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Unifying Themes in Finite Model Theory

Scott Weinstein

One of the fundamental insights of mathematical logic is that our understand-
ing of mathematical phenomena is enriched by elevating the languages we use
to describe mathematical structures to objects of explicit study. If mathe-
matics is the science of pattern, then the media through which we discern
patterns, as well as the structures in which we discern them, command our
attention. It is this aspect of logic which is most prominent in model theory,
“the branch of mathematical logic which deals with the relation between a
formal language and its interpretations” [21]. No wonder, then, that mathe-
matical logic, in general, and finite model theory, the specialization of model
theory to finite structures, in particular, should find manifold applications in
computer science: from specifying programs to querying databases, computer
science is rife with phenomena whose understanding requires close attention
to the interaction between language and structure.

As with most branches of mathematics, the growth of mathematical logic
may be seen as fueled by its applications. The very birth of set theory was
occasioned by Cantor’s investigations in real analysis, on subjects themselves
motivated by developments in nineteenth-century physics; and the study of
subsets of the real line has remained the source of some of the deepest results
of contemporary set theory. At the same time, model theory has matured
through the development of ever deeper applications to algebra. The interplay
between language and structure, characteristic of logic, may be discerned in all
these developments. From the focus on definability hierarchies in descriptive
set theory, to the classification of structures up to elementary equivalence
in classical model theory, logic seeks order in the universe of mathematics
through the medium of formal languages.

As noted, finite model theory too has grown with its applications, in this
instance not to analysis or algebra, but to combinatorics and computer sci-
ence. Beginning with connections to automata theory, finite model theory has
developed through a broader and broader range of applications to problems
in graph theory, complexity theory, database theory, computer-aided verifica-
tion, and artificial intelligence. And though its applications have demanded
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the development of new techniques, which have given the subject a distinc-
tive character as compared to classical model theory, the fundamental focus
on organizing and understanding phenomena through attention to the rela-
tion between language and structure remains prominent. Indeed, the detailed
investigation of definability hierarchies and classifications of finite structures
up to equivalence relations coarser than elementary equivalence, which are
defined in terms of a wide variety of fragments of first-order, second-order,
fixed-point, and infinitary logics, is a hallmark of finite model theory. The
remaining sections of this chapter will highlight common themes among the
chapters to follow.

1.1 Definability Theory

The volume begins with a chapter by Phokion Kolaitis, “On the expressive
power of logics on finite models”, which surveys major topics in the theory
of definability in the context of finite structures. “The theory of definability
is the branch of logic which studies the complexity of concepts by looking
at the grammatical complexity of their definitions.” [3]. This characterization
indicates that the theory of definability has two main aspects:

• to establish a classification of concepts in terms of definitional complexity
• to establish that such classification is in some way informative about the

intrinsic or intuitive “complexity” of the concepts thus classified.

Chapter 2 provides an extended treatment of both these aspects of definability
theory, which reappear throughout the volume as important themes in finite
model theory and its applications.

1.1.1 Classification of Concepts in Terms of Definitional
Complexity

In the context of finite model theory, the “concepts” with which we are con-
cerned are queries on classes of finite relational structures. Chapter 2 pro-
vides precise definitions of these notions; for the purposes of introduction, let
us focus on Boolean queries on a particular set of finite undirected graphs
as follows. Let Gn be the collection of undirected graphs with vertex set
[n] (= {1, . . . , n}), and let G =

⋃
n Gn. Thus, each G ∈ G has a vertex

set V G = [n], for some n, and an irreflexive and symmetric edge relation
EG ⊆ [n]× [n]. A Boolean query Q on G is just an isomorphism-closed subset
of G, that is, Q ⊆ G is a Boolean query if and only if, for all G,H ∈ G,

G ∼= H =⇒ (G ∈ Q⇔ H ∈ Q).

Logical languages provide a natural means for classifying Boolean queries.
A logical language L consists of a set of L-sentences, SL, and an L-satisfaction
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relation |=L. In the current setting, we may understand |=L as a relation
between graphs G ∈ G and sentences ϕ ∈ SL: G |=L ϕ, if and only if G
satisfies the condition expressed by ϕ. A fundamental notion is the Boolean
query, ϕ[G], defined by an L-sentence, ϕ:

ϕ[G] = {G ∈ G | G |=L ϕ}.

A Boolean query Q on G is L-definable if and only if there is an L-sentence ϕ
with Q = ϕ[G].

Let us look at some examples. Consider the following Boolean queries:

Sizen the set of graphs of size n;
Diamn the set of graphs of diameter ≤ n;
Colork the set of k-colorable graphs;
Conn the set of connected graphs;
CardX the set of graphs of size n for some n ∈ X ⊆ N.

The first two queries are defined by first-order sentences σn and δn, respec-
tively, for each n; for example, the query Size2 is defined by the first-order
sentence σ2,

∃x∃y(x �= y) ∧ ¬∃x∃y∃z(x �= y ∧ x �= z ∧ y �= z),

and the query Diam2 is defined by the first-order sentence δ2,

∀x∀y(x = y ∨ Exy ∨ ∃z(Exz ∧ Ezy)).

For each k, the third query is defined by a sentence χk of existential monadic
second-order logic, that is, the fragment of second-order logic consisting of
sentences all of whose second-order quantifiers are existential, bind monadic
predicate symbols, and do not occur within the scope of any first-order quan-
tifier or truth-functional connective; for example, Color2 is defined by the
sentence χ2,

∃Z∀x∀y(Exy → (Zx↔ ¬Zy)).

The next query is defined by a sentence γ of Lω1ω , the infinitary logic obtained
by adding the operations of countable conjunction and countable disjunction
to first-order logic, as follows: ∨

n∈N

δn.

Note that in general, γ expresses the condition that a graph has bounded
diameter – over G, this condition coincides with connectedness. Finally, for
each X ⊂ N, the query CardX is defined by a sentence κX of Lω1ω as follows:

∨

n∈X
σn.

Now, broadly speaking, definability theory provides techniques for deter-
mining whether or not given queries, or collections of queries, are definable in
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a specified logic L, and attempts to extract useful information about queries
from the fact that they are L-definable. For example, Chap. 2 develops tools to
show that neither Colork nor Conn is first-order definable, and thus stronger
logics are needed to express such basic combinatorial properties.

1.1.2 What More Do We Know When We Know a Concept Is
L-Definable?

This, of course, depends on L. One striking feature of finite model theory has
been that it has drawn attention to the fact that a great deal of interesting
information about Boolean queries can be extracted from the fact that they
are definable in familiar logical languages, and, perhaps even more striking,
it has highlighted the importance of some natural, though hitherto neglected,
fragments of well-studied languages, such as the finite variable fragments of
first-order logic and infinitary logic discussed below.

Before we proceed to explore this aspect of definability theory in the con-
text of finite model theory, let us reflect for a moment on a paradigmatic
example of extracting information from the fact that a set is definable in
a certain way: the celebrated result of Cantor concerning the cardinality of
closed sets of real numbers. Recall that a closed set can be defined as the com-
plement of a countable union of open intervals with rational endpoints (which
implies, in modern parlance, that a closed set is Π0

1). Note that we may
infer from this definability characterization that there are only 2ℵ0 closed sets
of reals, while there are 2(2ℵ0) sets of reals altogether. Cantor showed that
closed sets satisfy a very strong dichotomy with respect to their cardinali-
ties: every infinite closed set is either countable or of cardinality 2ℵ0 , that is,
there is no closed set witnessing a cardinality strictly between ℵ0 and 2ℵ0 . On
the basis of his success with closed sets, Cantor was motivated to formulate
the Continuum Hypothesis (CH): the conjecture that all infinite sets of reals
satisfy this strong cardinality dichotomy. In 1963, Cohen established that if
Zermelo–Fraenkel set theory with the Axiom of Choice (ZFC) is consistent,
then it is consistent with the statement that there is an infinite set of reals
whose cardinality is neither ℵ0 nor 2ℵ0 , that is, ZFC+¬CH is consistent rela-
tive to ZFC. Thus, Cantor’s result shows how it is possible to gain significant
structural information about a concept from the knowledge that it admits a
“simple” enough definition. In what Moshovakis describes as “one of the first
important results of descriptive set theory” [52], Suslin generalized Cantor’s
solution of the continuum problem from closed sets to analytic sets, that is,
projections of closed sets (Σ1

1 sets). Indeed, he showed that every uncountable
analytic set contains a nonempty perfect set, as Cantor had established for
closed sets. Further generalization of this property to sets whose definitional
complexity is greater, even to co-analytic sets, is not possible on the basis
of ZFC.

Finite model theory provides a rich collection of phenomena which illus-
trate this paradigm of wresting structural information about concepts from
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definability conditions. Let us begin with an example from asymptotic com-
binatorics which touches on topics dealt with in detail in Chaps. 2 and 4. Let
Q be a Boolean query on G. Recall that card(Gn) = 2(n2). The density μn of
Q at Gn is defined as follows:

μn(Q) = card(Q ∩ Gn) · 2−(n2).

The limit density μ(Q) = limn−→∞ μn(Q) may or may not exist, depending
on the query Q. For example, if X ⊆ N is finite or cofinite, then μ(CardX)
is 0 or 1, respectively, whereas μ(CardX) is undefined if X is infinite and
coinfinite. Thus, definability in Lω1ω does not guarantee that a query has a
limit density. Indeed, for every graph G ∈ G, the query

IsomG the set of graphs isomorphic to G

is definable by a single first-order sentence ιG; for example, the graph G with
V G = {1, 2} and EG = {〈1, 2〉, 〈2, 1〉} is defined, up to isomorphism, by the
first-order sentence

κ2 ∧ ∀x∀y(Exy ↔ x �= y).

It follows that for each query Q, the Lω1ω sentence
∨

G∈Q
ιG

defines Q. Thus, no information flows from the fact that a query is Lω1ω-
definable, in particular, no information about the limit density of Conn is
forthcoming from its definability in Lω1ω. (Note that the expressive power of
Lω1ω is limited on the collection of all finite and infinite structures; indeed,
from cardinality considerations, there is an ordinal α such that the isomor-
phism type of 〈α,<〉 cannot be characterized by a sentence of Lω1ω.) Perhaps
we can find another source for such information.

Let us consider the query Diam2. How can we compute its density at
Gn? It will be useful to think of this in probabilistic terms. The density of a
query Q at Gn is just the probability of the event Q∩ Gn with respect to the
uniform measure on Gn, that is, the measure u with u({G}) = 2−(n2), for each
G ∈ Gn. The measure u may be thought of as follows: for each pair of vertices
1 ≤ i < j ≤ n, we flip a fair coin to determine whether or not there is an edge
between i and j. This point of view facilitates the computation of a useful
approximation to the density of Diam2. For a fixed pair of distinct vertices i
and j, the probability that a distinct vertex k is a neighbor of both i and j is
1/4.Therefore, the probability that none of the n− 2 vertices distinct from i
and j is a neighbor of them both is (3/4)(n−2). It is now easy to see that the
probability that some pair of vertices lacks a common neighbor is bounded by(
n
2

)
· (3/4)(n−2). It follows at once that

μn(Diam2) ≥ 1−
(
n

2

)

·
(

3
4

)(n−2)

.
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But,

lim
n→∞

(
n

2

)

·
(

3
4

)(n−2)

= 0.

Therefore, μ(Diam2) = 1. Note that Diam2 ⊆ Conn (cast logically, δ2 implies
γ), and thus, μ(Conn) = 1. We shall see that this is no isolated phenomenon,
but rather one instance of a beautiful dichotomy revealed by definability the-
ory.

As observed above, there are continuum-many queries whose limit den-
sity is undefined; moreover, it is not hard to see that for every real number
r ∈ [0, 1], there is a query with limit density r. A noteworthy dichotomy
is enshrined in the following definition. A logic L satisfies the 0–1 law with
respect to the uniform measure on G if and only if, for all L-definable queries
Q,

μ(Q) = 0 or μ(Q) = 1.

A 0–1 law codifies important structural information about L-definable queries
and provides a useful tool for establishing that specific queries are not L-
definable; for example, none of the queries CardX , for X infinite and coinfinite,
is L-definable if L satisfies the 0–1 law. It is remarkable that some natural
logics satisfy the 0–1 law. The first such result is due to Glebskii et al. [28] and,
independently, to Fagin [26], who established that first-order logic satisfies the
0–1 law with respect to the uniform measure. A brief look at an argument for
this result will be instructive.

The query Diam2 is an extension property – it requires that every pair
of vertices share a common neighbor. A generalization of this is the (m,n)-
extension property: this requires that for every pair of disjoint sets of vertices
{x1, . . . , xm} and {y1, . . . , yn}, there is a vertex z which is a neighbor of all
the xi and none of the yj . It is easy to see that this condition is expressible
by a first-order sentence ηm,n (with m+n+ 1 variables), and that, just as the
limit density of Diam2 is 1, so too μ(ηm,n[G]) = 1, for all m,n with m+n > 0.
Let ηk be the conjunction ηm,n with k = m + n + 1. Each ηk is a first-order
sentence with k variables expressing a query with limit density 1; moreover,
for all l ≤ k, ηk implies ηl. Therefore, by the Compactness Theorem for first-
order logic, the set of sentences Γ = {ηk | k > 1} is consistent. To complete
the argument, it suffices to show that for every first-order sentence ϕ, there
is a k such that ηk implies ϕ, or ηk implies ¬ϕ; indeed, if ηk implies ϕ, then
μ(ϕ[G]) = 1, and if ηk implies ¬ϕ, then μ(ϕ[G]) = 0. Now, Γ has no finite
models, and is ℵ0-categorical, that is, any two countable models of Γ are
isomorphic (the back-and-forth argument, used by Cantor to prove that the
rational numbers are, up to isomorphism, the unique countable dense linear
order without endpoints, may be deployed here; compare Chap. 4). It follows
at once, via the Löwenheim–Skolem Theorem, that Γ axiomatizes a complete
first-order theory. From this, another application of the Compactness Theorem
for first-order logic yields the conclusion that for every first-order sentence ϕ,
there is a k such that ηk implies ϕ, or ηk implies ¬ϕ. Can we say, for a
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given first-order sentence ϕ, how large a k is required? Kolaitis and Vardi [48]
showed that the answer to this question leads to a significant extension of the
0–1 law to a rich fragment of infinitary logic.

1.1.3 Logics with Finitely Many Variables

For each k ≥ 1, FOk is the fragment of first-order logic consisting of exactly
those formulas all of whose variables, both free and bound, are among
x1, . . . , xk. To understand the effect of this restriction, it is useful to observe
that variables may be reused within such sentences, so that, for example, the
queries Diamk are all FO3-definable. Here is a sentence of FO3 that defines
Diam3:

∀x1∀x2( x1 = x2 ∨ Ex1x2∨
∃x3(Ex1x3 ∧ Ex3x2)∨
∃x3(Ex1x3 ∧ ∃x1(Ex3x1 ∧Ex1x2))).

We have already noted that the logic Lω1ω is too powerful to be of interest
in the context of finite model theory, since every query is definable in this logic.
The logic Lkω1ω is the fragment of Lω1ω consisting of exactly those formulas
all of whose variables, both free and bound, are among x1, . . . , xk; Lωω1ω =
⋃
k L

k
ω1ω. In light of the FO3-definability of Diamk, observe that Conn is

L3
ω1ω−definable. Indeed, as discussed in Chap. 2, all queries definable in the

fixed-point logics LFP, IFP, and PFP, which provide means for definition of
relations by recursion, for example the transitive closure of the edge relation,
are Lωω1ω-definable (note that, in general, these inclusions fail on collections
of finite and infinite structures; for example, the notion of well-foundedness is
LFP-definable on the class of all directed graphs, but is not even definable in
the powerful infinitary logic L∞ω discussed below).

Kolaitis and Vardi established that the 0–1 law holds for Lωω1ω with respect
to the uniform measures on Gn. In particular, they showed that for every
k > 1, ηk axiomatizes a complete Lkω1ω theory. Thus, even though Lωω1ω

has expressive power sufficient to encompass various forms of recursion, it
retains some of the structural simplicity of first-order logic; indeed, every
Lωω1ω-definable query or its complement is implied by a first-order definable
query of limit density 1 (the analogy with Suslin’s generalization of the the-
orem of Cantor mentioned above is irresistible). This result gave a coherent
explanation for earlier work on 0–1 laws for fixed-point logics (see [14, 47]),
and thereby highlighted the important role that finite-variable logics can play
in definability theory over finite structures. Hella, Kolaitis, and Luosto [41]
further illuminated the situation by showing that FO and Lωω1ω are almost
everywhere equivalent with respect to the uniform measure, that is, there is a
set C ⊆ G of limit density one such that FO and Lωω1ω define exactly the same
collection of queries over C (even including non-Boolean queries). Dawar [22],
Grohe [33], and Otto [54] are valuable sources of information about the finite
model theory of finite-variable logics. The following chapters offer many other
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compelling illustrations of the use of definability theory to yield insight into a
wide range of mathematical and computational phenomena. Before exploring
some of these examples, let us look at some other important notions from
definability theory which receive extended treatment in Chap. 2.

1.1.4 Distinguishing Structures: L-Equivalence and Comparison
Games

One approach to the question whether a query Q is definable in a logic L is to
ask whether Q distinguishes between graphs which are indistinguishable from
the point of view of L. Two graphs G and H are L-equivalent (G ≡L H),
that is, indistinguishable from the point of view of L, if and only if, for every
L-definable query Q,

G ∈ Q ⇐⇒ H ∈ Q.

Clearly, a query Q must be closed under L-equivalence if it is L-definable.
When L is first-order logic, L-equivalence is the notion of elementary equiv-

alence familiar from classical model theory. The classification of infinite struc-
tures up to elementary equivalence plays a central role in classical model
theory and in its applications to algebra and analysis. On the other hand,
as observed above, elementary equivalence coincides with isomorphism on G
(and on the class of finite structures in general), so the foregoing necessary
condition is deprived of direct application to definability over G with respect
to any logic extending FO. This suggests that analysis of L-equivalence for
logics L weaker than, or orthogonal to, first-order logic may be of paramount
importance in the context of finite model theory. Indeed, this is the case. Let
us approach the matter from the point of view of combinatorial comparison
games between graphs.

Suppose we want to compare (finite or countably infinite) graphs G and
H with the object of determining whether or not they are isomorphic. One
way of doing so (inspired by the celebrated Cantor “back-and-forth” argu-
ment mentioned above) would be to play the following game. The game has
two players, Spoiler and Duplicator; the equipment for the game consists of
“boards” corresponding to the graphs G and H and pebbles a1, a2, . . . and
b1, b2, . . . . The game is organized into rounds r1, r2, . . . . At each round ri
the Spoiler plays first and picks one of the pair of pebbles ai or bi to play
onto a vertex of G or H , respectively; the Duplicator then plays the remain-
ing pebble of the pair onto a vertex of the structure into which the Spoiler
did not play. This completes the round. Let vi (and wi) be the vertex of G
(and of H , respectively) pebbled at round i, let Gi and Hi be the subgraphs
of G and H induced by {v1, . . . , vi} and {w1, . . . , wi}, respectively, and let
Ri = {〈vj , wj〉 | 1 ≤ j ≤ i}. The Duplicator loses the game at round ri if
the relation Ri fails to be the graph of an isomorphism from Gi onto Hi. The
Duplicator wins the game if she does not lose at any round. The Duplicator
has a winning strategy for the game if she has a method of play which results
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in a win for her no matter how the Spoiler plays. In this case, we say that G
is partially isomorphic to H (G ∼=p H).

It is easy to see that the Duplicator has a winning strategy for this game
played on finite or countably infinite graphs G and H if and only if G is
isomorphic to H. Indeed, if I is an isomorphism from G onto H , and the
Spoiler pebbles the vertex v in G at some round, then the Duplicator will
guarantee a win by pebbling I(v) in H (and similarly, if the Spoiler plays
onto w in H , then the Duplicator answers by playing onto I−1(w) in G).
On the other hand, suppose the Duplicator has a winning strategy for the
game played on G and H . Then, she can win against the following strategy
of Spoiler. The Spoiler can enumerate the vertices of G as s0, s1, . . . and the
vertices of H as t0, t1, . . . . Now the Spoiler plays according to the following
strategy. For i ≥ 0, at round r2i+1 he places the pebble a2i+1 on si and at
round r2i+2 he places the pebble b2i+2 on ti. The Duplicator now answers
the Spoiler’s moves according to her winning strategy. It follows at once that
the relation R =

⋃
i∈N Ri is the graph of an isomorphism from G onto H.

So, if G and H are countable, and G ∼=p H, then G ∼= H. Carol Karp [46]
established an interesting connection between partial isomorphism and logical
definability: arbitrary graphs G and H are partially isomorphic if and only
if they are L∞ω-equivalent (L∞ω strengthens Lω1ω by allowing conjunctions
over arbitrary, not necessarily countable, sets of formulas).

Various modifications of this game, which deprive the players of some
of their access to resources, or alter the winning condition, or add rules that
restrict legitimate play, lead to useful characterizations of equivalence for much
weaker languages. Let us consider some examples of these.

First, we might restrict the number of pebble pairs that are available for
the game, and allow players to replay pebbles that they have played earlier
in the game. If the Duplicator has a winning strategy for the foregoing game
played on G and H when the equipment consists of only k pairs of pebbles, we
say that G is k-partially isomorphic to H (G ∼=k

p H). This variant is discussed
at length in Chap. 2 where a proof sketch of Barwise’s result [9] that for all
G and H , G ∼=k

p H if and only if G is Lk∞ω-equivalent to H is presented. We
have already seen one application of this result to definability over G: it is
easy to see that for all G,H ∈ G, if G |= ηk and H |= ηk, then G is k-partially
isomorphic to H ; it follows at once from Barwise’s result that for every Lk∞ω

sentence ϕ, ηk implies ϕ, or ηk implies ¬ϕ, which is the key step in Kolaitis
and Vardi’s proof of the 0–1 law for Lk∞ω.

Second, we might restrict the length of play, so the Duplicator need only
successfully respond to the Spoiler’s moves through some fixed finite number
n of rounds in order to win. This is called the n-round Ehrenfeucht–Fräıssé
(E–F) game. As discussed in Chap. 2, these games give a characterization of
definability in a hierarchy of fragments of first-order logic; in particular, the
Duplicator has a winning strategy for the n-round E–F game played on G
and H if and only if G and H are FOn-equivalent, where FOn is the frag-
ment of first-order logic consisting of all sentences of quantifier rank bounded
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by n. This is the key to using logical indistinguishability to establish that
queries are not first-order definable over G despite the fact that first-order
indistinguishability coincides with isomorphism over G. In order to show that
a query Q is not first-order definable, it suffices to show that for every n there
are FOn-equivalent G and H with G ∈ Q and H �∈ Q. Chapter 2 includes
several examples of this technique, among them the queries Conn and Colork
mentioned earlier.

Third, we might require that beyond the first round, the Spoiler play onto
a vertex that is adjacent to some vertex which has been pebbled at an ear-
lier round. The single-pebble variant of the game thus restricted characterizes
the relation of bisimilarity between vertex-colored directed graphs. Johan van
Benthem first introduced this relation and recognized its significance in con-
nection with the study of Kripke models for modal logic [11, 12]; the notion
was rediscovered in the context of analyzing the “behavioral equivalence” of
transition systems [42, 57]. Chapter 7 elucidates the fundamental importance
of bisimilarity invariance in explaining various nice features of modal logic.

Fourth, we might require that the Spoiler always play onto a vertex of G.
In this case, by virtue of the asymmetry of play, a win for Duplicator in the
resulting game no longer characterizes an equivalence relation between graphs,
but rather a preorder. In particular, the Duplicator has a winning strategy for
this variant of the game if and only if every existential sentence of L∞ω which
is true in G is also true in H. If, in addition, we relax the winning condition
to require only that at the end of each round ri the relation Ri is the graph of
a homomorphism from G to H , then the Duplicator has a winning strategy if
and only if every positive existential sentence of L∞ω that is true in G is also
true in H. This last variant, in combination with the resource restriction on
the number of pebbles discussed above, characterizes the positive existential
fragment of Lω∞ω. This fragment is of particular interest from the perspective
of database theory, since it suffices to express every Datalog-definable query;
several applications of this definability result are discussed in Chaps. 2 and 6.

1.1.5 Random Graphs and 0–1 Laws

Joel Spencer’s chapter, “Logic and random structures” (Chap. 4), gives an
exposition of a 0–1 law for first-order logic he and Saharon Shelah discov-
ered [62], and related phenomena in the theory of random graphs. From the
perspective of this theory, the uniform distribution on finite graphs consid-
ered above is an instance of a far more general scenario developed by Erdös
and Renyi in [24]. From this perspective, one considers a sequence of finite
probability spaces (Gn, μpn), where the measure μpn is determined by an “edge
probability” pn which is a function of n; the uniform distribution is just the
special case where pn = .5 for all n. Let us write μp(Q) for the limit probability
of the query Q with respect to the sequence of measures μpn, that is,

μp(Q) = lim
n−→∞μpn(Q ∩ Gn).
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In this context, combinatorists have discovered that threshold phenomena
arise, that is, there are queries Q and functions p with the property that for
all q, if q � p, then μq(Q) = 0, and if p � q, then μq(Q) = 1. (Here, p � q
if and only if limn−→∞ pn/qn = 0.) One class of cases which arose naturally
in the study of threshold phenomena is the edge probabilities p(α)n = n−α,
for some real α ∈ (0, 1). Spencer observed that among the many queries
analyzed by graph theorists, none possessed a threshold of the form n−α for
α ∈ (0, 1) and irrational. Shelah and Spencer discovered a definability result
that provided an explanation for these threshold phenomena. They showed
that for all α ∈ (0, 1), if α is irrational, then first-order logic satisfies the 0–1
law with respect to (Gn, μ

p(α)
n ), that is, for every first-order definable query

Q,
μp(α)(Q) = 0 or μp(α)(Q) = 1.

This is an outstanding example of how definability considerations can provide
insight through systematization of apparently disparate combinatorial facts.
Further investigations of the complete theories Tα = {ϕ ∈ FO | μp(α)(ϕ[G]) =
1} have revealed interesting connections with classical model theory (see [8,
51]). This aspect of definability theory has also been prominent in computer
science, as well as in combinatorics.

1.1.6 Constraint Satisfaction Problems

In Chap. 6 of the volume, “A logical approach to constraint satisfaction”,
Kolaitis and Vardi survey some applications of definability theory to the study
of constraint satisfaction problems, a subject that is important in several
areas of computer science, including artificial intelligence, database theory,
and operations research. For example, the k-colorability problem for graphs
may be formulated as a constraint satisfaction problem. Given a graph (V,E),
we may think of its vertices as variables. We ask whether there is an assignment
of k colors c1, . . . , ck, one to each variable, so as to satisfy the constraint that
adjacent variables are assigned distinct colors. Feder and Vardi [27] made
the following important observation that advanced the understanding of the
computational complexity of constraint satisfaction problems: they noted that
all such problems may be formulated as homomorphism problems on suitable
relational structures (in general, these relational structures will not be graphs).
For a simple example using graphs, recall that a homomorphism h from G =
(V,E) to H = (V ′, E′) is a map satisfying the condition

Eab⇒ E′h(a)h(b), for all a, b ∈ V.

A graph G is k-colorable if and only if there is a homomorphism from G into
Kk, the complete graph on k vertices (thought of as the colors c1, . . . , ck) –
the constraint that adjacent “variables” are assigned distinct colors by any
homomorphism is enforced by the irreflexivity of the edge relation in Kk.
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In general, a constraint satisfaction problem can be formulated as a homo-
morphism problem: given two classes of relational structures A and B, the
constraint satisfaction problem CSP(A,B) asks, for each pair of structures
A ∈ A and B ∈ B, whether or not there is a homomorphism from A to B.
Insofar as the homomorphism problem in general is NP-complete, the search
for “islands of tractability”, that is, collections of structures A and B such
that CSP(A,B) can be computed in polynomial time, is of interest.

Two cases which have been studied intensively are nonuniform and uniform
constraint satisfaction problems. The case in which B is a singleton, {B},
and A is U , the collection of all finite structures, is called the non-uniform
constraint satisfaction problem with template B – CSP(B) for short; on the
other hand, the constraint problem CSP(A,U) is called the uniform constraint
satisfaction problem with input A. To illustrate this terminology by the above
example, for each k, the k-colorability problem is the nonuniform constraint
satisfaction problem CSP(Kk). This is a suggestive example. Recall that the
2-colorability problem is solvable in polynomial time, while the k-colorability
problem is NP-complete, for each k ≥ 3. Recall too (see [50]) that if P �= NP,
then there are problems in NP which are neither NP-complete nor in P. Could
it be that nonuniform constraint satisfaction problems are so special that they
would exhibit the following remarkable dichotomy?

F–V For every template B, CSP(B) is either in P or is NP-complete.

This is the well-known Feder–Vardi Dichotomy Conjecture, which was articu-
lated in [27] as a generalization of a theorem of Schaefer [61] that established
the dichotomy for the case of templates B with a two-element domain (called
Boolean templates). Indeed, Schaefer showed that it can be decided in poly-
nomial time whether or not CSP(B) is NP-complete for any Boolean template
B. Subsequent investigations have established that the Dichotomy Conjecture
holds for other classes of templates. Generalizing the example of k-colorability,
Hell and Nešetřil [40] showed that for all templates B which are undirected
graphs, if B is bipartite, then CSP(B) is in P, while if B is not bipartite,
then CSP(B) is NP-complete. Building on a group-theoretic approach initi-
ated in [27], Bulatov extended Schaefer’s dichotomy to CSP(B) for all three
element templates B [17]. In their chapter, Kolaitis and Vardi explore defin-
ability frameworks for understanding some of the known results concerning
the conjectured dichotomy. They also show how definability theory illuminates
the study of uniform constraint satisfaction problems.

1.2 Descriptive Complexity

In the preceding section, we have traced the theme of definability as a source
of structural information as it arises in several settings throughout the vol-
ume. Let us turn our attention to another major theme, the relation between
definability and computational complexity. This is the focus of Erich Grädel’s
chapter on “Finite model theory and descriptive complexity” (Chap. 3).
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1.2.1 Satisfaction

Let us look again at the definition of a query Q being definable by a sentence
ϕ of a logic L :

ϕ defines Q if and only if ∀G ∈ G(G |=L ϕ⇔ G ∈ Q).

If we think of queries as combinatorial problems, it is natural to ask whether
we can obtain information about the computational complexity of a problem
from the fact that it is definable in one language or another. This question
focuses attention on the complexity of the satisfaction relation itself, (also
known as the model-checking problem). Vardi [68] formulated three notions
of complexity associated with the satisfaction relation for L (relative to a
collection of finite structures C). The first, called the combined complexity of
L is just the complexity of the satisfaction relation itself, viewed as a binary
relation on strings encoding structures in C on the one hand, and sentences of
L on the other. The second, called the data complexity of L, is the complexity
of the decision problems associated with L-definable queries Q over C. The
third, called the expression complexity of L, is the complexity of the decision
problems associated with the L-theories ThL(G) of finite structures G in C,
where

ThL(G) = {ϕ ∈ L | G |=L ϕ}.

The study of these notions is rooted in the great developments in logic in
the 1930s. In the first work which rigorously defined the notion of satisfac-
tion, “On the concept of truth in formalized languages,” [65], Tarski famously
resolved a basic question concerning expression complexity in the context of
infinite structures, and in descriptive terms at that: he showed that the first-
order theory of the structure N = 〈N, 0,+,×〉 is not arithmetically definable,
that is, there is no first-order formula θ(x) in the language of arithmetic such
that for all i ∈ N ,

N |= ϕ(i) ⇔ N |= χi,

where χi is the sentence in the first-order language of arithmetic with
code i. Subsequent work by Kleene and Post revealed the intimate connec-
tion between arithmetic definability and complexity as measured by Turing
degrees, thereby transforming Tarski’s undefinability result into a lower bound
on recursion-theoretic complexity. Moreover, Tarski’s definition of satisfaction
itself exhibited that the first-order theory of N could be defined by both an
existential and a universal sentence in the second-order language of arith-
metic. Again, later work by Kleene yielded a “computational” interpretation
of this descriptive result – the first-order theory of N is hyperarithmetical.

Chapter 3 presents a comprehensive overview of results concerning com-
bined, data, and expression complexity in the context of finite model theory.
One theme that runs through the chapter is the role of combinatorial games
in analyzing the combined complexity of many logics, among them first-order
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logic and various fixed-point logics, including the modal μ-calculus, a natural
fixed-point extension of propositional modal logic with applications ranging
from hardware verification to analysis of hybrid systems. The chapter begins
with an incisive analysis of the complexity of first-order logic using the tech-
nique of model-checking games G(A,ϕ) in which a Verifier and a Falsifier
compete, and Verifier has a winning strategy just in case A |= ϕ. In the case
of first-order logic, the model-checking games are positional and have a finite
game graph. The strategy problem for such games in general, “does Player
I have a winning strategy for the game from position p?”, can be solved in
linear time. Analysis of an alternating algorithm for the first-order model-
checking game yields the following information: the combined complexity of
FO is PSPACE-complete, while the combined complexity of FOk is PTIME-
complete – yet another source of interest in the finite-variable fragments.
Moreover, PSPACE-completeness follows from the fact that the satisfiability
problem for quantified Boolean formulas is easily reduced to the first-order
theory of the unary structure A = 〈{0, 1}, {0}〉, from which it follows at once
that the expression complexity of FO is also PSPACE-complete. On the other
hand, the data complexity of FO is in deterministic LOGSPACE. This gap
between expression complexity and data complexity obtains for many well-
known logics.

When we turn from first-order to second-order logic, the situation is
quite different. For example, the data complexity of the monadic existen-
tial fragment of second-order logic (mon-ESO) is NP-complete, that is, every
mon-ESO-definable query is in NP, and some such queries, for example, 3-
colorability, are NP-hard. On the other hand, as discussed in Chap. 2, there
are PTIME queries on G, for example, connectivity, which are not mon-ESO-
definable. This suggests that definability theory could be used to illuminate
differences in complexity which are not easily characterized in terms of com-
putational resources – a good example of this is the result of Ajtai and Fagin
that undirected reachability is mon-ESO-definable, while directed reachability
is not [4] (recently, Reingold has established that undirected reachability is in
DLOGSPACE, whereas directed reachability is a paradigmatic NLOGSPACE-
complete problem [58] – separating these two complexity classes remains an
outstanding open question). On the other hand, it is also interesting when
definability of queries in well-understood logics coincides with resource com-
plexity classes, from at least two points of view: first, the logical language
could then be used as a transparent specification language for queries in the
class, and second, methods of logic could be deployed in complexity-theoretic
investigations.

A logic L captures a complexity class K on a collection of structures C if
and only if, for every query Q over C,

Q is L-definable ⇔ Q ∈ K.

In 1970, Fagin [25] showed that the existential fragment of second-order logic
captures the complexity class NP over the class of all finite structures (see
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Chap. 3 for discussion and a proof). Fagin’s result launched an active search
for characterizations of other complexity classes in logical terms. Since the
natural specification of many combinatorial problems is given by an existen-
tial second-order sentence, Fagin’s Theorem provides a convenient tool for
recognizing that problems are in NP. From the point of view of specification
languages for database queries, it would be most useful to find logics that
capture complexity classes below NP. Though Fagin’s Theorem extends easily
to show that full second-order logic captures the polynomial-time hierarchy,
PH, over arbitrary finite structures, thus far no logic has been identified that
captures a complexity class presumed to be strictly contained in NP over the
collection of all finite structures. On the other hand, much has been learned
about logics that capture such complexity classes over particular collections
of finite structures. Indeed, the first capturing result was of just this kind.
In 1960, Büchi [16] showed that mon-ESO captures the collection of regular
languages over the class of string structures, that is, structures of the form
〈[n], S, P 〉, where S is the usual successor relation on [n] and P is a finite
sequence of unary predicates; it is worth noting that over string structures,
all of monadic second-order logic is no more expressive than its existential
fragment (see [63] and [32] for extended treatments of connections between
logic and automata theory). Chapter 3 shows how other fragments of second-
order logic yield characterizations of complexity classes over ordered finite
structures, that is, structures which interpret a distinguished binary relation
as a linear order on the universe. These include Grädel’s results that second-
order Horn logic (and its existential fragment) captures polynomial time on
ordered finite structures and that second-order Krom logic (and its existen-
tial fragment) captures nondeterministic logarithmic space on ordered finite
structures.

An especially active area of investigation in descriptive complexity theory
is the analysis of logics with fixed-point operators that allow for defining
queries by induction. The clarification of the nature of inductive definitions
was a task undertaken by the pioneers of modern logic. Indeed, among Frege’s
great contributions in Die Grundlagen der Arithmetik was the analysis of one
of the simplest fixed-point operators, which allows definition of the ancestral of
a relation (now called transitive closure), in the universal fragment of second-
order logic: a is an E-ancestor of b (tcxy(Exy)ab) if and only if

∀R((∀x∀y(Exy → Rxy) ∧ ∀z((Rxy ∧ Ezx) → Rzy)) → Rab).

From the point of view of descriptive complexity, transitive closures appear to
be quite weak compared with universal second-order quantification. Immer-
man [43] showed that the extension of first-order logic with the transitive-
closure operator (TC) captures NLOGSPACE over the class of ordered finite
structures, while, by Fagin’s Theorem, the universal fragment of second-
order logic captures co-NP, which has been conjectured to properly include
NLOGSPACE. If transitive closure is applied only to single-valued relations,
one obtains, as an extension of first-order logic, deterministic transitive-closure
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logic (DTC), which captures DLOGSPACE over the class of ordered finite
structures [43]. In this instance, the descriptive separation, DTC �= TC,
over the class of all finite structures was established by Grädel and McColm
[31], whereas the separation on ordered finite structures is equivalent to
the unresolved complexity-theoretic question: is DLOGSPACE distinct from
NLOGSPACE?

Richer fixed-point logics yield characterizations of PTIME and PSPACE
over ordered finite structures. Chapters 2 and 3 contain detailed developments
of logical and complexity-theoretic results concerning the least fixed-point
(LFP), inflationary fixed-point (IFP), and partial fixed-point (PFP) exten-
sions of first-order logic, including proofs that LFP captures PTIME over
ordered finite structures [43, 68], that PFP captures PSPACE over ordered
finite structures [1, 68], and that LFP = IFP over arbitrary finite struc-
tures [39] (indeed, Kreutzer established that LFP = IFP over arbitrary, not
just finite, structures [49]). In contrast to the aforementioned descriptive sepa-
ration of TC and DTC, and in spite of the fact that LFP and PFP do not cap-
ture PTIME and PSPACE over finite graphs without an ordering, Abiteboul
and Vianu [2] established that there are PFP-definable queries on finite graphs
which are not LFP-definable, if and only if PSPACE is distinct from PTIME,
a striking result which solved an open problem posed by Chandra [20].

As noted earlier, the fixed-point logics LFP, IFP, and PFP are all fragments
of Lω∞ω with respect to definability over the class of finite structures, and
consequently they lack the means to express any nontrivial cardinality queries
on finite graphs. The extension of IFP with counting quantifiers (IFP+C)
yields a logic that captures PTIME over wider classes of finite structures;
for example, Grohe established that IFP+C captures PTIME on the class of
planar graphs (in fact, on any class of structures whose Gaifman graphs are
of bounded genus) [34, 35] and on any class of structures of bounded tree-
width [36]. On the other hand, Cai, Fürer, and Immerman established that
IFP+C does not capture PTIME over the class of all finite graphs [18]. It is
natural to ask: is there a logic that captures PTIME on the class of all finite
graphs?

1.2.2 What Is a Logic for PTIME?

In order to sensibly address the preceding question, we need to refine the
notion of a logic capturing a complexity class – otherwise, for all we have said
about logics in the abstract, we might be tempted to answer that the collec-
tion of PTIME queries itself is a logic that captures PTIME. Chandra and
Harel [19] introduced the notion of an effectively enumerable query complexity
class and posed the question of whether the PTIME-computable queries are
effectively enumerable; Gurevich [38] introduced the closely related notion of
a logic for PTIME (see also [23] and [53] for further discussion of logics for
complexity classes). In order to explain this notion, we need to focus closely
on the satisfaction relation. Recall that a logic L is a pair consisting of a set



1.2 Descriptive Complexity 17

of sentences SL and a satisfaction relation |=L . We say that L is uniformly
contained in PTIME on a collection of finite structures C if and only if SL and
|=L are decidable, and there are effectively computable functions m and t such
that for every ϕ ∈ SL, m(ϕ) is a deterministic Turing machine which decides
Q(ϕ)∩C in time nt(ϕ). Note that SO-Horn, LFP, and IFP are uniformly con-
tained in PTIME on the collection of all finite structures. A logic L effectively
captures PTIME on C if and only if L is uniformly contained in PTIME on C
and every PTIME query on C is L-definable. In this sense, a logic for PTIME
embodies a query language which can be compiled into machine code with
explicit bounds on running time, and which expresses every PTIME query.
(The notion of “effectively capturing” can easily be extended to other resource
complexity classes; for example, in the obvious sense, Fagin’s Theorem estab-
lishes that ESO effectively captures NP.)

Insofar as we have placed only quite abstract requirements on a logic L
effectively capturing PTIME, the question naturally arises whether the col-
lection Tp of nk-clocked Turing machines, for all k ∈ N, itself might not be
such a logic, where the associated satisfaction relation is just acceptance. The
problem with this suggestion is that the “queries” definable in this logic are
not necessarily queries, that is, they are not in general isomorphism-invariant.
One way of overcoming this obstacle would be to preprocess input graphs so
that a fixed representative of each isomorphism type of structure would be
presented to a clocked machine. Given an equivalence relation ∼ on G, we say
f : G −→ G is a ∼-canon if and only if, for all G,H ∈ G, G ∼ f(G) and
if G ∼ H, then f(G) = f(H). Given a Turing machine M which computes
an isomorphism canon, we could “compose” M with each of the machines
M ′ ∈ Tp and thereby arrive at a logic which captures PTIME on G; if, more-
over, M ran in polynomial time in the length of its input, this would yield a
logic that effectively captures PTIME on G. The existence of a polynomial-
time-computable isomorphism canon for graphs is a major open problem in
complexity theory. It is well known that if P = NP, then there is a polynomial-
time-computable isomorphism canon for finite graphs, though it is unknown
whether the existence of such a canon would imply that P = NP [5]. It follows
at once that if there is no logic that effectively captures PTIME on G, then
there is no polynomial-time-computable isomorphism canon for graphs, and
hence P �= NP. (Indeed, if P = NP, then existential second-order logic is a
logic for P. This follows from Fagin’s Theorem and the “polynomially uni-
form” completeness of typical NP-complete problems.) On the other hand, if
there is a polynomial-time-computable ∼-canon for a class of graphs C, then
there is a logic L that effectively captures ∼-invariant PTIME on C, that is, a
logic which is uniformly contained in PTIME and expresses all and only the
PTIME-computable queries on C which are closed under ∼. In some cases,
such as Grohe’s capturing results for IFP+C cited above, there is a “familiar”
logic that does the capturing. Another example of this phenomenon is Otto’s
result [55] that bisimulation-invariant PTIME is uniformly captured by the
multidimensional μ-calculus (see Chap. 3 and references there).



18 1 Unifying Themes in Finite Model Theory

1.3 Finite Model Theory and Infinite Structures

The concluding section of Chap. 3 surveys several areas where the perspective
of descriptive complexity theory has been extended to the study of certain
classes of infinite structures. Such extension requires, at minimum, that the
structures in question be finitely presentable and that the satisfaction relation
be computable when restricted to the given setting (structures and language).
One active research direction here is the study of automatic structures, that is,
structures whose universe and relations are regular sets of strings. Automatic
structures have nice closure properties from the point of view of definability
theory; for example, all first-order-definable relations on such structures are
regular, and so the expansion of an automatic structure by first-order-definable
relations is itself automatic, a property not shared, for example, by recursively
presented structures.

Another research direction where the point of view of descriptive com-
plexity is extended to infinite structures is the study of metafinite structures,
which were introduced by Grädel and Gurevich in [30]. A paradigmatic exam-
ple of such structures is edge-weighted graphs. Here one has a finite graph
and a numerical structure, such as the ring Z or the ordered field R, and
a function which assigns weights in the numerical structure to edges in the
graph. Such two-sorted structures arise naturally in several areas of com-
puter science, including database theory, optimization theory, and complexity
theory. A hallmark of metafinite model theory is the simplicity of the lan-
guages deployed to describe these hybrid structures. In particular, there is
no quantification allowed over the numerical structure, indeed, no variables
which admit assignment from the numerical domain. The only access to the
numerical structure is via weight terms that assign numerical values to tuples
from the nonnumerical sort, and terms which combine these by use of opera-
tions on the numerical universe. Following [30], Chap. 3 shows how the notion
of a generalized spectrum admits two extensions to the context of metafi-
nite structures (one allowing projection of weight functions, in addition to
projection of relations on the finite structure). In the context of arithmeti-
cal structures (those whose numerical part consists of the standard model of
arithmetic with additional polynomial-time-computable multiset operations)
with “small weights”, the more restricted notion of a generalized spectrum
captures NP, whereas on arithmetical structures in general, the wider notion
captures the class of all recursively enumerable relations. Chapter 3 con-
cludes with a proof of the result, due to Grädel and Meer, that in the case of
metafinite structures whose numerical part is the real ordered field extended
with constants for all real numbers, the wide notion of a metafinite spectrum
captures NPR, the collection of nondeterministic polynomial-time-acceptable
relations on the reals in the Blum–Schub–Smale model of computation over the
reals [15].
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A third area which involves a blend of finite and classical model the-
ory is the study of “Embedded finite models and constraint databases”, the
subject of Leonid Libkin’s chapter (Chap. 5). In the context of geographical
information systems, the management of spatio-temporal data, bioinformatics,
and numerous other database application areas, it is useful to look at rela-
tional data over infinite sets which may themselves be endowed with additional
structure. The approach via constraint databases, pioneered by Kanellakis et
al. [45], where, for example, geographical regions are stored as logical formu-
las that define them, via coordinatization, over the real ordered field R or the
real ordered group, has proven to be fruitful. In this context, new definability
questions arise; for example, can one define topological connectivity of (defin-
able) spatial regions? As discussed in Chap. 5, the work of Grumbach and
Su [37] revealed that many definability questions of this kind could be reduced
to definability questions about embedded finite structures, that is, finite struc-
tures whose domain is drawn from some ambient infinite structure such as the
real ordered field. For example, if G is a finite graph whose vertices are real
numbers, then the expansion A = 〈R, EG〉 of R is an embedded finite model
with “active domain” the set of nonisolated vertices of G. Now, it can be shown
that there is a first-order formula ϕ(x, y) such that the region in R2 defined by
ϕ in A is topologically connected, if and only if G is a connected graph. Thus,
if topological connectivity of definable planar regions were first-order-definable
in R, then connectivity of embedded finite graphs would also be definable over
{〈R, E〉 | E ⊂fin R2}. This is exactly the point at which embedded finite model
theory comes into play in offering a variety of techniques to answer definabil-
ity questions of the latter sort. One of the main thrusts of embedded finite
model theory is to establish “collapse results”, which reduce questions about
definability over embedded finite structures to questions about definability
over finite structures. It turns out that general model-theoretic conditions
on the ambient infinite structure are of paramount importance in determin-
ing the extent to which such collapse results obtain. Chapter 5 provides a
detailed account of such phenomena. These phenomena provide considerable
evidence that infinite structures which are well-behaved from the point of
view of definability theory in the infinite are similarly tame with respect to
embedded finite structures. For example, Benedikt et al. [10] have shown that
if M is an o-minimal structure and Q is an order-generic query on finite struc-
tures A embedded in M, which is first-order definable over 〈M,A〉, then Q
is first-order definable (with order) over finite structures A; the real ordered
field is a paradigmatic o-minimal structure, and recent work in model theory
has established the o-minimality of various of its extensions [66, 70]. Baldwin
and Benedikt [7] have shown, more generally, that the same collapse obtains
for any M which lacks the independence property, a condition familiar from
stability theory. Chapter 5 reveals deep connections between the independence
property and definability over embedded finite models.
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1.4 Tame Fragments and Tame Classes

The book concludes with a concise, modern introduction to modal logic,
“Local variations on a loose theme: modal logic and decidability”, by Maarten
Marx and Yde Venema (a comprehensive treatment in this spirit can be found
in [13]). Modal logics have numerous applications to computer science, rang-
ing from specification of hybrid systems to knowledge representation, and
these applications rest on the delicate balance between the expressive power of
modal languages and their good algorithmic properties. The chapter provides
an incisive analysis of this balance (other useful discussions include [29, 69]).

Propositional modal languages can be viewed, via the Kripke modeling,
as vehicles for expressing unary queries over labeled transition systems, that
is, structures whose universe consists of a collection of states equipped with
binary “accessibility” relations and unary labels. When viewed in this way, a
propositional modal sentence ϕ, such as

P → �(¬P ∧�P ),

can be translated into a first-order formula ϕ◦ with one free variable,

P (x) → ∀y(Rxy → (¬P (y) ∧ ∃x(Ryx ∧ P (x)))),

so that, for any Kripke model M = 〈UM , RM , PM 〉 and any s ∈ UM ,

M, s � ϕ⇔M |= ϕ◦[s].

For example, if M is the structure with

UM = {1, 2, 3}, RM = {〈1, 1〉, 〈1, 2〉, 〈2, 3〉, 〈3, 2〉}, PM = {1, 3},

then ϕ◦ defines the set {2, 3} in M. It is easy to check that for any basic modal
sentence ϕ, ϕ◦ is in the the two-variable fragment of first-order logic, and all
quantifiers in ϕ◦ are relativized to the collection of states directly accessible
from a given state. The collection of translations of modal sentences is called
the modal fragment of first-order logic.

Chapter 7 emphasizes that bisimulation invariance is the fundamental
property of the modal fragment of first-order logic. As mentioned above, bisim-
ilarity can be characterized in terms of a simple one-pebble comparison game.
Kripke structures M and M ′ with states s ∈ M and s′ ∈ M ′ are bisimilar if
and only if the Duplicator has a winning strategy in the following game. Ini-
tially, pebbles are placed on the distinguished states s and s′. At each round of
play, the Spoiler chooses one of the pebbles and moves it to a state accessible
from the state on which it lies. The Duplicator must move the other pebble
in like fashion, and to a state which is labeled identically to the state onto
which Spoiler has moved. The game ends with a win for the Spoiler if the
Duplicator cannot thus move at some round. Otherwise, the Duplicator wins
the (perhaps infinite) play of the game.
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It is easy to check that every formula in the modal fragment is bisimulation
invariant; that is, if M, s is bisimilar to M ′, s′ then

M |= ϕ◦[s] ⇔M ′ |= ϕ◦[s′],

for every modal sentence ϕ. The authors show that by “unraveling” a Kripke
structure M at a state s one can create a tree model M ′ (that is, 〈U ′, RM

′〉 is a
directed tree) that is bisimilar to M at s (the unraveling consists of collecting
all finite walks in M starting at s and ordering them by immediate extension).
Thus, any bisimulation-invariant language has the “tree model” property. The
authors refer to this as the looseness property of modal logic, and identify it
as one of the sources of the good algorithmic behavior of modal logics. They
observe that this is not the entire story, and note that modal logics also
exhibit some interesting locality properties that also partly account for the
relatively low complexity of their satisfiability and model-checking problems.
Indeed, since there are continuum-many bisimulation-invariant queries even
on finite labeled transition systems, the tree model property could not be the
complete account for the computational tameness of the modal fragment. The
authors identify two locality properties that are important in explaining the
behavior of modal logic. The first is related to the Hanf and Gaifman locality
of first-order logic as discussed in Chap. 2 (note that modal depth equates to
quantifier depth in the modal fragment); the second is related to the fact that
the modal fragment is contained in FO2.

The connection between bisimilarity invariance and modal definability is
intimate – Johan van Benthem established [11, 12] a preservation theorem for
the modal fragment: every bisimulation-invariant first-order formula is equiv-
alent to a formula in the modal fragment. Eric Rosen [59] showed that this
preservation theorem persists to the class of finite structures; that is, if a for-
mula of first-order logic is preserved under bisimulation over the collection of
finite Kripke structures, then it is equivalent, over finite Kripke structures,
to a formula in the modal fragment. This result provides evidence that the
modal fragment is tame not only from an algorithmic point of view, but also
from the point of view of finite model theory. How so? Several well-known
preservation theorems from classical model theory fail when relativized to
finite structures. For example, Tait [64] showed that the �Loś–Tarski existen-
tial preservation theorem does not persist to the class of finite structures –
there is a first-order sentence that is preserved under extensions relative to the
collection of finite structures, but is not equivalent over finite structures to an
existential sentence. An even more telling example in the current context is the
failure of a preservation theorem for the two-variable fragment of first-order
logic to persist to the class of finite structures. A query is 2-invariant if and
only if it is closed under L2∞ω equivalence. Immerman and Kozen [44] showed
that if a query is 2-invariant and first-order definable, then it is expressible
by a sentence of FO2. This result does not persist to the finite case; for exam-
ple, the collection of finite linear orderings is 2-invariant and FO3-definable
with respect to the collection of finite structures, but is not FO2-definable
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over finite structures. So the modal fragment is in some sense tamer than
the two-variable fragment with respect to model theory over the class of finite
structures. Otto [56] has proved a generalization of Rosen’s preservation result
which gives yet more evidence that the tameness of modal finite model theory
is connected to the relativization of quantification in the modal fragment. He
established that any formula of FO2 that is invariant under guarded bisimu-
lations with respect to the class of finite structures is equivalent, over finite
structures, to a formula in the guarded fragment of FO2. Chapter 7 explains
how the guarded fragment of first-order logic is a natural extension of the
modal fragment and discusses aspects of its good algorithmic behavior. Ross-
man [60] recently established that the homomorphism preservation theorem
persists to finite structures, that is, if a first-order definable query is closed
under homomorphisms with respect to the class of finite structures, then it
is equivalent over finite structures to a positive existential sentence. So, in
the sense to hand, the positive existential fragment of first-order logic is also
“tame” for finite model theory. It is worth noting that some fragments that
are ill-behaved with respect to the collection of all finite structures may be
tame with respect to interesting subclasses. Though the existential preserva-
tion theorem fails over the collection of all finite structures, Atserias, Dawar,
and Grohe [6] have shown that it holds with respect to classes of finite struc-
tures of bounded degree and bounded tree-width. To echo a motto proposed
by Hrushovski (“model theory = geography of tame mathematics” [67]), a
geography of tame fragments and tame classes may yield some insight into
finite model theory.
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31. E. Grädel and G. L. McColm. Hierarchies in transitive closure logic, stratified
datalog and infinitary logic. Annals of Pure and Applied Logic, 77:166–199,
1996.
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