (2.5) 

where e
ijklC  – linear elastic material stiffness matrix and εkl – strain tensor. 

The damage parameter D acts as a stiffness reduction factor (the Poisson 
ratio ν is not affected by damage). The growth of the damage variable is 
controlled by a damage threshold parameter κ which is defined as a 
maximum of the equivalent strain measure ε~  reached during the load 
history up to time t. The loading function of damage is 

( ) { }0, max ,f ε κ ε κ κ= −% %  (2.6) 
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where κ0 – initial value of κ when damage begins . If the loading function f 
is negative, damage does not develop. During monotonic loading, the 
parameter κ grows (it coincides with ε~ ) and during unloading and 
reloading it remains constant. To define the equivalent strain measure ε~ , 
two different criteria were assumed: a) a von Mises failre criterion in terms 
of strains [37] and b) Rankine failure type criterion [28]. In the first case ε~  
was [37] 

( )
( )

( ) ( )

2
2

1 1 22 2

11 1 12 ,
2 1 2 2 1 2 1

kk kI I J
k k

ε
ν ν ν

−−
= + +

− − +
%  (2.7) 

where ν is the Poisson’s ratio, and I1 and J2 are the first invariant of the 
strain tensor and the second invariant of the deviatoric strain tensor, 
respectively:  

2
1 11 22 33 2 1

1 1        and          ,
2 6ij ijI J Iε ε ε ε ε= + + = −  (2.8) 

The parameter k in Eq.2.7 denotes the ratio between the compressive and 
tensile strength of the material. In the second case, the equivalent strain 
measure ε~  was [28] 

{ }1 max ,eff
iE

ε σ=%  (2.9) 

where E denotes the Young modulus and eff
iσ  are the principal values of 

the effective stress eff
ijσ  

eff e
ij ijkl klCσ ε=  (2.10) 

To describe the evolution of the damage parameter D, an exponential 
softening law was used [37] 

( )( )0

0

1 1 ,D e β κ κκ α α
κ

− −= − − +  (2.11) 

where α and β are the material parameters. 
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3  Non-Local Approach 

To describe strain localization, to preserve the well-posedness of the 
boundary value problem and to obtain mesh-independent FE-results, a 
non-local theory was used as a regularization technique [6], [39]. Usually, 
it is sufficient to treat non-locally only variable controlling material 
softening [15], [39] (whereas stresses and strains remain local). It was 
assumed in elasto-plasticity that the softening parameter κ was non-local  

( ) ( ) ( )1 ,k kx r x r dV
A

κ ω κ
−

= +∫  (3.1) 

where kx  – coordinates of the considered (actual) point, r - distance 
measured from the point kx  to other material points, ω – weighting 
function and A – weighted volume. As a weighting function ω, the Gauss 
distribution function for 2D problems was used 

( )
2

1 ,c

r
l

c

r e
l

ω
π

⎛ ⎞
−⎜ ⎟

⎝ ⎠=  (3.2) 

where lc denotes  a characteristic (internal) length connected to 
microstructure of the material. The averaging in Eqs.3.1 and 3.2 is 
restricted to a small representative area around each material point. The 
influence of the points at the distance of r=3l is only about 0.1%. The 
softening rates dκi were assumed according to the Brinkreve modified 
formula [15] (independently for both yield surfaces)  

( ) ( ) ( ) ( ) ( )1 ,i k i k i k
md x m d x r d x r dV
A

κ κ ω κ= − + +∫  (3.3) 

where m is the non-local parameter which should be greater than 1 to ob-
tain mesh-independent results [10]. Equation 3.3 can be rewritten as [15] 

( ) ( ) ( ) ( ) ( )1 ,i k i k i k i kd x d x m r d x r dV d x
A

κ κ ω κ κ⎛ ⎞= + + −⎜ ⎟
⎝ ⎠∫  (3.4) 

Since the rates of the hardening parameter are not known at the 
beginning of each iteration, the extra sub-iterations are required to solve 
Eq.3.4. To simplify the calculations, the non-local rates were replaced by 
their approximations est

idκ calculated on the basis of the known total strain 
rates [15]. 
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( ) ( ) ( ) ( ) ( )1 ,
i

est est
i k i k k i kd x d x m r d x r dV d x

A
κ κ ω κ κ⎛ ⎞≈ + + −⎜ ⎟

⎝ ⎠∫ (3.5) 

In the damage mechanics model, the equivalent strain measure ε~  was 
replaced in Eqs. 2.7 and 2.9 by its non-local definition ε  

( ) ( ) ( )1 ,k kx r x r dV
A

ε ω ε= +∫ %  (3.6) 

Both models enhanced by non-local terms were implemented in the 
Abaqus Standard program [1] with the aid of the subroutine UMAT (user 
constitutive law definition) and UEL (user element definition) [10]. The 
FE-simulations were performed under plane strain conditions. The 
geometric nonlinearity was taken into account. The non-local averaging 
was performed in the current configuration. The quadrilateral elements 
composed of four diagonally crossed triangles were used to avoid 
volumetric locking [42]. 

4  FE - Simulations 

4.1  Uniaxial Tension 

4.1.1 Elasto-Plastic Model 

To study the size effect, the calculations were carried out with 3 different 
concrete specimens with one notch whose dimensions (from Fe-
simulations by Gutierrez and de Borst [22]) and boundary conditions are 
given in Fig.4.1. The lower and upper edge of the specimen were smooth 
(no shear stress). The nodes along the bottom edge were fixed in vertical 
direction. To preserve the stability of the specimen, the node in the middle 
of the bottom was fixed in the horizontal direction. The deformation was 
imposed by prescribing a vertical displacement u along the upper edge. To 
introduce a non-homogenous strain field, a small notch at the left side at 
mid-height was assumed. Three different meshes were used with 1500, 
2620 and 5100 triangular elements for the small, medium and large 
specimens, respectively. When calculating non-local quantities close to the 
notch, the so-called “shading effect” was considered (i.e. the averaging 
procedure considers the notch as an internal barrier that is shading the non-
local interaction [29]). In the elastic region, the modulus of elasticity was 
taken as E=30 GPa and Poisson’s ratio as υ=0.20. The diagram describing 
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the tensile stress σt versus the softening parameter κ2 is shown in Fig.4.2. 
To simplify calculations, a linear relationship σt=f(κ2) was assumed with 
the softening modulus in tension equal to Ht=3.0/(3.0×10-3)=1000 MPa. 
The tensile strength was equal ft=3.0 MPa. The non-locality parameter 
m=2 was chosen on the basis of initial own FE-studies [10] and other 
studies [29]. Higher values of m resulted in unrealistic large shear zone 
widths. The characteristic length was taken as lc=15 mm.  
 

 

 

Specimen b [cm] h [cm] 

small 5 10 

medium 10 20 

large 20 40 

 

Fig. 4.1. Geometry and boundary conditions of the specimen subjected to uniaxial 
tension ([22]) 

 
Fig.4.3 presents the normalized load-displacement curves for different 

sizes of the concrete specimen of Fig.4.1 (P – resultant vertical force, u – 
vertical displacement of the top edge).  

The size effect is significant, i.e. the smaller the specimen, the larger the 
normalized strength and the larger the material ductility. The plots of the 
non-local softening parameter 2κ  in the neighborhood of the notch for 3 
different specimens are shown in Fig. 4.4. 

The calculated height of the localized zone increases with the specimen 
size and is equal to 5.0 cm (3.3×lc), 6.0 cm (4×lc) and 7.0 cm (4.6×lc) for 
the small, medium and large specimens, respectively. The results are 
qualitatively similar to those obtained with the second-gradient elasto-
plastic constitutive model by Gutierrez and de Borst [22]. 
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The maximum loads obtained from FE-simulations for concrete were 
compared with the energetic size effect law given by Bazant [5], [9] which 
is valid for structures with pre-existing notches or large cracks: 

,
1 /

Bf
D D

t
o

σ =
−

 (4.1) 

where σ - nominal strength, B – dimensionless geometry-dependent 
parameter which depends on the geometry of the structure and of the 
crack, D - specimen size (equal to the specimen height h) and D0 – size-
dependent parameter called the transitional size. 
 

 
 

Fig. 4.2. Assumed curve σt=f(κ2) in tensile regime using the elasto-plastic model 
for uniaxial tension (σt – tensile stress, κ2 – softening parameter) 

 

 
 

Fig. 4.3. Calculated normalized load–displacement curves for uniaxial tension 
(elasto-plastic model with non-local softening) 
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a) b) c) 

Fig. 4.4. Calculated contours of the nonlocal softening parameter 2κ  for uniaxial 
tension of a large (a), medium (b) and small (c) specimen within elasto-plasticity 
with non-local softening) (different scale is used in 3 specimens) 

 
Eq.4.1 can be rewritten as:  

1      with     /      and        1/ ,02
D c c D Bf cfα α

σ
= + = =  (4.2) 

To find parameters B and Do from the FE-analysis, a linear regression 
was used. Fig.4.5 present the differences between stresses σ from the FE-
calculations (σ=P/(0.75bt), b - element width, t=1.0 m – size in the third 
direction) and those obtained from Eq. 4.2. A good agreement with 
Bazant’s size effect law [9] was obtained. The normalized strength 
decreases almost linearly with the size ratio h/lc in the considered range. 

4.1.2 Damage Model 

The problem of a double notched specimen under uniaxial tension was 
experimentally investigated by Hordijk [25]. The geometry of the concrete 
specimen (width b=60 mm, height h=125 mm, thickness in the out-of-
plane direction t=50 mm) and boundary conditions (similar as in Fig.4.1) 
are presented in Fig.4.6. Two symmetric notches 55× mm2 were located at 
the mid-point of both sides of the specimen. The modulus of elasticity was 
equal to E=18 GPa and the Poisson’s ratio was υ=0.2. The following 
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parameters of the damage model were chosen (using Eqs.2.7 and 2.11): 
4

0 101.2 −×=κ , α=0.96, β=500 and k=10. The characteristic length lc was 
assumed to be 5 mm. Three different FE-meshes were used: coarse (1192 
triangular elements), medium (1912 triangular elements) and fine (4168 
triangular elements), Fig.4.7.  
 

 
 

Fig. 4.5. Relationship between calculated normalized concrete strength 
σ=P/(0.75bt) from uniaxial tension and ratio h/lc (elasto-plastic model with non-
local softening) compared to the size effect law by Bazant [5] 

 
 
 

Fig. 4.6. Geometry and boundary conditions of a specimen with a notch under 
uniaxial tension (dimensions are given in mm) 
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The calculated contours of the damage parameter κ in the specimen are 
shown in Fig.4.8 at residual state. The results are mesh-independent since 
the width of the damage region in the mid-region of the specimen is 
always the same. The width of the localization zone is approximately 22 
mm (4.4×lc).  

 
 

   
a) b) c) 

 

Fig. 4.7. FE-meshes used for calculations of uniaxial tension: a) coarse, b) 
medium, c) fine 

 
Fig.4.9 presents the nominal stress–elongation tensile curves for all 

meshes as compared to the experimental curve [25]. The elongation δ in 
Fig.4.9 denotes the elongation of the specimen above and below both 
notches at the height of 35 mm (Fig.4.7). It was measured experimentally 
by 4 pairs of extensometers with a gauge length of 35 mm. The vertical 
normal stress was calculated by dividing the calculated resultant vertical 
force along the upper edge by the specimen cross-section of 50×50 mm2. 
The calculated load-displacement curves of Fig. 4.9 practically coincide 
for the different meshes. They are also in a satisfactory agreement with the 
experimental curve [25], although a small deviation between the theory 
and the experiment (in particular after the peak) takes place. 

In addition, the influence of the characteristic length lc of micro-structure 
on the specimen behaviour was investigated. The FE-calculations were 
performed with lc in the range from 2.5 mm up to 10.0 mm. The obtained 
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load-displacement curves are presented in Fig. 4.10. The larger the 
characteristic length, the higher the maximum tensile stress. The 
inclination of all curves to the horizontal after the peak becomes smaller 
with increasing lc (the material becomes more ductile). The width of the 
localized zone was 12 mm (4.8×lc for lc=2.5 mm), 22 mm (4.4×lc for lc=5 
mm), 34 mm (4.5×lc for lc=7.5 mm) and 44 mm (4.4×lc for lc=10 mm), Fig. 
4.11. 
 

   
a) b) c) 

 

Fig. 4.8. Calculated contours of the damage parameter κ in a specimen under 
uniaxial tension for: a) coarse, b) medium and c) fine mesh (damage model with 
non-local softening) 

 
The results are in a good accordance with the FE-results by Pamin [36] 

and Peerlings et al. [37] using a second-gradient damage continuum 
model. 

4.2 Three-Point Bending 

The behaviour of the concrete beam with a notch at the bottom at mid-span 
and free ends during three-point bending was simulated. This behaviour 
was experimentally investigated by Le Bellego at al. [31], and later 
numerically simulated by Le Bellego et al. [31] and Rodriguez-Ferran et al 
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[40] with a non-local damage approach. Three different beams were used 
in laboratory tests: small (h=8 cm), medium (h=16 cm) and large one 
(h=32 cm). The beam length was L=3h. The geometry and boundary 
conditions of the beam are presented in Fig.4.12. The loading was 
prescribed at the top edge in the mid-span via displacement. Three 
different FE-meshes were assumed: with 1534, 2478 and 4566 triangular 
elements for a small, medium and large specimen, respectively. Due to the 
symmetry of the problem, only half of the beam was modeled. In the 
simulations, the modulus of elasticity was taken as E=38.5 GPa and the 
Poisson ratio as ν=0.2.  
 

 

Fig. 4.9. Calculated stress–elongation diagrams for a specimen under uniaxial 
tension (damage model with non-local softening) with different FE-meshes 
compared to the experimental diagram [25] 

 

4.2.1 Elasto-Plastic Model 

In the tensile regime, the Rankine criterion (Eq.2.4) using the exponential 
curve in the softening regime proposed by Hordijk [25] was defined 

( ) ( ) ( )
3

32 2 2
2 1 2 1 21 exp 1 exp ,t t

u u u

f c c c cκ κ κσ κ
κ κ κ

⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎪⎢ ⎥= + − − + −⎨ ⎬⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

 (4.3) 

where σt – tensile stress, ft – tensile strength of the concrete, κu – ultimate 
value of the softening parameter and c1, c2 – constants equal to 3 and 6.93, 
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respectively. Two different characteristic lengths were assumed in the FE-
analyses, namely lc=5 mm and lc=10 mm. For each characteristic length, 
the following material parameters were chosen: ft=3.6 MPa, κu=0.005 (lc=5 
mm), and ft=3.3 MPa, κu=0.003 (lc=10 mm) with m=2. They were adopted 
to obtain the best agreement between the load-displacement diagrams from 
FE-analyses and laboratory tests [31I. The internal friction angle was equal 
to ϕ=10° [1] and the dilatancy angle ψ=5°. The compressive strength was 
equal to fc=40 MPa. The softening modulus in compression was Hc=0.8 
MPa. The material parameters in the compressive regime did not influence 
the FE-results. 

Fig. 4.13 presents the load-displacement curves for all beams obtained 
from FE-calculations with the characteristic length of lc=5 mm and lc=10 
mm compared with experiments. A satisfactory agreement was obtained. 
The FE-results overestimate slightly the load bearing capacity of the small 
and medium beam and underestimate the maximum load for the large 
beam. The results demonstrate that a characteristic length can be only 
determined on the basis of the measured width of strain localization (from 
an inverse identification process) but not from the measured load-
displacement curves.  
 

 
 

Fig. 4.10. Calculated stress–elongation diagrams using different characteristic 
lengths lc for a specimen under uniaxial tension (damage model with non-local 
softening) 
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The width of the calculated localization zone was about 20 mm (4×lc) for 
lc=5 mm (Fig.4.13), and 45 mm (4.5×lc) (small beam), 40 mm (4×lc) 
(medium beam, Fig.4.13) and 35 mm (3.5×lc) (large beam) for lc=10 mm, 
respectively. It did not depend on the mesh size.  
 

  
a) b) c) d) 

 

Fig. 4.11. Calculated contours of the damage parameter κ in a specimen under 
uniaxial tension: a) lc=2.5 mm, b) lc=5 mm, c) lc=7.5 mm, d) lc=10 mm (damage 
model with non-local softening, fine mesh) 

 
 

 
 

Fig. 4.12. Geometry of the beam and boundary conditions [31] 
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4.2.2 Damage model 

Two different characteristic lengths were again assumed, namely lc=5 mm 
and lc=10 mm. For each lc, the following material parameters were chosen: 
κ0=7·10-5, α=0.99, β=600 (lc=5 mm), and κ0=6.25·10-5, α=0.99, β=1000 
(lc=10 mm) (using Eqs.2.9 and 2.11). A satisfactory agreement between 
FE-results and experimental ones was achieved in both cases (Fig. 4.14).  
 
a) 

  
b) 

 
 

Fig. 4.13. Load-displacement curves from experiments [31] and FE-simulations, 
and calculated contours of the non-local parameter: a) lc=5 mm, b) lc=10 mm 
(elasto-plastic model with non-local softening, beam height h=160 mm) 

 
The width of the localization zone at the end of the loading process was 

equal to 40 mm (8×lc) (small beam), 35 mm (7×lc) (medium beam, 
Fig.4.14) and 40 mm (8×lc) (large beam) for lc=5 mm, and 50 mm (5×lc) 
(small beam), 60 mm (6×lc) (medium beam, Fig.4.14) and 80 mm (8×lc) 
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(large beam) for lc=10 mm, respectively. It did not depend on the mesh 
size. The width of the localization zone was not constant and it increased 
during loading [36]. Similarly as in elasto-plasticity, the FE-calculations 
overestimate slightly the load bearing capacity for the small and medium 
beam and underestimate the maximum load for the large beam. The same 
conclusions were drawn by Le Bellego et al. [31] and Rodriguez-Ferran et 
al. [40] from their simulations, although they used different definitions of 
the equivalent strain ε~ and evolution laws.  

The maximum loads obtained from FE-simulations were compared again 
with the energetic size effect law given by Bazant (Eq.4.1) (Fig.4.15). A 
good match was achieved. The normalized strength decreases almost 
linearly with increasing size ratio h/lc in the considered range. 

 
a) 

 
 

b) 

 
 

Fig. 4.14. Load-displacement curves from experiments [31] and FE-simulations 
and calculated contours of the non-local parameter for beam height h=160 mm: a) 
lc=5 mm, b) lc=10 mm (damage model with non-local softening) 
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a) 
 

 
 

b) 
 
Fig.  4.15. Relationship between the calculated normalized loads: (PL)/(Eκoh2t) 
and (PL)/(fth2t) during bending (with lc=5mm) and the ratio h/lc as compared to the 
size effect law by Bazant [5] within: a) damage mechanics, b) elasto-plasticity 

5  Conclusions 

The FE-calculations have shown that both constitutive models: elasto-
plastic and damage with non-local softening are able to capture strain 
localization and related size effect in problems characterized by the failure 
mode I. The obtained FE-results did not suffer from the mesh sensitivity.  
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A satisfactory agreement between numerical simulations and laboratory 
experiments with respect to the load-displacement curves was achieved. 

The larger the ratio between the characteristic length of micro-structure 
and the specimen size, the higher both the material strength and ductility of 
the specimen.  

The width of the localized strain zone in concrete specimens increases 
with increasing ratio between the characteristic length of micro-structure 
and the specimen size.  

The width of the localized strain zone is for uniaxial tension about (3.3-
4.5)×lc within elasto-plasticity and (4.5-5.0)×lc damage mechanics. The 
width of the localized zone in beams was larger in FE-analyses with a 
damage model (about (5-8)×lc) than with an elasto-plastic model (about 
(3.5-4.5)×lc). It was similar in beams for the characteristic length of 5 mm, 
and decreased in elasto-plasticity and increased in damage mechanics with 
increasing beam size for the characteristic length of 10 mm. 

The size effect decreases almost linearly with decreasing ratio between 
the specimen size and characteristic length. It is in agreement with the size 
effect law by Bazant. 

A characteristic length of micro-structure can be only identified on the 
basis of measurements of strain localization. 

The calculations on strain localization in concrete will be continued. To 
include plastic deformation and hardening, the damage model will be 
combined with an elasto-plastic model [12]. Afterwards, the model will be 
enriched by anisotropy [51]. To describe a statistical size effect, a spatially 
correlated distribution of the tensile strength will be assumed [46]. In 
addition, laboratory tests will be performed wherein the width of strain 
localization will be measured using a DIC technique. 
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Summary 

Sensitive clays, exhibits softening, are characterized by a response in 
which shear stress increases monotonically up to a peak value, and 
decreases with further increase of shear strain i.e. second order work 
becomes negative, during the shear deformation and will therefore develop 
excess pore pressure in the shear bands. Due to the low permeability of 
clays in combination with a generally high deformation rate, the failure 
process is often considered being undrained and analyzed using a total 
stress approach. However, if thin localized shear zones develop, local 
pore-water dissipation will take place. This diffusion process may be 
important to define the shear bands. To study this process an effective 
stress based soil model is needed. The model must incorporate a formu-
lation for how excess pore pressures accompany the softening process. 
Keeping in view, a simple direct shear sample (DSS) test and one 
dimensional soil column is simulated to analyze the coupled strain 
softening pore water mechanism. This study is initiated to test the 
hypothesis that a finite shear band thickness may result for a given 
deformation rate. 
 
Key words: strain softening, sensitive clays, finite element analyses, shear 
band 
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1 Introduction 

Since Biot (1941, 1965) have derived the general theory of three 
dimensional consolidations and initiated research on material instability, 
much effort has been devoted to the study of multi-phase media (Bardet 
1992; Bowen 1982; Schrefler et al. 1990) and solid instability (Bardet 
1991; Hill and Hutchinson 1975; Vardoulakis 1981; Bardet, 1990). 

The mechanical response of multiphase (solid, air and water) system like 
geomaterials is of great importance in engineering practice. For instance 
uneven settlement of underlying soil deposits due to time dependent pore 
water pressure dissipation from foundation loading, shear creep are the 
most comely recognized examples. Since the end of 70’s several authors 
have studied strain localization in multiphase materials. Rudnicki (1984) 
analyzed a fluid saturated rock mass with an embedded weakened layer. 
Rice (1985) studied the effect of material dilatancy on strain localization in 
fully saturated frictional material. In recent years, much effort has been 
developed to devise regularization strategies to simulate the development 
of shear band in multiphase material without mesh dependency. Rice 
(1985) and Vardoulakis (1985) extended the instability analyses from 
single phase to multiphase materials. (Liu, 2003) 

According to studies e.g. Schrefler et al (1995), Schrefler et al.(1996), 
Liu et al. (2001) and Liu (2003), numerical simulation of strain 
localization in a multiphase material have evidenced that mesh dependency 
is not severe as in single phase material. The reason is that the governing 
field eq.s a gradient term is included through Darcy’s law, an internal 
length scale is introduced naturally, resulting thus a regularization for 
strain localization (Loret and Prevost, 1991 and Schrefler et al. 1995). This 
internal length scale depends on several material parameters and in 
particular on the permeability, applied strain rates. 

A numerical simulation of biaxial test by Liu (2003) reports the 
importance of permeability, boundary roughness and excess pore water 
pressure in strain localization phenomenon for granular material under 
undrained condition. 

This paper presents some initial numerical examples using the finite 
element simulation to demonstrate the kinematics of shear zone 
deformation governed by the coupled mechanism. 
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2 Governing Equation for Coupled Flow 

A coupled formulation for the description of deformation and motion of a 
multiphase media are carried out on the basis of modern mixture theory, 
see Bowen (1982) Ehlers (1989), Lewis and Schrefler (1998) and Liu 
(2003). In this study, soil is considered as two phase media, solid and 
water, sighting the assumption of a fully saturated state. 

The equilibrium equation for the soil solid skeleton can be written as 

∫∫∫
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where N is the shape function, a is the acceleration, B is the displacement 
vector, β is the Biot’s constant, δ is the Kronecker’s delta, pw is pore water 
pressure, t is the time, V represents the volume, σ´ is the effective stresses 
which represents the stress associated with the total deformation of the 
multiphase media, s is the surface traction and g is the gravity. 

In wide sense, in finite element analyses by using multidimensional 
incremental springs, the element stiffness matrix for soil skeleton can also 
be written as 

fvD ∆=∆⋅  (2.2) 

where D is fourth order tensor that characterizes the material behavior, ∆v 
is nodal displacements and ∆f is corresponding nodal forces. By adding for 
all elements gives the global increment stiffness matrix. 

By including the time derivative of wp& , eq. (2.1) can also be written as 

fpEVC ∆=∆⋅+∆⋅
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 (2.3) 
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and, the continuity eq. of the pore fluid can be as following 
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Also, for two dimensional flow cases, Darcy’s law can be written as 
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Here pw is the pore pressure and q designated to nodal flow in x and y 
directions respectively. Pore water flow follows the Darcy’s law which can 
be rewritten from eq. (2.12) 

p
T qpRpMvJ =⋅+⋅+⋅  (2.14) 
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After rearranging above esq., can be combined in matrix form as 
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3 Pore Water Pressure Generation Dissipation Equation  

Considering a one dimensional consolidation situation, a classical eq. of 
flux flow can be written as 

2

2
2

z
Pc

t
P ww

∂
∂

=
∂

∂
 (3.1) 

Assuming that drainage path is of infinite length on both sides (and 
laterally impermeable surface). Then there will not be any boundary 
conditions, but only the initial condition 

)()0,( zfzPw =  (3.2) 

where f(z) is the given initial pore water pressure of the bar. By substi-
tuting Pw(z,t)=F(z)G(t), we obtained two ordinary differential eq. 
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A complete solution can be written as 
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Since f(x) is not assumed to be periodic, it is natural to use Fourier 
integral instead of Fourier series. Also, A and B in eq. (3.5) are arbitrary 
and re-garded as the function of ψ, can be determined from initial 
condition. 
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and hence u(x, 0) can be written as 
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Finally, eq. (3.9) becomes 
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The above eq. can be simplified to 
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In order to demonstrate characteristic of eq. (3.11), a one dimensional 
soil column is of length (z) with an embedded shear band thickness (v). In 
this example, refer Fig. 3.1, the ratio between length of soil column to the 
shear band thickness is assumed as 10. Soft clays have coefficient of 
diffusion (c) equals to 0.24 m2/year. 

A globally undrained soil column is subjected to shear at different strain 
rates such that the local undrained to a partial drainage situation can be 
obtained. Excess pore pressure is maximum within contracting shear band 
due to incompressibility of pore water. At significantly higher strain rate, 
distribution of excess pore pressure is quasi-static. This also represents a 
situation where no pore water flow from shear band to the outside body 
and hence softening can be very rapid due to drastic reduction in effective 
stress. This situation is recognized as locally undrained condition. 

A smooth transition of pore water is observed with decreasing applied 
strain rates. 
 

 
 
Fig. 3.1. Strain localized pore water diffusion from shear column 
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4 Finite Element Simulation of Coupled Pore Water and Strain 
Localization 

A finite element model is simulated and practiced for different strain rates. 
A long natural slope in soft soil shown in Fig. 4.1 is utilized for modeling 
purpose, however due to specific nature of this study; only a small portion 
of the slope is modeled. 

At the onset of localization, plastic deformation is only concentrated in 
the shear band zone and rest of the non-localized body have a rigid body 
motion, which means it is more important to simulate a local model which 
has embedded shear band and neighborhood explicitly. It is not a very 
useful to consider complete non-localized elastically deforming slope, 
because influence of localization will decrease with the increasing distance 
from the shear band. This statement is true only for the present case. 

For simplicity, referring to a local co-ordinate (n, s) system, a direct 
simple shear model is simulated in finite element code using poro-elastic 
element in order to have a coupled tangent stiffness matrix where pore 
water and soil skeleton contributes simultaneously. 
 

 
 
Fig. 4.1 Shear band in a natural slope 
 
 

Simple elastic perfectly plastic with negative dilatancy material model is 
considered. Experimentally affiliated parameters have been selected for the 
modeling purpose, a typical soft and sensitive clay, for example the 
Norwegian quick clays have shear modulus of 5000 kPa, Poisson’s ratio 
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equal to 0.25, frictional angle 30 degrees, dilatancy of minus 1 degree and 
horizontal and vertical permeability equal to 1x10-6 m/day. 

In order to trigger localization, a weak perturbation is embedded within 
model. Fig. 4.2 represents (a) the DSS model after deformation; (b) 
localized zone and (c) consequently developed excess pore pressure and 
pore water flow. A different mesh size and different strain rates were 
practiced in order to study the model widely. 
 

 
 
Fig. 4.2 Direct simple shear model 

5 Results and Discussion 

Phenomenological characteristics of coupled localization obtained from 
DSS model is discussed pedagogically. Results are presented in different 
sub-sections, as follows.  

5.1 Evaluation of Strain Localization 

Strain localization occurs when the deformation in a continuum is loca-
lized in well defined but narrow zones of intense straining. In order to 
illustrate, DSS model has been simulated and studied for different 
displacement rates to observe time dependent pore water flow and 
localization. Results are presented in Table 1. 
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Table 5.1. Evaluation of strain localization at different strain rates 
 

Shear strain level 
→ 

0.7% 1.2% 2% 

Displacement rate  

0.07 mm/min 
(fastest) 

 

0.007 mm/min 
(medium) 

 

0.014 mm/min 
(slowest) 

 
 
 
An embedded week element initiates the localization process and 

gradually progresses in neighborhood horizontally (by virtue of direct 
shear). At the onset of localization shear band can propagate in any critical 
direction (horizontally or vertically) due to symmetric model. But in this 
case, a guided shear band development in the direction of globally applied 
displacement is achieved. 

For sake of brevity, only three cases are considered where globally 
applied displacement rates are equal to 0.07mm/min, 0.007mm/min and 
0.0014mm/min. In other words, the first two displacement rates are 50 
times (0.07mm/min) and 5 times (0.007mm/min) faster than the slowest 
displacement rate i.e. 0.0014mm/min. Table 1 represents the growth of 
shear band at three different shear strain level e.g. 0.7%, 1.2% and 2%, for 
these displacement rates. 

The slowest (0.0014mm/min) deformation rate delays the localization 
occurrence; refer Table 5.1, on other hand fastest deformation rate 
(0.07mm/min) can cause a rapid localization. In order to justify this 
statement, for instance, choose a strain level of 1.2 % and compare the 
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localization pattern for all three deformation rates. At higher rate, shear 
band developed more dominating and distinct, on other hand, at the 
slowest rate is plastic strain distribution is more diffused in behaviour and 
yet to localized in a well defined state. 

Excess drainage of pore water from shear band at slower rate causes less 
reduction in effective stresses and hence post peak stress strain response is 
not as severe as in case of faster deformation rate. However, end result is 
same for all the cases, apart from different magnitude of plastic strain 
within shear band. The same time it must also be noted that finite element 
analysis is certainly suffer from mesh dependency. However, coupled 
analyses helps to make well posed situation up to a certain extent but at the 
higher strain, hydraulic gradient between two gauss point becomes very 
high, plastic strain distribution also becomes irregular, as shown in Fig. 
5.1, and mesh dependent result yields. 

 

 
 

Fig. 5.1. Incremental and total shear strains along the shear band at higher strain 
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5.2 Effect of Excess Pore Water Pressure 

According to laboratory observation, in drained test, depending on the 
stress level, material exhibits a dilating or contracting behavior. In the 
undrained test due to incompressibility of pore water will induced pore 
water pressure changes (Liu 2003). 

Desrues (2004) describes that the low over consolidated clays have ten-
dency of local drainage within a global undrained boundary of specimen. 
By finite element simulation and analytical solution proposed by Thakur et 
al (2005) shows that generation of excess pore pressure is one of the major 
reasons for localization in soft and sensitive clays. A rate dependent partial 
drainage characteristics coupled with localization not only influences the 
strain softening behavior but also affect the shear band thick-ness. Clays 
have a global undrained boundary and so global volumetric change must 
be zero, however internal exchange between contracting zones i.e. shear 
bands and swelling zone i.e. elastically unloading body is possible. 

From Fig. 5.2, at higher deformation rate, high excess pore pressure 
develops within shear band and vise versa. Higher deformation rate also 
represent a more undrained situation where pore pressure is accumulated 
within shear band and thus stain softening is more pronounce. In case of 
slower rate of deformation, there is sufficient time for pore water to escape 
and hence accumulated pore water pressure within shear band is also less 
which ultimately causes a reduction in rate of softening and hence results 
are less mesh sensitive. 
 

 
 
Fig. 5.2. Rate dependent pore water pressure accumulated inside shear band 
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Sufficient drained condition can also be responsible for a steady state 
situation, rate of pore water pressure generation and dissipation is constant, 
that can lead to a definite thickness of shear band. Smooth transition of 
pore water diffusion is observed at lower strain rates. At higher strain rate, 
due to lack of sufficient time to reach a steady state situation, pore water 
distribution profile along and across the shear band is abrupt, refer Fig.5.3. 
 

 
 
Fig. 5.3. Pore water pressure profile 

5.3 Material Behavior 

Well known that at the onset of localization domain divide in two parts i.e. 
localized and elastically unloaded part. Localized part, so called shear 
band emerges at low displacement and contracts as the strain concentration 
increases. Due to incompressibility of pore water, excess pore pressure 
develops and cause reduction in effective stress and so the mobilization. 
This statement is valid for post peak condition within the perspective of 
the model used for this study. 
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Once the partial drainage occurs, there will be a local volume change 
however global volume of the body remains constant. Shear band reduces 
to an equal volume replaced by the elastically swollen media. Change in 
volume depends how fast pore water is transported from shear band. If a 
situation when the rate of pore water pressure dissipation equal to the rate 
of pore water pressure generation, i.e. a steady state condition, the 
contraction in shear band will also stop because effective stresses will not 
decrease anymore. In such a situation, a definite thickness of shear band 
can be expected. Fig. 5.4, represents a rate dependent stress strain 
characteristics, with the decrease in strain rate, strain softening is also 
reducing. 
 

 
Fig. 5.4. Stress strain curve 

 
From the present study, it is also understandable that simple material 

models can only predict the real characteristics of localization within a 
limited gamut. One of the important reasons to obtain mesh sensitive 
results is due to insufficient loading and unloading criterion in constitutive 
modeling. This becomes more severe with over simplified simple material 
models.  

Fig. 5.5 shows a typical effective stress path for the DSS model analyses, 
five different gauss points has been chosen, A,B,C,D and E. Point A  of the 
material and with equally increasing distance (in vertical direction) from 
shear band respectively. In the beginning A, B localizes, however C, D, E 
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never reaches to yield and starts unloading. Gauss point A always retains 
in localization state and hence passes along the failure line. On other 
hands, point B travel in failure line for some distance and than unloaded 
due to contracting shear band but parallel to failure line, due to decrease of 
effective stress caused by gain of high excess pore pressure from the 
neighborhood. Similarly, point C, D, and E also violate the constitutive 
rule where elastically unloading must be a rigid body motion without 
changing its effective stress state. 

Especially point B which receives a high excess pore pressure from the 
shear band (point A) must also develop some plastic strain due to change 
in mobilization and a mesh independent result can be expected. Since the 
present model is not robust enough to take in account such type of facts 
and hence only one gauss point A remain under softening branch and mesh 
dependent results achieved. In sort, if proper criteria must utilize then a 
finite element analyses can also be well posed up to certain extent within 
the contrast of coupled analyses. 
 

 
 
Fig. 5.5. The effective stress path 
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6 Conclusions 

This study brings out the importance of solid fluid interaction within the 
perspective of strain localization in soft clays. An introductory exercise is 
chosen to demonstrate the mechanism of shear band and pore water flow 
using a simple constitutive model in finite element analyses. Rate 
dependent pore water diffusion from shear band and consequently, strain 
softening rate are analogously discussed. Inherence regularization in a 
form of hydraulic gradient helps to handle post peak softening. Elasto- 
plastic frame work with fluid coupling can also be a sufficient tool to 
handle strain softening problem. However, in order to validate this 
statement, a robust model must be utilized and practiced for complete 
boundary value problems. In short, contracting behavior of shear bands 
and pore water diffusion not only a complementary characteristics in 
porous media but also opens a new technique to regularize the ill posed 
boundary value problem. 
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