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Summary

We here investigate potentials and limitations of Griffith's energy release
rate criterion to describe effective stress-strain behavior of brittle materials
damaged by mode I type propagating microcracks. For this purpose stiff-
ness estimates for representative volume elements (RVEs) of a microcra-
cked material (based on continuum micromechanics) are combined with
the energy release rate criterion for the behavior of one single penny-
shaped crack embedded in an infinite matrix subjected to remote uniform
stresses (taken from linear-elastic fracture mechanics). This combination
allows for studying the effect of stable (quasi-static) mode I propagation of
open microcracks on the macroscopic behavior of microcracked material
volumes subjected to different types of macroscopic loading. As regards
uniaxial tension, the combined fracture-micromechanics approach predicts
macroscopic  strain-softening, resulting from propagation of cracks
perpendicular to the loading direction. As regards uniaxial compression,
consideration of non-zero crack openings is mandatory in order to predict a
typical relation between tensile and compressive strengths, amounting to
about 1:12. Thereby, uniaxial compressive failure is related to axial split-
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ting, i.e. to propagation of open cracks in the loading direction. As regards
axial splitting caused by confined compression, additional strength increa-
se because of lateral confinement can be represented at least qualitatively.
However, it turns out to be necessary to combine Griffith's energy release
rate criterion with a stress criterion taking into account the sign of the
microstresses in the vicinity of the crack edge.

1 Introduction

Microcracking is the dominant failure mechanism of brittle materials.
Specific types of macroscopic loading lead to propagation of microcracks
along their planes, while the relative displacement between the two crack
surfaces is perpendicular to the crack growth direction. This type of crack
propagation, referred to as cracking mode I, is observed under macrosco-
pic uniaxial tension, macroscopic uniaxial compression, and macroscopic
axial compression with lateral confinement. It is the central issue of the
present paper.

Uniaxial tension experiments on brittle materials are very sensitive to
imperfections [33]. Therefore, such experiments require very accurate and
experienced handling of the specimen, the loading machine, and the
measurement equipment [33]. In the post-peak regime of a uniaxial tension
experiment, strain-softening is observed. Thereby, crack propagation is
concentrated in a localization zone, i.e. to a narrow crack band [1]. The
crack propagation direction is perpendicular to the direction of the applied
tension. At the end of a uniaxial tension test on a brittle specimen, the
sample splits up into two parts.

In uniaxial compression experiments with carefully lubricated interfaces
between load platens and specimen, characterized by approximately uni-
form stress states within the tested sample, open cracks propagate in the
direction of axial loading, through a predominantly mode I cracking
mechanism [37]. In the post-peak regime of such a test, crack propagation
is accompanied by strain-softening. Thereby, the number of cracks deve-
loping within a certain volume is rather large [36]. At the end of a uniaxial
compression test on a brittle specimen, the sample splits up into many
slender "columns", and final failure is due to buckling and bending, or
tilting and sliding of these columns [37].

Complementing uniaxial compression experiments by lateral confine-
ment pressure results in different failure mechanisms, related to different
levels of confinement pressure:
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o At small confinements, strain-softening is observed after the onset of
axial splitting, and the final failure mode is the same as in unconfined
uniaxial compression experiments.

o At moderate confinements, axial splitting is first associated with strain
hardening, i.e. an increase of stress with increasing strain. Subsequently,
strain softening and final failure is caused by shear-mode propagation of
closed cracks which are inclined to the axis of uniaxial loading. This
type of failure is referred to as faulting [19].

o At large confinements a transition from brittle failure to ductile material
behavior is observed [19].

In this paper, we investigate whether effective macroscopic stress-strain
behavior under uniaxial tension, uniaxial compression, and axial compres-
sion with lateral confinement, respectively, can be predicted by combining
Griffith's energy release rate criterion for mode I crack propagation (taken
form linear-elastic fracture mechanics) with the Mori-Tanaka stiffness
estimate specified for microcracked materials (taken from continuum
micromechanics). In Section 2, we shortly revisit Griffith's energy release
rate criterion and determine, in the framework of the equivalent inclusion
method, the energy release associated with the growth of a single crack
embedded in an infinite matrix subjected to remote uniform stress states,
namely uniaxial tensile stresses acting perpendicular to the crack plane,
uniaxial compressive stresses acting parallel to the crack plane, and triaxial
compressive stresses acting both parallel and perpendicular to the crack
plane. Section 3 deals with continuum micromechanics. There, we give
details on the Mori-Tanaka estimation of the effective stiffness of a
representative material volume damaged by microcracks. Employing the
simple concentration procedure proposed by Zaoui [39, 40, 41], we recall
how these estimates can be derived on the basis of the strain state in a
single penny-shaped crack surrounded by an infinite matrix subjected to
fictitious remote (uniform) strains. The explicit consideration of these
fictitious remote strains provides the link between continuum micromecha-
nics and classical fracture mechanics, i.e. the link between the crack
propagation criteria at the level of a single crack and the damage evolution
at the level of the microcracked (“damaged”) material. This link is worked
out in detail for macroscopic uniaxial tension, uniaxial compression, and
axial compression with lateral confinement in Section 4: Through the
aforementioned upscaling technique, we study the effect of stable (quasi-
static) mode I propagation of open microcracks on the macroscopic
behavior of a microcracked material volume.
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2 Single Crack Mechanics

2.1 Short Review of Griffith’s Crack Propagation Criterion

Linear-elastic fracture mechanics deals with the behavior of a single crack
embedded in an infinite matrix subjected to remote uniform stresses X
(Fig. 2.1). Griffith [12] and Irwin [21] related crack propagation to the
energy

Fig. 2.1. Problem of linear-elastic fracture mechanics: A single penny-shaped
crack (Fig. 2.2) is embedded in an infinite matrix subjected to remote uniform
stresses X

¢ released upon an increase of the crack area 4 from zero to its current
size, &= &(X, A). The driving force for crack propagation is the energy
release rate G, which is obtained by derivation of ¢ with respect to A.

68(2“’ , A)
04

The material resistance against crack propagation is referred to as G..
Comparison of G(Z*, 4) with G, allows for identifying different types of
crack behavior:

e a crack is stationary, i.e. it does not propagate, if

G(z”,4)<G, 2.2)

Gz, 4)= @.1)
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o onset of cracking occurs, if

Glz".4)=G, @3)
o stable (quasi-static) crack propagation occurs, if (2.3) is satisfied and if
oG oG
dG=—dx" +—dA=0 and dA>0 24
oz 0A
e and instable (dynamic) crack growth is associated with
dr.4)>G @5)

Since we restrict our considerations throughout the paper to penny-
shaped cracks with crack radius a and crack half-opening ¢ (Fig. 2.2), it is
convenient to reformulate the expression of the energy release rate (2.1) as
[26]

_ocoa_ 1 0c
oo 04 2ar oo

where, instead of the crack area 4 = a’x, the crack radius a is introduced as
the parameter describing the size of the crack.

(2.6)

2.2 Energy Released by Penny-Shaped Cracks Propagating in Mode I
under Uniaxial and Triaxial Stress States

The energy &, released upon crack growth from zero to its current size, can
be determined in the framework of the equivalent inclusion method [9, 27,
18]. This method deals with two different types of subdomains within an
infinite, linear-elastic matrix: inhomogeneities and inclusions (see, e.g.,
[27]). An inhomogeneity has an elastic stiffness C; differing from the ma-
trix stiffness C,, (Fig. 2.3a); whereas an inclusion has the same stiffness as
the matrix, but exhibits eigenstrains ¢  [27] (Fig. 2.3b), also called stress -
free strains [9].
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Fig. 2.2. Spatial dimensions of a penny-shaped crack (inhomogeneity) with unit
normal to the crack plane n, and definition of the crack coordinate system (r, ¢, z)
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Fig. 2.3. Eshelby's equivalent inclusion problem: the behavior of (a) a single
ellipsoidal inhomogeneity with stiffness C;, embedded in a 3D infinite matrix of
stiffness Cy,, which is subject to remote uniform strain E”, is modeled by (b) an
ellipsoidal inclusion with equivalent eigenstrain ¢, embedded in a homogeneous
infinite body of stiffness Cy,, which is subject to remote uniform strain E*

In case of remote uniform loading, either in terms of strains E* or of
stresses

% =C, :E” 2.7)

the mechanical behavior of an infinite matrix containing a single ellipso-
idal inhomogeneity is equivalent to that of an infinite matrix containing an
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equally-shaped inclusion with eigenstrains & [9] (Figs. 2.3a and 2.3b),
reading as [13].

e=-lr+(c-c,) e, E (2.8)

where $;7 denotes the so-called Eshelby tensor, relating the eigenstrains &

to the difference between the total inclusion strains &' (eigenstrains plus
elastic strains resulting from constraints of the inclusion by the surround-
ding matrix) and the remote uniform strains E” [39].

*

& =-E"=$%":¢ (2.9)

¢ enters the expression for the difference between the potential energy W

of a £”-loaded matrix with an inhomogeneity and that of the same matrix
without any inhomogeneity, W, [27].

%

1
where V; denotes the volume of the inhomogeneity. The energy difference
AW is called interaction energy.
For an open crack, represented as an ellipsoidal inclusion with vanishing
stiffness C; =0, the equivalent eigenstrains follow from (2.8) as

& =(1-s")"E 2.11)

where I denotes the fourth-order unity tensor, I = 1/2 (6xd; + d1dy), with
0; denoting the Kronecker delta. For a penny-shaped crack (Fig. 2.2) with
unit normal n pointing in the x; direction (6=0, Fig. 2.4), embedded in an

isotropic matrix, the non-zero components of § read as [18, 27].
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c ,
+ O(Zj s With Sy, =S = S
and with v,, as the Poisson's ratio of the matrix. The crack interaction ener-
gy AW i.e. the change in potential energy because of the presence of the
crack, is identical to Griffith's energy € released upon an increase of the
crack radius a from zero to its current size, so that [compare (10)]

1 .
E=—_V3"¢ (2.13)
2
where V., denotes the volume of the crack:
V. = %”azc (2.14)

In the following, we consider three specific remote uniform stress states
2” (i) uniaxial tension acting orthogonal to the crack plane, (ii) uniaxial
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I3, 3
n(f)

-1 T2, 12

Fig. 2.4. Definition of the unit vector n as a function of the angular coordinate 0

compression acting parallel to the crack plane, and (iii) a triaxial stress
state where compressive stresses act both orthogonal as well as parallel to
the crack plane.

For remote uniaxial tensile stress acting perpendicular to the crack plane
(Fig. 2.1).

zw = Z;o3g3 ®g3a 2203 > O (215)

€ follows from specification of (2.13) for (2.14), (2.15), (2.11), (2.12),
and (2.7) as

. 8a’(zz ) 1-42 . (53] 1+3v, - 4] (£j+0("j2 2.16)

3 E 3 E a a

and the energy release rate follows from insertion of (2.16) into (2.6) as

G _461(2;03)2 1—vi+a(22°3)2 1+3vm—4vfn c L0 c ?
" x» E 3 E a a (2.17)

m m

In case of (c/a)<<1, the first term of (2.17) is significantly larger than the
following terms, such that the energy released by a slightly opened crack
(a >> ¢ # 0) can be approximated by that released by a sharp crack (c= 0).

For remote uniaxial compressive stress acting parallel to the crack plane
(Fig. 2.1).

¥ =3¢ ®g, X[<0 (2.18)

€ follows from specification of (2.13) for (2.14), (2.18), (2.11), (2.12),
and (2.7) as
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3 0 2
g= 2 f (5j+0(5j (2.19)

3E, a a
and the energy release rate follows from insertion of (2.19) into (2.6) as

- 2
G- M(EJ + 0(5j (2.20)
3E, \a

a

Hence, energy release requires at least slight opening of the crack; and
no energy is released if a sharp crack (¢ = 0) propagates.

For remote triaxial stress states in the form of compressive stress X

acting parallel to the crack plane and confinement stress X3, acting both
parallel and perpendicular to the crack plane (Fig. 2.1).

2° =32 ®g +35(g,®g,+g,®g;) I<0,%5,<0  (221)

€ follows from specification of (2.13) for (2.14), (2.21), (2.11), (2.12),
and (2.7) as

:@&Xﬂﬁ[@;ﬂw+4v;—4v;)+

€ 3 E 3 E

L 2Asi) - ommn ey, - 202 )}(Ej . 0( . jz

(2.22)

E, a a

and the energy release rate follows from insertion of (2.22) into (2.6) as

G, - 4a(2§°3)z 1-v2 +£{(Z§°3)z(l+vm +4v) —4\/,3”)+

V.4 E 3 E

m m

(2.23)

© 00§10 2
L) a3y, -2 ) o), e
E, a a
For very small confinements X3 <<X, the first two terms on the right-
hand side in (2.23), containing as factors (c/a))’ = 1 and (c/a)', respectively,

are of the same magnitude; otherwise the confinement pressure X3, governs
the energy release rate in (2.23).
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3 Representative Volume Elements Damaged by many
Interacting Microcracks

3.1 Representative Volume Element (RVE) and Material Phases [17,
40, 31]

To study the mechanical behavior of a deformable solid with the help of
continuum (micro)mechanics, constitutive material elements must be labe-
led and their geometrical evolution must be followed [40, 31]. A
representative volume element (RVE) of a micro-heterogeneous material
must be homogeneous on a macroscopic scale [17], which implies that the
characteristic length /of a RVE satisfies the condition

[>>b (3.1)

where b denotes the characteristic length of heterogeneities within the
RVE, see Figs. 5b, 6b, and 6¢ for RVEs containing penny-shaped micro-
cracks. Furthermore, in order to render differential calculus applicable in
continuum mechanics, the condition

{L,P}>>( (3.2)

structure
la— L —| -
X

=@

(@)

Fig. 3.1. Separation of scales: (a) Structure containing a fracture process zone
ahead of a macrocrack and (b) RVE of a microcracked (damaged) material with
cracks of identical size and orientation, subjected to displacements ¢ related to
“homogeneous strains” E at the boundary
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Fig. 3.2. (a) Microcracked sample tested in a uniaxial compression device,
(b) and (c) sections through a RVE of a microcracked (damaged) material
with equally-sized penny-shaped cracks, axisymmetrically distributed
with respect to the x1 axis

must be satisfied, where L denotes the characteristic length of the structure
containing the RVE, and P stands for the characteristic length of structure
excitations such as, e.g., surface-loads or wave lengths (Figs. 3.1a and
3.2a).

In general, the microstructure within each RVE is so complicated that it
cannot be described in complete detail. Therefore, quasi-homogeneous
sub-domains with known physical quantities (such as volume fractions and
elastic properties) are reasonably chosen. They are called material phases.
As regards microcracked (damaged) media, the introduction of two phases
is most common in the open literature [5, 13, 23, 29, 30, 32]: (1) the sane
(uncracked) matrix, and (2) the cracks in form of penny-shaped inhomoge-
neities.

For the sake of simplicity, we deal with RVEs comprising penny-shaped
cracks with identical size. In case of uniaxial tension, we consider cracks
of identical orientation where the crack normal n is aligned with the di-
rection of tensile loading. Notably, the problem of strain localization, as
observed, e.g., in a uniaxial tension test on a brittle material, is beyond the
scope of this paper. Moreover, we do not deal with macrocracking, and in
particular not with the influence of many microcracks on the behavior of a
macrocrack, such as done in [10, 20, 28, 8].We rather describe the
behavior of a material volume element (Fig. 3.1b) inside the localization
zone (narrow crack band [1]) observed in a uniaxial tension experiment or
inside the fracture process zone ahead of a macrocrack (Fig. 3.1). In case
of axial compression (with and without lateral confinement), we consider
axisymmetrically distributed cracks with normals n orthogonal to the
direction of the predominant axial compressive loading (Fig. 3.2).
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3.2 Stress / Strain Averaging and Concentration [17, 39, 40, 41]

For studying deformation states of the RVE, a position vector x is introdu-
ced. It labels, with resolution b, locations within the RVE and on its boun-
dary. Subjecting the boundary 0V of the RVE to displacements

E(x)=E-x on oV (3.3)
(Hashin boundary condition [15]), implies

.
91* [e[nO)o+ 1z, (3.4)
0

E=(¢) =%le(x)dV =f.

with <0> =(/7) J e 4V as the volume average. f, and f, denote the volume

fraction of the matrix and of the cracks, respectively. &, and &[n(6)] deno-
te the (average) strains of the matrix and of cracks with normals n defined
by the angular coordinate 8 (Fig. 2.4), respectively. The integral over df in
(3.4) accounts for different crack orientations. Cracks of identical orienta-
tion, as observed under uniaxial tension (Fig. 3.1b), correspond to 8" — 0.
An axisymmetrical distribution of cracks, as observed under axial com-
pression with and without lateral confinement (Figs. 3.2b and 3.2c), refers
to 0 =m.
Linear-elastic behavior of the cracks and of the matrix is considered

c.=C, ¢, and c,=C, ¢, (3.5)

with C, and C,, as the stiffness of the cracks and of the matrix, respective-
ly. Consequently, the superposition principle implies the existence of a
linear relationship between macroscopic strains E and (“microscopic™)
strains &, and &, (6) [17].

&, [n(H)] =A, [n(@)] :E and g, =A,:E (3.6)

with A, as the fourth-order concentration tensors of the matrix and
A [n(#)] as the fourth-order concentration tensors of the cracks with nor-
mal n defined by 6. (3.4) and (3.6) imply that

f.

.
Hl* [Afn(@)ao+ 1A, =1 (3.7)
0

Insertion of (3.6) into (3.5), averaging over the resulting expressions for
o, [n(0)] and o,, according to
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2=(o)=f. % [o.[n(0)ko+ 1,0, (3.8)

(with X as the macroscopic stress tensor), and accounting for (3.7) yields
the macroscopic constitutive law

2=C,.:E 3.9
with
B}
Coom = Cyy + fei [(c.—~c,): A n(o)o (3.10)
0

as the homogenized (macroscopic) elasticity tensor. We are left with the
determination of the strain concentration tensors A.[n(6)], which are un-
known so far. However, they can be estimated from Eshelby's matrix-
inclusion problem.

3.3 Stiffness Estimation on the Basis of Eshelby’s Matrix - Inclusion
Problem [39, 40, 41]

The concentration tensors A [n(#)] can be estimated on the basis of matrix-
inclusion problems [39, 40, 41], such as the ones of Eshelby [9] or Laws
[24, 25]. The stiffness of the sane matrix of the (microcracked) RVE, C,,
is introduced as the stiffness of the matrix in the Eshelby problem (Figs.
3.1b and 2.3). Following Zaoui's concentration procedure [39, 40, 41], the
average strains of each phase, ¢.[n(0)] and ¢,,, are set equal to the strains in
a single ellipsoidal inclusion (with stiffness C. and C,, respectively) em-
bedded in an infinite matrix of stiffness C,, subjected to fictitious (uni-
form) strains E” at infinity [39, 40, 41]. Accordingly, the average strains of
penny-shaped microcracks embedded in a RVE follow as [39, 13].

e [n(0)=[1+8"[n0): ;' :(c. -, )| E (3.11)

as can be shown from (2.8) and (2.9). In the same sense, the average
strains of the matrix phase of the RVE are set equal to those prevailing in
an inclusion of stiffness C,,, resulting in the trivial relation [39, 40, 41].

g =E” (3.12)
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The strains E”, prescribed at infinity to a matrix surrounding a single
crack, must be related appropriately to the macroscopic strains E, imposed
as uniform boundary condition onto the RVE.

Assuming the case of a non-dilute concentration of cracks, their inter-
action needs to be considered. The simplest consideration of crack inter-
action consists of defining the fictitious remote strains E* such that the
strain average rule (3.4) is satisfied [39, 40, 41], i.e. by insertion of (3.11)
and (3.12) into (3.4).

-1

”
E” = fml+ﬂéﬂl+$f[n(6’)]:q;‘:(Cc—Cm)rde B (3.13)
0

Back-substitution of (3.12) into (3.10), while considering (3.6.1), yields
the Mori-Tanaka estimate for the concentration tensors A [n(6)].

AV (o) =[t+se (o)) ;' x(c. -, )]

st ol ¢ e, —c, W}-‘

(3.14)

< f I+
aes

Finally, insertion of (3.14) into (3.10) yields the Mori-Tanaka stiffness
estimate of a material with microcracks [2, 3, 4, 11]

)
=G+ 1 [C.-C sl (e~ )] ao:

0
(3.15)

Ly Jlostiol e .o

Evidence for the suitability of considering crack interaction through
(3.15) was gained in 2D, see [22]. There, it is shown that the 2D equivalent
to the 3D Mori-Tanaka stiffness estimate used in this paper is quasi-identi-
cal to effective stiffnesses determined from a series of full structural com-
putations (computer experiments [22]) of solids with different crack confi-
gurations (Fig. 3.3). These numerical analyses precisely accounted for (i)
the load-carrying behavior of the matrix between the cracks and, hence, for
(i1) crack interaction. The self consistent scheme and the differential sche-
me (for the latter see also [16]), however, overestimate the stiffness
decrease with increasing crack density parameter (Fig. 3.3). This is the
motivation to restrict our considerations to the Mori-Tanaka scheme.
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Fig. 3.3. Illustration of results of [22]: Young's modulus of a microcracked mate-
rial over Young's modulus of the uncracked (sane) matrix, as a function of the
(2D) crack density parameter; for (a) randomly orientated cracks and (b) parallel
cracks. The vertical bars refer to the scatter interval of computed effective stiffnes-
ses obtained from 15 numerical simulations with the same crack density, but with
different, randomly generated configurations of interacting cracks.

3.4 Open and Empty Penny-Shaped Cracks

Specification of (3.15) for open and empty penny-shaped cracks, chara-
cterized by C. =0, yields

-1

P
CD = f.C 3 [T+ fC;* [l1-s:n(o)]' a6 (3.16)
0
Based on (2.14), the crack volume fraction reads as
fC=NVc=N4T”a2c (3.17)

with N denoting the number of cracks per unit volume.

As regards microcracking under uniaxial tension, we deal with RVEs
comprising penny-shaped cracks of identical orientation (Fig. 3.1b) with
n = n (6=0). The corresponding stiffness estimate is obtained from specifi-
cation of (3.16) for the limit case 8" —0. When also considering (3.17) and
Jm=1-f., it reads as

com (1= £)c, i- i+ £ i-stlo=o] | @)
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where the non-vanishing components of $'C"[n(9 = O)], which are function

of the crack aspect ratio c/a, are given in (2.12). For the limit case of sharp
open cracks, characterized by the crack aspect ratio tending to zero:
c/o—0, the stiffness estimate (3.18) reduces to [6, 7]

-1
4
cn . [I +3ﬂNa3Tj (3.19)

Thereby, the tensor T, introduced by Dormieux and Kondo [6, 7], is de-
fined as

T= lim {5 [[-s"[n(0= o)]}l} (3.20)
cla>0| q
The non-vanishing components of T, exhibiting the symmetries T;u =
Tjis = Tju , read as [6, 7]

4v}'ﬂ (1 — vm ) i 4(1 — an )2
(1-2v )z 7 (-2v,)2’

T3311 = T3322 =
(3.21)

21—
Tl313 = Tz323 = H’

As regards microcracking under axial compression (with and without la-
teral confinement), we consider cracks with normals n, oriented perpendi-
cular to the direction of loading, i.e. nL e,. The corresponding stiffness
estimate is obtained from specification of (3.16) for 8= 7. When also
considering (3.17) and f,, = 1- f., this yields

G =(1- fc)Cm{(l— fN+f, :j[l—s;;" o)’ d@} (3.22)

The secant-stiffness estimates of (3.19) and (3.22) depend on the actual
degree of damage within the RVE, described by the crack volume fraction
f. [see (3.22)] or Budiansky's crack density parameter Na® [see (3.19)],
respectively. For f. = const or Na® = const, respectively, they describe the
behavior of stationary (non-propagating) cracks. Estimation of the homo-
genized stiffness during microcrack propagation requires quantification of
the evolution of /. or Na®, respectively, i.e. a damage evolution law is ne-
eded, which is derived subsequently. To end up with a fully micromecha-
nics-based damage model for brittle materials, we will consider onset of
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cracking and crack propagation of every single microcrack embedded in a
RVE containing many such cracks.

3.5 Linking Macroscopic Stresses to Single-Crack Related Crack
Propagation Criteria

In the following, we describe a link between the single-crack related crack
propagation criteria of Section 2 and the macroscopic stresses X imposed
as uniform boundary conditions on a microcracked RVE. This link allows
for investigation of the influence of the propagation of single cracks on the
progressive reduction of the effective stiffness of a material comprising
numerous propagating cracks. The key to this link is that both micro-
mechanics and fracture-mechanics rely on matrix-inclusion problems
(Figs. 2.3 and 2.1) dealing with a single crack embedded in an infinite
matrix subjected to remote uniform loading: Zaoui's concentration proce-
dure [39, 40, 41] provides a relation between the macroscopic strains E
(Fig. 3.1b) acting on the boundary of the RVE of a damaged material with
numerous microcracks and the strains E* (Fig. 2.3) imposed (at infinity)
on a matrix surrounding a single microcrack:

-1

”
E*=|fI+ 1. % I(I +$"[#(0))'d0| :E (3.23)
0

as follows from specification of (3.13) for C.=0. Setting the fictitious
strains E* equal to the ones caused by £ in the fracture mechanics pro-
blem of Fig. 2.1, i.e.

E*=C:%" (3.24)

establishes the aforementioned link between micromechanics and fracture-
mechanics: (3.24), together with (3.23), allow for relating the remote
stresses X “felt” by one single microcrack to the macroscopic strains E
prevailing on the RVE of the material with numerous microcracks. Addi-
tional consideration of (3.9) delivers the relation between X and the ma-

croscopic stresses ¥ acting on the RVE, reading, with C,_. = C*" from
(3.16), as
o X by
X =—=— (3.25)
Jo 1=
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Particularly, (3.25) provides the link between the RVE-related quantity
¥ and the fracture-mechanics related quantity X, playing the governing
role in the criteria for single-crack propagation (2.2)-(2.5), see also (2.17),
(2.20), and (2.23).

4 Effective Stress-Strain Behavior of Microcracked Brittle Mate-
rials — Assessment of Griffith’s Energy Release Rate Criterion

While the stiffness estimates (3.19) and (3.22) define the effective stress-
strain behavior in the elastic regime, the link (3.25), together with single-
crack related propagation criteria (2.2)-(2.4) mark the limit of this regime,
and give access to the effective stress-strain behavior during stable mode-
I-type propagation of the microcracks; i.e. during evolving damage of the
material defined on the RVE. Thereby, they relate the macroscopic stress
imposed on the RVE to the characteristics of the microcracks inside the
RVE (i.e. a, ¢, and N).

Comparison of model predictions with the behavior of brittle materials
observed in corresponding experiments will allow for assessing the perfor-
mance of Griffith's energy release rate criterion in the framework of mode
I type microcracking in brittle materials.

4.1 Uniaxial Macroscopic Tension — Tensile Mode I Micro-cracking

To study tensile microcracking, we consider a RVE (Fig. 3.1b) subjected
to the macroscopic uniaxial tensile stress state

X=2,e Qe 25,>0 4.1)

In order to represent the crack patterns observed in corresponding expe-
riments [33, 34], we consider cracks of identical orientation with normals
n (Fig. 2.2) pointing in the direction of loading (n = e in Fig. 3.1b). Consi-
deration of sharp cracks (¢ = 0), as relevant approximation for slightly
opened cracks under tensile mode-I-type loading (see (2.17) and discus-
sion below), implies f;. = 0 [see (3.17)], and, hence, X* = X [see (3.25)].
Therefore, the expression of G for every single of the many microcracks
embedded in the considered RVE follows from replacing X3, by X, in

2.17), i.e.
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452 a(1-v?
G — 33 m 4.2
= e [_E j “2)

m

The relation (4.2), together with the crack propagation criteria (2.2)-
(2.4), allows for testing whether or not macroscopic loading X3; on the
RVE of the microcracked material leads to propagation of the individual
microcracks in the material. If the criterion (2.2) is satisfied:

2 2
G{zﬂ 1-v, <G, (4.3)
V4 E

m

the microcracks do not propagate, i.e. a = a;,; = const., where a;,; denotes
the initial radius of the penny-shaped cracks. The damaged material beha-
ves linear elastically, according to the specification of (3.9) for (3.19) and

4.1

-1
S, = Em[l + ?ch(l —y? )} E, (4.4)
If, however, (2.3) and (2.4) are satisfied:
2 2
G, :%(QJ:GC @5)
V4 E,

the cracks propagate such that the crack radius increases (do > 0) while the
equality (4.5) remains satisfied. This renders the uniaxial macroscopic
stress X33 as a function of the crack radius a.

{ GE
233(“): 4a(1 _mj;) (4.6)

When assuming that N = const. during crack propagation, the corre-
sponding strain Es; = FEj;3(0) follows from substitution of (4.6) into the
stress-strain relation (4.4),

E33(a)= {KE‘G(}”_T)[I‘F?NQS(I—V;!)} 4.7

(4.6) and (4.7) describe stress-strain relations in parameter form, with the
crack radius a as the parameter, see descending crack propagation paths in
Fig. 4.1a and 4.2b.
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Fig. 4.1. Effective stress-strain behavior in uniaxial tension of a microcracked brit-
tle material (Fig. 3.1b), predicted by combined fracture-micromechanics model on
the basis of material constants of Silurian sedimentary rock (Table 4.1): (a) effect
of initial crack radius o;, and (b) effect of number of cracks per unit volume, N

Table 4.1. Material constants, uniaxial tensile strength, and uniaxial compressive
strength of Silurian sedimentary rock [14]

E[GPd v,[-] K,JMPa/m] GlJ/m’| Z,[MPa] [5|[MPd]

49.4 0.24 1.74 57.76 13.6 158

(4.6) and (4.7) propose that materials with the same number of differently
sized microcracks exhibit identical softening paths in the X33-E;3; space
(Fig. 4.1a). However, the peak stresses (theoretical tensile strengths) of
such materials decrease with increasing initial crack radius o, (Fig. 4.1a).
On the other hand, materials with different numbers of equally sized mi-
crocracks exhibit identical peak stresses (Fig. 4.1b). Related softening
paths are, however, the steeper the fewer cracks are contained in the RVE
(Fig. 4.1b). Summarizing these results, effective strain-softening under
uniaxial tension can be, at least qualitatively, predicted by a combined
fracture micromechanics model based on Griffith's energy release rate
criterion.

4.2 Uniaxial Macroscopic Compression — Axial Splitting

To study axial splitting, we consider a RVE subjected to the macroscopic
uniaxial compressive stress state
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X=X, ®e, 2, <0 (4.8)

In order to represent the crack patterns observed in corresponding expe-
riments [35, 36, 37], we consider cracks with normals n (Fig. 2.2) perpen-
dicular to the direction of loading (n(d) L e, < 6 €0, «] in Fig. 2.4), i.e.
we introduce microcracks with orientations axisymmetrically distributed
with respect to the axis of loading, the x, axis in Fig. 3.2. Opposed to the
situation in Subsection 4.1, consideration of the crack opening (¢ # 0) is
mandatory for appropriate determination of the energy release (see (2.20)
and discussion below), even if the crack is only slightly opened. Accordin-
gly, the released energy & for every single of many axisymmetrically
distributed microcracks embedded in the considered RVE follows from

insertion of (3.25), relating X\ to X, /(1 — fc), into (2.19), yielding

2m’s? ’
g=—21 (Ej + 0(5) 4.9)
(- £ VE,\a a
Calculation of (5; requires derivation of € with respect to a [see (2.6)].
Thereby, the dependence of /. on a [see (3.17)] must be taken into account,

which yields
243} ’
G, Zh(E}O(Ej (4.10)
3E \a a

Since c/a << 1, quadratic and higher-order terms in c¢/o. may be neglect-
ed, rendering G; as
_ 2c3,
3E

m

G, (4.11)

The relation (4.11), together with the crack propagation criteria (2.2)-
(2.4), allows for testing whether or not macroscopic loading X;; on the
RVE of the microcracked material leads to propagation of the individual
microcracks in the material. If the criterion (2.2) is satisfied:

2c3?
=%<GC 4.12)

m

G,

the cracks do not propagate, i.e. a = a;,; = const., and the damaged material
behaves linear elastically, according to the specification of (3.9) for (3.22)
and (4.8):
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-1
5, = Em[l . 4—”Nazcj E, (4.13)
3
If, however, (2.3) and (2.4) are satisfied:
2c%;
G1=%=GC (4.14)

m

the cracks propagate such that the crack radius increases (do > 0) while the
equality (4.14) remains satisfied. Since (4.14) does not depend on «, it
follows that stable crack propagation (increase of o) requires a constant
macroscopic stress: 2; = const. (Fig. 4.2). This is a remarkable difference
to macroscopic uniaxial tension where stable microcrack propagation re-
quires a decreasing loading of the RVE (Figs. 4.1a and 4.1b). (4.14) deli-
vers the macroscopic stress 2, associated to microcrack propagation as

2, (a)=- 36E, _ const (4.15)

2c

When assuming that N = const during crack propagation, the correspond-
ding strain E; = E;(a) follows from substitution of (4.15) into the stress-
strain relation (4.13),

2
E, (a)=— [2G:Lu| | dNaC (4.16)
2c 3

(4.15) and (4.16) describe stress-strain relations in parameter form, with
the crack radius o as the parameter. Related crack propagation paths yield
a stress plateau in the 2;- £}, space (Fig. 4.2). Thereby, the absolute value
of the bearable compressive stress increases with decreasing crack half
opening width (Fig. 4.2). However, Griffith's energy release rate criterion
does not predict strain-softening under uniaxial compression. In this line,
the experimentally observed strain-softening behavior [36] would have to
be caused by failure effects after the sample has split up into many slender
“columns”, i.e. by buckling and bending and/or tilting and sliding of these
columns. Experimental observations of [38] foster this argumentation: The
characteristic stress strain curve referring to unconfined axial compression
shows, before the stress drop beyond the peak load, a region of almost
vanishing inclination of the stress strain curve, i.e. a quasi-plateau, such as
predicted by our model. In this region of the stress strain curve, a large




268 Bernhard Pichler, Christian Hellmich and Luc Dormieux

number of isolated fractures are formed, and fracturing clearly predomina-
tes along the direction of loading [38].

a = 13mm.  N=10000m""

200! — c'_m_:0.26nnn _____________
- = — C. .= 0.17mm —_
s ini . : < T
S 150t — cr,m:O.l.auun P ooy
= 100 : deef by
W crack propagation
501 - ,
paths
a ; ; : .
0 1 2 3 4
B, 1 x10~

Fig. 4.2. Effective stress-strain behavior in uniaxial compression of a micro-
cracked brittle material (Figs. 3.2b and 3.2c), predicted by combined fracture-
micromechanics model on the basis of material constants of Silurian sedimentary
rock (Table 4.1): effect of initial crack half opening width c¢;,;

4.3 Determination of the Initial Microcrack Radius and of the Initial
Microcrack Half-Opening from the Uniaxial Tensile Strength and the
Uniaxial Compressive Strength

By example of brittle Silurian sedimentary rock [14] (Table 4.1), experi-
mentally determined uniaxial strength values in tension and compression,
2, and X, will be used for identification of the (initial) geometric pro-
perties of the microcracks: The initial crack radius a;,; follows from setting
233 =2, and in (4.5) and solving the resulting expression for g, yielding

7E,G,

= =12.86

according to the material constants listed in Table 4.1. The initial crack
half-opening c;,; follows from setting the stress 2;; =2, in (4.14) and sol-
ving the resulting expression for ¢, yielding

3E.G,
Cini = 2
2%,

(4.17)

=0.17mm (4.18)
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according to the material constants listed in Table 4.1. Remarkably, (4.17)
and (4.18) imply that the ratio between the uniaxial compressive strength
and the uniaxial tensile strength depends on the Poisson's ratio of the ma-
trix and on the initial crack aspect ratio cini/a;,; (Fig. 4.3).

T, __ |6l )(C_]l (4.19)

)y T a

tu

ini

This is a key result of the combined fracture-micromechanics approach
of Subsection 3.5. According to (4.17) and (4.18), the Silurian sedimentary
rock, described in [14], is characterized by an initial microcrack aspect ra-
tio equal to ¢;,=0;,; = 1/75.

70 80 90 100
(c/a)” []

Fig. 4.3. Ratio between the uniaxial compressive strength 2, and the uniaxial ten-
sile strength 2, as a function of the crack aspect ratio c¢/a and Poisson's ratio of the
matrix, v, predicted by the combined fracture-micromechanics approach

cini = 0.17mm may appear as quite large, however, one should take into ac-
count that c¢;,; is the half opening of an equivalent penny-shaped crack.
Real crack surfaces in rocks are not plane but have some kind of micro-
roughness (Fig. 4.4), and the initial opening of real cracks might be well
below 0.17mm. If such a crack is modeled by an equivalent (ideal) penny-
shaped microcrack, the initial opening of the latter accounts for both the
microroughness and the initial opening of the real crack (Fig. 4.4). There-
fore, modeled crack openings are always larger than the real ones.
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TN _

Fig. 4.4. Representation of (a) a realistic crack shape with microroughness by (b)
an equivalent elliptic crack

4.4 Confined Macroscopic Compression — Axial Splitting

To study axial splitting under confined compression, we consider a RVE
subjected to the macroscopic triaxial compressive stress state

Y=3,6®e¢+2,(e,®e +e,®e,), I,<0,Z

11 =

<0 (4.20)

33 =

where 2, is the predominant axial compressive stress and 23; is the lateral
confinement pressure. In order to represent the crack patterns observed in
corresponding experiments [35, 36, 37], we again consider cracks with axi-
symmetric orientation and non-vanishing crack half-opening widths, ¢ #0,
as in Subsection 4.2 (Fig. 3.2). The released energy € for every single of
many axisymmetrically distributed microcracks embedded in the conside-

red RVE follows from insertion of (3.25), relatingZ; to X,/ (l - fc)and
¥, /(1= £.), into (2.22), yielding

:3(1—fc)2 E, 3 E,
2% —252%, (143, 202 )}(E} O[EJZ

Em(l—fc)2 a a

Calculation of G requires derivation of € with respect to a [see (2.6)].
Thereby, the dependence of . on a [see (3.17)] must be taken into account:

q:42§3a1—v31 1+4072Na3(cj L2 253(1+vm+4v31—4vfn)+
T E 9 a 3 E

m m

2
L2228 5143y, -2 )}(cj N OEcj

E a a

m

8a’%:, 1-v +E3[Z§3(l+vm+4vi—4vi)+

(4.21)

(4.22)

In order to assess whether or not Griffith's energy release rate criterion
has the potential to satisfactorily predict material damage under confined
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compression, it is useful to consider onset of microcracking, by inserting
G, from (4.22) into the condition (2.3), yielding

4l {1 , 407NG’ (cﬂ . a{Zé(l v A - 4v,3n)+

G

T E, 9 a 3 E,
i i (4.23)
L2525, 2143y, =202 )}(cj _G
E, a

when having neglected the higher-order terms O(c/a)” in (4.22). Solving
(4.23) for X, delivers the predominant axial compressive stress at onset of

microcracking, denoted by X;, as a function of the lateral confinement

pressure 2i;.
1 1
ziil’ — _\/3G0Em _ 6233(1 _viz)(cj 2 + 233 1+3vm _2‘}31 + %Cjz (424)
2a Via a 2 a

Evaluation of (4.24) for the material parameters of Table 4.1 and for o,
and c¢;,; according to (4.17) and (4.18), proposes that an increase of lateral
confinement pressure from zero up to 1% of X, increases the predominant
axial compressive stress at onset of axial splitting, but only by less than
1% (Fig. 4.5). Further increase of the confinement pressure is predicted to
decrease the predominant axial compressive stress at onset of axial split-
ting, which contradicts experimental findings.

a. = 13mm. c. .=0.17mm
mi mi
LO0 - - s i p i e st g g
T 150 S
| 100 SEREEEE P skt GEEEEEE CEIELET R LRt
?A]_
158.5
158 : : : -
0 0.5 1 1.5 2 2.5

1Z,,| [MPa]

Fig. 4.5. Predominant axial compressive stress at onset of microcracking as a fun-
ction of the lateral confinement pressure, predicted by combined fracture-micro-
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mechanics model on the basis of material constants of Silurian sedimentary rock
(Table 4.1)

This contradiction is due to the fact that we do not account for the sign
of the microstress component o, in the vicinity of the crack edge (Fig.
2.1). In case of uniaxial compression parallel to the crack plane, these
stresses are tensile. If confinement stresses orthogonal to the crack plane
are additionally applied, the initially tensile stresses o,, become compressi-
ve, already at very small confinement pressures. Consequently, crack pro-
pagation becomes impossible and (4.23) as well as (4.24) are no longer
valid. Hence, the presented approach proposes that, under such confine-
ments, brittle failure is not associated with mode I propagation of cracks in
the direction of predominant compressive axial loading, but with propaga-
tion of closed, inclined cracks. This shear mode type of crack propagation,
however, is not the topic of the present paper. Summarizing these results,
Griffith's crack propagation criterion based on energy release rate is seen
to be applicable also to compressive stress states, but it is mandatory to
account for the sign of the normal stresses in the vicinity of the crack edge,
acting in the crack normal direction.

5 Conclusions

The aim of this paper was to assess the potentials and the limitations of
Griffith's energy release rate criterion to predict effective stress-strain
behavior of brittle materials damaged by microcracks propagating in
cracking mode I. For this purpose, Griffith's energy release rate criterion,
related to a single penny-shaped crack embedded in an infinite matrix
subjected to remote uniform stresses, was combined with stiffness estima-
tes for RVEs of damaged (microcracked) materials taken from continuum
micromechanics. As regards uniaxial tension, this combination allows for
modeling macroscopic strain-softening as a result of propagation of
microcracks, i.e. as a microstructural effect. Hence, Griffith's energy
release rate criterion has the potential to predict, at least qualitatively, the
behavior of microcracked materials under uniaxial tension. Thereby, the
microcracks may be modeled as sharp cracks (as commonly introduced in
fracture mechanics), since sharp cracks release (during tensile crack
propagation) an amount of energy similar to that released by slightly
opened cracks. As for uniaxial compression, however, the non-vanishing
opening width of the microcracks must be taken into account, even though
it is commonly by orders of magnitude smaller than the in-plane crack
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diameter. There, the described combination of fracture and micromecha-
nics proposes that macroscopic axial splitting under uniaxial compression
is characterized by a constant stress level. Remarkably, the proposed
model reveals that the ratio between the uniaxial tensile strength and the
uniaxial compressive strength is a function of the crack aspect ratio, i.e. the
ratio between the crack half-opening width and the crack radius.
Therefore, the combined fracture-micromechanics approach accounts for
the basic strength properties of brittle materials simply by introducing
geometric properties of the microcracks within the RVE. However,
Griffith's energy release rate criterion does not have the potential to predict
effective strain-softening under uniaxial compression. The latter would
have to be explain-ned by buckling or tilting of slender columns after
disintegration of the material. As a further limitation, Griffith's energy
release rate criterion alone was found to be insufficient for prediction of
axial splitting caused by confined compression: A complementary stress
criterion accounting for the sign of the microstresses in the vicinity of the
crack edge would be necessary.
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Summary

In this paper the essential mechanical behavior of rockfill materials is
modeled using a hypoplastic continuum approach. Critical states are inclu-
ded in the model for large shearing. With respect to a pressure dependent
relative density the model can capture the essential mechanical properties
of initially loose and dense granular materials with a single set of
constants. While the calibration and application of hypoplastic models has
already been extensively investigated for fine-grained materials like sand
and powders, the present application to weathered rockfill materials is a
first attempt to describe coarse-grained materials with a low and decree-
sing grain hardness. Particular attention is paid to modeling the influence
of the initial density, the pressure and the moisture content of weathered
broken rock on the incremental stiffness. An increase of the compressibi-
lity and a decrease of the limit void ratios with an increase of the moisture
content of the grains is modeled in a simplified manner using only a
moisture dependent granular hardness. The comparison of the numerical
simulations of isotropic compression tests and triaxial compression test
with experiments shows that the model captures the essential properties of
weathered rockfill materials for both dry and water saturated grains. The
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possibility of spontaneous shear band bifurcation under plane strain
compression is analyzed and discussed for different initial densities.

1 Introduction

The mechanical behavior of rockfill materials is mainly determined by the
grain hardness, the grain shape, the grain size distribution, the packing
density, the orientation of contact planes, the stress state and the loading
history. Stiffness and shear strength are influenced by the pressure level,
the packing density and the rate of deformation and are therefore not
material constants, e.g. [12]. The mechanical behavior of broken rock is
different for unweathered or weathered grains. The degree of geological
disintegration, i.e. by chemical weathering or by the intensity and the
orientation of micro-cracks, has a significant influence on the granular
hardness and as a consequence on the evolution of grain abrasion, grain
breakage and grain size distribution. Depending on the state of weathering
the propagation of micro-cracks due to water-induced stress corrosion can
be strongly influenced by the moisture content of the grains [24]. Under
higher stress levels the disintegration of grains can be accelerated by
moisture, which leads to a reduction of the resistance to compaction and
shearing [19, 20, 23].

The focus of the present paper is on modeling the mechanical behavior
of broken rock materials using a hypoplastic continuum approach. In
hypoplasticity the evolution equation for the stress tensor is formulated
with a nonlinear isotropic tensor-valued function depending on the current
state quantities and the rate of deformation. Unlike the classical concept of
elasto-plasticity no decomposition of the deformation into elastic and
plastic parts is needed in hypoplasticity [13, 21]. In order to model
inelastic material properties the rate of deformation tensor is incorporated
in the constitutive equation in a nonlinear formulation. With a pressure
dependent density factor the influence of pressure and density on the
incremental stiffness, the peak friction angle and the dilatancy can be
modeled for an initially loose or dense state using a single set of constants
[2, 15, 33, 34]. Limit states or so-called critical states are included in the
constitutive equation for a simultaneous vanishing of the stress rate and
volume strain rate. Originally hypoplastic material models were developed
and calibrated for dry and cohesionless granular materials like sand. A
comprehensive historical review can be found for instance in Wu and
Kolymbas [37], Bauer and Herle [6].
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While in the hypoplastic model by Gudehus [15] and Bauer [2] for
granular materials with unweathered grains the so-called granular hardness
is assumed to be constant, an extension of this version with a granular
hardness depending on the moisture content is discussed for applications to
weathered broken rock materials in the present paper. Herein the granular
hardness is related to the grain assembly in the sense of a continuum
description and does not mean the hardness of an individual grain. It is
demonstrated that with the moisture content as an additional state variable
the extended model captures the essential properties of weathered rockfill
materials with a single set of constants for both dry and moisture grains.
The model is calibrated for a weathered broken granite and the results
obtained from the numerical simulation of element tests are compared with
experiments. Finally the possibility of a spontaneous shear band
bifurcation under plane strain compression is analyzed for different initial
densities and for dry and wet conditions.

Throughout the paper compression stresses and strains are defined as
negative. Bold lower case, bold upper case and calligraphic letters denote
vectors, tensors of second order and of fourth order, respectively. In parti-
cular, the identity tensor of second order is denoted by I and the identity
tensor of fourth order is denoted by I. For vector and tensor components
indices notation with respect to a rectangular Cartesian basis e, (i=1,2,3)

is used. Operations and symbols are defined as: ab=a.b,, Ab= A4 b e,

iYio oY

a®b=abe e, I=J;e ®e,, I=0,0,e ®e Q¢ ®e,

i
ARB= A,.jBk,ei ®ej ®e, ®e,, AB=A1.,(B,{je,. ®ej, I:A=4,, and
A:B=4,,B,e ®e,. Herein 5, denotes the Kronecker delta and the
summation convention over repeated indices is employed. A superimposed

dot indicates a time derivatives, i.e. A= dA/d¢, and the symbol [[A]]
denotes the jump of the field quantity A at the discontinuity.

2 Granular Hardness and Pressure Dependent Limit Void
Ratios

It is experimentally evident that for weathered rockfill materials the com-
pressibility is higher for a wet than for a dry material as illustrated in Fig.
(2.1). For a pre-compressed material under dry conditions (path A-B) a
following wetting leads to an additional settlement along the path B-C. For
a continuing loading the load-displacement curve (path C-D) follows the
curve A-D obtained for an initially wet material, i.e. the memory of the
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material of the pre-compaction under dry conditions is swept out if the
load-displacement curve obtained for the wet material (path A-D) starts
from the same initial density. In this context it is important to note that for
different initial densities the compression curves are different for both dry
and wet states of the material [20].

Load
A

R
Y

Settlement

water added

1

I
o |
initially ~~!
wet [

Fig. 2.1. Compression behavior of weathered broken rock in dry and wet states

In the following the compression behavior is first discussed for a dry
granular material and modeled using a relation between the void ratio e
and the mean pressure p =-1:T/3 where T denotes the Cauchy stress

tensor. The evaluation of numerous tests has shown that the compression
behavior of various cohesionless materials can be approximated with the
following exponential function [1]:

3 n
e=e,exp —(h—pj . @.1)

s

Herein the constant e, denotes the void ratio for p~0, A has the

dimension of stress and » is a dimensionless constant. The quantity of 4,

is called granular hardness [15] which is related to the grain aggregate
under isotropic compression and different from the hardness of an

individual grain. Experimental investigations show that the quantity of A,

reflects the isotropic pressure where grain crushing becomes dominant.
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More precisely, s, represents the isotropic pressure 3p at which the

compression curve in a semi-logarithmic representation shows the point of
inflection while the exponent n is related to the inclination of the
corresponding tangent (Figure 2.2a). For high pressures the void ratio in
Eq. (2.1) tends to zero, which can be explained by grain plastification and
grain crushing. Relation (2.1) is consistent within a very wide pressure
range with the exception of states p — oo, which are characterized by a

phase transition of the material.

s

€o _| lcompression curve €io

eCO
| |point| of inflection \

€do

hs (3p) (3p)
(a) (b)

Fig. 2.2. (a) Isotropic compression relation (1) in a semi-logarithmic representa-
tion, (b) Pressure dependence of the maximum void ratio e,, minimum void ratio

e, and critical void ratio e,

For the evolution of the current void ratio e the assumption is made that
the volume change of the solid material can be neglected. To this end, the
rate of the void ratio can be directly derived from the mass balance, which
yields:

é=(1+e)1:D. (2.2)

Herein the rate of deformation D is defined as the symmetric part of the
velocity gradient of the grain skeleton. It can be noted that relation (2) is
not restricted to granular materials with permanent rigid grains because the
requirement of a constant solid volume is also fulfilled for a volume
constant deformation of individual grains, grain crushing and abrasion.
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Under the same pressure cohesionless granular materials can show
differrent packing densities of the grain assembly so that the void ratio can
range between a maximum void ratioe; and a minimum void ratioe, . In

order to represent the range of possible void ratios for a given granular
material it is convenient to consider the so-called phase diagram of grain
skeletons [16] as sketched in Figure (2.2b). Herein the limit void ratios e,
and e, are pressure dependent and they decrease with an increase of the
mean pressure p . The upper bound, e;, can be related to an isotropic com-
pression starting from the loosest possible skeleton with grain contacts, i.e.
there exists no homogeneous deformation which goes beyond e=e;.
Values of e, will be achieved by cyclic shearing with very low amplitudes
and nearly fixed mean pressure. By contrast, large monotonic shearing
leads to a stationary state, which is characterized by a constant stress and
constant void ratio. The void ratio in such a limit state, which is called
critical void ratio, e, , is not a material constant. Experimental observations
with sand specimens (e.g. [8]) indicate that the critical void ratio decreases
with the pressure p. It was suggested by Gudehus [15] to postulate that
the maximum void ratio e;, the minimum void ratio e, and the critical

void ratio e, decrease with the mean pressure according to

i:e_d:e_ff:exp _(3_1)} , (2.3)
e

€0 €0
where e,,, e, , and e, are the corresponding values for p =~ 0as shown
in Figure (2.2b).

In order to model the influence of disintegration of a stressed rockfill by
a reaction with water a degradation of the granular hardness with an
increase of the moisture content « of the solid material is assumed in the

following. To this end the constant granular hardness 4, in Eq.(2.3) is

replaced by the moisture dependent quantity 4., i.e. [7]

hy =h,p(w). (2.4)

Herein A, is the value of the granular hardness obtained for the dry
material, ie. h, is related to w=1, and w(w)<1 denotes the

SO

disintegration factor depending on the moisture content @ of the grain
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material. A lower value of A’ means a higher compressibility of the
material as illustrated in Fig. (2.3a).

e Ml e o e 10

0.85

1 10 25 75

(3p)
(a) (b)

Fig. 2.3. Influence of the moisture content (solid curves: dry state, dashed curve:
wet state) on (a) compression behavior, (b) limit void ratios

A specific representation of the scalar function y/(w) can be obtained by

curve fitting experimental data. Due to the lack of experimental data for
states with intermediary moisture contents, only a distinction between the
granular hardness in the dry and the water-saturated state will be
considered in the present paper. Then the disintegration factor l//(a)) can be
obtained by comparing the compression behavior for the dry material with
the water saturated material using the compression relation (2.3) for the
maximum void ratioe;, i.e. w(w)=1 for the dry state and the value

obtained for the water-saturated state must be y(w)<1. It is obvious that

with a degradation of the granular hardness according to relation (2.4) the
pressure dependent limit void ratios and the critical void ratio obtained
from relation (2.3) are lower for z//(w) <1 as illustrated in Fig. (2.3b).
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3 Hypoplastic Model

3.1 Inelastic Material Properties

In hypoplasticity inelastic material properties are modeled with a constitu-

tive equation of the rate type where the objective stress rate Tis expressed
by an isotropic tensor-valued function consisting of the sum of the tensor
function A:D, which is linear in the rate of deformation D , and the tensor

function BA/D : D , which is nonlinear inD , i.¢.

T=A:D+BJD:D (3.1)

Herein A and Bare tensor-valued functions of the fourth order and
second order, respectively. In the simplest case A and B only depend on
the current Cauchy stress tensor T, i.e. A=A (T) and B=B (T), but for

a refined modeling of the material behavior it may also depend on
additional state quantities as outlined in the following sections. The
constitutive equation (3.1) is positively homogeneous of the first order in
D, thus the material behavior to be described is rate independent. With the
nonlinearity in D an inelastic material behavior is modeled in
hypoplasticity with a single constitutive equation and there is no need to
distinguish between elastic and plastic parts of the deformation explicitly
[21]. Limit states are included in the constitutive equation for states in

which D#0 and T=0. In particular for a vanishing stress rate Tit
follows from the constitutive equation (3.1) that T and D in the limit
state satisfy the relation

A:D+ByD:D =0. 3.2)

The normalized rate of deformation,ﬁ, can be obtained from Eq.(3.2)
to:

55" -A":B. (3.3)

Inserting Eq.(3.3) into the identity D:D=1 leads to the stress limit
condition [10]:

(A":B): (A" :B)-1=0 (3.4)

The set of all stresses which fulfill this condition can be represented by a
surface in the stress space which is called limit stress surface, e.g. [35]. It
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is worth noting that Eq.(3.4) first fulfills only the requirement for a
vanishing stress rate and it is only related to critical stress states if the
second requirement for a vanishing volume strain rate is also fulfilled, i.e.

I:D=1:(A":B)=0. (3.5)

In order to model critical states for any deviatoric stress direction Egs.
(3.4) and (3.5) are necessary conditions for specific representations of A
and B as firstly discussed by Bauer [1] and von Wolffersdorff [30].
Furthermore in a stationary state the right-hand side of Eq. (3.3) must be
homogeneous of degree zero in T, otherwise the critical stress ratio would
not be invariant with regard to the stress level.

3.2 Density, Pressure and Moisture Dependent Properties

In order to take into account the influence of the density, the pressure and
the disintegration of the granular hardness on the incremental stiffness the
state quantities of the tensor functions 4 and B of the constitutive Eq.
(3.1) are extended with the current void ratio e and the moisture

dependent granular hardness 4., ie. A=A(eh;,p,T) and

B=B(e,h,,p,T). Herein the mean pressure is defined as p=-1:T/3.

To specify these tensor functions a factorized representation is used in a
way similar to those proposed by Gudehus [15] and Bauer [2]. In particular

with A= f (e}, p) L(T) and B=f,(e,h],p) f,(e,h, p) N(T) the
extended constitutive equation can be written as:

T=f.(e.hs p) [LD):D + £, p)NCEWDD | (3.6)

In Eq. (10) the scalar factors f, and f, are called stiffness factor and
density factor, respectively. The fourth order tensor Z(T) and the second
order tensor N("i“) are isotropic tensor-valued functions of the normalized
stress tensor T = T/(1:T) and the corresponding deviatoric part
T :"i"—I/3. The requirements (3.4) and (3.5) for modeling critical states
are satisfied for the following specific functions [5]:

LMT)=4’T+T®T, (3.7)

N =a*(T+1°). (3.8)
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e F

fo=l="1 ==/ (3.9)
e T:T

ff{e_ed] : (3.10)
e.—ey

Herein a is related to the stress limit condition in critical states as
outlined later on and a<0.5 and f>1 are constitutive constants. In

relations (3.9) and (3.10) the current void ratio e is related to the
maximum void ratioe;, the minimum void ratio e, and the critical void
ratio e, . According to the relations (2.3) and (2.4) the quantities ¢;, e, and

e. decrease with the mean pressure p and they are lower for a smaller

granular hardness 4 (Fig. 2.3b). Factor f, models the influence of the
pressure, density and granular hardness on the incremental stiffness while
factor f, triggers the dilatancy behavior and the peak friction angle.
Under shearing a stress peak is defined for a vanishing stress rate and for
f, #1. A closer inspection shows that for an initially dense material, i.e.
e<e, and f, <1, the part f,(e,h’, p)N(T) ||D|| in (3.6) decreases and a

higher peak friction angle is obtained. As a consequence of dilatancy the
void ratio increases after the peak and it tends towards the critical void
ratio e.. Shearing of an initially loose material, i.e. e>e, and

consequently f, >1, leads a densification towards the critical void ratio,
but no stress peak appears. In a critical state, e=e,, the value of the
density factor f, =1 and it is independent of the initial void ratio, the

pressure level and the granular hardness. It can be proved that for
unlimited monotonic shearing a stationary stress state T, and void ratio e,

is reached asymptotically both for an initially dense and for an initially
loose state [1]. By substituting the conditions for critical states, i.e.
T.=0 ,e.=1:D,=0 and f, =1, into the constitutive equation (3.6)

the following relation for the stress limit condition in critical states is
obtained [1,5]:

-0. (3.11)
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(a) (b)

Fig. 3.1. (a) Critical stress surface in the space of principal stress component, (b)
contour of the stress limit condition in the 7 -plane

By substituting the identity ’i‘: =T- I/3 into (3.11) it is obvious that in
the space of principal stress components the stress limit condition
representts a conical surface with its apex at the origin of the stress space
(Fig. 3.1a). The scalar g, in (3.11) can be interpreted as the radius of the
trace of the critical stress surface in the z -plane, i.e. a, is equal to the
Euclidean norm of the normalized stress deviator (Fig. 3.1b). Apparently
the size and shape of the critical stress surface is fully determined by factor
a of the constitutive equation. By choosing suitable representations for a
the reproduction of various conical limit surfaces is possible without loss
of the general form of the constitutive equation (3.6) as outlined in detail
by Bauer [5]. In the present paper the stress limit condition given by
Matsuoka and Nakai [22] is considered, which can be modeled by factor a
as:

a=TE i1,
3—sing

(8/3)- 3T 1)+ y32(i" 7 ) cos(30) (3.12)

1+ \/3/_2(1“* :i‘*)l/z cos(30)

Herein ¢ denotes the critical friction angle and @ is the Lode-angle,

with b=

which is defined as:
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~ %3

cos(30)= 6 LT

(172 o

Since a is embedded in the constitutive equation (3.6) it is always
effective and only for cases where T" = Tc* the value of a obtained from
Eq. (3.12) is equal to the limit condition given by Matsuoka and Nakai, i.e.
a(T =T )=a, =T :T".

In order to link Eq. (3.6) with Eq.(2.1) it was postulated by Gudehus [15]
that the response of the constitutive equation (3.6) for an isotropic
compression starting from the loosest state, i.e. e =e,,, must coincide with
the proposed compression law (2.1). This condition permits the direct
determination of factor f, in (3.9), yielding:

1-n
h l+e, (3

:nhi e h:

i

(3.14)

with &, =

8sin’ ¢ 1 22 sing (e,o —e, ja

(3 —sin go)2 3—sing \e, —e,

It follows from relation (3.14) that the stiftness factor f, in (3.9) is

proportional to the moisture dependent granular hardness /.. Therefore

the moisture content of the solid material is not only taken into account for
the isotropic compression behavior and the pressure dependent limit void
ratios in relation (2.3), it generally influences the incremental stiffness
modeled by the constitutive equation (3.6).

The present hypoplastic model for cohesionless granular materials
includes 9 constants which can be determined from simple index and
element tests [2, 18]. In particular 4, and n can be determined from the
compression behavior of the dry material, y depends on the moisture con-
tent . The quantities ¢ and e, are related to the critical state in triaxial
compression, o and £ depend on the peak friction angle, and e,, and e,
are the limit void ratios for a nearly stress free state. Since the current void
ratio e is related to the pressure dependent limit void ratios by the
functions f, and f,, the constitutive constants are not restricted to a
certain initial density. In the present paper the calibration of the constants
is based on the experiments carried out by Kast [20] with weathered
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broken granite. The following values were obtained: ¢ =42°,
h, =75MPa, w =1 for dry states and w =0.34 for the water saturated
state of the solid material, n=0.6, ¢, =0.85, e, =039, ¢, =0.2,
o =0.125 and S =1.05. It should be noted that in the present model the
critical friction angle ¢ is assumed to be a constant because the experi-

ments used for the present calibration did not show a clear influence of the
moisture content on the critical friction angle.

3.3 Comparison of Numerical Simulations with Experiments

The results obtained from the numerical simulation of homogeneous
element tests are compared with experiments carried out by Kast [20] for
isotropic compression (Fig. 3.2) and triaxial compression (Fig. 3.3 and Fig.
3.4). Under isotropic compression starting from an initial void ratio of
e, = 0.46 the densification is significantly higher for the water-saturated

state of the solid material (Fig. 3.2b) than for the dry state (Fig. 3.2a).

e 050 e 050
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045} ! ! L 045 - : '
[ ] N ~ &
- ! Tw .
040 f : | — 0.40 - N‘unh -
ol )
s Experim.
035 - 0.35
0 0.8 16 24 0 0.8 16 24
(3p)[MPa] (3p)[MPa]
(a) (b)

Fig. 3.2. Isotropic compression starting from an initial void ratio of
e, =0.46 : (a) dry state (v =1), (b) saturated state (y =0.34)

For a mean pressure of p =0.8MPa the corresponding void ratios are

e=0.418 for the dry material and e=0.378 for the saturated solid
material. These are the initial states for the triaxial compression under a
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constant mean pressure of p =0.8MPaas shown in Fig.(3.3). As the

initial void ratio is higher than the corresponding pressure dependent
critical one, i.e. for p=0.8MPa — e, =0.34 for the dry material and

e. =0.31 for the saturated material, the triaxial compression leads to a
further densification for both the dry material and the saturated material.
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Fig. 3.3. Triaxial compression under constant mean pressure starting from an
initial void ratio of: (a) e, = 0.418 for the dry state (y =1), (b) e, =0.387 for

the saturated state (y =0.34)

The increase of the mobilized friction angle ¢,,, with the vertical strain
&,, 1s more pronounced for the dry material (Fig. 3.3a) than for the satu-

rated one (Fig. 3.3b), which is also in agreement with the experiments. In
order to study the influence of an initially dense material the experiments
for triaxial compression under a constant mean pressure of p =0.8MPa
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starting from e =0.29 for the dry material and e =0.285 for the saturated
solid material are compared with the prediction of the hypoplastic model in
Fig.(3.4).

A comparison of Fig. (3.3) with Fig. (3.4) shows that the volume-strain
behavior is strongly influenced by the initial density and it differs for the
dry and saturated states of the solid material. The additional densification
is less pronounced and the maximum mobilized friction angle is higher for
the initially dense material. A clear peak state for ¢, , can only be de-

tected for the dry and initially dense material (Fig. 3.4a). After the peak the
value of ¢,,, slightly decreases with advanced vertical compression and it

is accompanied by dilatancy. For the saturated and initially dense state of
the material the dilatancy is less pronounced.
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Fig. 3.4. Triaxial compression under constant mean pressure starting from an
initial void ratio of: (a) e, =0.29 for the dry state (y =1), (b) ¢, = 0.285 for the

saturated state (y =0.34)
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4 Shear Band Analysis or Plane Strain Compression

In this section the possibility of a spontaneous shear band formation under
plane strain compression at a constant lateral pressure is studied. Of parti-
cular interest is the influence of the density, pressure level and granular
hardness on the lowest stress ratio and the inclination angle of the shear
band at the onset of shear band formation. The present investigation is
based on the general bifurcation theory [17, 25, 26, 29]. The bifurcation
condition is derived in a way similar to the ones outlined for hypoplastic
models in earlier publications (e.g. [3, 4, 9, 10, 11, 14, 31, 32, 36]). A
comprehensive historical review of the individual contributions can be
found for instance in Tamagnini et al. [27, 28].

T2

Ty

Fig. 4.1. Orientation ¢ of the shear band under plane strain compression

In the following the possibility of a spontaneous formation of a shear
band is studied for discrete states (e, h;,T) with respect to a fixed
Cartesian co-ordinate system as sketched in Fig. (4.1). The shear plane or
so-called discontinuity plane is characterized by a different velocity
gradient Vv on either side of this plane. The jump of the velocity gradient
can be represented by the dyadic product of the unit normal n of the
discontinuity plane and a vector g defining the discontinuity mode of the

velocity gradient [4], i.e.
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[Vv]=g®n=0. (4.1)

The condition for a continuing equilibrium across the discontinuity
requires the jump of the stress rate normal to the discontinuity plane to be
zero [25]:

[T]In=0. 4.2)

Herein the jump of the stress rate can be related to the jump of the
Jaumann stress rate, i.e.

[T =[[T]+[[WI] T~ T[[W]]. (4.3)

where T is the response of the hypoplastic model (3.6) and W denotes
the antisymmetric part of the velocity gradient. Inserting the Jaumann
stress rate into Eq.(4.2) leads to the relation:

£(L:l)n+2 £ fNn+[W]Tn-T[[W]n =0,

with:

: [w]-£=nn28

2

> B

A=[[ VD:D ]].

At the onset of a shear band bifurcation the quantities f,, f,, L and

N of Eq.(3.6) are the same on either side of the discontinuity plane and
they are independent of the velocity gradient. It is a peculiarity in
hypoplasticity that the possibility of different incremental stiffnesses due
to a different velocity gradient on either side of the discontinuity is taken
into account by the single relation (4.4) and there is no need to distinguish
whether the material outside the shear band undergoes loading or
unloading (e.g. [3, 9, 31]). Relation (4.4) can be rewritten as K g =1 r or:

g=1K"r, 4.5)
with:
1
K_fs bl +Eb27
b, =d*(1+n@n)+(f @en)t, (46)

b, =(n(Tn))I-m®n)T-T+T(n®n)
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and

r=—ff;a(T+1")n. (4.7)

Inserting relation (4.5) for g into the norm of [[D]], Le.

ADE (gg)+(gn)” (g n)’ _y (4.8)

leads to the bifurcation condition:

f(0)=\/(K_lf)(K_lr)+[(K_lf)“]2 ~T_o. 4.9)

2 2

The components of the unit normal n of the discontinuity plane are
related to the unknown shear band inclination angle &, i.e.

n= [—sin 3, cos Y, O]T with respect to the co-ordinate system in Fig. (4.1).

K and r depend on the current state quantities: e, 4., and T. In order to
find the lowest possible bifurcation stress ratio the value of y/ | /I| can be

set equal to 1 as discussed for instance by Wu et al. [32] and Bauer [4].
Thus, relation (4.9) represents an equation for the unknown ¢, whereby
only real solutions to (4.9) indicate the possibility of a shear band
bifurcation.

For a homogeneous plane strain compression under a constant lateral
stress of 7}, =—0.8MPa the results are shown for an initial loose material

(Fig. 4.2a) and an initially dense material (Fig. 4.2b) for both dry state
(w =1) and water saturated state (y =0.34) of the solid material. In all

the tests an initially isotropic stress state was assumed. The stress-strain
curves and volume-strain curves show a strong influence of the initial void
ratio and they are different for the dry and the water saturated material. In
particular the incremental stiffness at the beginning of compression is
higher for an initially dense material and a dry state. The densification is
more pronounced in the case of an initially looser material and for
saturated states. Dilatancy can only be detected for the initially dense and
dry material.

Starting from the isotropic state the bifurcation criterion (4.9) was
examined for the individual stress paths. In Fig. (4.2) the first possibility
where a shear band can appear is marked with a dot. Therefore the bold
part of the curves denotes states in which a spontaneous shear band
bifurcation is not possible. But states above the first bifurcation point
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(dotted curves) again fulfill criterion (4.9) also for y > | i| as discussed in

detail for an inherently isotropic material by Bauer [4]. It can clearly be
seen that the smallest stress ratio for a possible shear band bifurcation
occurs before the peak state. The stress ratio is lower for the initially
higher void ratio and for the saturated state of the material. But for the
same initial density the difference of the predicted stress ratio for the dry
state and the saturated state of the material is not very pronounced. The
shear band inclination 4 is higher for the initially denser material and the
dry state.

Toy 7 Ty 7 P R
T T, [9=59.1¢ o
1 g 1 g i e
------- e
5 119— 55. ‘O’ .- e 5 - '19:: 57.40
T e /
4 -7 9= 54.7 4
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2 4
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—€22 _622
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002 002N
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.‘\*n
-0.08 - -0.08
0 0.05 0.10 0.15 0 0.05 0.10 0.15
-E92 -E92
(a) (b)

Fig. 4.2. Onset of shear band bifurcation under plane strain compression starting
from an initial void ratio of: (a) e, = 0.418 for the dry state (w =1), e, =0.387

for the saturated state (y = 0.34), (b) e, =0.29 for the dry state (y =1),
ey =0.285 for the saturated state (y = 0.34)
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5 Conclusions

A hypoplastic continuum model is presented to describe the essential
properties of weathered rockfill materials. In particular an increase of the
compressibility and a decrease of the limit void ratios with an increase of
the moisture content of the solid material is modeled in a simplified
manner using only a moisture dependent granular hardness. The
constitutive equation for the evolution of the stress is based on nonlinear
tensor-valued functions depending on the current void ratio, the stress, a
moisture dependent granular hardness and the rate of deformation. As the
hypoplastic concept does not need to distinguish between elastic and
plastic deformation the calibration of the constitutive constants is rather
easy. The calibration is carried out based on experiments for a weathered
broken granite. It is demonstrated in this paper that the mechanical
behavior of an initially loose and dense material can be captured with a
single set of constants. The comparison of the numerical simulations of
isotropic compression and triaxial compression with experiments shows
that the model captures the essential properties of weathered rockfill
materials for both dry and water saturated grains. For a homogeneous
plane strain compression under a constant lateral stress the possibility of
spontaneous shear band bifurcation is analyzed for different initial states. It
can be concluded that the lowest possible bifurcation stress ratio occurs
before the peak and the stress ratio and shear band inclination is higher for
dry and an initially dense state of the material.
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Summary

We consider a mechanism of macroscopic crack growth and failure in rock
and rock mass in compression based on three-dimensional patterns of
stress non-uniformity associated with generation of multitudes of wing
cracks. In 3D each wing crack has a limiting ability to grow and hence
cannot produce sample failure on its own. Neither the crack coalescence
can form 3D patterns that can evolve into a macroscopic crack. Instead
opening and shearing of the wing cracks produce additional stress
disturbance. The combined effect of the stress disturbances from all wing
cracks results in a non-uniform stress field spatially varying in a random
fashion. The main feature of such a field is that any plane running through
the sample can potentially have parts subjected to tensile stress alongside
with the parts under compression (the average stress equal to the applied
external load acting on this plane). As the load increases, these stress
variations become stronger and, eventually, produce a macroscopic tensile
crack at the place where the tension was maximal. Further growth of the
macrocrack proceeds by initiating new segments, offset from the main
crack plane in order to avoid the places under compression. This
apparently en-echelon fracture is formed through a specific mechanism of
tensile crack growth rather than coalescence. The macroscopic crack is
inclined to the direction of axial compression at the angle maximising the
average magnitude of the tensile parts of the stress field. This angle depend
upon the ratio between total normal opening (dilatancy) and shear of the
wing cracks, which in its own term depends upon the material micro-



302 A.V.Dyskin and E. Pasternak

structure and the confining pressure. When this ratio is above a certain
threshold, the macrocrack will be parallel to the direction of axial
compression producing splitting. When the ratio is below the threshold, the
macrocrack will be inclined and look like shear fracture.

1 Introduction

Failure in compression of heterogeneous materials such as rocks and, at
large scales the Earth’s crust, is characterised by two major modes (see
Germanovich et al. 1994 and the literature cited there): (1) splitting or
columnar failure, predominantly observed in uniaxial compression; (2)
shear or oblique failure observed in triaxial compression and, often in
uniaxial compression. In the latter case the sample is broken by what
appears as shear cracks.

The most popular approach to describe shear failure is to use the Mohr-
Coulomb theory or its various modifications, which adequately represent
experimental data related to the oblique failure. In this theory, as well
known, the direction of the future fracture is determined as the one at
which the shear stress reaches the friction stress at the least load magnitude
the latter being referred to as the compressive strength. The drawbacks of
this theory are also well known. Firstly, it has a contradiction in itself since
it is based on friction properties of a not yet existing interface. This
immediately turns the Mohr-Coulomb criterion into an empirical one in
which the friction parameters are treated as internal material parameters to
be back calculated from the results of compressive tests. Subsequently, the
application of the criterion becomes limited to the cases allowing direct
testing, which often excludes in-situ characterisation since direct transfer
of laboratory data to large-scale situations is precluded by the scale effect.
The second drawback is the inability of the Mohr-Coulomb theory to
explain the splitting. In view of these drawbacks a considerable effort was
devoted to developing micromechanical models of failure.

The majority of models developed to explain splitting are based on the
concept of wing crack — the crack generated by a local stress concentrator
(a pre-existing shear crack or pore or a certain type of grain contact)
assuming that the wing crack can grow extensively at least under uniaxial
compression as observed in 2D experiments (e.g., Brace and Bombolakis
1986, Horii and Nemat-Nasser 1986). The failure is attributed either to the
growth of one of the wing cracks throughout the whole sample or to
unstable crack growth caused by interaction between the cracks (e.g.,
Ashby and Hallam 1986, Germanovich and Dyskin 1988, Kemeny 1991).
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These 2D models fail however to recognise the fact that the real three
dimensional wing cracks have an intrinsic limitation to the growth
preventing the wing elongation beyond the size of the initial shear crack
even in the most favourable case of uniaxial compression, Fig. 1.1.

2D wing crack 3D wing crack

b b

11 11
(@ (b)

Fig. 1.1. Wing crack growth in uniaxial compression: (a) 2D wing crack growth.
The wings are capable of extensive growth and can reach lengths macroscopic as
compared to the length of the initial crack; (b) 3D wing crack growth. The wings
have intrinsic limitations to their growth. Their maximum dimensions are
comparable with the size of the initial crack, Dyskin et al. (2003).

Modelling of shear failure in compression, that takes into account the
fact that the shear cracks do not propagate in their own plane, but rather
kink, is based on considering various mechanisms of wing crack
coalescence (e.g., Wittmann 1981, Stavrogin and Tarasov 2001) or en-
echelon formation (e.g., Horii and Nemat-Nasser 1986, Schulson 1990,
Reches and Lockner 1994). A typical model of en-echelon crack is shown
in Fig. 1.2a. The main feature of models of this kind is that they are two-
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dimensional. As soon as one returns to a real 3D situation the picture
becomes complicated. Indeed, a direct three-dimensional analogue of the
en-echelon model is an arrangement sketched in Fig. 1.2b. Two conditions
should be satisfied to make such an arrangement possible. Firstly, all wing
cracks or the corresponding parts of the wings participating in the
formation of the en-echelon crack should be more or less parallel to each
other. Secondly, since the wings are more or less equiaxial, the ones
forming the en-echelon crack should have suitable spatial arrangement.

In order to make the idea of en-echelon crack formation viable, it is
therefore necessary to identify the mechanism(s) ensuring these arrange-
ments. If one hypothesises that the cracks forming en-echelon constitute
only a portion of all cracks then, inevitably, extremely high concentrations
of such cracks should be assumed. In particular, given that the dimensions
of the wing cracks in rocks are often of the order of the grain size, the first
of the above conditions demands that the grains happened to be in the
place of future en-echelon crack be already separated from the rest of the
rock volume. Indeed, while the wings separate the grain from the sides, the
initial crack that initiated the wings separates the grain from above or
below (the compression direction being vertical). This obviously
contradicts the experimental observations according to which the
formation of macroscopic shear fracture does not yet lead to full rock
separation.

The above consideration suggests that the cracks forming en-echelon
were not there initially, but rather were formed in the process of
propagation of the macrocrack.

Direct finite element simulations of failure in heterogeneous materials
are based on specifying failure criteria for each finite element (e.g., Zou et
al. 1996). In essence, these criteria are usually chosen similar to the ones
deduced from the tests on macroscopic samples. Therefore, the question of
the failure criterion is simply shifted from macroscopic to microscopic
scale without actually producing the relevant failure mechanism. Models
treating the shear cracks as planes of strain localisation (e.g., Rudnicki and
Rice 1975) face the same problem: the material behaviour at the micro
level should resemble the macroscopic behaviour the model is set to
explain. To complicate the matter further, the direct numerical simulations
suffer from mesh-dependence which renders the simulations unusable.

Dyskin (1999) noticed that the wing cracks create considerable stress
non-uniformity (spatial stress fluctuations) with the material in some
places subjected to tensile stresses and therefore capable of generating
tensile cracks. Based on this idea a 3D model of splitting crack formation
and propagation was proposed. In this paper we extend this idea to model
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the formation and propagation of inclined tensile cracks which produce
oblique (shear-like) failure.

2D en-echelon 3D analogue?

HH HH

11 11
(@) (b)

Fig. 1.2. ‘En-echelon’ crack: (a) 2D en-echelon crack as depictured following
cross-section observations in rock samples or the Earth’s crust; (b) a schematics of
possible 3D analogue of en-echelon crack. It is assumed that the vertical fractures
being parts of wing cracks are approximately equiaxial, as shown in Fig. 1.1. The
broken line shaded area signifies a cross-section of observation, while two
inclined broken lines indicate the position of traces of the en-echelon crack in the
cross-section.

2 Mechanism of Crack Propagation in Non-Uniform Stress
Fields

The stress field generated by wing cracks as well as other heterogeneities
is non-uniform and random owing to their random locations, orientations,
shapes and dimensions. In the parts of the sample where the stress
variations become tensile new cracks can be generated and grown to
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macrocracks, Dyskin (1999). Fig. 2.1 explains a possible mechanism of
tensile macrocrack formation and propagation. Fig. 2.1a shows a possible
realisation of random field of a normal stress component Gs;; the stress
increasing from dark to white, such that the dark areas correspond to
compression, while the white areas correspond to tension. For the
illustration purpose, only a section parallel to the (x,, x3) plane is shown.
Obviously, the first crack (crack 1) is generated at the area with the
maximum tensile stress. This crack will propagate until it is arrested in the
areas subjected to compression. As the applied load increases, so does the
amplitude of the stress variations. Further propagation of crack 1 will
however be prevented by similarly increased compression; instead a new
crack (crack 2) will be generated where the original stress distribution
showed no compression. This will result in a discontinuous offset-type
trajectory of crack growth, which in the real 3D case will look like the one
shown in Fig. 2.1b. Essentially, the crack segments will be situated at
places where no compressive stresses acted. On average, the magnitude of
these stresses is equal to the mathematical expectation of positive (tensile)
values

c, = _[max (5,0)f (0)do 2.1)

where o denotes the relevant stress component, f{c) is the probability
density function.
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Fig. 2.1. Macroscopic crack formation and growth under spatially random stress
field: (a) a realisation of the random stress field 633; the maximum compression is
shown in black, the tension - in white. The first crack segment (crack 1) appears at
the place of maximum tension. Crack 2 is then generated at the closest place
where the compressive stress is minimal (whitish spot), then other segments
(cracks 3 and 4) are generated in the same fashion; (b) a 3D structure of the
compound (en-echelon) macrocrack; (c) the macrocrack is modelled as a crack (a
cross-section is shown) with Winkler layer of stiffness & that depends upon the
size and the density of the segment cracks

We will model such a complex compound (en-echelon) crack, macrosco-
pically, as a planar crack with Winkler layer, i.e. we will assume that
opening of the crack is resisted by linear links between the faces, Fig. 2.1c.
These linear links model the action of intact material between the crack
segments. The Winkler layer is characterised by stiffness & that locally
relate the mutual normal displacement of the crack faces Avand the
normal stress &, 6 = kAv, the stiffness k being dependent upon the crack
segment sizes and concentration. We will also assume that the faces of the
macroscopic crack are subjected to a uniform load o, associated with the
action of stress fluctuations. We assume further that the macro-crack is
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disk-like of a radius R. We will characterise the conditions of its growth
using the macroscopic scale, where we can employ the conventional

criterion of crack propagationK, = K, . Here K, is the macroscopic

fracture toughness which characterise the conditions of creation of the new
crack segments.

Since the macrocrack is much larger than the characteristic size of the
Winkler layer, E/k, where E is the Young’s modulus of the rock, the

stress intensity factor has the following form, Shifrin (1988)

E
K, = 2.2
O i) &2

One can see that the stress intensity factor is independent of the
macrocrack size, i.e. the macrocrack can support its own growth without
an increase in the load.

A remark should be made with respect to the concept introduced.
Macroscopically, the considered crack grows as an open tensile crack.
However, it is also subjected to shear stress. The corresponding shear
component of the relative displacement of the crack faces creates tensile
stresses on one side of the macrocrack contour and compressive on the
other. In the process of the macrocrack growth the tensile stress
concentration leads to the appearance of small tensile cracks
approximately oriented in the vertical direction and predominantly located
on one side of the macrocrack, Fig. 2.2. It is these cracks that create
impression of en-echelon nature of the macrocrack. It has also been
observed on sample cross-sections by Moore and Lockner (1995) that
these vertical cracks are biased to one side of the macrocrack.

We shall now introduce a method for estimating the fluctuation-induced
stress ©;. Suppose the random stress is Gaussian with the uniform
mathematical expectation, o, and standard deviation, £. Then direct
calculations give:

c, = z{gB-oD(— g)} \/%Eez}

2

xX°
e 2dx

2.3)

— Gav

1 X
E= s q)(x)_ﬁj.o

Therefore, in order to determine the fluctuation-induced stress one needs
to know the statistical properties of the Gaussian stress fluctuations. These
will be determined in the following section.
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Secondary

T T T vertical cracks

Fig. 2.2. Formation of secondary tensile cracks in the process of macrocrack
growth. These secondary cracks may be responsible for the en-echelon
appearance.

3 Statistical Properties of Non-Uniform Stress Field Created by
Many Wing Cracks

In order to quantify the mechanism by which this field produces and drives
macrocracks we need to determine the mathematical expectation and
variance of this field.

Suppose that the rock volume is loaded such that in a similar homo-
geneous volume a uniform stress field o;° (i,k=1,2,3) would be produced.
In the case of compression of magnitude p in x; direction (see the co-
ordinate frame on Fig. 3.1) and confining pressure of magnitude ¢ in the
normal directions

0 0 0 0 0 0
0, =0y, =—¢, O3 =—p, O, =0;; =0, =0 (3.1
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The actual stress field oy is of course different from the uniform one,
predominantly owing to the effect of wing cracks with some contribution
from other heterogeneities. Nevertheless its volumetric average over the

whole sample,<6ij>, is equal to Giio' Indeed, suppose a volume V is

loaded at its external surface S by tractions Gl.l.on ;» Where n; is the external

normal vector to S, while its internal surfaces (e.g., pores or cracks) are
free from external load (only contact forces can act there). We will also
neglect the body forces.

We use the following identity which is based on the divergence theorem

! Oy (x)x/”kds = ;[ (Gik (X)x/ ),k v, = ;[ Ok (X)xjde + ;[ Oy (X)Sjdex (3.2)

The first integral in the right-hand part is equal to zero because of the
equations of equilibrium with zero body forces. Because the actual and
uniform stress fields corresponds to the same tractions at S, one obtains

<Gi].> = %Jcii (x)dV, = % Icik (x)x_/.nde
v S,

- % .[Giko(x)xjnde = <G,-j0> = Gl.jo (3.3)
So

Furthermore, assuming ergodicity, the mathematical expectation of this
random stress field can be found

;ik = <O—ik> = O-iko (34

In order to estimate the variance of the stress field generated by the wing
cracks we model each crack by a dislocation loop, Fig. 3.1, with the shear
component of the Burgers vector, b;, directed parallel to the axial load and
the normal component, b,, directed perpendicular to the axial load. The
shear component reflects the contribution of the wing crack to the non-
linear part of axial strain, while the normal component reflects the wing
crack contribution to dilatancy. As further simplification, in order to
account for the collective effect of the wing cracks while neglecting the
peculiarities of the shape of each crack, we replace the dislocation loops
with point defects. It will be done by limiting transition of the loop area, 4,
to zero keeping the corresponding volumes, U=b.4, U,=b,A, constant.
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~
~

Initial shear crack

Secondary tensile cracks (wings)

£

Fig. 3.1. Wing crack evolved form an initial inclined shear crack (left) and its
model as a dislocation loop (right) with Burgers vector (b,,b,).

We represent, following Landau and Lifshitz (1959), the dislocation loop
through equivalent body forces

fi = % 7\’iklm [(n/bm + nmbl )S(C)],k 4 (35)
where n,, and b,, are the components of unit normal vector to the loop and
the Burgers vector respectively, 8({) is the delta-function of coordinate
€ along the normal vector, (A) denotes differentiation with respect to x,

(summation is presumed over repeated indexes) and A, is the tensor of

elastic moduli. For isotropic rock with the Young’s modulus E and
Poisson’s ratio v it has the form:

E |1 %
7\‘iklm = m |:5 (Silskm + 6im6k1 ) + E 8ik 6lm:| (36)

We now represent the crack as a point defect located at a point
X,, L= 1,...,M , where M is the number of wing cracks in the rock

volume and take into account that in this representation the Burgers
vectors are constant

b=Un +UB,;. (3.7)

Here we considered that the normal vector, according to Fig. 3.1 is
always perpendicular to the x; axis. As a result, we come up with the
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following expression for the body forces through the volumes of crack
opening/shear

f; = %}\‘iklm (nlbm + nmbl )S(X - Xu),k (38)
Now, using identity (3.2) and the equilibrium equations
S+ /; =0, (3.9)

with the body forces (3.8) one can express the volumetric average of the
stress field generated by these point defects, which is the average stress
field outside the wing cracks. It reads

ast\ _ 0
O =G0y

M
+Ll U,,“(n,.“nkH +V5ikj+1U,u(”,~u5k3 +”ku853)
l+v V5 1-2v 2

(3.10)

where o;° is the applied load, V is the rock volume, M is the number of
wing cracks in the volume (this number can grow as loading progresses),
the superscript index p refers to a particular wing crack. It is important to
distinguish between this stress field which essentially represents the
stresses generated at a distance from the wing cracks (since this
approximation relates to the scale from which the wing cracks are seen as
point defects) with the full stress field (that includes stresses in immediate
neighbourhoods of the wing cracks) which volumetric average is given by
equation (3.4).

Direct computations of the correlation function for the stress fields in the
point defect approximation, Dyskin (1999), suggested that the correlation
length is of the order of the wing crack size. Based on this observation, we
break the sample volume V into M parts V;, A=1,...M such that the
averages over V;, <o;>, are approximately independent from each other.
Then from the ergodicity, the variance Var(<c;>;) can be expressed
through the variance of the full volumetric average, Var(<c;>). We
assume that the latter is adequately represented by the variance of (3.10).
For wing cracks uniformly oriented in the (x, x,) plane, assuming that the
average values of shear ‘volume’ U, and volume of opening of wing cracks
U, are independent, one obtains

t2
Va”<0,~k >;¥ = 5 [Kz (l - 6i36k3)+ (61‘3 +8;3—28,39,, )]
NEU (3.11)

t= L
2(1+v)

NEU,
Kt =

“2(1+v)
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where N is the number of wing cracks per unit volume, k has the meaning
of the ratio between dilatancy and inelastic part of the axial strain.

4 A Mechanism of Splitting and Oblique Failure in Compression

Consider a plane inclined at an angle y to the x; axis and determine the
average tensile stress o, acting on that plane. Substituting (3.1), (3.11) into
(2.3) one obtains

2

1 = 1 ’
e 2 cos’ Yk’ +2tan’ y — psinz\y+qcosz\u{f—q:v—EJ
27w ( ) ( )

2(q+ptan2 \I’) 4.1)

tyJic? +2tan’ y

c, =

N |~

Fig. 4.1 shows stress (4.1) for /=p and for different ¢ and . It is seen that
for k=1 stress o, reaches maximum at y=0, which corresponds to splitting.
Small values of k lead to oblique failure. Since for ¢g>0 mainly oblique
failure is observed, k should be small as compared to tan(y).

O,

p qg=0

0.15

0.1
xk=0.1
0.05 14=0.3
k=0.01
0
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0.002

0.001

k=0.3 \

10 20 1=0.0130 40 50 W
—
\\K\I g=1
k=0.3 \\
e o
10 20

30 40 45 50
] ‘ k=0.1 W
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Fig. 4.1. Dependence of average tensile stress acting on a plane vs. the angle of its
inclination for various values of the lateral compression ¢
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For uniaxial compression the critical value of k has the form

_pN2m | [2mp?

cr 2

p +1 4.2)

Subsequently, & > K corresponds to splitting, while k <k, corre-

sponds to oblique or ‘shear’ failure.

We now assume that the opening of the wing cracks is mainly controlled
by sliding of their shear part and for that reason the average opening is
proportional to the deviatoric stress acting on them such that
t=n(p—q), where n is a factor. We also assume that the macrocrack
start propagating when the positive component of stress fluctuations acting
in its plane reaches a certain critical value: 6, = &, . For the case of low

values of «, such that,/«x? + 2tan? y ~+/2 tany, W€ can rearrange expression
(4.1) in the following way:

(p - q)siny cosy = c+(psin2 \|J+qcosz\u)tan(p 4.3)
where
c= 72\/%3" e?, tang= {% ~ (- &)} 72\%6" e? 4.4
n n

This is an expression similar to Coulomb-Mohr criterion. In general its
parameters are not independent of p and ¢. If, in addition, £~>p the
Coulomb-Mohr parameters will change little and can be considered
independent of the loads p and ¢.

The values of parameters depend upon the factors associated with the
wing cracks, their sizes and distributions. However, the mechanism itself is
scale-independent.

5 Conclusions

It is demonstrated that the random stress non-uniformity created by the
multitude of wing cracks is sufficient to induce tensile cracks and then
make them grow as a macroscopic tensile fracture. Its structure — a set of
crack-segments as well as vertical cracks induced by shear stresses in the
process of its growth create an appearance of en-echelon fracture. The
macroscopic fracture is inclined to the direction of axial compression at the
angle maximising the average magnitude of the tensile parts of the stress
field. This angle depends upon the ratio between total normal opening
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(dilatancy) and shear of the wing cracks. When this ratio is above a certain
threshold, the macrocrack will be parallel to the direction of axial
compression producing splitting. When the ratio is below the threshold, the
macrocrack will be inclined and look like shear fracture.
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Summary

The paper presents results of numerical simulations of the behaviour of
quasi-brittle materials (like concrete) under plane strain conditions. Two
boundary value problems with a dominating failure mode 1 were
simulated: uniaxial tension and a three-point bending test for concrete
beams with a different size. To model the material behaviour, two different
continuum approaches were used: elasto-plastic and an isotropic damage
constitutive model with non-local softening. Attention was focused of the
effect of a characteristic length on the width of strain localization and load-
displacement curve, and an identification of a characteristic length on the
basis of the load-displacement curves only from size effect tests.

1 Introduction

The analysis of concrete elements is complex due to occurrence of strain
localization which is a fundamental phenomenon under both quasi-static
and dynamic conditions [5], [9], [17], [48], [50]. It can occur in the form of
cracks (if cohesive properties are dominant) or shear zones (if frictional
properties prevail). The determination of the width and spacing of strain
localization is crucial to evaluate the material strength at peak and in the
post-peak regime. The concrete behaviour can be modeled within
continuum mechanics models using, e.g.: non-linear elasticity [34],
fracture [4], [24], endochronic theory [3], [8], micro-plane theory [7], [27],
plasticity [11], [33], [38], [48], damage theory [11], [16], [20], [37] and
coupled plastic-damage approach [14], [26], [32], [42], and discrete
models using a lattice approach [23], [30], [43], [49] and DEM [18], [19],
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[41]. To describe properly strain localization within continuum mechanics,
the models should be enhanced by a characteristic length of micro-
structure [13]. There are several approaches within continuum mechanics
to include a characteristic length and to preserve the well-posedness of the
underlying incremental boundary value problem in engineering materials
as: second-gradient [17], [35], [36], [37], non-local [2], [10], [16], [39] and
viscous ones [13], [45]. Owing to them, objective and properly convergent
numerical solutions for localized deformation (mesh-insensitive load-
displacement diagram and mesh-insensitive deformation pattern) are
achieved. Otherwise, FE-results are completely controlled by the size and
orientation of the mesh and thus produce unreliable results, i.e. strain
localization becomes narrower upon mesh refinement (element size
becomes the characteristic length) and computed force-displacement
curves change considerably depending on the width of the calculated
localization. In addition, a premature divergence of incremental FE-
calculations is often met.

The aim of the present paper is to compare the FE-results of the width of
strain localization in concrete elements (characterized by a failure mode I)
during uniaxial tension and three-point bending using two different
continuum models enhanced by an internal length of microstructure:
isotropic elasto-plastic model and isotropic damage model both with non-
local softening. The FE-results with respect to the load-displacement
curves were compared to some laboratory experiments and the size effect
law by Bazant [5]. Attention was focused of the effect of a characteristic
length on the width of strain localization and load-displacement curve, and
an identification of a characteristic length on the basis of the measured
load-displacement curves only.

2 Constitutive Models for Concrete

2.1 Elasto-Plastic Model
An elasto-plastic model with isotropic hardening and softening using two

yield conditions was assumed. In a compression regime, a Drucker-Prager
criterion was defined as [1]

1
fl:q+ptan¢)—(1—§tan(p)ac(Kl), .1
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where ¢ — von Mises equivalent stress, p — mean stress, ¢ — the internal
friction angle, ¢, — uniaxial compression yield stress and x; — hardening
(softening) parameter equal to plastic vertical strain in uniaxial
compression &/ . The invariants p and g were defined as
1 3
D =§crkk and q= Esijs'/’ , (2.2)

where o;; is the stress tensor and s; stands for the deviatoric stress tensor.
The flow potential function was taken as

g =q+ptany, 2.3)

where i is the dilatancy angle. In a tensile regime, a Rankine criterion was
assumed with the yield function

f, =max{o,,0,,0}—0,(k,), 2.4)

where 0,, 0, and o3 — principal stresses, g, — the tensile yield stress and x; —
softening parameter (equal to the maximum principal plastic strain &).
The associated flow rule was assumed.

2.2 Damage Model

An isotropic damage continuum model describes the degradation of the
material due to micro-cracking with the aid of a single scalar damage
parameter D growing from zero (undamaged state) to one (completely
damaged state). The stress-strain function is represented by the following
relationship

o, =(1—D)Cf“£k,, (2.5)

where Cj, — linear elastic material stiffness matrix and &, — strain tensor.

The damage parameter D acts as a stiffness reduction factor (the Poisson
ratio v is not affected by damage). The growth of the damage variable is
controlled by a damage threshold parameter x which is defined as a
maximum of the equivalent strain measure £ reached during the load
history up to time ¢. The loading function of damage is

f(&x)=&-max{x,Kk,} (2.6)
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where &p — initial value of k¥ when damage begins . If the loading function f°
is negative, damage does not develop. During monotonic loading, the
parameter x grows (it coincides with &) and during unloading and
reloading it remains constant. To define the equivalent strain measure ¢ ,
two different criteria were assumed: a) a von Mises failre criterion in terms
of strains [37] and b) Rankine failure type criterion [28]. In the first case &

was [37]

- k-1)
,,G:LlﬁL ( )2112+ 12k2J2’ 2.7
2k(1-2v) 2k (1-2v) (1+v)

where v is the Poisson’s ratio, and I; and J, are the first invariant of the
strain tensor and the second invariant of the deviatoric strain tensor,
respectively:
1 1,
I =¢,+¢6,+¢; and J, :E & _gll , (2.8)

The parameter k in Eq.2.7 denotes the ratio between the compressive and
tensile strength of the material. In the second case, the equivalent strain
measure £ was [28]

F: :%max{afff b, (2.9)

where E denotes the Young modulus and ¢ are the principal values of

the effective stress o/

o =Clye, (2.10)

To describe the evolution of the damage parameter D, an exponential
softening law was used [37]

K Bl
D=1-—(1—a+ae ™),
KO( ) @2.11)

where o and f are the material parameters.
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3 Non-Local Approach

To describe strain localization, to preserve the well-posedness of the
boundary value problem and to obtain mesh-independent FE-results, a
non-local theory was used as a regularization technique [6], [39]. Usually,
it is sufficient to treat non-locally only variable controlling material
softening [15], [39] (whereas stresses and strains remain local). It was
assumed in elasto-plasticity that the softening parameter x was non-local

z}(xk):%jw(r)x(xk +r)dv, 3.1)

where x, — coordinates of the considered (actual) point, » - distance
measured from the point x, to other material points, @ — weighting

function and 4 — weighted volume. As a weighting function @, the Gauss
distribution function for 2D problems was used

o(r)= l J;e[;] , (3.2)

where /. denotes a characteristic (internal) length connected to
microstructure of the material. The averaging in Eqs.3.1 and 3.2 is
restricted to a small representative area around each material point. The
influence of the points at the distance of =3/ is only about 0.1%. The
softening rates dx; were assumed according to the Brinkreve modified
formula [15] (independently for both yield surfaces)

di, (xk ) =(1-m)dx, (xk ) +%fw(r)d1<i (x,+r)dV, (3.3)

where m is the non-local parameter which should be greater than 1 to ob-
tain mesh-independent results [10]. Equation 3.3 can be rewritten as [15]

di, (xk ) =dx, (xk ) + m(%‘[w(r)dki (x, +r)dV —dx, (xk )j, (3.4)

Since the rates of the hardening parameter are not known at the
beginning of each iteration, the extra sub-iterations are required to solve
Eq.3.4. To simplify the calculations, the non-local rates were replaced by
their approximations dx/* calculated on the basis of the known total strain

rates [15].

est
i
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dk, (xk ) ~dx, (xk>+ m(%ja)(r)dkf‘" (x, +r)dV —di (xk )J, (3.5)

In the damage mechanics model, the equivalent strain measure £ was
replaced in Egs. 2.7 and 2.9 by its non-local definition &

E(xk)zi_[a)(r)é(xk +r)dV, (3.6)

Both models enhanced by non-local terms were implemented in the
Abaqus Standard program [1] with the aid of the subroutine UMAT (user
constitutive law definition) and UEL (user element definition) [10]. The
FE-simulations were performed under plane strain conditions. The
geometric nonlinearity was taken into account. The non-local averaging
was performed in the current configuration. The quadrilateral elements
composed of four diagonally crossed triangles were used to avoid
volumetric locking [42].

4 FE - Simulations

4.1 Uniaxial Tension

4.1.1 Elasto-Plastic Model

To study the size effect, the calculations were carried out with 3 different
concrete specimens with one notch whose dimensions (from Fe-
simulations by Gutierrez and de Borst [22]) and boundary conditions are
given in Fig.4.1. The lower and upper edge of the specimen were smooth
(no shear stress). The nodes along the bottom edge were fixed in vertical
direction. To preserve the stability of the specimen, the node in the middle
of the bottom was fixed in the horizontal direction. The deformation was
imposed by prescribing a vertical displacement u along the upper edge. To
introduce a non-homogenous strain field, a small notch at the left side at
mid-height was assumed. Three different meshes were used with 1500,
2620 and 5100 triangular elements for the small, medium and large
specimens, respectively. When calculating non-local quantities close to the
notch, the so-called “shading effect” was considered (i.e. the averaging
procedure considers the notch as an internal barrier that is shading the non-
local interaction [29]). In the elastic region, the modulus of elasticity was
taken as £=30 GPa and Poisson’s ratio as v=0.20. The diagram describing
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the tensile stress g, versus the softening parameter x» is shown in Fig.4.2.
To simplify calculations, a linear relationship o~f(x;) was assumed with
the softening modulus in tension equal to H=3.0/(3.0x10%)=1000 MPa.
The tensile strength was equal f=3.0 MPa. The non-locality parameter
m=2 was chosen on the basis of initial own FE-studies [10] and other
studies [29]. Higher values of m resulted in unrealistic large shear zone
widths. The characteristic length was taken as /=15 mm.

/IV b ,ll/
Iu
| —— N Specimen b [cm] h [cm]
small 5 10
S medium 10 20
~ =
) ~N
— | I large 20 40
b/4 <=
/
N
~ N N

Fig. 4.1. Geometry and boundary conditions of the specimen subjected to uniaxial
tension ([22])

Fig.4.3 presents the normalized load-displacement curves for different
sizes of the concrete specimen of Fig.4.1 (P — resultant vertical force, u —
vertical displacement of the top edge).

The size effect is significant, i.e. the smaller the specimen, the larger the
normalized strength and the larger the material ductility. The plots of the
non-local softening parameter &, in the neighborhood of the notch for 3
different specimens are shown in Fig. 4.4.

The calculated height of the localized zone increases with the specimen
size and is equal to 5.0 cm (3.3x/.), 6.0 cm (4x/.) and 7.0 cm (4.6x!.) for
the small, medium and large specimens, respectively. The results are
qualitatively similar to those obtained with the second-gradient elasto-
plastic constitutive model by Gutierrez and de Borst [22].
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The maximum loads obtained from FE-simulations for concrete were
compared with the energetic size effect law given by Bazant [5], [9] which
is valid for structures with pre-existing notches or large cracks:

0'=—Bft 4.1
J1-D/D,’ “.1)

where ¢ - nominal strength, B — dimensionless geometry-dependent
parameter which depends on the geometry of the structure and of the
crack, D - specimen size (equal to the specimen height /) and D, — size-
dependent parameter called the transitional size.

o [MPa]

3.0

3.0 f2(x1073)

Fig. 4.2. Assumed curve o,=f(k;) in tensile regime using the elasto-plastic model
for uniaxial tension (o, — tensile stress, x, — softening parameter)

1 —4
AN small
0.8 — .\‘ AN ---- medium
\ . —-— large
0.6 - \ AN
P \ AN
0.75f:0 0.4 — \
0.2 \ .
\“-_-_\_j::—_—:=:
0 | T | | |
0 0.2 0.4 0.6 0.8 1
% x 1073

Fig. 4.3. Calculated normalized load—displacement curves for uniaxial tension
(elasto-plastic model with non-local softening)
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b) c)

Fig. 4.4. Calculated contours of the nonlocal softening parameter &, for uniaxial

tension of a large (a), medium (b) and small (c) specimen within elasto-plasticity
with non-local softening) (different scale is used in 3 specimens)

Eq.4.1 can be rewritten as:

1 .
—2=aD+c with a=c/Dy and Bfle/x/z, 4.2)

o

To find parameters B and D, from the FE-analysis, a linear regression
was used. Fig.4.5 present the differences between stresses ¢ from the FE-
calculations (6=P/(0.75bt), b - element width, /=1.0 m — size in the third
direction) and those obtained from Eq. 4.2. A good agreement with
Bazant’s size effect law [9] was obtained. The normalized strength
decreases almost linearly with the size ratio /4//. in the considered range.

4.1.2 Damage Model

The problem of a double notched specimen under uniaxial tension was
experimentally investigated by Hordijk [25]. The geometry of the concrete
specimen (width =60 mm, height #=125 mm, thickness in the out-of-
plane direction =50 mm) and boundary conditions (similar as in Fig.4.1)
are presented in Fig.4.6. Two symmetric notches 5x 5 mm?” were located at
the mid-point of both sides of the specimen. The modulus of elasticity was
equal to £E=18 GPa and the Poisson’s ratio was v=0.2. The following
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parameters of the damage model were chosen (using Egs.2.7 and 2.11):
K, =2.1x 107, &=0.96, =500 and k=10. The characteristic length /. was
assumed to be 5 mm. Three different FE-meshes were used: coarse (1192

triangular elements), medium (1912 triangular elements) and fine (4168
triangular elements), Fig.4.7.
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Fig. 4.5. Relationship between calculated normalized concrete strength
0=P/(0.75bf) from uniaxial tension and ratio ///. (elasto-plastic model with non-
local softening) compared to the size effect law by Bazant [5]
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Fig. 4.6. Geometry and boundary conditions of a specimen with a notch under
uniaxial tension (dimensions are given in mm)
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The calculated contours of the damage parameter x in the specimen are
shown in Fig.4.8 at residual state. The results are mesh-independent since
the width of the damage region in the mid-region of the specimen is
always the same. The width of the localization zone is approximately 22
mm (4.4x1,).

a) b) ©)

Fig. 4.7. FE-meshes used for calculations of uniaxial tension: a) coarse, b)
medium, ¢) fine

Fig.4.9 presents the nominal stress—elongation tensile curves for all
meshes as compared to the experimental curve [25]. The elongation & in
Fig.4.9 denotes the elongation of the specimen above and below both
notches at the height of 35 mm (Fig.4.7). It was measured experimentally
by 4 pairs of extensometers with a gauge length of 35 mm. The vertical
normal stress was calculated by dividing the calculated resultant vertical
force along the upper edge by the specimen cross-section of 50x50 mm®.
The calculated load-displacement curves of Fig. 4.9 practically coincide
for the different meshes. They are also in a satisfactory agreement with the
experimental curve [25], although a small deviation between the theory
and the experiment (in particular after the peak) takes place.

In addition, the influence of the characteristic length /. of micro-structure
on the specimen behaviour was investigated. The FE-calculations were
performed with /. in the range from 2.5 mm up to 10.0 mm. The obtained



330 J. Bobinski and J. Tejchman

load-displacement curves are presented in Fig. 4.10. The larger the
characteristic length, the higher the maximum tensile stress. The
inclination of all curves to the horizontal after the peak becomes smaller
with increasing /. (the material becomes more ductile). The width of the
localized zone was 12 mm (4.8x/. for [=2.5 mm), 22 mm (4.4x/. for [.=5
mm), 34 mm (4.5x/. for [,=7.5 mm) and 44 mm (4.4x/, for /=10 mm), Fig.
4.11.
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Fig. 4.8. Calculated contours of the damage parameter x in a specimen under
uniaxial tension for: a) coarse, b) medium and c¢) fine mesh (damage model with
non-local softening)

The results are in a good accordance with the FE-results by Pamin [36]
and Peerlings et al. [37] using a second-gradient damage continuum
model.

4.2 Three-Point Bending

The behaviour of the concrete beam with a notch at the bottom at mid-span
and free ends during three-point bending was simulated. This behaviour
was experimentally investigated by Le Bellego at al. [31], and later
numerically simulated by Le Bellego et al. [31] and Rodriguez-Ferran et al
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[40] with a non-local damage approach. Three different beams were used
in laboratory tests: small (A=8 cm), medium (4=16 cm) and large one
(h=32 cm). The beam length was L=3/. The geometry and boundary
conditions of the beam are presented in Fig.4.12. The loading was
prescribed at the top edge in the mid-span via displacement. Three
different FE-meshes were assumed: with 1534, 2478 and 4566 triangular
elements for a small, medium and large specimen, respectively. Due to the
symmetry of the problem, only half of the beam was modeled. In the
simulations, the modulus of elasticity was taken as £=38.5 GPa and the
Poisson ratio as 1=0.2.
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/ ‘\ -=--- medium
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E 9 ] I . — — experiment
2 | N
g \\‘\
n ] - N
~ \
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0 0.01 0.02 0.03 0.04 0.05

elongation ¢ [mm]

Fig. 4.9. Calculated stress—elongation diagrams for a specimen under uniaxial
tension (damage model with non-local softening) with different FE-meshes
compared to the experimental diagram [25]

4.2.1 Elasto-Plastic Model

In the tensile regime, the Rankine criterion (Eq.2.4) using the exponential
curve in the softening regime proposed by Hordijk [25] was defined

o,(x)=1, [1+(CIZ_:j ]exp(—czZ—j—i—j(l+cf)exp(—cz) , 4.3)

where o, — tensile stress, f; — tensile strength of the concrete, x;, — ultimate
value of the softening parameter and c;, ¢, — constants equal to 3 and 6.93,
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respectively. Two different characteristic lengths were assumed in the FE-
analyses, namely /=5 mm and /=10 mm. For each characteristic length,
the following material parameters were chosen: f=3.6 MPa, x,=0.005 (/=5
mm), and f=3.3 MPa, x,=0.003 (/=10 mm) with m=2. They were adopted
to obtain the best agreement between the load-displacement diagrams from
FE-analyses and laboratory tests [311. The internal friction angle was equal
to ¢=10° [1] and the dilatancy angle y=5°. The compressive strength was
equal to £,=40 MPa. The softening modulus in compression was H.=0.8
MPa. The material parameters in the compressive regime did not influence
the FE-results.

Fig. 4.13 presents the load-displacement curves for all beams obtained
from FE-calculations with the characteristic length of /=5 mm and /=10
mm compared with experiments. A satisfactory agreement was obtained.
The FE-results overestimate slightly the load bearing capacity of the small
and medium beam and underestimate the maximum load for the large
beam. The results demonstrate that a characteristic length can be only
determined on the basis of the measured width of strain localization (from
an inverse identification process) but not from the measured load-
displacement curves.
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— N \~\
7 O\ ~
I SO
% 1 NN
Sl T\
S \~
Sselll -~ :
0 T T T T ™™
0 0.01 0.02 0.03 0.04 0.05

elongation ¢ [mm)]

Fig. 4.10. Calculated stress—elongation diagrams using different characteristic
lengths /. for a specimen under uniaxial tension (damage model with non-local
softening)



J. Bobinski and J. Tejchman 333

The width of the calculated localization zone was about 20 mm (4x/.) for
[=5 mm (Fig.4.13), and 45 mm (4.5x/.) (small beam), 40 mm (4x/.)
(medium beam, Fig.4.13) and 35 mm (3.5x/,) (large beam) for /=10 mm,
respectively. It did not depend on the mesh size.

)~

a) b) ©) d)

Fig. 4.11. Calculated contours of the damage parameter k in a specimen under
uniaxial tension: a) /=2.5 mm, b) /=5 mm, ¢) /=7.5 mm, d) /=10 mm (damage
model with non-local softening, fine mesh)
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Fig. 4.12. Geometry of the beam and boundary conditions [31]
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4.2.2 Damage model

Two different characteristic lengths were again assumed, namely /=5 mm
and /=10 mm. For each /., the following material parameters were chosen:
K=7-10" a=0.99, =600 (/=5 mm), and x;=6.25-107, &=0.99, A=1000
(I=10 mm) (using Eqs.2.9 and 2.11). A satisfactory agreement between
FE-results and experimental ones was achieved in both cases (Fig. 4.14).

a)

—— FE-simulations
---- experiments

16 cm

b) 10

8 —
— FE-simulations
6 ---- experiments
P [kN] §
N s
2 —
0

4cm, ,

Fig. 4.13. Load-displacement curves from experiments [31] and FE-simulations,
and calculated contours of the non-local parameter: a) /=5 mm, b) /=10 mm
(elasto-plastic model with non-local softening, beam height #=160 mm)

The width of the localization zone at the end of the loading process was
equal to 40 mm (8x/.) (small beam), 35 mm (7x/.) (medium beam,
Fig.4.14) and 40 mm (8x/.) (large beam) for /=5 mm, and 50 mm (5x/.)
(small beam), 60 mm (6x/.) (medium beam, Fig.4.14) and 80 mm (8x/.)
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(large beam) for /=10 mm, respectively. It did not depend on the mesh
size. The width of the localization zone was not constant and it increased
during loading [36]. Similarly as in elasto-plasticity, the FE-calculations
overestimate slightly the load bearing capacity for the small and medium
beam and underestimate the maximum load for the large beam. The same
conclusions were drawn by Le Bellego et al. [31] and Rodriguez-Ferran et
al. [40] from their simulations, although they used different definitions of
the equivalent strain £ and evolution laws.

The maximum loads obtained from FE-simulations were compared again
with the energetic size effect law given by Bazant (Eq.4.1) (Fig.4.15). A
good match was achieved. The normalized strength decreases almost
linearly with increasing size ratio 4/I. in the considered range.
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Fig. 4.14. Load-displacement curves from experiments [31] and FE-simulations
and calculated contours of the non-local parameter for beam height ~=160 mm: a)
/=5 mm, b) /=10 mm (damage model with non-local softening)
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Fig. 4.15. Relationship between the calculated normalized loads: (PL)/(E w,h’t)
and (PL)/(f;h’t) during bending (with /=5mm) and the ratio 4//. as compared to the
size effect law by Bazant [5] within: a) damage mechanics, b) elasto-plasticity

5 Conclusions

The FE-calculations have shown that both constitutive models: elasto-
plastic and damage with non-local softening are able to capture strain
localization and related size effect in problems characterized by the failure
mode I. The obtained FE-results did not suffer from the mesh sensitivity.
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A satisfactory agreement between numerical simulations and laboratory
experiments with respect to the load-displacement curves was achieved.

The larger the ratio between the characteristic length of micro-structure
and the specimen size, the higher both the material strength and ductility of
the specimen.

The width of the localized strain zone in concrete specimens increases
with increasing ratio between the characteristic length of micro-structure
and the specimen size.

The width of the localized strain zone is for uniaxial tension about (3.3-
4.5)xl. within elasto-plasticity and (4.5-5.0)x/. damage mechanics. The
width of the localized zone in beams was larger in FE-analyses with a
damage model (about (5-8)x/.) than with an elasto-plastic model (about
(3.5-4.5)xl,). It was similar in beams for the characteristic length of 5 mm,
and decreased in elasto-plasticity and increased in damage mechanics with
increasing beam size for the characteristic length of 10 mm.

The size effect decreases almost linearly with decreasing ratio between
the specimen size and characteristic length. It is in agreement with the size
effect law by Bazant.

A characteristic length of micro-structure can be only identified on the
basis of measurements of strain localization.

The calculations on strain localization in concrete will be continued. To
include plastic deformation and hardening, the damage model will be
combined with an elasto-plastic model [12]. Afterwards, the model will be
enriched by anisotropy [51]. To describe a statistical size effect, a spatially
correlated distribution of the tensile strength will be assumed [46]. In
addition, laboratory tests will be performed wherein the width of strain
localization will be measured using a DIC technique.
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Kinematics of Shear Zone Deformation in Soft
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Summary

Sensitive clays, exhibits softening, are characterized by a response in
which shear stress increases monotonically up to a peak value, and
decreases with further increase of shear strain i.e. second order work
becomes negative, during the shear deformation and will therefore develop
excess pore pressure in the shear bands. Due to the low permeability of
clays in combination with a generally high deformation rate, the failure
process is often considered being undrained and analyzed using a total
stress approach. However, if thin localized shear zones develop, local
pore-water dissipation will take place. This diffusion process may be
important to define the shear bands. To study this process an effective
stress based soil model is needed. The model must incorporate a formu-
lation for how excess pore pressures accompany the softening process.
Keeping in view, a simple direct shear sample (DSS) test and one
dimensional soil column is simulated to analyze the coupled strain
softening pore water mechanism. This study is initiated to test the
hypothesis that a finite shear band thickness may result for a given
deformation rate.

Key words: strain softening, sensitive clays, finite element analyses, shear
band
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1 Introduction

Since Biot (1941, 1965) have derived the general theory of three
dimensional consolidations and initiated research on material instability,
much effort has been devoted to the study of multi-phase media (Bardet
1992; Bowen 1982; Schrefler et al. 1990) and solid instability (Bardet
1991; Hill and Hutchinson 1975; Vardoulakis 1981; Bardet, 1990).

The mechanical response of multiphase (solid, air and water) system like
geomaterials is of great importance in engineering practice. For instance
uneven settlement of underlying soil deposits due to time dependent pore
water pressure dissipation from foundation loading, shear creep are the
most comely recognized examples. Since the end of 70’s several authors
have studied strain localization in multiphase materials. Rudnicki (1984)
analyzed a fluid saturated rock mass with an embedded weakened layer.
Rice (1985) studied the effect of material dilatancy on strain localization in
fully saturated frictional material. In recent years, much effort has been
developed to devise regularization strategies to simulate the development
of shear band in multiphase material without mesh dependency. Rice
(1985) and Vardoulakis (1985) extended the instability analyses from
single phase to multiphase materials. (Liu, 2003)

According to studies e.g. Schrefler et al (1995), Schrefler et al.(1996),
Liu et al. (2001) and Liu (2003), numerical simulation of strain
localization in a multiphase material have evidenced that mesh dependency
is not severe as in single phase material. The reason is that the governing
field eq.s a gradient term is included through Darcy’s law, an internal
length scale is introduced naturally, resulting thus a regularization for
strain localization (Loret and Prevost, 1991 and Schrefler et al. 1995). This
internal length scale depends on several material parameters and in
particular on the permeability, applied strain rates.

A numerical simulation of biaxial test by Liu (2003) reports the
importance of permeability, boundary roughness and excess pore water
pressure in strain localization phenomenon for granular material under
undrained condition.

This paper presents some initial numerical examples using the finite
element simulation to demonstrate the kinematics of shear zone
deformation governed by the coupled mechanism.
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2 Governing Equation for Coupled Flow

A coupled formulation for the description of deformation and motion of a
multiphase media are carried out on the basis of modern mixture theory,
see Bowen (1982) Ehlers (1989), Lewis and Schrefler (1998) and Liu
(2003). In this study, soil is considered as two phase media, solid and
water, sighting the assumption of a fully saturated state.

The equilibrium equation for the soil solid skeleton can be written as

INT-p-a-dV+IBT-[ jﬁ-&pw-dszV
vV V

t—At

+jBT- ja'-dz-dV @2.1)

Vv t—=At

=jNT-s-dQ—jBT-a;-dV+jNT-p-g-dV
Q 4 4

where N is the shape function, a is the acceleration, B is the displacement
vector, f is the Biot’s constant, § is the Kronecker’s delta, p,, is pore water
pressure, t is the time, V represents the volume, ¢” is the effective stresses
which represents the stress associated with the total deformation of the
multiphase media, s is the surface traction and g is the gravity.

In wide sense, in finite element analyses by using multidimensional
incremental springs, the element stiffness matrix for soil skeleton can also
be written as

D-Av=Af 2.2)

where D is fourth order tensor that characterizes the material behavior, Av
is nodal displacements and Af is corresponding nodal forces. By adding for
all elements gives the global increment stiffness matrix.

By including the time derivative of p, , eq. (2.1) can also be written as

C-AV+E-Ap=Af (2.3)
C=K,-A+C 2.4)

A=[N"-p-N-dv (2.5)

14
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CZJ.BT'Z_AlD'B'dV (2.6)
Vv
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Af =T, - f" 2.9)
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and, the continuity eq. of the pore fluid can be as following

v,y -c}-dQ—;[(VNp)T -kif” VN, -pdV—!(VNp)T

Q P

2.12)
+[(VN, ) 0" N, ‘pav + [(VN, ) - g6 5av =0

Also, for two dimensional flow cases, Darcy’s law can be written as

1 op,

a.| [k 0], ox

[quo k}L . @1
Yw Oy

Here p,, is the pore pressure and q designated to nodal flow in x and y
directions respectively. Pore water flow follows the Darcy’s law which can
be rewritten from eq. (2.12)

JT~V+M-p+R-p=qp (2.14)

T T r y
J ZIN B8 -B-vdV (2.15)
v
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Vv
T kr
R=f(VN) k=ZVN -dV (2.17)
v P
T krp T =
qujvzv -k—Vppng—jN .G -dQ 2.18)
v /up Q
After rearranging above esq., can be combined in matrix form as
C E Av] | Af 219
J (e p)] Lan] {4, |
, M,
M =—ﬂ (2.20)
v
B =R -Atg (2.21)

3 Pore Water Pressure Generation Dissipation Equation

Considering a one dimensional consolidation situation, a classical eq. of
flux flow can be written as

oP, ,0°P,
— =" —=

w

ot oz*

Assuming that drainage path is of infinite length on both sides (and
laterally impermeable surface). Then there will not be any boundary
conditions, but only the initial condition

F(z,0)=f(2) (3.2)

where f(z) is the given initial pore water pressure of the bar. By substi-
tuting Py(z,f)=F(2)G(f), we obtained two ordinary differential eq.

3.1)
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oO'F
ot w’F =0 (3.3)
% +cw’G=0 (3.4)

A complete solution can be written as
P,(z,t; )FG = (Acosyz + Bsin wz)e"zv’z’ (3.5)

Since f(x) is not assumed to be periodic, it is natural to use Fourier
integral instead of Fourier series. Also, A and B in eq. (3.5) are arbitrary
and re-garded as the function of vy, can be determined from initial
condition.

P(2,0)= [ [4(y)cosyz + By)sinpzldy = £ (2) (3.6)
Aly) = 1 Tf(v) cosyvdv (3.7)

T -
By) = L Tf(v) sinyvdy (3.3)

7 -0

and hence u(x, 0) can be written as
1 =] T
P,(z,0)=— jo [ j F(v)cos(yz — w)dv}dw (3.9)
T —o0
Finally, eq. (3.9) becomes
1 T T —cy
Pw(z,t):— I f(v) Ie cos(yz —yww)dy |dv (3.10)
T -0 0

The above eq. can be simplified to

Pw(z,t)zﬁ j f(v)exp{— (24;; ) }dv (3.11)



V. Thakur, S. Nordal, H. P. Jostad and L. Andresen 347

In order to demonstrate characteristic of eq. (3.11), a one dimensional
soil column is of length (z) with an embedded shear band thickness (v). In
this example, refer Fig. 3.1, the ratio between length of soil column to the
shear band thickness is assumed as 10. Soft clays have coefficient of
diffusion (c) equals to 0.24 m*/year.

A globally undrained soil column is subjected to shear at different strain
rates such that the local undrained to a partial drainage situation can be
obtained. Excess pore pressure is maximum within contracting shear band
due to incompressibility of pore water. At significantly higher strain rate,
distribution of excess pore pressure is quasi-static. This also represents a
situation where no pore water flow from shear band to the outside body
and hence softening can be very rapid due to drastic reduction in effective
stress. This situation is recognized as locally undrained condition.

A smooth transition of pore water is observed with decreasing applied
strain rates.

T T T T
Elastically wnloadsd media
reCeving excess pore pressure fom shear
band depanding on diferent Sran rae

s dessipition of pore water (priial drainage situaion)

pnesr.rhed‘Lhea bend prescribed shear band —

Drainage path (cm)

locally undrained
pore pressire Lmax

Elastically unloaded media
Tacaiving B¥eecs pors prascire fram chaar
band ekepeneding on differant strain rate

I | L
Eil ] [ El 0 [Ed

Fore pressure (kFa)

Fig. 3.1. Strain localized pore water diffusion from shear column
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4 Finite Element Simulation of Coupled Pore Water and Strain
Localization

A finite element model is simulated and practiced for different strain rates.
A long natural slope in soft soil shown in Fig. 4.1 is utilized for modeling
purpose, however due to specific nature of this study; only a small portion
of the slope is modeled.

At the onset of localization, plastic deformation is only concentrated in
the shear band zone and rest of the non-localized body have a rigid body
motion, which means it is more important to simulate a local model which
has embedded shear band and neighborhood explicitly. It is not a very
useful to consider complete non-localized elastically deforming slope,
because influence of localization will decrease with the increasing distance
from the shear band. This statement is true only for the present case.

For simplicity, referring to a local co-ordinate (n, s) system, a direct
simple shear model is simulated in finite element code using poro-elastic
element in order to have a coupled tangent stiffness matrix where pore
water and soil skeleton contributes simultaneously.

Fig. 4.1 Shear band in a natural slope

Simple elastic perfectly plastic with negative dilatancy material model is
considered. Experimentally affiliated parameters have been selected for the
modeling purpose, a typical soft and sensitive clay, for example the
Norwegian quick clays have shear modulus of 5000 kPa, Poisson’s ratio
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equal to 0.25, frictional angle 30 degrees, dilatancy of minus 1 degree and
horizontal and vertical permeability equal to 1x10° m/day.

In order to trigger localization, a weak perturbation is embedded within
model. Fig. 4.2 represents (a) the DSS model after deformation; (b)
localized zone and (c) consequently developed excess pore pressure and
pore water flow. A different mesh size and different strain rates were
practiced in order to study the model widely.

(a) DSS model (b) Localized zone (c) pore pressure distribution

Fig. 4.2 Direct simple shear model

5 Results and Discussion

Phenomenological characteristics of coupled localization obtained from
DSS model is discussed pedagogically. Results are presented in different
sub-sections, as follows.

5.1 Evaluation of Strain Localization

Strain localization occurs when the deformation in a continuum is loca-
lized in well defined but narrow zones of intense straining. In order to
illustrate, DSS model has been simulated and studied for different
displacement rates to observe time dependent pore water flow and
localization. Results are presented in Table 1.
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Table 5.1. Evaluation of strain localization at different strain rates

Shear strain level 0.7% 1.2% 2%

—

Displacement rate

0.07 mm/min W
|}
(fastest) %
0.007 mm/min ¢
(medium) P %
0.014 mm/min .
(slowest) X

An embedded week element initiates the localization process and
gradually progresses in neighborhood horizontally (by virtue of direct
shear). At the onset of localization shear band can propagate in any critical
direction (horizontally or vertically) due to symmetric model. But in this
case, a guided shear band development in the direction of globally applied
displacement is achieved.

For sake of brevity, only three cases are considered where globally
applied displacement rates are equal to 0.07mm/min, 0.007mm/min and
0.0014mm/min. In other words, the first two displacement rates are 50
times (0.07mm/min) and 5 times (0.007mm/min) faster than the slowest
displacement rate i.e. 0.0014mm/min. Table 1 represents the growth of
shear band at three different shear strain level e.g. 0.7%, 1.2% and 2%, for
these displacement rates.

The slowest (0.0014mm/min) deformation rate delays the localization
occurrence; refer Table 5.1, on other hand fastest deformation rate
(0.07mm/min) can cause a rapid localization. In order to justify this
statement, for instance, choose a strain level of 1.2 % and compare the
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localization pattern for all three deformation rates. At higher rate, shear
band developed more dominating and distinct, on other hand, at the
slowest rate is plastic strain distribution is more diffused in behaviour and
yet to localized in a well defined state.

Excess drainage of pore water from shear band at slower rate causes less
reduction in effective stresses and hence post peak stress strain response is
not as severe as in case of faster deformation rate. However, end result is
same for all the cases, apart from different magnitude of plastic strain
within shear band. The same time it must also be noted that finite element
analysis is certainly suffer from mesh dependency. However, coupled
analyses helps to make well posed situation up to a certain extent but at the
higher strain, hydraulic gradient between two gauss point becomes very
high, plastic strain distribution also becomes irregular, as shown in Fig.
5.1, and mesh dependent result yields.

" -

Tncremental shear strain

Total shear strain

Fig. 5.1. Incremental and total shear strains along the shear band at higher strain
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5.2 Effect of Excess Pore Water Pressure

According to laboratory observation, in drained test, depending on the
stress level, material exhibits a dilating or contracting behavior. In the
undrained test due to incompressibility of pore water will induced pore
water pressure changes (Liu 2003).

Desrues (2004) describes that the low over consolidated clays have ten-
dency of local drainage within a global undrained boundary of specimen.
By finite element simulation and analytical solution proposed by Thakur et
al (2005) shows that generation of excess pore pressure is one of the major
reasons for localization in soft and sensitive clays. A rate dependent partial
drainage characteristics coupled with localization not only influences the
strain softening behavior but also affect the shear band thick-ness. Clays
have a global undrained boundary and so global volumetric change must
be zero, however internal exchange between contracting zones i.e. shear
bands and swelling zone i.e. elastically unloading body is possible.

From Fig. 5.2, at higher deformation rate, high excess pore pressure
develops within shear band and vise versa. Higher deformation rate also
represent a more undrained situation where pore pressure is accumulated
within shear band and thus stain softening is more pronounce. In case of
slower rate of deformation, there is sufficient time for pore water to escape
and hence accumulated pore water pressure within shear band is also less
which ultimately causes a reduction in rate of softening and hence results
are less mesh sensitive.

120 T T T T
—&— 0.07mm/min ——— 0.007mm/min —— 0.0014rmm/min
100

60 "". e '-—-_—-F-r

-
40 /f L

4=
o A
-
B e
—
P i
-
) // =

0 05 1 1.5 2 25
shear strain (x10) %

excess pore pressure (kPa)

Fig. 5.2. Rate dependent pore water pressure accumulated inside shear band
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Sufficient drained condition can also be responsible for a steady state
situation, rate of pore water pressure generation and dissipation is constant,
that can lead to a definite thickness of shear band. Smooth transition of
pore water diffusion is observed at lower strain rates. At higher strain rate,
due to lack of sufficient time to reach a steady state situation, pore water
distribution profile along and across the shear band is abrupt, refer Fig.5.3.

0.07 mm/min

Excess pore pressure

N [ e et e T

&8 & kB B A& 4

b
e

0.0014 mm/min

Excess pore pressure

Fig. 5.3. Pore water pressure profile

5.3 Material Behavior

Well known that at the onset of localization domain divide in two parts i.e.
localized and elastically unloaded part. Localized part, so called shear
band emerges at low displacement and contracts as the strain concentration
increases. Due to incompressibility of pore water, excess pore pressure
develops and cause reduction in effective stress and so the mobilization.
This statement is valid for post peak condition within the perspective of
the model used for this study.
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Once the partial drainage occurs, there will be a local volume change
however global volume of the body remains constant. Shear band reduces
to an equal volume replaced by the elastically swollen media. Change in
volume depends how fast pore water is transported from shear band. If a
situation when the rate of pore water pressure dissipation equal to the rate
of pore water pressure generation, i.e. a steady state condition, the
contraction in shear band will also stop because effective stresses will not
decrease anymore. In such a situation, a definite thickness of shear band
can be expected. Fig. 5.4, represents a rate dependent stress strain
characteristics, with the decrease in strain rate, strain softening is also
reducing.

—a— 0.0014mmimin —m— 0.007remin. —a— 0. 07 mrmmin|

= @ .\M‘m
3 - Hb‘\m

i i

E 20 \.q L‘i._._‘

ﬂ"m__

-

B 18 2

Z/r"

o 02 04 06 0.8 1 1.
shear strain

(x10) %

Fig. 5.4. Stress strain curve

From the present study, it is also understandable that simple material
models can only predict the real characteristics of localization within a
limited gamut. One of the important reasons to obtain mesh sensitive
results is due to insufficient loading and unloading criterion in constitutive
modeling. This becomes more severe with over simplified simple material
models.

Fig. 5.5 shows a typical effective stress path for the DSS model analyses,
five different gauss points has been chosen, A,B,C,D and E. Point A of the
material and with equally increasing distance (in vertical direction) from
shear band respectively. In the beginning A, B localizes, however C, D, E
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never reaches to yield and starts unloading. Gauss point A always retains
in localization state and hence passes along the failure line. On other
hands, point B travel in failure line for some distance and than unloaded
due to contracting shear band but parallel to failure line, due to decrease of
effective stress caused by gain of high excess pore pressure from the
neighborhood. Similarly, point C, D, and E also violate the constitutive
rule where elastically unloading must be a rigid body motion without
changing its effective stress state.

Especially point B which receives a high excess pore pressure from the
shear band (point A) must also develop some plastic strain due to change
in mobilization and a mesh independent result can be expected. Since the
present model is not robust enough to take in account such type of facts
and hence only one gauss point A remain under softening branch and mesh
dependent results achieved. In sort, if proper criteria must utilize then a
finite element analyses can also be well posed up to certain extent within
the contrast of coupled analyses.

shear stress [kPa)

&

ST |

o 20 40 60 an 100 120
effective mean stress (kPa)

Fig. 5.5. The effective stress path
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6 Conclusions

This study brings out the importance of solid fluid interaction within the
perspective of strain localization in soft clays. An introductory exercise is
chosen to demonstrate the mechanism of shear band and pore water flow
using a simple constitutive model in finite element analyses. Rate
dependent pore water diffusion from shear band and consequently, strain
softening rate are analogously discussed. Inherence regularization in a
form of hydraulic gradient helps to handle post peak softening. Elasto-
plastic frame work with fluid coupling can also be a sufficient tool to
handle strain softening problem. However, in order to validate this
statement, a robust model must be utilized and practiced for complete
boundary value problems. In short, contracting behavior of shear bands
and pore water diffusion not only a complementary characteristics in
porous media but also opens a new technique to regularize the ill posed
boundary value problem.
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