
1. Introduction

Communications across modern computer networks should be secure, an ad-
jective that embodies multiple properties. For example, one may wonder
whether a message just received was altered during its transfer. If not, then
the message is said to enjoy integrity. Even if a message that is received quotes
someone as its creator, he might be a fake one. If not, then the message con-
veys authentication of its creator. Another important property is whether the
message that is received was intercepted and understood by others besides its
creator and intended receiver. If not, then the message enjoys confidentiality.
Peer generically refers to an endpoint of a remote communication. The peers
belong to a set of agents.

Devising a complete list of properties to assure secure communications
in the context of modern computer networks is matter of current research.
Each property implicitly assumes the existence of a malicious agent, the Spy,
whose aim exactly is to violate the communications profitably. The Spy can
overhear messages during transfers, create fake messages and introduce them
in the traffic. While history tells us that various forms of security have been
important ever since ancient times, significant frauds have been orchestrated
in recent years with the help of computers containing inexpensive hardware
and software.

Cryptography may help. Used extensively also during the World Wars [97],
it is the art of coding and decoding information by means of a cryptographic
key. A cleartext message is transformed into a ciphertext one using the key
(through an operation that is called encryption). In the best case, the cleart-
ext can be retrieved from the ciphertext (through an operation that is called
decryption) if and only if the key is available. In consequence, the cleartext
is safe from the Spy as long as she does not know the key. On the contrary,
the intended receiver of the message is assumed to know the key. When the
cryptographic key used for encryption is the same as that to be used for
decryption, cryptography is said to be symmetric or shared-key (DES [125],
IDEA [105]); otherwise, it is asymmetric or public-key (RSA [138], LUC [149]).
A digital signature uses techniques of asymmetric cryptography to confirm
the author of a digital message. A message authentication code, MAC in
brief, for a message is another message computed using techniques of sym-
metric cryptography from the original message and a key that the peers share.

2 1. Introduction

This brief outline of cryptographic terminology signifies that the underlying
mathematical foundations are not of specific interest to this book. Additional
readings are easy to suggest ([97, 119, 146, 150]).

Steganography [98] may also be used for secure communications. It is the
art of hiding a message inside a larger, intelligible one so that the Spy cannot
discern the presence of the hidden message after seeing the larger one. For
example, the low-order pixel bits of a digital image may be changed to the
bits of a message to be sent confidentially while the image does not suffer
perceptible variations.

A more recent technique aiming for confidentiality and authentication is
called chaffing and winnowing [137]. It may be considered a form of steganog-
raphy, but it makes use of MACs. Sender and receiver must initially agree
on a secret key by using a key-exchange protocol such as Diffie-Hellmann
[73] or Oakley [129]. The sender authenticates his message by computing the
correct MAC for it and sending the pair formed by the message and its MAC
off to the receiver. The sender also sends chaff, namely a large number of
other pairs, each made by an intelligible random message and a wrong MAC.
Only the intended receiver of the message can discern which pair brings the
correct MAC, as he knows the secret key used to compute it. So, he alone
can winnow the received messages, namely discard the chaff and select the
original message.

The vast majority of security protocols for computer networks are based
on the first technique, cryptography; hence, they typically are cryptographic
protocols. These are sequences of steps that pairs of remote peers must take to
subsequently establish a secure communication session between themselves.
Each step requires the transmission of a message, possibly encrypted, be-
tween the peers. Messages include peer names, cryptographic keys, random
numbers, timestamps, ciphertexts and concatenations of those components.
A security protocol attempts to achieve certain goals at the time of its com-
pletion, namely a set of security properties.

Experience shows that security protocols often are flawed in the sense
that they fail to enforce their claimed goals. A security protocol precisely is
a concurrent program that can be executed by a large population of agents
including the Spy. Not only is the Spy entitled to participate in the proto-
col as any other agent, but she can also act illegally, interleaving a number
of protocol sessions. By doing so, she can exploit on a session the messages
obtained from others. Moreover, the vulnerabilities of current transport pro-
tocols let her overhear the messages exchanged by other agents. Using se-
curity measures such as cryptography to enforce the protocol goals in this
setting is not easy. This claim is supported by the large number of flaws that
have been reported. To only mention a few flaws, some affect well-known
protocols [13, 106], others can be classified [151]. Another group affects less
publicly known banking protocols, whose weaknesses have been exploited by

1. Introduction 3

dishonest employees [12]. Other flaws are due to specific implementations of
the cryptographic primitives [143].

These few citations confirm that establishing whether a protocol lives
up its promises may be very difficult. This process was only carried out by
informal reasoning until the late 1980s. If a protocol claimed to achieve a
goal, some researchers studied the protocol in detail and decided whether
this was true. At present, informal reasoning still retains its importance:

– it is crucial for grasping the semantics of protocol designs beyond their
bare representation as message sequences;

– it may find minor weaknesses or simple flaws in a protocol more quickly
than formal reasoning;

– it is fundamental for understanding certain flaws thoroughly;
– it is easier to follow by an inexperienced audience;
– it ultimately helps for developing formal reasoning and understanding for-

mal guarantees.

While informal reasoning was failing to capture serious protocol flaws, the
early 1990s saw increasing awareness that formal reasoning can be conducted
profitably on abstract protocol models [58, 99, 117]. It can effectively prove
a protocol correct in a model or otherwise detect realistic flaws. As we shall
see (Chapter 2), some methods of conducting formal reasoning lack expres-
siveness or automation, others are just too complicated to use on realistic
protocols or to suscitate industrial interest.

This book is about the use of the Inductive Method, which is supported by
the theorem prover Isabelle, to formally prove correctness of realistic proto-
col models. While the foundations of the Inductive Method are due to Paul-
son [133], our aim exactly is its development to make it capable for real-size
protocols. In achieving this aim, we have considerably extended the method,
deepened the formal reasoning about protocols and ultimately developed a
general principle of prudent protocol analysis. Therefore, this book can be
profitably read by at least anyone interested in any of the following:

– understanding the entangled technicalities hidden behind various types of
security protocols;

– learning a method of conducting formal analysis of realistic security pro-
tocols;

– teaching (verification of) security protocols;
– practicing with the theorem prover Isabelle;
– practicing with a general principle to realistically conduct formal analysis

of security protocols.

An excellent companion to the present manuscript is Boyd and Mathuria’s
recent book on security protocols [55], which eminently discusses a variety
of protocols and their underlying philosophy using a precise though informal
language. By contrast, our book uses a formal language to systematically

4 1. Introduction

disassemble the protocol features down to the smallest component and bring
to light details that might otherwise remain hidden.

The organisation of this chapter is simple. First, the motivation to our
work is discussed (§1.1), and our contribution to knowledge is sketched (§1.2).
Then, the notation that will be used throughout the book is presented (§1.3),
and the remaining chapters are outlined (§1.4).

1.1 Motivation

The foundations of the Inductive Method date back to 1996, and are pre-
sented in Chapter 3. This section refers to that initial development stage,
when our research and the subject of this book initiated. Hence, the present
tense here refers to late 1996. Our motivation is threefold: the development
of a young and promising method; the verification of real-size protocols that
have never been formally explored in a realistic setting; and the investigation
of general principles underlying correct protocols.

To gradually introduce the Inductive Method, here is its main underlying
idea: simple mathematical induction suffices to model security protocols and
reason about their goals. A key concept is the trace, a list of network events
occurring while an unbounded population of agents is running a protocol.
Traces are defined inductively and so is the set of all traces admissible un-
der a specific protocol. This set represents the formal protocol model. Proofs
can be carried out by induction on a generic trace of the model, with me-
chanical support offered by the theorem prover Isabelle. They establish trace
properties representing goals of the underlying protocol.

1.1.1 Developing the Inductive Method

Further testing. A general theory of messages and an extendible formalisa-
tion of the Spy are already available in the method. An important feature is
that no bound is stated on the size of the models. Crucially, the population of
agents who could participate in the protocol is potentially infinite: the model
agents originate from a bijection with the natural numbers. Also, each agent
is allowed to interleave an arbitrary number of protocol sessions.

However, the method has only been applied to a few classical security
protocols [131, 132]. To convince ourselves of the practicality of mathematical
induction in this context, further case studies are necessary. The security
community appears to lament that the size of the existing case studies is not
realistic. Hence, we choose to turn our attention to largely deployed protocols
and to intrinsically different protocols, such as non-repudiation ones.

Deeper understanding. Other informal criticism of the method derives
from difficulties in accepting the concept of trace, considered a “low-level”
view of the network traffic, or a structure that is “non-existent” in reality.

1.1 Motivation 5

A trace can be viewed as a possible history of the network events occurring
while the protocol is executed. This interpretation may help us understand
the key concepts of the method, although it should be verified over additional
case studies.

All proofs follow the natural inductive style adopted by humans: verifying
that the various protocol steps preserve a certain property. However, proofs
may seem “cryptic” and, consequently, their results may be accepted with
reluctance. This is often due to streamlined proof scripts, which feature highly
automatic proof methods implementing several proof steps. We intend to
favour human inspection of proofs by often preserving the linear application
of the proof steps.

Additional elements. Many protocols use timestamps to assure freshness
of important components such as session keys. The current datatype of mes-
sages does not feature timestamps. A related open issue is how to express
freshness in terms of timestamps.

The reception of protocol messages is not modelled. However, understand-
ing a formal guarantee very often involves some informal reasoning about
reception. Thus, it seems desirable to treat this event formally, although it
is not obvious whether the existing analyses would be simple to update ac-
cordingly.

Another important issue is how to account for e-commerce protocols,
which often involve smartcards. How could the cards be modelled, taking
into account the risks of cloning? How could their functionalities and interac-
tions with the agents be represented? Along the same lines, non-repudiation
protocols are expected to require a non-standard threat model in which no
agents trust each other. Its modelling price is not trivial to anticipate.

1.1.2 Verifying the Protocol Goals

Existing guarantees. The Inductive Method already features a general
method for proving the goal of confidentiality, but the early literature [131,
132] fails to mention the concept of viewpoint. The formal guarantees about
the protocols are expressed in terms of theorems established with Isabelle’s
support. They are useful to the protocol peers only when the peers can verify
whether the theorem assumptions hold. For example, if a proof of session
key confidentiality is available on assumptions that the protocol initiator can
verify, then the protocol achieves confidentiality from the initiator’s view-
point. Unless the proof can be conducted also on assumptions verifiable by
the responder, the protocol does not necessarily guarantee confidentiality to
the responder. As an extreme concern, we may wonder whether a guarantee
featuring assumptions that are impossible to verify would be of any practical
importance.

While the treatment of confidentiality is, as mentioned, satisfactory, that
of authentication is not. The latter is an important and complicated goal

6 1. Introduction

that may hold in a hierarchy of forms, as confirmed by Lowe using another
formal method [109]. However, the current formalisation of authentication
using the Inductive Method fails to express the knowledge of the very message
components that authenticate the agents (a satisfactory explanation of the
various authentication forms must be deferred until later, §4.6). Investigating
how many and which forms our method captures at present is challenging.

Novel guarantees. The well-known goals of integrity, authenticity, key dis-
tribution and strong forms of authentication need to be treated formally with
the Inductive Method. To illustrate, we observe that even when the initia-
tor is informed that session key confidentiality holds, it is not consequently
obvious that the responder shares the same session key or that he means to
share it with the initiator. It is not clear at this early stage what and how
substantial the extensions necessary to formalise these goals might be. Some
of the existing guarantees might have to be reinterpreted.

1.1.3 Investigating the Protocol Principles

One of the ultimate goals of analysing security protocols formally is to derive
the general principles that make them secure. Ideally, we would like to have
simple rules, adherence to which would be easy to check and would directly
guarantee the security goals.

The best-known set of principles of prudent protocol design is due to
Abadi and Needham [7]. The main principle is explicitness, which prescribes
each message to say exactly what it means without ambiguity. Other princi-
ples include avoiding unnecessary encryption and synchronising the network
clocks when timestamps are used. Unfortunately, these principles are far from
ideal, as they are neither sufficient nor always necessary to assure security.

It is interesting to investigate whether the findings obtained using the
Inductive Method would support these principles or clarify how relevant they
are to the goals of a protocol. Moreover, the deeper study of the goals that we
advocated above might unveil new principles not only to design the protocols
but also to analyse them realistically.

1.2 Contribution

Our contribution is multifaceted. It is simplest to present it in relation to the
motivation of the research.

1.2.1 Inductive Method

The Inductive Method (Chapter 3) turns out to be easily extendible. Time-
stamps are modelled using a discrete formalisation of time based on the
position of each event in a trace. Each history of the network is equipped

1.2 Contribution 7

with a global clock corresponding to the length of the corresponding trace,
and so each trace has a global clock yielding the current time of the trace. All
agents refer to it, so the model hides problems of clock synchronisation. A
message component is considered fresh in a trace if the time interval between
the creation of the component and the current time of the trace is less than or
equal to the lifetime allowed for the component. Session keys are considered
valid if and only if they are used within their lifetime.

These extensions have allowed us to mechanise the proofs of correctness
of three protocols that make use of timestamps: the BAN Kerberos protocol
(Chapter 6), the larger and deployed Kerberos IV (Chapter 7), and finally
the more recent Kerberos V (Chapter 9). Although they share the structure
of a few messages, each protocol hides peculiar subtleties. Their proof scripts
are fairly intuitive because of the limited use of automatic proof methods,
which is another of our goals.

New events can be modelled. In particular, introducing message recep-
tion makes the specifications more readable and the proofs easier to follow,
increasing overall intuitiveness. The existing scripts can be updated prag-
matically, with minor effort. Message reception is not forced to occur. This
models a network that is entirely controlled by an active Spy who can in-
tercept certain messages and prevent their delivery. Moreover, the reception
event allows the formalisation of any agent’s knowledge, rather than just the
Spy’s, in terms of message deducibility.

New elements, such as extra trusted servers or smartcards, are modelled
as new types of the language. For smartcards, the interaction with their own-
ers is formalised by additional events (Chapter 10). The agents’ knowledge,
in particular the Spy’s, must be reviewed for two reasons: (i) all long-term
secrets are now stored only in the cards; (ii) certain protocols that are based
on smartcards assume that the Spy cannot listen to communication between
a card and its owner, while other protocols do not make this assumption. We
verify the entire Shoup-Rubin protocol (Chapter 11) using a faithful model
obtained both from the informal specification of the protocol and the de-
scription of its implementation. The protocol involves new long-term secrets,
which can be easily introduced in the definition of agents’ knowledge.

Another success is the treatment of accountability protocols, which aim
at giving peers evidence of each other’s participation. They require a funda-
mental change to the threat model because the Spy no longer is an opponent
between two peers who trust each other but, rather, can hide behind any of
the peers (Chapter 12). We shall see that this change is not difficult to imple-
ment through the complete analyses of a non-repudiation protocol by Zhou
and Gollmann and a certified e-mail protocol by Abadi et al. (Chapter 13).
Some of these protocols assume the existence of a communication channel
secured by a standard protocol such as TLS/SSL [72]. We have found simple
formalisations for secure transmission over such channels using specific forms
of the available events.

8 1. Introduction

To summarise, our research equips the Inductive Method with all the
necessary features to tackle industrial protocols. The subsequent verification
of the SET protocol [36, 37, 38] confirms this. In general, the method has
become so expressive that the bare statements of the theorems convey most
guarantees without considerable informal argument to make on top of them.
Therefore, the exposition accompanying each theorem reduces to the very
minimum.

1.2.2 Protocol Goals

We find that the argument about any protocol goal can (and must, see the
next section) be interpreted from the viewpoint of each peer, although this
may not be trivial regardless of the formal method in use (Chapter 2). While
this practice provides the human analyser with a better understanding of each
protocol step, it also produces formal guarantees that the peers can apply
in practice, as we shall see. During this interpretation process, we realise
that one assumption of a theorem that has been proved for the shared-key
Needham-Schroeder protocol is in fact entirely superfluous. Our study of the
protocol goals supports the claim that the goals of authenticity and integrity
are equivalent (§4.3), while the corresponding guarantees can be derived from
reinterpreting some of the existing theorems (Chapter 4).

Paulson’s method for proving confidentiality is still effective after the
modelling of timestamps. However, several specific lemmas are necessary with
Kerberos IV because of its hierarchical distribution of session keys. We have
unveiled an important weakness in the protocol management of timestamps
and lifetimes: it lets the Spy exploit certain session keys in realistic circum-
stances within their lifetime. Moreover, the agent to whom the session keys
have been legally granted is no longer present on the network, and so will not
register any irregularity.

Two different definitions of agents’ knowledge are developed and vari-
ously compared. One may appear to be simpler as it exclusively relies on
message creation through trace inspection. The other is based on full mes-
sage deducibility from the traffic that is sent or received (Chapter 8). The
latter requires an explicit formalisation of message reception, and so allows
us to formally study the goal of key distribution. We argue that this goal
is equivalent to a strong form of authentication (§4.7), as we demonstrate
on both BAN Kerberos and Kerberos IV. As for Kerberos V, we shall see
that its goals are somewhat equivalent to those of Kerberos IV, although its
design calls for alternative proof methods.

Verifying the goals of the protocols that are based on smartcards only
requires minor modifications to the existing proof methods. A set of simplifi-
cation rules must be proved to deal with the new events and the new definition
of agents’ knowledge. Also the smartcards may require guarantees that the
protocol goals are met. Two of the messages of the Shoup-Rubin protocol
lack crucial explicitness, so that none of the peers knows which session key

1.2 Contribution 9

is associated with each other. The confidentiality argument is significantly
weakened in the realistic setting in which the Spy can exploit other agents’
smartcards. The proofs suggest a simple fix to the protocol, yielding stronger
guarantees against veracious threats.

The goals of accountability protocols can be also analysed by induction.
We have developed simple proof methods for the main goals of validity of
evidence and of fairness. The former confirms that certain messages truly
count as evidence of an agent’s participation in the protocol. Fairness is an
additional goal, requiring the appropriate evidence to be either available to
both peers or to none, so that no one is advantaged. Various forms of both
goals can be proved by simply showing that certain events always precede
specific others on the protocol traces. This treatment is demonstrated on
both the non-repudiation protocol and the certified e-mail protocol.

Admittedly, our proofs were difficult to develop. The analyses of Kerberos
IV and Shoup-Rubin, for example, saw certain proofs take up to four man-
weeks each to be developed, while the corresponding script was up to 50
Isabelle commands long. Polishing the original scripts often shortens them
up to approximately one fifth of their original length, thanks to a moderate
use of Isabelle’s automatic proof methods, in which subsidiary lemmas can
be installed. As mentioned, this must be done with care, for it may affect
the resulting intelligibility. However, proof scripts are doomed to change over
time as Isabelle evolves, while proof methods will rarely change. Hence, this
book concentrates on the general methods rather than on the actual Isabelle
scripts, some of which are demonstrated in the appendices.

1.2.3 Protocol Principles

Our research favours the development of protocol principles, namely those
meta-rules that contribute to guaranteeing security. However, no principle is
found to be sufficient in general.

To be precise, the importance of explicitness is confirmed. The messages
that are not explicit about their meaning force the peers to heuristic interpre-
tations that turn out to be extremely risky. This was known to affect classical
protocols such as the public-key Needham-Schroeder; but we find that it also
affects protocols that are apparently stronger, such as Shoup-Rubin, a smart-
card one. We stress that studying adherence to the explicitness principle al-
ways requires an assessment of the underlying threat model. For example, if
a communication is assumed to be preauthenticated, then quoting the peer
names may be unnecessary.

Explicitness is also interesting from the proof perspective. We find that,
if a message lacks explicitness, then carrying out any proofs about it requires
quantifying existentially the exact components that are not sufficiently ex-
plicit. The prover needs either to bind them to the assumptions or to con-
jecture that they exist. It could be argued that mere expertise in theorem

10 1. Introduction

proving can discover lack of explicitness and therefore make up for compe-
tency of prudent protocol design.

The verification of Kerberos IV confirms the principle that extra encryp-
tion does not necessarily strengthen confidentiality. Despite the double en-
cryption of the responder’s session key, the key is vulnerable to the attack
mentioned above, under a realistic threat model. Additional support for the
principle derives from the analysis of Kerberos V, which attains similar confi-
dentiality goals and suffers the same attack although it disposes with double
encryption.

Our attention to the agents’ viewpoints in carrying out formal protocol
analyses leads us to the development of a principle of prudent protocol analy-
sis. This seems to be the first time that a principle is spelled out to guide the
analysis of protocols rather than directly their design. Secure protocol design
of course remains the ultimate aim. But analysis and design are equally im-
portant because the former is meant to influence the latter. Only a realistic
analysis will contribute to a truly more robust design.

Our principle of prudent protocol analysis is called goal availability (Chap-
ter 5). It holds for a protocol, one of its goals and one of its peers if there exist
guarantees from the peer’s viewpoint that the goal is met. The guarantees
must rely on assumptions that the peer is able to verify in practice. How-
ever, for each peer we can identify a set of assumptions that are necessary
although the peer can never verify them: they form the peer’s minimal trust.
Goal availability tolerates the minimal trust.

Adherence to goal availability may be sufficient to prevent certain attacks
or weaknesses either directly (as with Kerberos IV) or indirectly (as with
Shoup-Rubin). The attack on Kerberos IV is in fact due to a violation of
goal availability where the goal is session key confidentiality for the protocol
responder. The weaknesses of Shoup-Rubin are due to the lack of explicitness
discovered through the verification of adherence to goal availability. In this
light, our principle seems easier to verify than the explicitness principle, whose
definition is less constructive.

1.3 Notation

The notational conventions that are used throughout this book are sum-
marised here. Although they are rather standard, digesting them appropri-
ately is very useful to understanding this book thoroughly.

1.3.1 Presenting the Protocols

Getting to grasps with the syntax of messages is fundamental. Fat braces “{|”
and “|}” [133, §2.1] are used to distinguish protocol messages from sets, and
also to indicate the encryption operation. They are omitted in the case of

1.3 Notation 11

messages whose outermost constructor is concatenation, and in the case of
ciphertexts whose body is a single-component message. For example:

– a ciphertext made by encrypting with key K a two-component message
consisting of m concatenated with n is indicated as {|m,n|}K ;

– a two-component message consisting of m concatenated with n is indicated
as m,n;

– a single-component message m encrypted with key K is indicated as mK .

The security protocols will be presented using what today is a rather
standard notation. For each protocol step (which essentially sends a message),
the step number, the sender and the intended recipient of the message, and
the message itself are indicated.

1. A −→ B : A,Na

2. B −→ A : {|Na,Kab|}
sK−B

Fig. 1.1. Example protocol

Figure 1.1 presents an example protocol that helps to demonstrate the
notation. The protocol consists of two steps. In the first step, agent A sends
agent B the two-component concatenated message formed with her own iden-
tity and Na. In the second step, agent B replies to A with a ciphertext ob-
tained by signing with his key sK−

B the concatenation of Na with another
key Kab. It is unnecessary to detail the messages precisely at this stage. We
in fact state nothing about the keys and only anticipate that Na and Nb
are nonces. A nonce is a random “number that is used only once” [126]. In
our example protocol, A invents the nonce Na: it has never been used before.
Hence, its use tells A, upon reception of the second message, that B’s reply is
more recent than the instant Na was created. Nonces can also help establish
various forms of authentication, as we shall see in this book.

A full understanding of the notation requires a reference to the threat
model in which all protocols will be studied. The Spy can intercept all mes-
sages and prevent their delivery. She can also tamper with them by decom-
posing concatenated messages and opening up ciphertexts sealed with keys
she knows. Then, she can use the learnt message components to form new
messages at will by concatenation and encryption. This threat model, which
we shall discuss more extensively (§3.9), is due to Dolev and Yao [75], and
is a de facto standard for protocol analysis at present. In this threat model,
a message that is sent is not necessarily ever received, and the receiver of a
message is not necessarily its intended recipient. Therefore, a protocol step
such as A −→ B : A,Na signifies that A sends the two-component message
to B but says nothing about B’s reception of the message.

12 1. Introduction

1.3.2 Naming the Theorems

This section presents a general naming paradigm that we adopt for all theo-
rems throughout this book. The theorem names are identical to those in the
proof scripts, which come with the Isabelle repository [33, 34] from the 2006
distribution. We shall see (§3.1) that it is useful to execute the relevant proof
scripts interactively while the theorems are discussed throughout the book.

When we terminated a large protocol proof, which perhaps had taken up
to weeks of concentration, one of the last things we usually worried about
was the choice of the best, most expressive name for the theorem just proved.
However, we now realise that a uniform naming system becomes especially
important when putting together theorems about distinct protocols, as is
the case with this book. It also helps in interpreting the theorems properly.
Precisely, we have to face the following three issues.

1. Theorem names should be correctly expressive. When we read a theorem
name, we would like to grasp its meaning, namely the goal it is trying to
express, from its name. To achieve this, it was necessary to go back to all
proof scripts and change many original theorem names. For example, the
word “trust” was abused by many theorems establishing the originator of
a message. Since that word is currently used mostly in relation with trust-
worthiness of agents, we found that it was inadequate. Authenticity of
messages or authentication of agents seemed more appropriate terms. To
only give an instance of this evolution of names, Theorem 6.5.2 is now ad-
dressed as BK Kab authentic, but its original name was A trusts Kb2.
All theorem names are now coherent with the goal names that we set
below (Chapter 4).

2. Theorem names should be coherent between various protocols though not
identical. If we establish the same guarantee (say, of confidentiality) for
more than one protocol, we would like the relevant theorems to have
the same names so that they would favour comparative considerations.
However, having two or more theorems named identically in a book may
appear contradictory. To set about this issue, we decided to prefix only
in the book each theorem name with the acronym in capital letters of the
protocol name it refers to. In this vein, the prefix BK of the mentioned
Theorem 6.5.2 reminds us that it refers to the BAN Kerberos protocol.
An analogous guarantee for Kerberos IV is Theorem 7.3.3, whose name
KIV authK authentic correctly identifies the protocol. The different key
name addresses the ambiguity only in this case. A more evident example
derives from the session key confidentiality guarantees for Kerberos IV,
such as Theorem 7.3.14 called KIV Confidentiality B, and for Kerberos
V, such as Theorem 9.3.1 called KV Confidentiality B.

3. Theorem names should be coherent between various versions of the same
guarantee. There are often various versions of the same theorem for var-
ious reasons. We maintain coherence between the various version names
by adding a prefix and/or a suffix as follows.

1.3 Notation 13

– Once a theorem is proved, it is often possible to weaken or strengthen
its assumptions and derive weaker or stronger facts. We indicate such
a variant theorem by adding the bis suffix to the original theorem
name. For example, SR Outpts A Card form 10 bis is the name of
Theorem 11.3.8. There may also be another variant, in which case the
ter suffix is added to the original theorem name.

– The fewer the assumptions made, the easier to grasp a theorem nor-
mally turns out to be. This is particularly so with assumptions of key
confidentiality, which normally expand into several facts when relaxed.
For the sake of presentation, it often becomes preferable to leave such
assumptions unrelaxed. The theorem versions where all assumptions
are relaxed into elementary facts are indicated by the r suffix. For
example, Theorem 6.5.10 is called BK A authenticates B r.

– Once a protocol is thoroughly analysed, we may find it relevant to
update its design and repeat the analysis in a separate theory file. The
theorem names for updated protocols receive a conventional prefix as
described above. For example, Theorem 8.5.1 for our updated Otway-
Rees protocol is called ORB analz hard, the B standing for Bella.
Also the name of the new theory file is updated accordingly (§3.2). By
contrast, the theorem names reflecting minor updates that can coexist
within the original theory file are only continued with a u. Some of
these theorems are mentioned but never presented in this book to limit
redundancy.

– When we introduce the Gets event to formally model message reception
(§8.2), the existing protocol models must be updated accordingly (in a
separate theory file). The prefix of their theorem names is suffixed with
a g. For example, Theorem 8.4.7 for the Kerberos IV model with mes-
sage reception is called KIVg B authenticates&keydist to A. Also
the name of the new theory file is updated accordingly (§3.2).

1.3.3 Wording the Symbols

Logical statements contain specific symbols with dedicated semantics. We re-
place most Isabelle symbols with the corresponding English phrases whenever
their semantics is obvious and the replacement can improve readability.

– Logical conjunction (∧) with and.
– Logical disjunction (∨) with or.
– Logical negation (¬) with not.
– Logical equivalence (↔) with if and only if.
– Disequality (6=) with is not.
– Meta-level implication ([[...]]=⇒...) with if . . . then
– Existential quantification (∃) with for some.
– Universal quantification (∀) with for any.

14 1. Introduction

By contrast, it is best to preserve other symbols exactly for the sake of
readability. Isabelle’s graphical interface offers perfect mathematical sym-
bols [160].

– It is convenient to keep logical equality in symbols (=) because it can
be used to specify variable expansions (abbreviations) among the theorem
preconditions, while the variable can be compactly mentioned even repeat-
edly among the theorem conclusions. Isabelle supports well this form of
equational reasoning, as this book confirms.

– Having conducted some experiments of wording set membership (∈), we
concluded that it is quicker to grasp in symbols — with only one exception.
It is preferable to state that a list contains an element, which is often
needed below, rather than to use the symbol for set membership over the
set of elements that the list contains.

– Other set operators, such as union (∪) and inclusion (⊆), which are rarely
used below, are kept in symbols.

Syntax is left completely unaltered when it is quoted for the sake of
demonstration — always in figures — such as when the protocol models
are presented.

1.4 Contents Outline

This section briefly outlines the chapters of this book.

Chapter 2 reviews some of the main formal methods for analysing security
protocols. Such a large variety of methods has been advanced that the
chapter cannot present all of them. The importance of interpreting the
findings cautiously is emphasised. The difficulties in conducting the anal-
yses do not seem to be related to those in interpreting the findings, as
various examples confirm.

Chapter 3 outlines the Inductive Method as it was in late 1996, when our
research initiated. The presentation of the method is gradual and in-
formative, as it gives particular attention to the intuition behind each
construct. The chapter begins with an introduction to the working envi-
ronment for the method, namely the theorem prover Isabelle, and termi-
nates with an example of a protocol model.

Chapter 4 formalises in the Inductive Method the most important guaran-
tees for the protocol models. With every protocol that is analysed, those
guarantees form the aim of our analysis, and hence the chapter intro-
duces important terminology. Seven groups of guarantees are given, each
expressing an important protocol goal, except for a group that helps to
validate the protocol models. Proof methods and examples are provided.

1.4 Contents Outline 15

Chapter 5 defines our general principle of prudent protocol analysis, goal
availability. An abstract version is given first, in order to favour the
reader’s intuition, while a more detailed version only comes after ad-
ditional discussion. Then, the related concept of minimal trust is put
forward. The principle is demonstrated only on a simple protocol but
additional examples are frequent in the subsequent chapters.

Chapter 6 extends the Inductive Method with a treatment of timestamping,
which requires both a formalisation of time and a definition of time-
stamps. We find simple solutions for both issues. Then, the BAN Ker-
beros protocol can be formally analysed. Finally, a temporal modelling
of the accidental loss of session keys is introduced. The protocol model
is updated accordingly and all guarantees revisited correspondingly.

Chapter 7 presents the formal analysis of Kerberos IV. The treatment of
timestamping and the temporal modelling of accidents is inherited from
the previous chapter. The protocol achieves strong goals but it fails to
conform to our principle of goal availability in the case of confidentiality
of a group of session keys for the responder. This leads to realistic attacks,
but a simple fix is introduced and verified.

Chapter 8 introduces the modelling of agents’ knowledge in the Inductive
Method using two definitions. They are demonstrated on the protocols
presented above by adding treatments of the key distribution goal and
of a stronger version of authentication, which were impossible before.
The two definitions are variously compared and contrasted, offering an
argument that can refute a claim previously made by the BAN logic.

Chapter 9 reports on the formal analysis of Kerberos V, the most recent
version of the Kerberos protocol. The main difference with the previous
version in terms of design is the removal of the use of double encryption.
We verify that this difference does not significantly influence the protocol
goals, which are analogous to those of the previous version. However,
different proof methods become necessary.

Chapter 10 describes a realistic treatment of smartcards in the Inductive
Method. Since some protocols explicitly assume that the communication
means between the cards and their owners is secure, while others do
not, our treatment develops around both options. The Spy is allowed
to exploit an unspecified set of smartcards, some through simple theft,
others through elaborate tampering ultimately leading to cloning.

Chapter 11 uses the extended method of the previous chapter to analyse the
Shoup-Rubin protocol, which makes use of smartcards. The protocol is
generally strong, but it is found to violate our goal availability princi-
ple for the goal of session key confidentiality. This reveals two important
shortcomings of explicitness that affect three goals: confidentiality, au-
thentication and key distribution. A simple fix is introduced and verified.

Chapter 12 extends the Inductive Method to deal with accountability proto-
cols. Non-repudiation and certified e-mail delivery are recognised as forms

16 1. Introduction

of accountability, where the peers get evidence of each other’s participa-
tion. Abstract formalisations of these novel goals are provided along with
appropriate methods to prove them. The concept of second-level protocol,
which relies on another security protocol, is advanced.

Chapter 13 uses the extensions introduced in the previous chapter to describe
the analyses of two emblematic accountability protocols. They are both
studied in terms of validity of the evidence provided to the peers and
in terms of its fairness. The threat model appropriate for this group of
protocols is used: an honest agent enjoys the protocol goals even when
his peer is the Spy. Both protocols appear to achieve their claimed goals.

Chapter 14 concludes the book with a few final remarks, and summarises our
contribution through its key concepts. It also briefly advances some lines
of possible future work. Finally, it comments on some statistics about
file sizes, proof runtimes on two common and inexpensive platforms, and
human efforts necessary for the entire book.

There are four appendices to complete the presentation. They present a
few relevant fragments of the proof scripts about the main protocols that
the book discusses. Such fragments are released with the 2006 distribution
of Isabelle [33, 34] (before that distribution appears, they are available with
the development snapshot [156]).

Appendix A concerns the Kerberos IV protocol, presenting the guarantees
of reliability, session-key compromise, and session-key confidentiality.

Appendix B concerns the Kerberos V protocol, presenting the guarantees of
unicity, unicity relying on timestamps, and conjunct key distribution and
non-injective agreement.

Appendix C concerns the Shoup-Rubin protocol, presenting the definitions
of two important functions and related technical lemmas, and the guar-
antees of authentication.

Appendix D concerns the Zhou-Gollmann protocol, presenting the guaran-
tees of validity of main and subsidiary evidence, and fairness.

http://www.springer.com/978-3-540-68134-2

