7

Nonlinear Systems and Numerical
Optimization

In this chapter we address the numerical solution of systems of nonlinear
equations and the minimization of a function of several variables.

The first problem generalizes to the n-dimensional case the search for the
zeros of a function, which was considered in Chapter 6, and can be formulated
as follows: given F : R — R”,

find x* € R™ such that F(x*) = 0. (7.1)

Problem (7.1) will be solved by extending to several dimensions some of the
schemes that have been proposed in Chapter 6.

The basic formulation of the second problem reads: given f : R™ — R, called
an objective function,

minimize f(x) in R", (7.2)

and is called an unconstrained optimization problem.

A typical example consists of determining the optimal allocation of n
resources, &y, s, .-.,Ty, in competition with each other and ruled by a spe-
cific law. Generally, such resources are not unlimited; this circumstance, from
a mathematical standpoint, amounts to requiring that the minimizer of the
objective function lies within a subset 2 C R", and, possibly, that some equal-
ity or inequality constraints must be satisfied.

When these constraints exist the optimization problem is called con-
strained and can be formulated as follows: given the objective function f,

minimize f(x) in C R™. (7.3)

Remarkable instances of (7.3) are those in which 2 is characterized by condi-
tions like h(x) = 0 (equality constraints) or h(x) < 0 (inequality constraints),
where h : R® — R™, with m < n, is a given function, called cost function,
and the condition h(x) < 0 means h;(x) <0, fori =1,...,m.

If the function h is continuous and € is connected, problem (7.3) is usually
referred to as a nonlinear programming problem. Notable examples in this
area are:

286 7 Nonlinear Systems and Numerical Optimization

1. convexr programming if f is a convex function and h has convex compo-
nents (see (7.21));

2. linear programming if f and h are linear;

3. quadratic programming if f is quadratic and h is linear.

Problems (7.1) and (7.2) are strictly related to one another. Indeed, if we
denote by F; the components of F, then a point x*, a solution of (7.1), is a
minimizer of the function f(x) = >, F?(x). Conversely, assuming that f is
differentiable and setting the partial derivatives of f equal to zero at a point
x* at which f is minimum leads to a system of nonlinear equations. Thus, any
system of nonlinear equations can be associated with a suitable minimization
problem, and vice versa. We shall take advantage of this observation when
devising efficient numerical methods.

7.1 Solution of Systems of Nonlinear Equations

Before considering problem (7.1), let us set some notation which will be used
throughout the chapter.

For k > 0, we denote by C*(D) the set of k-continuously differentiable
functions from D to R™, where D C R™ is a set that will be made precise from
time to time. We shall always assume that F € C1(D), i.e.,, F: R® - R" is a
continuously differentiable function on D.

We denote also by Jg(x) the Jacobian matrix associated with F and eval-
uated at the point x = [z1,...,2,]T of R?, defined as

(Jr(x))ij = (gfj> (%), i,j=1,...,n.

Given any vector norm || - ||, we shall henceforth denote the sphere of radius
R with center x* by

B(x*;R)={yeR": |y —x*|| < R}.

7.1.1 Newton’s Method and Its Variants

An immediate extension to the vector case of Newton’s method (6.16) for
scalar equations can be formulated as follows: given x(?) € R, for k = 0,1, .. .,
until convergence

solve Jp(x)ox(F) = —F(x(*);

7.4
set x(FHD = x(F) 4 §x (%), 74)

Thus, at each step k the solution of a linear system with matrix Jg(x*)) is
required.

7.1 Solution of Systems of Nonlinear Equations 287

Example 7.1 Consider the nonlinear system
e+ 1 —
2 2
"1 1 =0,
which admits the unique solution x* = 0. In this case, F(x) = [e”ﬁﬂcg

— l,e“vfﬂCg — l]T. Running Program 57, leads to convergence in 15 iterations to
the pair [0.61-107%,0.61-107°]7, starting from the initial datum x® = [0.1,0.1]7,
thus demonstrating a fairly rapid convergence rate. The results, however, dra-
matically change as the choice of the initial guess is varied. For instance, picking

up x(@ = [10,10]7, 220 iterations are needed to obtain a solution comparable to
the previous one, while, starting from x© = [20,20]T, Newton’s method fails to
converge. .

The previous example points out the high sensitivity of Newton’s method
on the choice of the initial datum x(©), as confirmed by the following local
convergence result.

Theorem 7.1 Let F : R™ — R” be a C! function in a convex open set D of
R™ that contains x*. Suppose that ng(x*) ezists and that there exist positive
constants R, C and L, such that ||Jg' (x*)|| < C and

[Je(x) = Je(y)l < Lix -yl Vvxy € B(x"R),

having denoted by the same symbol || - || two consistent vector and matriz
norms. Then, there exists v > 0 such that, for any x(© € B(x*;r), the
sequence (7.4) is uniquely defined and converges to x* with

D —x*|| < CL||x™® — x*||2. (7.5)

Proof. Proceeding by induction on k, let us check (7.5) and, moreover, that x(F+D ¢
B(x*;7), where 7 = min(R, 1/(2CL)). First, we prove that for any x(*) € B(x*;r),
the inverse matrix J5*(x(?) exists. Indeed

19 6w () = e Gl < I 6 19 () = Je ()| < CLr < 3,

and thus, thanks to Theorem 1.5, we can conclude that J;l(x(o)) exists, since

-1 *
195" 6l)

=1(x(©
e G = 6o e) — T el =

2|5 (x7)I| < 2C.

As a consequence, x!) is well defined and
xM —x* =x —x* — IR (x)F) - F(x).
Factoring out J;l(x(o)) on the right-hand side and passing to the norms, we get
™ = x|l < Mg <) F(x") = F(x”) = Ip(x)[x" = x]]|

<20 fx —xOP,

288 7 Nonlinear Systems and Numerical Optimization

where the remainder of Taylor’s series of F has been used. The previous relation
proves (7.5) in the case k = 0; moreover, since x(?) € B(x*;r), we have ||x* — x|

< 1/(2CL), from which [x() — x*|| < %Hx* — x|,

This ensures that x") € B(x*;7).

By a similar proof, one can check that, should (7.5) be true for a certain k,
then the same inequality would follow also for k + 1 in place of k. This proves the
theorem. <&
Theorem 7.1 thus confirms that Newton’s method is quadratically convergent
only if x(?) is sufficiently close to the solution x* and if the Jacobian matrix
is nonsingular. Moreover, it is worth noting that the computational effort
needed to solve the linear system (7.4) can be excessively high as n gets
large. Also, Jp(x(k)) could be ill-conditioned, which makes it quite difficult
to obtain an accurate solution. For these reasons, several modifications to
Newton’s method have been proposed, which will be briefly considered in the
later sections, referring to the specialized literature for further details (see
[OR70], [DS83], [Erh97], [BS90], [SM03], [Deu04] and the references therein).

Remark 7.1 Let G(x) = x — F(x) and denote by r®) = F(x(®)) the resid-
ual at step k. Then, from (7.4) it turns out that Newton’s method can be
alternatively formulated as

(1 _ JG(X<k>)) (X<k+1> _ X(k)) —)

where Jg denotes the Jacobian matrix associated with G. This equation
allows us to interpret Newton’s method as a preconditioned stationary
Richardson method. This prompts introducing a parameter «yj in order to
accelerate the convergence of the iteration

<I - Jg(X(k))> (X(k+1) - x(k)) = —ar®),

The problem of how to select oy, will be addressed in Section 7.2.6. |

7.1.2 Modified Newton’s Methods

Several modifications of Newton’s method have been proposed in order to
reduce its cost when the computed solution is sufficiently close to x*. Further
variants, that are globally convergent, will be introduced for the solution of
the minimization problem (7.2).
1. Cyclic updating of the Jacobian matriz

An efficient alternative to method (7.4) consists of keeping the Jacobian
matrix (more precisely, its factorization) unchanged for a certain number, say
p > 2, of steps. Generally, a deterioration of convergence rate is accompanied
by a gain in computational efficiency.

7.1 Solution of Systems of Nonlinear Equations 289

Program 57 implements Newton’s method in the case in which the LU fac-
torization of the Jacobian matrix is updated once every p steps. The programs
used to solve the triangular systems have been described in Chapter 3.

Here and in later codings in this chapter, we denote by x0 the initial
vector, by F and J the variables containing the functional expressions of F
and of its Jacobian matrix Jg, respectively. The parameters tol and nmax
represent the stopping tolerance in the convergence of the iterative process
and the maximum admissible number of iterations, respectively. In output,
the vector x contains the approximation to the searched zero of F, while nit
denotes the number of iterations necessary to converge.

Program 57 - newtonsys : Newton’s method for nonlinear systems

function [x,iter]=newtonsys(F,J,x0,tol,nmax,p)
%NEWTONSYS Newton method for nonlinear systems
% [X, ITER] = NEWTONSYS(F, J, X0, TOL, NMAX, P) attempts to solve the
% nonlinear system F(X)=0 with the Newton method. F and J are strings
% containing the functional expressions of the nonlinear equations and of
% the Jacobian matrix. X0 specifies the initial guess. TOL specifies the
% tolerance of the method. NMAX specifies the maximum number of iterations.
% P specifies the number of consecutive steps during which the Jacobian is
% mantained fixed. ITER is the iteration number at which X is computed.
[n,m]=size(F);
if n "= m, error('Only square systems'); end
iter=0; Fxn=zeros(n,1); x=x0; err=tol+1;
for i=1:n
for j=1:n
Jxn(i,j)=eval(J((i-1)*n+j,:));
end
end
[L,U,P]=lu(Jxn);
step=0;
while err>tol
if step ==
step = 0;
for i=1:n
Fxn(i)=eval(F(i,:));
for j=1:n; Jxn(i,j)=eval(J((i-1)*n+j,:)); end

end

[L,U,P]=lu(Jxn);
else

for i=1:n, Fxn(i)=eval(F(i,:)); end
end

iter=iter+1; step=step+1; Fxn=-P*Fxn;
y=forwardcol(L,Fxn);
deltax=backwardcol(U,y);

x = x + deltax;

290 7 Nonlinear Systems and Numerical Optimization

err=norm(deltax);
if iter > nmax
error(’ Fails to converge within maximum number of iterations ');
end
end
return

2. Inexact solution of the linear systems

Another possibility consists of solving the linear system (7.4) by an iter-
ative method, where the maximum number of admissible iterations is fixed a
priori. The resulting schemes are identified as Newton-Jacobi, Newton-SOR,
or Newton-Krylov methods, according to the iterative process that is used for
the linear system (see [BS90], [Kel99]). Here, we limit ourselves to describing
the Newton-SOR method.

In analogy with what was done in Section 4.2.1, let us decompose the
Jacobian matrix at step k as

Jp(x®)) = Dy — By — Fy, (7.6)

where D = D(x®)), —E;, = —E(x(®)) and —F;, = —F(x®), the diagonal
part and the lower and upper triangular portions of the matrix JF(x(k)),
respectively. We suppose also that Dy is nonsingular. The SOR method for
solving the linear system in (7.4) is organized as follows: setting Jx(()k) =0,
solve

ox) = Mpox™ | — wp (D — wiEp) 'F(x®), r=1,2,..., (7.7)

(a T

where My, is the iteration matrix of SOR method
My = [Dy — wiEx] ™' [(1 — wi) Dy, + wiFil

and wy is a positive relaxation parameter whose optimal value can rarely
be determined a priori. Assume that only » = m steps of the method are
carried out. Recalling that 5X7(~k) = ng) — x®) and still denoting by x*+1)
the approximate solution computed after m steps, we find that this latter can
be written as (see Exercise 1)

D = x®) — o) (M7~ 4. 4+ 1) (D — wiEg) T R®). (7.8)

This method is thus a composite iteration, in which at each step k, starting
from x(®), m steps of the SOR method are carried out to solve approximately
system (7.4).

The integer m, as well as wg, can depend on the iteration index k; the
simplest choice amounts to performing, at each Newton’s step, only one iter-
ation of the SOR method, thus obtaining for » = 1 from (7.7) the one-step
Newton-SOR method

7.1 Solution of Systems of Nonlinear Equations 291
xFHD = x(0) _) (Dy, — wipEg) T F(x®).

In a similar way, the preconditioned Newton-Richardson method with matrix
Py, if truncated at the m-th iteration, is

xFH) = x®) [T+ My + ...+ MPH] PIF(x(),
where Py, is the preconditioner of Jg and
My, = P, !Ny, Ny, = Py — Jp(x®).

For an efficient implementation of these techniques we refer to the
MATLAB software package developed in [Kel99)].

3. Difference approximations of the Jacobian matrix

Another possibility consists of replacing Jg(x*)) (whose explicit compu-
tation is often very expensive) with an approximation through n-dimensional
differences of the form

F(x*) + hMe) — F(x*)

k J

(JEL))j = jh(.k) ; Vk >0, (7.9)
j

where e; is the j-th vector of the canonical basis of R and hg»k) > 0 are
increments to be suitably chosen at each step k of the iteration (7.4). The
following result can be shown.

Property 7.1 Let F and x* be such that the hypotheses of Theorem 7.1 are
fulfilled, where || - || denotes the || - |1 vector norm and the corresponding
induced matriz norm. If there exist two positive constants € and h such that

x(0) ¢ B(x*,¢) and 0 < |h§-k)| < h forj=1,...,n then the sequence defined by

-1
x(F+D) = x (k) [J;’”] F(x®), (7.10)

is well defined and converges linearly to X*. Moreover, if there exists a positive
constant C' such that max; |h§-k)| < C||x™ —x*|| or, equivalently, there exists

a positive constant ¢ such that max; |h§k)| < ¢||[F(x®)|, then the sequence
(7.10) is convergent quadratically.

This result does not provide any constructive indication as to how to compute
(

J
first-order truncation error with respect to hg-k), which arises from the divided

the increments h'*). Tn this regard, the following remarks can be made. The

difference (7.9), can be reduced by reducing the sizes of h;k). On the other

hand, a too small value for hgk) can lead to large rounding errors. A trade-off

292 7 Nonlinear Systems and Numerical Optimization

must therefore be made between the need of limiting the truncation errors
and ensuring a certain accuracy in the computations.
A possible choice is to take

h;k) = /€y max { |a:§-k)|, Mj} sign(z;),

where M is a parameter that characterizes the typical size of the component
x; of the solution. Further improvements can be achieved using higher-order
divided differences to approximate derivatives, like
F(x® +hlPe;) — Fx® — nlPe))
(k)
2h;

(IR, = . Vk>o0.

For further details on this subject, see, for instance, [BS90].

7.1.3 Quasi-Newton Methods

By this term, we denote all those schemes in which globally convergent meth-
ods are coupled with Newton-like methods that are only locally convergent,
but with an order greater than one.

In a quasi-Newton method, given a continuously differentiable function F :
R™ — R™, and an initial value x(°) € R", at each step k one has to accomplish
the following operations:

1. compute F(x®);

2. choose Jg(x(*)) as being either the exact Jg(x(*)) or an approximation
of it;

3. solve the linear system Jp(x(*))dx(®) = —F(x(F);

4. set xF1) = xF) 4 0 6x*¥) | where oy, are suitable damping parameters.

Step 4. is thus the characterizing element of this family of methods. It will
be addressed in Section 7.2.6, where a criterion for selecting the “direction”
0x®) will be provided.

7.1.4 Secant-like Methods

These methods are constructed starting from the secant method introduced
in Section 6.2 for scalar functions. Precisely, given two vectors x(?) and x(1),
at the generic step & > 1 we solve the linear system

QroxF+Y = —p(x®) (7.11)
and we set x(F1) = x(*) 4 §x(+1) Q. is an n x n matrix such that

Qrox® = F(x®) —F(x*EV)y=b® k>1,

7.1 Solution of Systems of Nonlinear Equations 293

and is obtained by a formal generalization of (6.13). However, the algebraic
relation above does not suffice to uniquely determine Q. For this purpose we
require Qi for k£ > n to be a solution to the following set of n systems

Qs (x(k) - x<’<—j>) —F®) —FxED), =10 (7.12)

If the vectors x(*=7) ... x(®) are linearly independent, system (7.12) allows
for calculating all the unknown coefficients {(Qx)im, [, = 1,...,n} of Q.
Unfortunately, in practice the above vectors tend to become linearly depen-
dent and the resulting scheme is unstable, not to mention the need for storing
all the previous n iterates.

For these reasons, an alternative approach is pursued which aims at pre-
serving the information already provided by the method at step k. Precisely,
Qy is looked for in such a way that the difference between the following linear
approximants to F(x*~1) and F(x(®)), respectively

F(x®) + Qi(x —x0), F(x® 1) + Qs (x — x*71),

is minimized jointly with the constraint that Qy satisfies system (7.12). Using
(7.12) with j = 1, the difference between the two approximants is found to be

dj, = (Qx — Qx-1) (x — x(’“‘”) : (7.13)
Let us decompose the vector x — x#~1) ag
x —x* D = 05x®) s,
where o € R and s”6x(*) = 0. Therefore, (7.13) becomes

dj, = o (Qr — Qi—1) x™ + (Q, — Q1) s.

Only the second term in the relation above can be minimized since the first
one is independent of Qg, being

(Qx — Qk—l)‘sx(k) =b®) — Qp_16x".

The problem has thus become: find the matrix Q such that (Qx — Qr—_1)s
is minimized Vs orthogonal to dx(¥) with the constraint that (7.12) holds. It
can be shown that such a matrix exists and can be recursively computed as
follows

(b®) — Q1 8x*))ox M

x0T ox(®) '
The method (7.11), with the choice (7.14) of matrix Qj is known as the
Broyden method. To initialize (7.14), we set Qg equal to the matrix Jg(x(©))

or to any approximation of it, for instance, the one yielded by (7.9). As for
the convergence of Broyden’s method, the following result holds.

Qr = Q-1+ (7.14)

294 7 Nonlinear Systems and Numerical Optimization

Property 7.2 If the assumptions of Theorem 7.1 are satisfied and there exist
two positive constants € and vy such that

[x@ — x*|| <&, |Qo — Jr(x*)|| <7,

then the sequence of vectors x%) generated by Broyden’s method is well defined
and converges superlinearly to x*, that is

e — 5| < el — x| (7.15)

where the constants ¢, are such that kli_)rr;ock =0.
Under further assumptions, it is also possible to prove that the sequence Qy
converges to Jg(x*), a property that does not necessarily hold for the above
method as demonstrated in Example 7.3.

There exist several variants to Broyden’s method which aim at reducing
its computational cost, but are usually less stable (see [DS83], Chapter 8).
Program 58 implements Broyden’s method (7.11)-(7.14). We have denoted by
Q the initial approximation Qp in (7.14).

Program 58 - broyden : Broyden’s method for nonlinear systems

function [x,iter]=broyden(F,Q,x0,tol,nmax)

%BROYDEN Broyden method for nonlinear systems

% [X, ITER] = BROYDEN(F, Q, X0, TOL, NMAX) attempts to solve the

% nonlinear system F(X)=0 with the Broyden method. F is a string variable
% containing the functional expressions of the nonlinear equations. Q is a

% starting approximation of the Jacobian. X0 specifies the initial guess.

% TOL specifies the tolerance of the method. NMAX specifies the maximum
% number of iterations. ITER is the iteration number at which X is computed.
[n,m]=size(F);

if n "= m, error('Only square systems’); end
iter=0; err=1+tol; fk=zeros(n,1); fk1=fk; x=x0;
for i=1:n

fk(i)=eval(F(i,:)); end
while iter < nmax & err > tol
s=Q \ fk;
X=s-+X;
err=norm(s,inf);
if err > tol
for i=1:n, fk1(i)=eval(F(i,:)); end
Q=Q+1/(s"*s)*fk1*s’;

end
iter=iter+1;
fk=fk1;

end

end
return

7.1 Solution of Systems of Nonlinear Equations 295

0 5 10 15 20 25 30 35 40
Fig. 7.1. Euclidean norm of the error for the Newton method (solid line) and the
Broyden method (dashed line) in the case of the nonlinear system of Example 7.1

Example 7.2 Let us solve using Broyden’s method the nonlinear system of Exam-
ple 7.1. The method converges in 35 iterations to the value (0.7 - 107%,0.7 - 107%)7
compared with the 26 iterations required by Newton’s method starting from the
same initial guess (x°) = [0.1,0.1]7). The matrix Qo has been set equal to the
Jacobian matrix evaluated at x(°). Figure 7.1 shows the behavior of the Euclidean
norm of the error for both methods. °

Example 7.3 Suppose we wish to solve using the Broyden method the nonlinear
system F(x) = [x1 + 22 — 3,27 + 23 — 9]7 = 0. This system admits the two solutions
[0,3]7 and [3,0]”. Broyden’s method converges in § iterations to the solution [0, 3]¥
starting from x(© = [2,4]T. However, the sequence of Qy, stored in the variable Q
of Program 58, does not converge to the Jacobian matrix, since

. 11 11
kllnioQ(k) = {1.5 1.75} # Ie((0,3]") = [0 6} :

7.1.5 Fixed-point Methods

We conclude the analysis of methods for solving systems of nonlinear equations
by extending to n-dimensions the fixed-point techniques introduced in the
scalar case. For this, we reformulate problem (7.1) as

given G : R” — R", find x* € R" such that G(x*) = x* (7.16)

where G is related to F through the following property: if x* is a fixed point
of G, then F(x*) = 0.

296 7 Nonlinear Systems and Numerical Optimization

Analogously to what was done in Section 6.3, we introduce iterative methods
for the solution of (7.16) of the form: given x(©) € R, for k = 0,1,... until
convergence, find

xD = g(x™). (7.17)

In order to analyze the convergence of the fixed-point iteration (7.17) the
following definition will be useful.

Definition 7.1 A mapping G : D C R™ — R" is contractive on a set Dy C D
if there exists a constant a < 1 such that [|G(x) — G(y)|| < al|x —y]| for all
X, y in Dy, where || - || is a suitable vector norm. [

The existence and uniqueness of a fixed point for G is ensured by the following
theorem.

Theorem 7.2 (Contraction-mapping theorem) Suppose that G : D C
R™ — R™ is contractive on a closed set Dy C D and that G(x) C Dqy for all
x € Dg. Then G has a unique fized point in Dy.

Proof. Let us first prove the uniqueness of the fixed point. For this, assume that
there exist two distinct fixed points, x*, y*. Then

[x" =y = IGx") = Gyl < alx” -y

from which (1 — a)||x* — y*|| < 0. Since (1 —) > 0, it must necessarily be that
Ix* —y*|| =0, ie., x* =y".

To prove the existence we show that x! given by (7.17) is a Cauchy sequence.
This in turn implies that x*) is convergent to a point x*) € Dy. Take x(¥) arbitrarily
in Dy. Then, since the image of G is included in Dy, the sequence x® is well
defined and

k)

" —x®) = [ax™) = G| < allx® = x*TY.

After p steps, p > 1, we obtain

p
Hx(k+p) _ x(k)” < ZHX(’fH) _ x(k+i—1)” < (ap—l +ot 1) ||x(k+1) _ X(k)”
i=1

< Tl =,
—Q

Owing to the continuity of G it follows that klim Gx™) = G(x)) which proves
that x™ is a fixed point for G. &
The following result provides a sufficient condition for the iteration (7.17) to

converge (for the proof see [OR70], pp. 299-301), and extends the analogous
Theorem 6.3 in the scalar case.

7.1 Solution of Systems of Nonlinear Equations 297

Property 7.3 Suppose that G : D C R™ — R"™ has a fized point x* in the
interior of D and that G is continuously differentiable in a neighborhood of x*.
Denote by Jg the Jacobian matriz of G and assume that p(Jg(x*))) < 1.
Then there exists a neighborhood S of x* such that S C D and, for any
x(0) € S, the iterates defined by (7.17) all lie in D and converge to x*.

As usual, since the spectral radius is the infimum of the induced matrix norms,
in order for convergence to hold it suffices to check that ||Jg(x)|| < 1 for some
matrix norm.

Example 7.4 Consider the nonlinear system
F(x) = [z + 25 — 1,221 + 22 — 1]7 =0,

whose solutions are xj = [0,1]7 and x3 = [4/5, —3/5]7. To solve it, let us use two
fixed-point schemes, respectively defined by the following iteration functions

1-—) 1-—)
Gi(x) = l 2 , Ga(x) = l 2] . (7.18)
V91— a2 —/1—122
It can be checked that G;(xj) = x; for ¢ = 1,2 and that the Jacobian matrices of
G and Go, evaluated at x] and x5 respectively, are

0-12 0 -1
Ja, (x1) = [] v Jaa(x3) = l 1 :

0 0 0

SIS

The spectral radii are p(Jg, (x7)) = 0 and p(Ja,(x3)) = 4/2/3 ~ 0.817 < 1 so
that both methods are convergent in a suitable neighborhood of their respective
fixed points.

Running Program 59, with a tolerance of 107*° on the maximum absolute dif-
ference between two successive iterates, the first scheme converges to x7 in 9 itera-
tions, starting from x(©) = [—0.9,0.9]7, while the second one converges to x3 in 115
iterations, starting from x© = [0.9,0.9]". The dramatic change in the convergence
behavior of the two methods can be explained in view of the difference between the
spectral radii of the corresponding iteration matrices. °

Remark 7.2 Newton’s method can be regarded as a fixed-point method with
iteration function

Gn(x) =x — Jp' (x)F(x). (7.19)
|

An implementation of the fixed-point method (7.17) is provided in
Program 59. We have denoted by dim the size of the nonlinear system
and by Phi the variables containing the functional expressions of the iteration

298 7 Nonlinear Systems and Numerical Optimization

function G. In output, the vector alpha contains the approximation of the
sought zero of F and the vector res contains the sequence of the maximum
norms of the residuals of F(x(*®)).

Program 59 - fixposys : Fixed-point method for nonlinear systems

function [alpha,res,iter]=fixposys(F,Phi,x0,tol,nmax,dim)

%FIXPOSYS Fixed-point method for nonlinear systems

% [ALPHA, RES, ITER] = FIXPOSYS(F, PHI, X0, TOL, NMAX, DIM) attempts

% to solve the nonlinear system F(X)=0 with the Fixed Point method. F and PHI are
% string variables containing the functional expressions of the nonlinear equations

% and of the iteration function. X0 specifies the initial guess. TOL specifies the

% tolerance of the method. NMAX specifies the maximum number of iterations. DIM is
% the size of the nonlinear system. ITER is the iteration number at which ALPHA is
% computed. RES is the system residual computed at ALPHA.

x = x0; alpha=[x']; res = 0;

for k=1:dim

r=abs(eval(F(k,:))); if (r > res), res = r; end
end;
iter = 0;

residual(1)=res;
while ((iter <= nmax) & (res >= tol)),

iter = iter + 1,
for k = 1:dim
xnew(k) = eval(Phi(k,:));
end
x = xnew; res = 0; alpha=[alpha;x]; x=x";
for k = 1:dim

r = abs(eval(F(k,:)));
if (r > res), res=r; end,
end
residual(iter+1)=res;
end
res=residual’;
return

7.2 Unconstrained Optimization

We turn now to minimization problems. The point x*, the solution of (7.2),
is called a global minimizer of f, while x* is a local minimizer of f if IR > 0
such that

f(x") < f(x), Vx € B(x*; R).

Throughout this section we shall always assume that f € C*(R"), and we refer
to [Lem&9] for the case in which f is nondifferentiable. We shall denote by

7.2 Unconstrained Optimization 299

Vf@)Z(éZ(@w~w;Zf@>T7

the gradient of f at a point x. If d is a nonnull vector in R™, then the directional
derivative of f with respect to d is

ad a—0 o

and satisfies 9f(x)/0d = V f(x)Td. Moreover, denoting by (x,x + ad) the
segment in R™ joining the points x and x+ad, with a € R, Taylor’s expansion
ensures that 3¢ € (x,x + ad) such that

F(x+ad) — f(x) = aVf(€)d. (7.20)

If f € C*(R™), we shall denote by H(x) (or V2 f(x)) the Hessian matriz of f
evaluated at a point x, whose entries are

P
71]()() - axiaijZh] - 17"'

M.

In such a case it can be shown that, if d # 0, the second-order directional
derivative exists and we have

82

Té(x) =d"H(x)d.

For a suitable £ € (x,x + d) we also have
flx+d)— f(x) = V/(07d + zdTH(E)d.

Existence and uniqueness of solutions for (7.2) are not guaranteed in R™.
Nevertheless, the following optimality conditions can be proved.

Property 7.4 Let x* € R™ be a local minimizer of f and assume that f
€ CY(B(x*;R)) for a suitable R > 0. Then V f(x*) = 0. Moreover, if f €
C?(B(x*; R)) then H(x*) is positive semidefinite. Conversely, if V f(x*) =0
and H(x*) is positive definite, then X* is a local minimizer of f in B(x*; R).

A point x* such that Vf(x*) = 0, is said to be a critical point for f. This
condition is necessary for optimality to hold. However, this condition also
becomes sufficient if f is a convex function on R™, i.e., such that Vx,y € R"
and for any « € [0, 1]

flax+ (1 —a)y] < af(x)+(1—a)f(y). (7.21)

For further and more general existence results, see [Ber82].

300 7 Nonlinear Systems and Numerical Optimization

7.2.1 Direct Search Methods

In this section we deal with direct methods for solving problem (7.2), which
only require f to be continuous. In later sections, we shall introduce the
so-called descent methods, which also involve values of the derivatives of f
and have, in general, better convergence properties.

Direct methods are employed when f is not differentiable or if the compu-
tation of its derivatives is a nontrivial task. They can also be used to provide
an approximate solution to employ as an initial guess for a descent method.
For further details, we refer to [Wal75] and [Wol78].

The Hooke and Jeeves Method

Assume we are searching for the minimizer of f starting from a given initial
point x(® and requiring that the error on the residual is less than a certain
fixed tolerance e. The Hooke and Jeeves method computes a new point x(!)
using the values of f at suitable points along the orthogonal coordinate direc-
tions around x(?. The method consists of two steps: an ezploration step and
an advancing step.

The exploration step starts by evaluating f(x(o) + hie1), where e; is the
first vector of the canonical basis of R™ and h; is a positive real number to
be suitably chosen.

If f(x© 4+ hie;) < f(x(9), then a success is recorded and the starting
point is moved in x(9) + hie;, from which an analogous check is carried out
at point x(©) + hie; + hoes with hy € RT.

If, instead, f(x(® + hie;) > f(x(@), then a failure is recorded and a
similar check is performed at x(9) —hye;. If a success is registered, the method
explores, as previously, the behavior of f in the direction e, starting from this
new point, while, in case of a failure, the method passes directly to examining
direction e, keeping x(?) as starting point for the exploration step.

To achieve a certain accuracy, the step lengths h; must be selected in such
a way that the quantities

1F(xD +hje;) — fF(xV], j=1,....,n (7.22)

have comparable sizes.

The exploration step terminates as soon as all the n Cartesian directions
have been examined. Therefore, the method generates a new point, y(?), after
at most 2n + 1 functional evaluations. Only two possibilities may arise:

1. y©@ = x© In such a case, if ~max h; < ¢ the method terminates
i=1,...,n

and yields the approximate solution x(°). Otherwise, the step lengths h;
are halved and another exploration step is performed starting from x(©);

2. y(O £ xO) 1f i:HllaXn|hi| < €, then the method terminates yielding y(©) as

an approximate solution, otherwise the advancing step starts. The advanc-
ing step consists of moving further from y(©) along the direction y(®) —x(%

7.2 Unconstrained Optimization 301

(which is the direction that recorded the maximum decrease of f during
the exploration step), rather then simply setting y(©@ as a new starting
point x().

This new starting point is instead set equal to 2y(?) —x(® . From this point
a new series of exploration moves is started. If this exploration leads to a
point y() such that f(y™") < f(y(® — x(), then a new starting point
for the next exploration step has been found, otherwise the initial guess
for further explorations is set equal to y(1) = y(©) — x(0),

The method is now ready to restart from the point x(*) just computed.

Program 60 provides an implementation of the Hooke and Jeeves method. The
input parameters are the size n of the problem, the vector h of the initial steps
along the Cartesian directions, the variable f containing the functional expres-
sion of f in terms of the components x(1),...,x(n), the initial point x0 and the
stopping tolerance tol equal to €. In output, the code returns the approximate
minimizer of f, x, the value minf attained by f at x and the number of iter-
ations needed to compute x up to the desired accuracy. The exploration step
is performed by Program 61.

Program 60 - hookejeeves : The method of Hooke and Jeeves (HJ)

function [x,minf,iter]=hookejeeves(f,n,h,x0,tol)
%HOOKEJEEVES HOOKE and JEEVES method for function minimization.
% [X, MINF, ITER] = HOOKEJEEVES(F, N, H, X0, TOL) attempts to compute the
% minimizer of a function of N variables with the Hooke and Jeeves method. F is
% a string variable containing the functional expression of f. H is an initial
% step. X0 specifies the initial guess. TOL specifies the tolerance of the method.
% ITER is the iteration number at which X is computed. MINF is the value of F at
% the mimimizer X.
x = x0; minf = eval(f); iter = 0;
while h > tol
[y] = explore(f,n,h,x);
ify ==x
h=h/2;
else
x = 2¥y-x;
[z] = explore(f,n,h,x);
if z==x
X =y,
else
X = z;
end
end
iter = iter 4+1;
end
minf = eval(f);
return

302 7 Nonlinear Systems and Numerical Optimization

Program 61 - explore : Exploration step in the HJ method

function [x]=explore(f,n,h,x0)
%EXPLORE Exploration step for function minimization.
% [X] = EXPLORE(F, N, H, X0) executes one exploration step of size H in the Hooke
% and Jeeves method for function minimization.
x = x0; f0 = eval(f);
for i=1:n
x(i) = x(i) + h(i); ff = eval(f);
if ff < f0
fo = ff;
else
x(i) = x0(i) - h(i);
ff = eval(f);
if ff < f0
fo = ff;
else

The Method of Nelder and Mead

This method, proposed in [NM65], employs local linear approximants of f to
generate a sequence of points x(*), approximations of x*, starting from simple
geometrical considerations. To explain the details of the algorithm, we begin
by noticing that a plane in R™ is uniquely determined by fixing n + 1 points
that must not be lying on a hyperplane.

Denote such points by x*), for k = 0,...,n. They could be generated as

xF) =xO 4 hrep, k=1,...,n, (7.23)

having selected the steplengths hy € RY in such a way that the variations
(7.22) are of comparable size.

Let us now denote by x*), x(™) and x(*) those points of the set {x(¥)} at
which f respectively attains its maximum and minimum value and the value
immediately preceding the maximum. Moreover, denote by ng) the centroid
of point x(*) defined as

k) = 1 3 X0,
" =052k

The method generates a sequence of approximations of x*, starting from x(*),
by employing only three possible transformations: reflections with respect

7.2 Unconstrained Optimization 303

to centroids, dilations and contractions. Let us examine the details of the
algorithm assuming that n + 1 initial points are available.

1. Determine the points x(™), x(™) and x(#).
2. Compute as an approximation of x* the point

1)
% — (1)
x n—|—1iz::0X

and check if x is sufficiently close (in a sense to be made precise) to
x*. Typically, one requires that the standard deviation of the values
FOY, L f(x™) from

Fe)
=0

n+1

are less than a fixed tolerance ¢, that is
1 — : 2\ 2
-3 (f(x@)) - f) <e.
=0

Otherwise, x(M) is reflected with respect to X&M), that is, the following
new point x(") is computed

x = (1 4+ a)x™) — axM)

where o« > 0 is a suitable reflection factor. Notice that the method has
moved along the “opposite” direction to x(™). This statement has a geo-
metrical interpretation in the case n = 2, since the points x*) coincide
with xM) | x(m) and x(#). They thus define a plane whose slope points
from xM) towards x(™) and the method provides a step along this direc-
tion.

3. If f(x™) < f(x(M) < f(x), the point x(M) is replaced by x(") and the
algorithm returns to step 2.

4. If f(x) < f(x(™)) then the reflection step has produced a new mini-
mizer. This means that the minimizer could lie outside the set defined
by the convex hull of the considered points. Therefore, this set must be
expanded by computing the new vertex

x(= x4 (1= =M,

where § > 1 is an expansion factor. Then, before coming back to step 2.,

two possibilities arise:

da. if f(x¥)) < f(x(™)) then x(M) is replaced by x(¢);

4b. f(x©)) > f(x(™) then x™) is replaced by x(since f(x(")
< f(xtm).

304 7 Nonlinear Systems and Numerical Optimization

5. If f(x(") > f(x(") then the minimizer probably lies within a subset of
the convex hull of points {x(*)} and, therefore, two different approaches
can be pursued to contract this set. If f(x(") < f(x™)) the contraction
generates a new point of the form

X(co) — ’YX(T) + (1 — ’y)XEM), QA (07 1)7
otherwise,
«(e0) — 'YX(M) + (1 . 'Y)XS;M)’ v E (0, 1)a

Finally, before returning to step 2., if f(x(¢®) < f(x(™)) and f(x(¢?)
< f(x), the point x(*) is replaced by x(¢®), while if f(x(¢?)) > f(x(*))
or if f(x(¢) > f(x(™), then n new points x(¥) are generated, with k
=1,...,n, by halving the distances between the original points and x(©).

As far as the choice of the parameters «, 8 and ~ is concerned, the following
values are empirically suggested in [NM65]: « =1, 8 = 2 and v = 1/2. The
resulting scheme is known as the Simplex method (that must not be confused
with a method sharing the same name used in linear programming), since the
set of the points x(¥)| together with their convex combinations, form a simplex
in R™.

The convergence rate of the method is strongly affected by the orientation
of the starting simplex. To address this concern, in absence of information
about the behavior of f, the initial choice (7.23) turns out to be satisfactory
in most cases.

We finally mention that the Simplex method is the basic ingredient of the
MATLAB function fmins for function minimization in n dimensions.

Example 7.5 Let us compare the performances of the Simplex method with the
Hooke and Jeeves method, in the minimization of the Rosembrock function

f(x) = 100(z2 — 21) + (1 — 1)*. (7.24)

This function has a minimizer at [1,1]” and represents a severe benchmark for
testing numerical methods in minimization problems. The starting point for both
methods is set equal to x(® = [=1.2,1]7, while the step sizes are taken equal to
h1 = 0.6 and hy = 0.5, in such a way that (7.23) is satisfied. The stopping tolerance
on the residual is set equal to 10™%. For the implementation of Simplex method, we
have used the MATLAB function fmins.

Figure 7.2 shows the iterates computed by the Hooke and Jeeves method (of
which one in every ten iterates have been reported, for the sake of clarity) and by
the Simplex method, superposed to the level curves of the Rosembrock function. The
graph demonstrates the difficulty of this benchmark: actually, the function is like
a curved, narrow valley, which attains its minimum along the parabola of equation
xf —x2 =0.

The Simplex method converges in only 165 iterations, while 935 are needed for
the Hooke and Jeeves method to converge. The former scheme yields a solution
equal to [0.999987,0.999978]7, while the latter gives the vector [0.9655,0.9322]7. o

7.2 Unconstrained Optimization 305

2
18}
16}
14
12f"
0.8
0.6
0.4
0.2

0 P . w N . s
-1.5 -1 -0.5 0 0.5 1 1.5

Fig. 7.2. Convergence histories of the Hooke and Jeeves method (crossed-line) and
the Simplex method (circled-line). The level curves of the minimized function (7.24)
are reported in dashed line

7.2.2 Descent Methods

In this section we introduce iterative methods that are more sophisticated
than those examined in Section 7.2.1. They can be formulated as follows:
given an initial vector x(9) € R™, compute for k > 0 until convergence

XD = x®) | g, d®), (7.25)

where d(*) is a suitably chosen direction and ay, is a positive parameter (called
stepsize) that measures the step along the direction d®). This direction d*)
is a descent direction if

d(k)TVf(X(k)) <0 if Vf®)£o0,
(7.26)
d® — o if Vf(x®) =o0.

A descent method is a method like (7.25), in which the vectors d®) are descent
directions.

Property (7.20) ensures that there exists ay > 0, sufficiently small, such
that

FE® 4+ ad®) < f(x®), (7.27)

provided that f is continuously differentiable. Actually, taking in (7.20) &
= x*) 490, d®) with ¢ € (0,1), and employing the continuity of V£, we get

F® 4+ d®) — f(x*)) = a V (x*)TA®) 4 ¢, (7.28)

where ¢ tends to zero as aj tends to zero. As a consequence, if ap > 0 is
sufficiently small, the sign of the left-side of (7.28) coincides with the sign of
VE(xENTA®) | so that (7.27) is satisfied if d®) is a descent direction.

306 7 Nonlinear Systems and Numerical Optimization

Different choices of d(*) correspond to different methods. In particular, we
recall the following ones:

— Newton’s method, in which
d®) = —H (x)V f(x),

provided that H is positive definite within a sufficiently large neighborhood
of point x*;
— inexact Newton’s methods, in which

d® = B 'V f(xP),

where By, is a suitable approximation of H(x(¥);

— the gradient method or steepest descent method, corresponding to setting
d®) = —Vf(x(®)). This method is thus an inexact Newton’s method, in
which By = I. It can also be regarded as a gradient-like method, since
dMV f(x®) = [VF(xD)][3;

— the conjugate gradient method, for which

d® = -V (x"W) + pa*Y,

where [is a scalar to be suitably selected in such a way that the directions
{d(k)} turn out to be mutually orthogonal with respect to a suitable scalar
product.

Selecting d*) is not enough to completely identify a descent method, since
it remains an open problem how to determine ay in such a way that (7.27) is
fulfilled without resorting to excessively small stepsizes ay (and, thus, to meth-
ods with a slow convergence).

A method for computing «y, consists of solving the following minimization
problem in one dimension:

find a such that ¢(a) = f(x* + ad™®) is minimized. (7.29)
In such a case we have the following result.

Theorem 7.3 Consider the descent method (7.25). If at the generic step k,
the parameter ay, is set equal to the exact solution of (7.29), then the following
orthogonality property holds

Proof. Let ax be a solution to (7.29). Then, the first derivative of ¢, given by
¢'(a) = %(x(k) + akd(k))%(aﬁgk) + ad§k)) =V ™ 4+ apd®™)Ta®,

i=1
vanishes at o = ay,. The thesis then follows, recalling the definition of x**9. ¢

Unfortunately, except for in special cases (which are nevetherless quite rel-
evant, see Section 7.2.4), providing an exact solution of (7.29) is not feasible,

7.2 Unconstrained Optimization 307

since this is a nonlinear problem. One possible strategy consists of approximat-
ing f along the straight line x*) + ad®) through an interpolating polynomial
and then minimizing this polynomial (see the quadratic interpolation Powell
methods and cubic interpolation Davidon methods in [Wal75]).

Generally speaking, a process that leads to an approximate solution to
(7.29) is said to be a line search technique and is addressed in the next section.

7.2.3 Line Search Techniques

The methods that we are going to deal with in this section, are iterative
techniques that terminate as soon as some accuracy stopping criterion on ay
is satisfied. We shall assume that (7.26) holds.

Practical experience reveals that it is not necessary to solve accurately
for (7.29) in order to devise efficient methods, rather, it is crucial to enforce
some limitation on the step lengths (and, thus, on the admissible values for
ay). Actually, without introducing any limitation, a reasonable request on ay
would seem be that the new iterate x*t1) satisfies the inequality

FFD) < f(x W), (7.30)

where x(*) and d®) have been fixed. For this purpose, the procedure based on
starting from a (sufficiently large) value of the step length oy and halve this
value until (7.30) is fulfilled, can yield completely wrong results (see, [DS83]).

More stringent criteria than (7.30) should be adopted in the choice of
possible values for «j. To this end, we notice that two kinds of difficulties
arise with the above examples: a slow descent rate of the sequence and the
use of small stepsizes.

The first difficulty can be overcome by requiring that

02 opr(x+1) = = [7)) = Fx¥) + ard®) 2

> —oVf(xF)Ta®),
with o € (0,1/2). This amounts to requiring that the average descent rate vy
of f along d®), evaluated at x(**1) be at least equal to a given fraction of
the initial descent rate at x*). To avoid the generation of too small stepsizes,

we require that the descent rate in the direction d*) at x**1) is not less than
a given fraction of the descent rate at x(*)

IVf(x® + apd®)Td®)| < gV f(xFHTd®)], (7.32)

with § € (o,1) in such a way as to also satisfy (7.31). In computational
practice, ¢ € [107°,107!] and 8 € [107!, 1] are usual choices. Sometimes,
(7.32) is replaced by the milder condition

V(" + apd™H)Ta® > gy f(xF)Tak) (7.33)

(recall that V f(x*))Td®) is negative, since d®) is a descent direction).

308 7 Nonlinear Systems and Numerical Optimization

The following property ensures that, under suitable assumptions, it is possible
to find out values of ay which satisfy (7.31)-(7.32) or (7.31)-(7.33).

Property 7.5 Assume that f(x) > M for any x € R™. Then there exists an
interval I = [c, C] for the descent method, with 0 < ¢ < C, such that Yoy, € I,
(7.31), (7.32) (or (7.31)-(7.33)) are satisfied, with o € (0,1/2) and 3 € (c,1).

Under the constraint of fulfilling conditions (7.31) and (7.32), several
choices for ay, are available. Among the most up-to-date strategies, we recall
here the backtracking techniques: having fixed o € (0,1/2), then start with
aj, = 1 and then keep on reducing its value by a suitable scale factor p € (0,1)
(backtrack step) until (7.31) is satisfied. This procedure is implemented in Pro-
gram 62, which requires as input parameters the vector x containing x*), the
macros £ and J of the functional expressions of f and its Jacobian, the vector
d of the direction d®), and a value for o (usually of the order of 10~*) and
the scale factor p. In output, the code returns the vector x*1) computed
using a suitable value of ay.

Program 62 - backtrackr : Backtraking for line search

function [xnew]= backtrackr(f,J,x,d,sigma,rho)
%BACKTRACKR Backtraking method for line search.
% [XNEW] = BACKTRACKR(F, J, X, D, SIGMA, RHO) attempts to compute the new
% minimizer XNEW with the line search method. F and J are string variables
% containing the functional expressions of f and of its Jacobian. X is the present
% minimizer. D is a given direction. SIGMA and RHO are given parameters.
alphak = 1; ftk = eval(f); Jtk = eval (J);
xx = x; x = x + alphak * d; fk1 = eval (f);
while fk1 > fk + sigma * alphak * Jfk'*d
alphak = alphak*rho;
x = xx + alphak*d;
fk1 = eval(f);
end
Xnew = Xx;
return

Other commonly used strategies are those developed by Armijo and Goldstein
(see [Arm66], [GP67]). Both use o € (0,1/2). In the Armijo formula, one takes
ap = ™k a, where 5 € (0,1), @ > 0 and my is the first nonnegative integer
such that (7.31) is satisfied. In the Goldstein formula, the parameter «ay is
determined in such a way that

< f(x(k) + akd(k)) _ f(x(k))
= aViE®)Td®)

<1l-o. (7.34)

A procedure for computing «y, that satisfies (7.34) is provided in [Ber82],
Chapter 1. Of course, one can even choose ay = & for any k, which is clearly
convenient when evaluating f is a costly task.

7.2 Unconstrained Optimization 309

In any case, a good choice of the value & is mandatory. In this respect, one
can proceed as follows. For a given value &, the second degree polynomial Il
along the direction d®) is constructed, subject to the following interpolation
constraints

Iy (x*)) = £ (x™)),
IL (x® 4+ ad®) = (x* + ad®),
Iy (x*)) = v f(x™)Ta®.

Next, the value & is computed such that II5 is minimized, then, we let & = a.

7.2.4 Descent Methods for Quadratic Functions

A case of remarkable interest, where the parameter «j can be exactly com-
puted, is the problem of minimizing the quadratic function

f(x) = %XTAX — bTx, (7.35)

where A€ R™*" is a symmetric and positive definite matrix and b € R™. In
such a case, as already seen in Section 4.3.3, a necessary condition for x* to be
a minimizer for f is that x* is the solution of the linear system (3.2). Actually,
it can be checked that if f is a quadratic function

Vf(x)=Ax—b=-r, H(x) = A.

As a consequence, all gradient-like iterative methods developed in Section
4.3.3 for linear systems, can be extended tout-court to solve minimization
problems.

In particular, having fixed a descent direction d*), we can determine the
optimal value of the acceleration parameter oy, that appears in (7.25), in such
a way as to find the point where the function f, restricted to the direction
d®) | is minimized. Setting to zero the directional derivative, we get

d

o [+ apd®) = —d®T®) 4 0, d®T AW = 0
a,

from which the following expression for ay, is obtained
dm T
d®TAd®)’
The error introduced by the iterative process (7.25) at the k-th step is

ay = (7.36)

[x*HD — x*||3 = (x*k+D) — x*)TA (x (kD) — x¥)
=[x = x|} + 200, d® A (x9) — x)

+a2d® T Ad®. (7.37)

310 7 Nonlinear Systems and Numerical Optimization

On the other hand ||x®) — x*||3 = I'("“)TA_lr(k)7 so that from (7.37) it fol-
lows that

I+ — <13 = prllx™ — x"[13, (7.38)

having denoted by pr = 1 — o, with
op = (A0 Txy2) ((dw))TAd(k) (r(k>>TA—1r<k>> .

Since A is symmetric and positive definite, oy, is always positive. Moreover,
it can be directly checked that py is strictly less than 1, except when d®) is
orthogonal to r*), in which case p, = 1.

The choice d®) = r*) which leads to the steepest descent method, prevents
this last circumstance from arising. In such a case, from (7.38) we get

*)\mar -)\mzn *
D — x*||a < ﬁux(k) —x"la (7.39)

having employed the following result.

Lemma 7.1 (Kantorovich inequality) Let A € R"*™ be a symmetric posi-
tive definite matriz whose eigenvalues with largest and smallest module are
given by Amae and Amin, respectively. Then, Vy € R", y #£ 0,

(yTY)2 > 4Amam>\min
YTAY)(yTATYY) = (Mnaz + Amin)?

It follows from (7.39) that, if A is ill-conditioned, the error reducing factor
for the steepest descent method is close to 1, yielding a slow convergence to
the minimizer x*. As done in Chapter 4, this drawback can be overcome by
introducing directions d®) that are mutually A-conjugate, i.e.

d®TAd = 0 if k £ m.

The corresponding methods enjoy the following finite termination property.

Property 7.6 A method for computing the minimizer x* of the quadratic
function (7.35) which employs A-conjugate directions terminates after at most
n steps if the acceleration parameter oy, is selected as in (7.36). Moreover, for

any k, xX*tY is the minimizer of f over the subspace generated by the vectors
x@ d© . d® and

rEDTqm) — 0 v < k.

The A-conjugate directions can be determined by following the procedure
described in Section 4.3.4. Given x(®©) € R” and letting d(®© = r(®| the con-
jugate gradient method for function minimization is

7.2 Unconstrained Optimization 311
d*+D =) 4 g (k)
e 7r(k+1)TAd(k) B pADT L (k+1)
P A®T AdW r 0Tk

x (1) = x(®) 4o, d®),

It satisfies the following error estimate

k
Hx(k) —x"|la <2 7VK(A)*1 HX(O) —x*||a,
B VE2(A)+1

which can be improved by lowering the condition number of A, i.e., resorting
to the preconditioning techniques that have been dealt with in Section 4.3.2.

Remark 7.3 (The nonquadratic case) The conjugate gradient method
can be extended to the case in which f is a nonquadratic function. However,
in such an event, the acceleration parameter oy cannot be exactly determined
a priori, but requires the solution of a local minimization problem. Moreover,
the parameters 85 can no longer be uniquely found. Among the most reliable
formulae, we recall the one due to Fletcher-Reeves,

V£ (513
IV f (B3

and the one due to Polak-Ribiére

B1=0, By = for k> 1

VI (Vf(x*) = v rxt-D))

, fork>1.
IV f(xH=D)3

B1=0, 08k =

7.2.5 Newton-like Methods for Function Minimization

Another example of descent method is provided by Newton’s method, which
differs from its version for nonlinear systems in that now it is no longer applied
to f, but to its gradient.

Using the notation of Section 7.2.2, Newton’s method for function min-
imization amounts to computing, given x(®©) € R™, for k = 0,1,..., until
convergence

d®k) = —H;1Vf(x(’“>),

(7.40)
x(+1) = x(®) 4 q(k)

having set Hy = H(X(k)). The method can be derived by truncating Taylor’s
expansion of f(x(*)) at the second-order,

312 7 Nonlinear Systems and Numerical Optimization
1
Fx 4 p) = f(x®) + V(x")Tp + Sp" Hep. (741)

Selecting p in (7.41) in such a way that the new vector x*+1) = x(*) 4 p
satisfies V f(x**1) = 0, we end up with method (7.40), which thus converges
in one step if f is quadratic.

In the general case, a result analogous to Theorem 7.1 also holds for func-
tion minimization. Method (7.40) is therefore locally quadratically convergent
to the minimizer x*. However, it is not convenient to use Newton’s method
from the beginning of the computation, unless x(9) is sufficiently close to x*.
Otherwise, indeed, Hy, could not be invertible and the directions d®) could
fail to be descent directions. Moreover, if Hy is not positive definite, nothing
prevents the scheme (7.40) from converging to a saddle point or a maximizer,
which are points where V f is equal to zero. All these drawbacks, together
with the high computational cost (recall that a linear system with matrix Hy,
must be solved at each iteration), prompt suitably modifying method (7.40),
which leads to the so-called quasi-Newton methods.

A first modification, which applies to the case where Hy is not positive
definite, yields the so-called Newton’s method with shift. The idea is to prevent
Newton’s method from converging to non-minimizers of f, by applying the
scheme to a new Hessian matrix I:Ik = Hy + prl,, where, as usual, I, denotes
the identity matrix of order n and puy is selected in such a way that H, is
positive definite. The problem is to determine the shift pu; with a reduced
effort. This can be done, for instance, by applying the Gershgorin theorem to
the matrix Hy, (see Section 5.1). For further details on the subject, see [DS83]
and [GMWS81].

7.2.6 Quasi-Newton Methods

At the generic k-th iteration, a quasi-Newton method for function minimization
performs the following steps:

1. compute the Hessian matrix Hy, or a suitable approximation By;

2. find a descent direction d*) (not necessarily coinciding with the direction
provided by Newton’s method), using Hy or By;

3. compute the acceleration parameter ay;

4. update the solution, setting x**t1) = x(*®) 1 ;. d*) according to a global
convergence criterion.

In the particular case where d(®) = —H,;1Vf(x(’“)), the resulting scheme is
called the damped Newton’s method. To compute Hy or By, one can resort to
either Newton’s method or secant-like methods, which will be considered in
Section 7.2.7.

The criteria for selecting the parameter ay, that have been discussed in
Section 7.2.3, can now be usefully employed to devise globally convergent
methods. Property 7.5 ensures that there exist values of oy satisfying (7.31),
(7.33) or (7.31), (7.32).

7.2 Unconstrained Optimization 313

Let us then assume that a sequence of iterates x(*), generated by a descent
method for a given x(9), converge to a vector x*. This vector will not be, in
general, a critical point for f. The following result gives some conditions on
the directions d*) which ensure that the limit x* of the sequence is also a
critical point of f.

Property 7.7 (Convergence) Let f : R™ — R be a continuously differen-
tiable function, and assume that there exists L > 0 such that

IVIx) = V)l < Lix =yl

Then, if {x(k)} s a sequence generated by a gradient-like method which fulfills
(7.31) and (7.33), then, one (and only one) of the following events can occur:

1. Vf(x®) =0 for some k;
2. klim F(x®) = —o00;

. VfEHTAF) -
Sl P TO) P

Thus, unless the pathological cases where the directions d*) become too large
or too small with respect to Vf(x(¥)) or, even, are orthogonal to V f(x(¥)),
any limit of the sequence {x(k)} is a critical point of f.

The convergence result for the sequence x(¥) can also be extended to the
sequence f(x*). Indeed, the following result holds.

Property 7.8 Let {X(k)} be a convergent sequence generated by a gradient-
like method, i.e., such that any limit of the sequence is also a critical point of
f. If the sequence {x(k)} is bounded, then Vf(x(k)) tends to zero as k — co.

For the proofs of the above results, see [Wol69] and [Wol71].

7.2.7 Secant-like methods

In quasi-Newton methods the Hessian matrix H is replaced by a suitable
approximation. Precisely, the generic iterate is

KD = 9 _ By p(x®)) = x(®) 1),

Assume that f : R® — R is of class C? on an open convex set D C R™. In such
a case, H is symmetric and, as a consequence, approximants By of H ought to
be symmetric. Moreover, if By, were symmetric at a point x(*), we would also
like the next approximant By, to be symmetric at x*+1) = x(k) 4 (k)

To generate By starting from By, consider the Taylor expansion

V) = VD) 4 By (x8) - x(0),

314 7 Nonlinear Systems and Numerical Optimization
from which we get

Using again a series expansion of B, we end up with the following first-order
approximation of H

(y®) — Bys®)cT
cTs(k) ’

Biy1 =B + (7.42)
where ¢ € R™ and having assumed that ¢”s®) % 0. We notice that taking
¢ = s yields Broyden’s method, already discussed in Section 7.1.4 in the
case of systems of nonlinear equations.

Since (7.42) does not guarantee that By is symmetric, it must be suitably
modified. A way for constructing a symmetric approximant By consists of
choosing ¢ = y*) — Bys(®) in (7.42), assuming that (y*) — Bys*)Ts(k) £ 0,
By so doing, the following symmetric first-order approximation is obtained

(y*®) — Bys®))(yR) — Bys®)T
(y(k) — Bks(k))Ts(k) ’

Bk+1 =B, + (7.43)

From a computational standpoint, disposing of an approximation for H is not
completely satisfactory, since the inverse of the approximation of H appears in
the iterative methods that we are dealing with. Using the Sherman-Morrison

formula (3.57), with Cy = B,;l, yields the following recursive formula for the
computation of the inverse

() — Cpry ™) (s®) — Cpy*NT

Crt1=Cr + 50 — Cry)Ty , k=0,1,..., (7.44)

having assumed that y(*) = Bs(*)| where B is a symmetric nonsingular matrix,
and that (s®*) — Cy(®)Ty (k) £,

An algorithm that employs the approximations (7.43) or (7.44), is poten-
tially unstable when (s®*) — Cpy®*))Ty(*) ~ 0, due to rounding errors. For this
reason, it is convenient to set up the previous scheme in a more stable form.
To this end, instead of (7.42), we introduce the approximation

(y(k) — Bks(k))cT

1
B§€4)-1 =By + cTg(k) ’

(2)

then, we define B,/ as being the symmetric part

(1 1
B® _ BkJZ1 + (BI(H)OT
k+1 9 .

7.3 Constrained Optimization 315

The procedure can be iterated as follows

N
BT+ _ p@) (y®) — B)sM)cT

k+1 - “k+1 CTS(k) ’
(7.45)
(2j+1) 2j+1
B2i+2) _ B+ (BI(CL))T
k+1 - 2 ’

with £ = 0,1,... and having set B,(C(Rl = Byj. It can be shown that the limit

as j tends to infinity of (7.45) is

) (k) _ B,.stN)eT (k) _ B, g(kNT
L on@) _ (v k8")e’ +c(y kst™)
jh_{goBkﬂ = Brp1=Bx + Tsk)

(y®) — Bys))Ts(k)

_ (Ts® cc’,

(7.46)

having assumed that ¢”s*) # 0. If ¢ = s*), the method employing (7.46)
is known as the symmetric Powell-Broyden method. Denoting by Bspp the
corresponding matrix By, it can be shown that Bgpp is the unique solution
to the problem:

find B such that ||B — B/ is minimized,

where Bs*) = y*) and || - || is the Frobenius norm.
As for the error made approximating H(x(**1) with Bgpp, it can be
proved that

IBsps = Hx*)||p < By = H(x®)||» + 3L]s™®)]],

where it is assumed that H is Lipschitz continuous, with Lipschitz constant
L, and that the iterates x**1 and x(¥) belong to D.

To deal with the particular case in which the Hessian matrix is not only
symmetric but also positive definite, we refer to [DS83], Section 9.2.

7.3 Constrained Optimization

The simplest case of constrained optimization can be formulated as follows.
Given f: R"” — R,

minimize f(x), with x € Q C R™. (7.47)

More precisely, the point x* is said to be a global minimizer in € if it satisfies
(7.47), while it is a local minimizer if 3R > 0 such that

316 7 Nonlinear Systems and Numerical Optimization
f(x*) < f(x), Vx € B(x*; R) C Q.

Existence of solutions to problem (7.47) is, for instance, ensured by the Weier-
strass theorem, in the case in which f is continuous and 2 is a closed and
bounded set. Under the assumption that €2 is a convex set, the following op-
timality conditions hold.

Property 7.9 Let Q C R™ be a convex set, x* € Q and f € C*(B(x*; R)),
for a suitable R > 0. Then:

1. if x* is a local minimizer of f then
V)T (x —x*) >0, ¥x € (7.48)

2. moreover, if f is convex on Q (see (7.21)) and (7.48) is satisfied, then x*
s a global minimizer of f.

We recall that f: Q — R is a strongly convex function if 9p > 0 such that

flox+ (1 = a)y] < af(x)+ (1 - a)f(y) - a(l —a)plx—yl3, (7.49)

Vx,y € 2 and Vo € [0,1]. The following result holds.

Property 7.10 Let Q C R™ be a closed and convex set and f be a strongly
convex function in 2. Then there exists a unique local minimizer x* € €.

Throughout this section, we refer to [Avr76], [Ber82], [CCP70], [Lue73| and
[Man69], for the proofs of the quoted results and further details.

A remarkable instance of (7.47) is the following problem: given f : R™ — R,
minimize f(x), under the constraint that h(x) = 0, (7.50)

where h : R® — R™, with m < n, is a given function of components
hi,..., hy. The analogues of critical points in problem (7.50) are called the
regular points.

Definition 7.2 A point x* € R", such that h(x*) = 0, is said to be regular
if the column vectors of the Jacobian matrix Jn(x*) are linearly indepen-
dent, having assumed that h; € C'(B(x*;R)), for a suitable R > 0 and
i=1,...,m. |

Our aim now is to convert problem (7.50) into an unconstrained minimization
problem of the form (7.2), to which the methods introduced in Section 7.2 can
be applied.

For this purpose, we introduce the Lagrangian function £ : R™ x R™ — R

L(x,A) = f(x) + ATh(x),

7.3 Constrained Optimization 317

where the vector X is called the Lagrange multiplier. Moreover, let us denote
by J, the Jacobian matrix associated with £, but where the partial derivatives
are only taken with respect to the variables 1, ..., x,. The link between (7.2)
and (7.50) is then expressed by the following result.

Property 7.11 Let x* be a local minimizer for (7.50) and suppose that, for
a suitable R > 0, f,h; € CY(B(x*; R)), fori=1,...,m. Then there erists a
unique vector X* € R™ such that Jz(x*, A*) = 0.

Conversely, assume that x* € R" satisfies h(x*) = 0 and that, for a
suitable R > 0 and i = 1,...,m, f h; € C*(B(x*; R)). Let H. be the matriz
of entries 0°L/0z;0x; for i,j = 1,...,n. If there exists a vector * € R™
such that Jo(x*,A*) = 0 and

z He(x*,A%)z > 0Vz # 0, with Vh(x*)Tz =0,
then x* is a strict local minimizer of (7.50).

The last class of problems that we are going to deal with includes the case
where inequality constraints are also present, i.e.: given f : R” — R,

minimize f(x), under the constraint that h(x) =0 and g(x) <0, (7.51)

where h : R” — R™, with m < n, and g : R® — R" are two given functions.
It is understood that g(x) < 0 means g;(x) < 0 for i = 1,...,r. Inequality
constraints give rise to some extra formal complication with respect to the case
previously examined, but do not prevent converting the solution of (7.51) into
the minimization of a suitable Lagrangian function.

In particular, Definition 7.2 becomes

Definition 7.3 Assume that h;,g; € C'(B(x*;R)) for a suitable R > 0
with ¢ = 1,...,m and j = 1,...,r, and denote by J(x*) the set of indices
j such that g;(x*) = 0. A point x* € R" such that h(x*) = 0 and
g(x*) < 0 is said to be regular if the column vectors of the Jacobian matrix
Jn(x*) together with the vectors Vg;(x*), j € J(x*) form a set of linearly
independent vectors. |

Finally, an analogue of Property 7.11 holds, provided that the following
Lagrangian function is used

M@, A p) = f(x) + ATh(x) + p"g(x)

instead of £ and that further assumptions on the constraints are made.
For the sake of simplicity, we report in this case only the following neces-
sary condition for optimality of problem (7.51) to hold.

Property 7.12 Let x* be a regular local minimizer for (7.51) and suppose
that, for a suitable R > 0, f,h;,g; € CYB(x*;R)) with i = 1,...,m,
j = 1,...,7. Then, there exist only two vectors A* € R™ and pu* € R",
such that Jp(x*, X", p*) = 0 with i >0 and pfg;(x*) =0Vj=1,...,7.

318 7 Nonlinear Systems and Numerical Optimization

7.3.1 Kuhn-Tucker Necessary Conditions for Nonlinear
Programming

In this section we recall some results, known as Kuhn-Tucker conditions
[KT51], that ensure in general the existence of a local solution for the nonlin-
ear programming problem. Under suitable assumptions they also guarantee
the existence of a global solution. Throughout this section we suppose that a
minimization problem can always be reformulated as a maximization one.

Let us consider the general nonlinear programming problem:
given f: R" — R,
maximize f(x), subject to
gi(x) <b;, i=1,...,1,
gi(x) >b;, i=1+1,...k,
gi(x)=b;, i=k+1,...,m,
x > 0.

(7.52)

A vector x that satisfies the constraints above is called a feasible solution of
(7.52) and the set of the feasible solutions is called the feasible region. We
assume henceforth that f,g; € C*(R"), i = 1,...,m, and define the sets
I- = {i: ¢(x*) =i}, Ix = {i: gi(x*) #b;}, J= = {i: zf =0}, J» =
{i: xf > 0}, having denoted by x* a local maximizer of f. We associate with
(7.52) the following Lagrangian

m m—+n
LOGA) = F)+ Y Xl —gi(x)] = D Ao,
i=1 i=m+1

The following result can be proved.

Property 7.13 (Kuhn-Tucker conditions I and II) If f has a constrai-
ned local mazimum at the point x = x*, it is necessary that a vector X* €
R™*T™ exists such that (first Kuhn-Tucker condition)

Vi L(x*, A7) <0,

where strict equality holds for every component i € Js. Moreover (second
Kuhn-Tucker condition)

Vi L(x* A x* = 0.
The other two necessary Kuhn-Tucker conditions are as follows.

Property 7.14 Under the same hypothesis as in Property 7.13, the third
Kuhn-Tucker condition requires that:

7.3 Constrained Optimization 319

VAL(x*A) >0 i=1,...,1
VAL(XA*) <0 i=1+1,...,k
VALK A) =0 i=k+1,...,m.

Moreover (fourth Kuhn-Tucker condition)
VaL(x*, A*)Tx* = 0.

It is worth noticing that the Kuhn-Tucker conditions hold provided that the
vector A* exists. To ensure this, it is necessary to introduce a further geometric
condition that is known as constraint qualification (see [Wal75], p. 48).

We conclude this section by the following fundamental theorem which
establishes when the Kuhn-Tucker conditions become also sufficient for the
existence of a global maximizer for f.

Property 7.15 Assume that the function f in (7.52) is a concave function
(i.e., —f is convex) in the feasible region. Suppose also that the point (x*, A)
satisfies all the Kuhn-Tucker necessary conditions and that the functions g;
for which A} > 0 are convex while those for which A} < 0 are concave. Then
f(x*) is the constrained global mazimizer of f for problem (7.52).

7.3.2 The Penalty Method

The basic idea of this method is to eliminate, partly or completely, the con-
straints in order to transform the constrained problem into an unconstrained
one. This new problem is characterized by the presence of a parameter that
yields a measure of the accuracy at which the constraint is actually imposed.

Let us consider the constrained problem (7.50), assuming we are searching
for the solution x* only in 2 C R™. Suppose that such a problem admits at
least one solution in 2 and write it in the following penalized form

minimize £,(x) for x € Q, (7.53)

where 1
La(x) = 1) + salh()]

The function £, : R™ — R is called the penalized Lagrangian, and « is called
the penalty parameter. It is clear that if the constraint was exactly satisfied
then minimizing f would be equivalent to minimizing £,,.
The penalty method is an iterative technique for solving (7.53).

For k = 0,1,..., until convergence, one must solve the sequence of
problems:

minimize L,, (x) with x € Q, (7.54)

where {ay} is an increasing monotonically sequence of positive penalty para-
meters, such that ay — oo as k — oo. As a consequence, after choosing ay,

320 7 Nonlinear Systems and Numerical Optimization

at each step of the penalty process we have to solve a minimization problem
with respect to the variable x, leading to a sequence of values xj;, solutions to
(7.54). By doing so, the objective function L,, (x) tends to infinity, unless
h(x) is equal to zero.

The minimization problems can then be solved by one of the methods
introduced in Section 7.2. The following property ensures the convergence of
the penalty method in the form (7.53).

Property 7.16 Assume that f : R* — R and h : R™ — R™, with m < n,
are continuous functions on a closed set Q C R™ and suppose that the sequence
of penalty parameters oy, > 0 is monotonically divergent. Finally, let X}, be the
global minimizer of problem (7.54) at step k. Then, taking the limit as k — oo,
the sequence X}, converges to x*, which is a global minimizer of f in Q and
satisfies the constraint h(x*) = 0.

Regarding the selection of the parameters «ay, it can be shown that large values
of ay, make the minimization problem in (7.54) ill-conditioned, thus making
its solution quite prohibitive unless the initial guess is particularly close to
x*. On the other hand, the sequence aj must not grow too slowly, since this
would negatively affect the overall convergence of the method.

A choice that is commonly made in practice is to pick up a not too large
value of o and then set a, = Bay_1 for k > 0, where [is an integer number
between 4 and 10 (see [Ber82]). Finally, the starting point for the numerical
method used to solve the minimization problem (7.54) can be set equal to the
last computed iterate.

The penalty method is implemented in Program 63. This requires as input
parameters the functions f, h, an initial value alphaO for the penalty para-
meter and the number beta.

Program 63 - lagrpen : Penalty method

function [x,vinc,iter]=lagrpen(f,h,x0,h,tol,alpha0,beta)
%LAGRPEN Penalty method for constrained function optimization
% [X,VINC,ITER]=LAGRPEN(F,H,X0, TOL,ALPHAOQ,BETA) attempts to compute
% the minimizer X of a function F with the Penalty method. F is a string containing
% the functional expressions of the function. X0 specifies the initial guess. H is a
% string variable containing the constraint. TOL specifies the tolerance of the method.
% ALPHAOQ and BETA are given parameters. ITER is the iteration number at which X is
% computed. VINC is the accuracy at which the constraint is satisfied.
x = x0; [r,c]=size(h); vinc = 0;
for i=1:r
vinc = max(vinc,eval(h(i,1:c)));
end
norm2h=["(",h(1,1:c),")"2];
for i=2:r
norm2h=[norm2h,'+(",h(i,1:c),")"2];
end

7.3 Constrained Optimization 321

alpha = alpha0;
options(1)=0; options(2)=tol*0.1;
iter = 0;

while vinc > tol
g=[f,"+0.5* ,;num2str(alpha,16), *',norm2h];
[x]=fmins(g,x,options);

vinc=0;
iter = iter + 1;
for i=1:r
vinc = max(vinc,eval(h(i,1:c)));
end
alpha=alpha*beta;
end
return

Example 7.6 Let us employ the penalty method to compute the minimizer of
f(x) = 100(z2 — 23)® + (1 — x1)? under the constraint h(x) = (z1 + 0.5)® + (2
+0.5)2 —0.25 = 0. The crosses in Figure 7.3 denote the sequence of iterates computed
by Program 63 starting from x© = [1,1]T and choosing ap = 0.1, 8 = 6. The
method converges in 12 iterations to the value x = [—0.2463, —0.0691]7 satisfying
the constraint up to a tolerance of 107%. °

7.3.3 The Method of Lagrange Multipliers

A variant of the penalty method makes use of (instead of L, (x) in (7.53)) the
augmented Lagrangian function G, : R™ x R™ — R given by

-2 -15 -1 -05 0 05 1 15 2

Fig. 7.3. Convergence history of the penalty method in Example 7.6

322 7 Nonlinear Systems and Numerical Optimization
1
Go (%, A) = f(x) + ATh(x) + Sa|h(x)|3, (7.55)

where A € R™ is a Lagrange multiplier. Clearly, if x* is a solution to problem
(7.50), then it will also be a solution to (7.55), but with the advantage, with
respect to (7.53), of disposing of the further degree of freedom A. The penalty
method applied to (7.55) reads: for k = 0,1,..., until convergence, solve the
sequence of problems

minimize G,, (x,A;) for x € Q, (7.56)

where {\;} is a bounded sequence of unknown vectors in R™, and the para-
meters oy are defined as above (notice that if Ay were zero, then we would
recover method (7.54)).

Property 7.16 also holds for method (7.56), provided that the multipli-
ers are assumed to be bounded. Notice that the existence of the minimizer
of (7.56) is not guaranteed, even in the case where f has a unique global
minimizer (see Example 7.7). This circumstance can be overcome by adding
further non quadratic terms to the augmented Lagrangian function (e.g., of
the form ||h|%, with p large).

Example 7.7 Let us find the minimizer of f(z) = —z* under the constraint 2 = 0.
Such problem clearly admits the solution x* = 0. If, instead, one considers the
augmented Lagrangian function

Loy (T, M) = —2t w4+ %aka,

one finds that it no longer admits a minimum at x = 0, though vanishing there, for
any ay, different from zero. °

As far as the choice of the multipliers is concerned, the sequence of vectors
A is typically assigned by the following formula

Ait1 = Ak 4+ agh(x®)),

where A\g is a given value while the sequence of aj can be set a priori or
modified during run-time.

As for the convergence properties of the method of Lagrange multipliers, the
following local result holds.

Property 7.17 Assume that x* is a regular strict local minimizer of (7.50)
and that:

1. f,h; € C*(B(x*;R)) withi=1,...,m and for a suitable R > 0;

2. the pair (x*,*) satisfies z'Hg,(x*,A*)z > 0, Vz # 0 such that
Jh(X*)TZ = 0;'

3. 3a > 0 such that Hg, (x*,A") > 0.

7.3 Constrained Optimization 323

Then, there exist three positive scalars §, v and M such that, for any pair
A a)eV={(Aa) e R™" : A=Az <da, a>a}, the problem

minimize Go (X, X), with x € B(x*;7),

admits a unique solution x(X, «), differentiable with respect to its arguments.
Moreover, Y(A,a) € V

[x(A, @) = x"[l2 < M[IA = A%2.

Under further assumptions (see [Ber82], Proposition 2.7), it can be proved
that the Lagrange multipliers method converges. Moreover, if a; — oo, as
k — oo, then

A - A"
lim [Ak+1 ll2

el 22—

and the convergence of the method is more than linear.

In the case where the sequence aj has an upper bound, the method con-
verges linearly.

Finally, we notice that, unlike the penalty method, it is no longer nec-
essary that the sequence of «y tends to infinity. This, in turn, limits the
ill-conditioning of problem (7.56) as a4 is growing. Another advantage con-
cerns the convergence rate of the method, which turns out to be independent
of the growth rate of the penalty parameter, in the case of the Lagrange
multipliers technique. This of course implies a considerable reduction of the
computational cost.

The method of Lagrange multipliers is implemented in Program 64. Com-
pared with Program 63, this further requires in input the initial value 1ambda0
of the multiplier.

Program 64 - lagrmult : Method of Lagrange multipliers

function [x,vinc,iter]=lagrmult(f,h,x0,lambda0,tol,alpha0,beta)
%LAGRMULT Method of Lagrange multipliers for constrained function optimization
% [X,VINC,ITER]=LAGRMULT(F,H,X0,LAMBDAO, TOL,ALPHAOQ,BETA) attempts
% to compute the minimizer X of a function F with the method of Lagrange
% multipliers. F ia a string containing the functional expressions of the function.
% X0 and LAMBDAO specify the initial guesses. H is a string variable containing the
% constraint. TOL specifies the tolerance of the method. ALPHAQ and BETA are given
% parameters. ITER is the iteration number at which X is computed. VINC is the
% accuracy at which the constraint is satisfied.
x = x0; [r,c]=size(h); vinc = 0; lambda = lambda0;
for i=1:r

vinc = max(vinc,eval(h(i,1:c)));
end
norm2h=['(",h(1,1:c),")"2];

324 7 Nonlinear Systems and Numerical Optimization

for i=2:r
norm2h=[norm2h,"+(’,h(i,1:c),")"2];

end

alpha = alphaO0;

options(1)=0; options(2)=tol*0.1;

iter = 0;

while vinc > tol
Ih=["(",h(1,1:c),")* ,num2str(lambda(1))];
for i=2:r

Ih=[lh,'+(",h(i,1:c),")*",num2str(lambda(i))];

end
g=[f,’+0.5*" ,num2str(alpha,16),"*' ,norm2h,’+’ Ih];
[x]=fmins(g,x,options);

vinc=0;
iter = iter + 1;
for i=L:r
vinc = max(vinc,eval(h(i,1:c)));
end
alpha=alpha*beta;
for i=1:r
lambda(i)=lambda(i)+alpha*eval(h(i,1:c));
end
end
return

Example 7.8 We use the method of Lagrange multipliers to solve the prob-
lem presented in Example 7.6. Set A = 10 and leave the remaining parameters
unchanged. The method converges in 6 iterations and the crosses in Figure 7.4
show the iterates computed by Program 64. The constraint is here satisfied up to
machine precision. °

05l -

0.5 1

Fig. 7.4. Convergence history for the method of Lagrange multipliers in Example 7.8

7.4 Applications 325

7.4 Applications

The two applications of this section are concerned with nonlinear systems
arising in the simulation of the electric potential in a semiconductor device
and in the triangulation of a two-dimensional polygon.

7.4.1 Solution of a Nonlinear System Arising from Semiconductor
Device Simulation

Let us consider the nonlinear system in the unknown u € R”
F(u) = Au+ ¢(u) —b =0, (7.57)

where A = (\/h)*tridiag,,(—1,2 — 1), for h = 1/(n + 1), ¢;(u) = 2K sinh(u;)
for i = 1,...,n, where A and K are two positive constants and b € R" is a
given vector. Problem (7.57) arises in the numerical simulation of semicon-
ductor devices in microelectronics, where u and b represent electric potential
and doping profile, respectively.

In Figure 7.5 (left) we show schematically the particular device considered
in the numerical example, a p — n junction diode of unit normalized length,
subject to an external bias AV =V}, — V,, together with the doping profile
of the device, normalized to 1 (right). Notice that b; = b(x;), for i =1,...,n,
where x; = ih. The mathematical model of the problem at hand comprises
a nonlinear Poisson equation for the electric potential and two continuity
equations of advection-diffusion type, as those addressed in Chapter 12, for
the current densities. For the complete derivation of the model and its analysis
see, for instance, [Mar86] and [Jer96].

Solving system (7.57) corresponds to finding the minimizer in R™ of the func-
tion f:R™ — R defined as

1 7777777777 '
p n
e
0 L
I
— Il + -1
N
AV

Fig. 7.5. Scheme of a semiconductor device (left); doping profile (right)

326 7 Nonlinear Systems and Numerical Optimization

L - T
flu) = Ju Au+ 2; cosh(u;) — b* u. (7.58)
It can be checked (see Exercise 5) that for any u,v € R", with u # v, and
for any A € (0,1)

M) + (1 =N f(v) = fQu+ (1= 2)v) > (1/2)A1 = A)[u = v][3,

where || - ||a denotes the energy norm introduced in (1.28). This implies that
f(u) is an uniformly convex function in R™, that is, it strictly satisfies (7.49)
with p=1/2.

Property 7.10 ensures, in turn, that the function in (7.58) admits a unique
minimizer u* € R™ and it can be shown (see Theorem 14.4.3, p. 503 [OR70])
that there exists a sequence {ay} such that the iterates of the damped New-
ton method introduced in Section 7.2.6 converge to u* € R™ (at least)
superlinearly.

Thus, using the damped Newton method for solving system (7.57) leads to
the following sequence of linearized problems: given u(® € R”, for k = 0,1, ...
until convergence solve

[A +2K diagn(cosh(ul(-k))) ou®) = b — (Au(k) + qb(u(k)))) (7.59)

then set u**+1) = u®) 4 o dul®.
Let us now address two possible choices of the acceleration parameters ay.
The first one has been proposed in [BR81] and is

1
C Lt [Fa®)]s”

ok k=0,1,..., (7.60)

where the coefficients pp > 0 are suitable acceleration parameters picked in
such a way that the descent condition ||[F(u®) 4 ajdu®)|. < [|[F(u®)]s
is satisfied (see [BR81] for the implementation details of the algorithm).

We notice that, as [|[F(u®)| . — 0, (7.60) yields a — 1, thus recovering
the full (quadratic) convergence of Newton'’s method. Otherwise, as typically
happens in the first iterations, |[F(u®)|s > 1 and ay, is quite close to zero,
with a strong reduction of the Newton variation (damping).

As an alternative to (7.60), the sequence {ay} can be generated using the
simpler formula, suggested in [Sel84], Chapter 7

ay =270 1/2, k=0,1,..., (7.61)

where ¢ is the first integer in the interval [1, It,,q.] such that the descent
condition above is satisfied, It,,q, being the maximum admissible number of
damping cycles for any Newton’s iteration (fixed equal to 10 in the numerical
experiments).

7.4 Applications 327

As a comparison, both damped and standard Newton’s methods have been
implemented, the former one with both choices (7.60) and (7.61) for the coef-
ficients ay. In the case of Newton’s method, we have set in (7.59) ay = 1 for
any k > 0.

The numerical examples have been performed with n = 49, b; = —1 for
i < n/2 and the remaining values b; equal to 1. Moreover, we have taken
A2 =1.67-107% K = 6.77 - 107% and fixed the first n/2 components of the
initial vector u(® equal to V, and the remaining ones equal to Vj, where
Vo, =0and V, = 10.

The tolerance on the maximum change between two successive iterates,

which monitors the convergence of damped Newton’s method (7.59), has been
set equal to 1074,
Figure 7.6 (left) shows the log-scale absolute error for the three algorithms
as functions of the iteration number. Notice the rapid convergence of the
damped Newton’s method (8 and 10 iterations in the case of (7.60) and (7.61),
respectively), compared with the extremely slow convergence of the standard
Newton’s method (192 iterations). Moreover, it is interesting to analyze in
Figure 7.6 (right) the plot of the sequences of parameters oy as functions of
the iteration number.

The starred and the circled curves refer to the choices (7.60) and (7.61) for
the coefficients ay, respectively. As previously observed, the ay’s start from
very small values, to converge quickly to 1 as the damped Newton method
(7.59) enters the attraction region of the minimizer x*.

10* 1
0.9

102 0.8
0.7

10° 0.6

(1)

0.5

102 0.4
0.3

2
107 @ 0.2
® 0.1
—6
10 0 1 2 0
10 10 10 0 2 4 6 8 10

Fig. 7.6. Absolute error (left) and damping parameters ay (right). The error curve
for standard Newton’s method is denoted by (1), while (2) and (3) refer to damped
Newton’s method with the choices (7.61) and (7.60) for the coefficients oy, respec-
tively

328 7 Nonlinear Systems and Numerical Optimization
7.4.2 Nonlinear Regularization of a Discretization Grid

In this section we go back to the problem of regularizing a discretization grid
that has been introduced in Section 3.14.2. There, we considered the technique
of barycentric regularization, which leads to solving a linear system, typically
of large size and featuring a sparse coefficient matrix.

In this section we address two alternative techniques, denoted as regular-
ization by edges and by areas. The main difference with respect to the method
described in Section 3.14.2 lies in the fact that these new approaches lead to
systems of nonlinear equations.

Using the notation of Section 3.14.2, for each pair of nodes x;, x;, € Z;,
denote by lj;, the edge on the boundary 0P; of P; which connects them and
by x;i the midpoint of /;;, while for each triangle T' € P; we denote by x
the centroid of T'. Moreover, let n; = dim(Z;) and denote for any geometric
entity (side or triangle) by | - | its measure in R* or R2.

In the case of regularization by edges, we let

xi= | D xplll | /IOPi], ¥xi € N, (7.62)
ljr€OP;

while in the case of regularization by areas, we let

X; = (Z Xb,T|T|> /|7)1|, Vx; € Nh. (7.63)
TeP;

In both the regularization procedures we assume that x; = XEaD) if x; € 0D,

that is, the nodes lying on the boundary of the domain D are fixed. Letting

n = N — N, be the number of internal nodes, relation (7.62) amounts to

solving the following two systems of nonlinear equations for the coordinates

{z;} and {y;} of the internal nodes, with i =1,...,n

1
T Mo @italll |/ Y Nkl =0,

ljLEOP; ljLEOP; (764)
1
Vi3 ST it wllikl |/ D sl =0
ljkEBPi, ljkEapi
Similarly, (7.63) leads to the following nonlinear systems, for i = 1,...,n
1
T~ 3 < > (@ir+z2r+ xg,T)|T|> /> T =0,
TEP; TeP; (765)

vi—3 Z (Y17 + Y21 + y3,T)|T|> / Z T =0,
TEP; TeP;

7.4 Applications 329

where x, 7 = [xS,T,y&T]T, for s = 1,2, 3, are the coordinates of the vertices
of each triangle T' € P;. Notice that the nonlinearity of systems (7.64) and
(7.65) is due to the presence of terms |l;;| and |T7|.

Both systems (7.64) and (7.65) can be cast in the form (7.1), denoting, as
usual, by f; the i-th nonlinear equation of the system, for i = 1,...,n. The
complex functional dependence of f; on the unknowns makes it prohibitive to
use Newton’s method (7.4), which would require the explicit computation of
the Jacobian matrix Jg.

A convenient alternative is provided by the nonlinear Gauss-Seidel method
(see [OR70], Chapter 7), which generalizes the corresponding method pro-
posed in Chapter 4 for linear systems and can be formulated as follows.

Denote by z;, for i = 1,... n, either of the unknown z; or y;. Given the

0

initial vector z(®) = [. zﬁo)]T, for K =0,1,... until convergence, solve

FiZFD Y e M 2By =0, i=1,..,m, (7.66)

then, set zi(kH) = £. Thus, the nonlinear Gauss-Seidel method converts prob-
lem (7.1) into the successive solution of n scalar nonlinear equations. In the
case of system (7.64), each of these equations is linear in the unknown zi(kﬂ)
(since £ does not explicitly appear in the bracketed term at the right side of
(7.64)). This allows for its exact solution in one step.

In the case of system (7.65), the equation (7.66) is genuinely nonlinear
with respect to &, and is solved taking one step of a fixed-point iteration.

The nonlinear Gauss-Seidel (7.66) has been implemented in MATLAB to
solve systems (7.64) and (7.65) in the case of the initial triangulation shown
in Figure 7.7 (left). Such a triangulation covers the external region of a two
dimensional wing section of type NACA 2316. The grid contains Ny = 534
triangles and n = 198 internal nodes.

The algorithm reached convergence in 42 iterations for both kinds of regu-
larization, having used as stopping criterion the test ||z(*+1) —z(*)||, <1074,
In Figure 7.7 (right) the discretization grid obtained after the regularization

Fig. 7.7. Triangulation before (left) and after (right) the regularization

330 7 Nonlinear Systems and Numerical Optimization

by areas is shown (a similar result has been provided by the regularization by
edges). Notice the higher uniformity of the triangles with respect to those of
the starting grid.

7.5 Exercises

1. Prove (7.8) for the m-step Newton-SOR method.
[Hint: use the SOR method for solving a linear system Ax=b with A=D-E-F
and express the k-th iterate as a function of the initial datum x(o), obtaining

xFHD = xO L o —x©@ 4 (MF 4.+ DB b,

where B= w ™ (D—wE) and M = B~ 'w ™ [(1 — w)D 4 wF]. Since B™*A =1-M
and

I+...+MI=M)=1-M""

then (7.8) follows by suitably identifying the matrix and the right-side of the

system.]

2. Prove that using the gradient method for minimizing f(x) = 2® with the direc-
tions p® = —1 and the parameters oy, = 27 %!, does not yield the minimizer
of f.

3. Show that for the steepest descent method applied to minimizing a quadratic
functional f of the form (7.35) the following inequality holds

f(x(k+1)) < (AMaz -)\min>2 f(x(k>)
-)\'maac +)\mzn ’
where Aoz, Amin are the eigenvalues of maximum and minimum module, re-
spectively, of the matrix A that appears in (7.35).
[Hint: proceed as done for (7.38).]
4. Check that the parameters ay, of Exercise 2 do not fulfill the conditions (7.31)
and (7.32).
5. Consider the function f : R™ — R introduced in (7.58) and check that it is
uniformly convex on R", that is

Af(@) + (L= A f(v) = fu+ (1= A)v) > (1/2)A(1 = N)[lu V3

forany u, v e R" withu#vand 0 < A< 1.
[Hint: notice that cosh(+) is a convex function.]
6. To solve the nonlinear system

1 1 5 1.
——cosxl—l—facg—i—gsmmsle,

81 1 9
—sinx; + - cosxs = x2,
31
~3 cosx1 + gl‘g + gsinwa = x3,

use the fixed-point iteration x("*Y = ¥(x(™), where x = [21, 22, z3]T and ¥(x)
is the left-hand side of the system. Analyze the convergence of the iteration to
compute the fixed point a = [0,1/3,0]7.

[Solution: the fixed-point method is convergent since || V()| = 1/2.]

7.5 Exercises 331

7. Using Program 50 implementing Newton’s method, determine the global maxi-

mizer of the function)

f@)=e 7 — %cos(?:r)

and analyze the performance of the method (input data: xv=1; tol=le-6;
nmax=500). Solve the same problem using the following fixed-point iteration

e% (zsin(2z) + 2 cos(2z)) — 2
2 (zsin(2z) + 2 cos(2x))

ZT(kt1) = 9(Tk) with g(x) = sin(2x)

Analyze the performance of this second scheme, both theoretically and experi-
mentally, and compare the results obtained using the two methods.

[Solution: the function f has a global maximum at = 0. This point is a double
zero for f’. Thus, Newton’s method is only linearly convergent. Conversely, the
proposed fixed-point method is third-order convergent.]

2 Springer
http://www.springer.com/978-3-540-34658-6

Mumerical Mathematics

Quarteroni, A; Sacco, R.; Saleri, F.
2007, XV, 657 p. 135 illus., Hardcover
ISBM: 878-3-540-34658-6

