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Limit Theorems

10.1 Central Limit Theorem, the Lindeberg Condition

Limit Theorems describe limiting distributions of appropriately scaled sums
of a large number of random variables. It is usually assumed that the random
variables are either independent, or almost independent, in some sense. In the
case of the Central Limit Theorem that we prove in this section, the random
variables are independent and the limiting distribution is Gaussian. We first
introduce the definitions.

Let ξ1, ξ2, ... be a sequence of independent random variables with finite
variances, mi = Eξi, σ2

i = Var(ξi), ζn =
∑n

i=1 ξi, Mn = Eζn =
∑n

i=1 mi,
D2

n = Var(ζn) =
∑n

i=1 σ2
i . Let Fi = Fξi

be the distribution function of the
random variable ξi.

Definition 10.1. The Lindeberg condition is said to be satisfied if

lim
n→∞

1
D2

n

n∑

i=1

∫

{x:|x−mi|≥εDn}
(x − mi)2dFi(x) = 0

for every ε > 0.

Remark 10.2. The Lindeberg condition easily implies that limn→∞ Dn = ∞
(see formula (10.5) below).

Theorem 10.3. (Central Limit Theorem, Lindeberg Condition) Let
ξ1, ξ2, ... be a sequence of independent random variables with finite variances.
If the Lindeberg condition is satisfied, then the distributions of (ζn − Mn)/Dn

converge weakly to N(0, 1) distribution as n → ∞.

Proof. We may assume that mi = 0 for all i. Otherwise we can consider a new
sequence of random variables ξ̃i = ξi −mi, which have zero expectations, and
for which the Lindeberg condition is also satisfied. Let ϕi(λ) and ϕτn

(λ) be the
characteristic functions of the random variables ξi and τn = ζn

Dn
respectively.

By Theorem 9.7, it is sufficient to prove that for all λ ∈ R
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ϕτn
(λ) → e−

λ2
2 as n → ∞. (10.1)

Fix λ ∈ R and note that the left-hand side of (10.1) can be written as follows:

ϕτn
(λ) = Eeiλτn = Eei( λ

Dn
)(ξ1+...+ξn) =

n∏

i=1

ϕi(
λ

Dn
).

We shall prove that

ϕi(
λ

Dn
) = 1 − λ2σ2

i

2D2
n

+ an
i (10.2)

for some an
i = an

i (λ) such that for any λ

lim
n→∞

n∑

i=1

|an
i | = 0. (10.3)

Assuming (10.2) for now, let us prove the theorem. By Taylor’s formula, for
any complex number z with |z| < 1

4

ln(1 + z) = z + θ(z)|z|2, (10.4)

with |θ(z)| ≤ 1, where ln denotes the principal value of the logarithm (the
analytic continuation of the logarithm from the positive real semi-axis to the
half-plane Re(z) > 0).

We next show that

lim
n→∞

max
1≤i≤n

σ2
i

D2
n

= 0. (10.5)

Indeed, for any ε > 0,

max
1≤i≤n

σ2
i

D2
n

≤ max
1≤i≤n

∫
{x:|x|≥εDn} x2dFi(x)

D2
n

+ max
1≤i≤n

∫
{x:|x|≤εDn} x2dFi(x)

D2
n

.

The first term on the right-hand side of this inequality tends to zero by the
Lindeberg condition. The second term does not exceed ε2, since the integrand
does not exceed ε2D2

n on the domain of integration. This proves (10.5), since ε
was arbitrary.

Therefore, when n is large enough, we can put z = −λ2σ2
i

2D2
n

+ an
i in (10.4)

and obtain
n∑

i=1

ln ϕi(
λ

Dn
) =

n∑

i=1

−λ2σ2
i

2D2
n

+
n∑

i=1

an
i +

n∑

i=1

θi|
−λ2σ2

i

2D2
n

+ an
i |2

with |θi| ≤ 1. The first term on the right-hand side of this expression is equal
to −λ2

2 . The second term tends to zero due to (10.3). The third term tends
to zero since
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n∑

i=1

θi|
−λ2σ2

i

2D2
n

+ an
i |2 ≤ max

1≤i≤n
{λ2σ2

i

2D2
n

+ |an
i |}

n∑

i=1

(
λ2σ2

i

2D2
n

+ |an
i |)

≤ c(λ) max
1≤i≤n

{λ2σ2
i

2D2
n

+ |an
i |},

where c(λ) is a constant, while the second factor converges to zero by (10.3)
and (10.5). We have thus demonstrated that

lim
n→∞

n∑

i=1

ln ϕi(
λ

Dn
) = −λ2

2
,

which clearly implies (10.1). It remains to prove (10.2). We use the following
simple relations:

eix = 1 + ix +
θ1(x)x2

2
,

eix = 1 + ix − x2

2
+

θ2(x)x3

6
,

which are valid for all real x, with |θ1(x)| ≤ 1 and |θ2(x)| ≤ 1. Then

ϕi(
λ

Dn
) =

∫ ∞

−∞
e

iλ
Dn

xdFi(x) =
∫

|x|≥εDn

(1 +
iλ

Dn
x +

θ1(x)(λx)2

2D2
n

)dFi(x)

+
∫

|x|<εDn

(1 +
iλx

Dn
− λ2x2

2D2
n

+
θ2(x)|λx|3

6D3
n

)dFi(x)

= 1 − λ2σ2
i

2D2
n

+
λ2

2D2
n

∫

|x|≥εDn

(1 + θ1(x))x2dFi(x)

+
|λ|3
6D3

n

∫

|x|<εDn

θ2(x)|x|3dFi(x).

Here we have used that
∫ ∞

−∞
xdFi(x) = Eξi = 0.

In order to prove (10.2), we need to show that

n∑

i=1

λ2

2D2
n

∫

|x|≥εDn

(1+θ1(x))x2dFi(x)+
n∑

i=1

|λ|3
6D3

n

∫

|x|<εDn

θ2(x)|x|3dFi(x) → 0.

(10.6)
The second sum in (10.6) can be estimated as

|
n∑

i=1

|λ|3
6D3

n

∫

|x|<εDn

θ2(x)|x|3dFi(x)|
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≤ |
n∑

i=1

|λ|3ε
6D3

n

∫

|x|<εDn

θ2(x)x2DndFi(x)| ≤
n∑

i=1

|λ|3εσ2
i

6D2
n

=
ε|λ|3

6
,

which can be made arbitrarily small by selecting a sufficiently small ε. The
first sum in (10.6) tends to zero by the Lindeberg condition. �

Remark 10.4. The proof can be easily modified to demonstrate that the con-
vergence in (10.1) is uniform on any compact set of values of λ. We shall need
this fact in the next section.

The Lindeberg condition is clearly satisfied for every sequence of indepen-
dent identically distributed random variables with finite variances. We there-
fore have the following Central Limit Theorem for independent identically
distributed random variables.

Theorem 10.5. Let ξ1, ξ2, ... be a sequence of independent identically distrib-
uted random variables with m = Eξ1 and 0 < σ2 = Var(ξ1) < ∞. Then
the distributions of (ζn − nm)/

√
nσ converge weakly to N(0, 1) distribution

as n → ∞.

Theorem 10.3 also implies the Central Limit Theorem under the following
Lyapunov condition.

Definition 10.6. The Lyapunov condition is said to be satisfied if there is
a δ > 0 such that

lim
n→∞

1
D2+δ

n

n∑

i=1

E(|ξi − mi|2+δ) = 0.

Theorem 10.7. (Central Limit Theorem, Lyapunov Condition) Let
ξ1, ξ2, ... be a sequence of independent random variables with finite variances.
If the Lyapunov condition is satisfied, then the distributions of (ζn − Mn)/Dn

converge weakly to N(0, 1) distribution as n → ∞.

Proof. Let ε, δ > 0. Then,
∫
{x:|x−mi|≥εDn}(x − mi)2dFi(x)

D2
n

≤
∫
{x:|x−mi|≥εDn}(x − mi)2+δdFi(x)

D2
n(εDn)δ

≤ ε−δ E(|ξi − mi|2+δ)
D2+δ

n

.

Therefore, a sequence of random variables satisfying the Lyapunov condition
also satisfies the Lindeberg condition. �

If condition (10.5) is satisfied, then the Lindeberg condition is not only
sufficient, but also necessary for the Central Limit Theorem to hold. We state
the following theorem without providing a proof.
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Theorem 10.8. (Lindeberg-Feller) Let ξ1, ξ2, ... be a sequence of indepen-
dent random variables with finite variances such that the condition (10.5) is
satisfied. Then the Lindeberg condition is satisfied if and only if the Cen-
tral Limit Theorem holds, that is the distributions of (ζn − Mn)/Dn converge
weakly to N(0, 1) distribution as n → ∞.

There are various generalizations of the Central Limit Theorem, not pre-
sented here, where the condition of independence of random variables is re-
placed by conditions of weak dependence in some sense. Other important
generalizations concern vector-valued random variables.

10.2 Local Limit Theorem

The Central Limit Theorem proved in the previous section states that the
measures on R induced by normalized sums of independent random variables
converge weakly to the Gaussian measure N(0, 1). Under certain additional
conditions this statement can be strengthened to include the point-wise con-
vergence of the densities. In the case of integer-valued random variables (where
no densities exist) the corresponding statement is the following Local Central
Limit Theorem, which is a generalization of the de Moivre-Laplace Theorem.

Let ξ be an integer-valued random variable. Let X = {x1, x2, ...} be the
finite or countable set consisting of those values of ξ for which pj = P(ξ =
xj) �= 0. We shall say that ξ spans the set of integers Z if the greatest common
divisor of all the elements of X equals 1.

Lemma 10.9. If ξ spans Z, and ϕ(λ) = Eeiξλ is the characteristic function
of the variable ξ, then for any δ > 0

sup
δ≤|λ|≤π

|ϕ(λ)| < 1 . (10.7)

Proof. Suppose that xλ0 ∈ {2kπ, k ∈ Z} for some λ0 and all x ∈ X. Then
λ0 ∈ {2kπ, k ∈ Z}, since 1 is the largest common divisor of all the elements
of X. Therefore, if δ ≤ |λ| ≤ π, then xλ /∈ {2kπ, k ∈ Z} for some x ∈ X. This
in turn implies that eiλx �= 1. Recall that

ϕ(λ) =
∑

xj∈X

pje
iλxj .

Since
∑

xj∈X pj = 1 and pj > 0, the relation eiλx �= 1 for some x ∈ X implies
that |ϕ(λ)| < 1. Since |ϕ(λ)| is continuous,

sup
δ≤|λ|≤π

|ϕ(λ)| < 1 .

�
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Let ξ1, ξ2, ... be a sequence of integer-valued independent identically dis-
tributed random variables. Let m = Eξ1, σ2 = Var(ξ1) < ∞, ζn =

∑n
i=1 ξi,

Mn = Eζn = nm, D2
n = Var(ζn) = nσ2. We shall be interested in the proba-

bility of the event that ζn takes an integer value k. Let Pn(k) = P(ζn = k),
z = z(n, k) = k−Mn

Dn
.

Theorem 10.10. (Local Limit Theorem) Let ξ1, ξ2, ... be a sequence of
independent identically distributed integer-valued random variables with finite
variances such that ξ1 spans Z. Then

lim
n→∞

(DnPn(k) − 1√
2π

e−
z2
2 ) = 0 (10.8)

uniformly in k.

Proof. We shall prove the theorem for the case m = 0, since the general case
requires only trivial modifications. Let ϕ(λ) be the characteristic function
of each of the variables ξi. Then the characteristic function of the random
variable ζn is

ϕζn
(λ) = ϕn(λ) =

∞∑

k=−∞
Pn(k)eiλk.

Thus ϕn(λ) is the Fourier series with coefficients Pn(k), and we can use the
formula for Fourier coefficients to find Pn(k):

2πPn(k) =
∫ π

−π

ϕn(λ)e−iλkdλ =
∫ π

−π

ϕn(λ)e−iλzDndλ.

Therefore, after a change of variables we obtain

2πDnPn(k) =
∫ πDn

−πDn

e−iλzϕn(
λ

Dn
)dλ.

From the formula for the characteristic function of the Gaussian distribution

1√
2π

e−
z2
2 =

1
2π

∫ ∞

−∞
eiλz−λ2

2 dλ =
1
2π

∫ ∞

−∞
e−iλz−λ2

2 dλ.

We can write the difference in (10.8) multiplied by 2π as a sum of four inte-
grals:

2π(DnPn(k) − 1√
2π

e−
z2
2 ) = I1 + I2 + I3 + I4,

where

I1 =
∫ T

−T

e−iλz(ϕn(
λ

Dn
) − e−

λ2
2 )dλ,

I2 = −
∫

|λ|>T

e−iλz−λ2
2 dλ,
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I3 =
∫

δDn≤|λ|≤πDn

e−iλzϕn(
λ

Dn
)dλ,

I4 =
∫

T≤|λ|<δDn

e−iλzϕn(
λ

Dn
)dλ,

where the positive constants T < δDn and δ < π will be selected later. By
Remark 10.4, the convergence limn→∞ ϕn( λ

Dn
) = e−

λ2
2 is uniform on the

interval [−T, T ]. Therefore limn→∞ I1 = 0 for any T .
The second integral can be estimated as follows:

|I2| ≤
∫

|λ|>T

|e−iλz−λ2
2 |dλ =

∫

|λ|>T

e−
λ2
2 dλ,

which can be made arbitrarily small by selecting T large enough, since the
improper integral

∫ ∞
−∞ e−

λ2
2 dλ converges.

The third integral is estimated as follows:

|I3| ≤
∫

δDn≤|λ|≤πDn

|e−iλzϕn(
λ

Dn
)|dλ ≤ 2πσ

√
n( sup

δ≤|λ|≤π

|ϕ(λ)|)n,

which tends to zero as n → ∞ due to (10.7).
In order to estimate the fourth integral, we note that the existence of

the variance implies that the characteristic function is a twice continuously
differentiable complex-valued function with ϕ′(0) = im = 0 and ϕ′′(0) = −σ2.
Therefore, applying the Taylor formula to the real and imaginary parts of ϕ,
we obtain

ϕ(λ) = 1 − σ2λ2

2
+ o(λ2) as λ → 0.

For |λ| ≤ δ and δ sufficiently small, we obtain

|ϕ(λ)| ≤ 1 − σ2λ2

4
≤ e−

σ2λ2
4 .

If |λ| ≤ δDn, then

|ϕ(
λ

Dn
)|n ≤ e

−nσ2λ2

4D2
n = e−

λ2
4 .

Therefore,

|I4| ≤ 2
∫ δDn

T

e−
λ2
4 dλ ≤ 2

∫ ∞

T

e−
λ2
4 dλ.

This can be made arbitrarily small by selecting sufficiently large T . This com-
pletes the proof of the theorem. �

When we studied the recurrence and transience of random walks on Z
d

(Section 6) we needed to estimate the probability that a path returns to the
origin after 2n steps:
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u2n = P(
2n∑

j=1

ωj = 0).

Here ωj are independent identically distributed random variables with values
in Z

d with the distribution py, y ∈ Z
d, where py = 1

2d if y = ±es, 1 ≤ s ≤ d,
and 0 otherwise.

Let us use the characteristic functions to study the asymptotics of u2n as
n → ∞. The characteristic function of ωj is equal to

Eei(λ,ωi) =
1
2d

(eiλ1 + e−iλ1 + ... + eiλd + e−iλd) =
1
d
(cos(λ1) + ... + cos(λd)),

where λ = (λ1, ..., λd) ∈ R
d. Therefore, the characteristic function of the sum

∑2n
j=1 ωj is equal to ϕ2n(λ) = 1

d2n (cos(λ1) + ... + cos(λd))2n. On the other
hand,

ϕ2n(λ) =
∑

k∈Zd

Pn(k)ei(λ,k),

where Pn(k) = P(
∑2n

j=1 ωj = k). Integrating both sides of the equality
∑

k∈Zd

Pn(k)ei(λ,k) =
1

d2n
(cos(λ1) + ... + cos(λd))2n

over λ, we obtain

(2π)du2n =
1

d2n

∫ π

−π

...

∫ π

−π

(cos(λ1) + ... + cos(λd))2ndλ1...dλd.

The asymptotics of the latter integral can be treated with the help of the so-
called Laplace asymptotic method. The Laplace method is used to describe
the asymptotic behavior of integrals of the form

∫

D

f(λ)esg(λ)dλ,

where D is a domain in R
d, f and g are smooth functions, and s → ∞ is a large

parameter. The idea is that if f(λ) > 0 for λ ∈ D, then the main contribution
to the integral comes from arbitrarily small neighborhoods of the maxima
of the function g. Then the Taylor formula can be used to approximate the
function g in small neighborhoods of its maxima. In our case the points of the
maxima are λ1 = ... = λd = 0 and λ1 = ... = λd = ±π. We state the result
for the problem at hand without going into further detail:

∫ π

−π

...

∫ π

−π

(cos(λ1) + ... + cos(λd))2ndλ1...dλd

=
∫ π

−π

...

∫ π

−π

e2n ln | cos(λ1)+...+cos(λd)|dλ1...dλd

∼ c sup(| cos(λ1) + ... + cos(λd)|)2nn− d
2 = cd2nn− d

2 ,

which implies that u2n ∼ cn− d
2 as n → ∞ with another constant c.
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10.3 Central Limit Theorem and Renormalization Group
Theory

The Central Limit Theorem states that Gaussian distributions can be ob-
tained as limits of distributions of properly normalized sums of independent
random variables. If the random variables ξ1, ξ2, ... forming the sum are in-
dependent and identically distributed, then it is enough to assume that they
have a finite second moment.

In this section we shall take another look at the mechanism of convergence
of normalized sums, which may help explain why the class of distributions
of ξi, for which the central limit theorem holds, is so large. We shall view the
densities (assuming that they exist) of the normalized sums as iterations of a
certain non-linear transformation applied to the common density of ξi. The
method presented below is called the renormalization group method. It can be
generalized in several ways (for example, to allow the variables to be weakly
dependent). We do not strive for maximal generality, however. Instead, we
consider again the case of independent random variables.

Let ξ1, ξ2, ... be a sequence of independent identically distributed random
variables with zero expectation and finite variance. We define the random
variables

ζn = 2−
n
2

2n
∑

i=1

ξi, n ≥ 0.

Then
ζn+1 =

1√
2
(ζ ′n + ζ ′′n),

where

ζ ′n = 2−
n
2

2n
∑

i=1

ξi, ζ ′′n = 2−
n
2

2n+1
∑

i=2n+1

ξi.

Clearly, ζ ′n and ζ ′′n are independent identically distributed random variables.
Let us assume that ξi have a density, which will be denoted by p0. Note that
ζ0 = ξ1, and thus the density of ζ0 is also p0. Let us denote the density of ζn

by pn and its distribution by Pn. Then

pn+1(x) =
√

2
∫ ∞

−∞
pn(

√
2x − u)pn(u)du.

Thus the sequence pn can be obtained from p0 by iterating the non-linear
operator T , which acts on the space of densities according to the formula

Tp(x) =
√

2
∫ ∞

−∞
p(
√

2x − u)p(u)du, (10.9)

that is pn+1 = Tpn and pn = Tnp0. Note that if p is the density of a random
variable with zero expectation, then so is Tp. In other words,
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∫ ∞

−∞
x(Tp)(x)dx = 0 if

∫ ∞

−∞
xp(x)dx = 0. (10.10)

Indeed, if ζ ′ and ζ ′′ are independent identically distributed random variables
with zero mean and density p, then 1√

2
(ζ ′+ζ ′′) has zero mean and density Tp.

Similarly, for a density p such that
∫ ∞
−∞ xp(x)dx = 0, the operator T preserves

the variance, that is
∫ ∞

−∞
x2(Tp)(x)dx =

∫ ∞

−∞
x2p(x)dx. (10.11)

Let pG(x) = 1√
2π

e−
x2
2 be the density of the Gaussian distribution and µG the

Gaussian measure on the real line (the measure with the density pG). It is
easy to check that pG is a fixed point of T , that is pG = TpG. The fact that
the convergence Pn ⇒ µG holds for a wide class of initial densities is related
to the stability of this fixed point.

In the general theory of non-linear operators the investigation of the sta-
bility of a fixed point starts with an investigation of its stability with respect
to the linear approximation. In our case it is convenient to linearize not the
operator T itself, but a related operator, as explained below.

Let H = L2(R,B, µG) be the Hilbert space with the inner product

(f, g) =
1√
2π

∫ ∞

−∞
f(x)g(x) exp(−x2

2
)dx.

Let h be an element of H, that is a measurable function such that

||h||2 =
1√
2π

∫ ∞

−∞
h2(x) exp(−x2

2
)dx < ∞.

Assume that ||h|| is small. We perturb the Gaussian density as follows:

ph(x) = pG(x) +
h(x)√

2π
exp(−x2

2
) =

1√
2π

(1 + h(x)) exp(−x2

2
).

In order for ph to be a density of a probability measure, we need to assume
that ∫ ∞

−∞
h(x) exp(−x2

2
)dx = 0. (10.12)

Moreover, in order for ph to correspond to a random variable with zero ex-
pectation, we assume that

∫ ∞

−∞
xh(x) exp(−x2

2
)dx = 0. (10.13)

Let us define a non-linear operator L̃ by the implicit relation
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Tph(x) =
1√
2π

exp(−x2

2
)(1 + (L̃h)(x)). (10.14)

Thus,

Tnph(x) =
1√
2π

exp(−x2

2
)(1 + (L̃nh)(x)).

This formula shows that in order to study the behavior of Tnph(x) for large n,
it is sufficient to study the behavior of L̃nh for large n. We can write

Tph(x) =

1√
2π

∫ ∞

−∞
(1 + h(

√
2x − u)) exp(− (

√
2x − u)2

2
)(1 + h(u)) exp(−u2

2
)du

=
1√
2π

∫ ∞

−∞
exp(− (

√
2x − u)2

2
− u2

2
)du

+
1√
2π

∫ ∞

−∞
exp(− (

√
2x − u)2

2
− u2

2
)(h(

√
2x − u) + h(u))du + O(||h||2)

=
1√
2π

exp(−x2

2
) +

√
2

π

∫ ∞

−∞
exp(−x2 +

√
2xu − u2)h(u)du + O(||h||2)

=
1√
2π

exp(−x2

2
)(1 + (Lh)(x)) + O(||h||2),

where the linear operator L is given by the formula

(Lh)(x) =
2√
π

∫ ∞

−∞
exp(−x2

2
+
√

2xu − u2)h(u)du. (10.15)

It is referred to as the Gaussian integral operator. Comparing two expressions
for Tph(x), the one above and the one given by (10.14), we see that

L̃h = Lh + O(||h||2),

that is L is the linearization of L̃ at zero.
It is not difficult to show that (10.15) defines a bounded self-adjoint op-

erator on H. It has a complete set of eigenvectors, which are the Hermite
polynomials

hk(x) = exp(
x2

2
)(

d

dx
)k exp(−x2

2
), k ≥ 0.

The corresponding eigenvalues are λk = 21− k
2 , k ≥ 0. We see that λ0, λ1 > 1,

λ2 = 1, while 0 < λk ≤ 1/
√

2 for k ≥ 3. Let Hk, k ≥ 0, be one-dimensional
subspaces of H spanned by hk. By (10.12) and (10.13) the initial vector h is
orthogonal to H0 and H1, and thus h ∈ H 
 (H0 ⊕ H1).
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If h ⊥ H0, then L̃(h) ⊥ H0 follows from (10.14), since (10.12) holds and
ph is a density. Similarly, if h ⊥ H0 ⊕ H1, then L̃(h) ⊥ H0 ⊕ H1 follows from
(10.10) and (10.14). Thus the subspace H
(H0⊕H1) is invariant not only for
L, but also for L̃. Therefore we can restrict both operators to this subspace,
which can be further decomposed as follows:

H 
 (H0 ⊕ H1) = H2 ⊕ [H 
 (H0 ⊕ H1 ⊕ H2)].

Note that for an initial vector h ∈ H 
 (H0 ⊕ H1), by (10.11) the operator L̃
preserves its projection to H2, that is

∫ ∞

−∞
(x2 − 1)h(x) exp(−x2

2
) =

∫ ∞

−∞
(x2 − 1)(L̃h)(x) exp(−x2

2
).

Let U be a small neighborhood of zero in H, and Hh the set of vectors whose
projection to H2 is equal to the projection of h onto H2. Let Uh = U ∩Hh. It
is not difficult to show that one can choose U such that L̃ leaves Uh invariant
for all sufficiently small h. Note that L̃ is contracting on Uh for small h, since
L is contracting on H
(H0⊕H1⊕H2). Therefore it has a unique fixed point.
It is easy to verify that this fixed point is the function

fh(x) =
1

σ(ph)
exp(

x2

2
− x2

2σ2(ph)
) − 1,

where σ2(ph) is the variance of a random variable with density ph,

σ2(ph) =
1√
2π

∫ ∞

−∞
x2(1 + h(x)) exp(−x2

2
)dx.

Therefore, by the contracting mapping principle,

L̃nh → fh as n → ∞,

and consequently

Tnph(x) =
1√
2π

exp(−x2

2
)(1 + (L̃nh)(x)) →

1√
2π

exp(−x2

2
)(1 + fh(x)) =

1√
2πσ(ph)

exp(− x2

2σ2(ph)
).

We see that Tnph(x) converges in the space H to the density of the Gaussian
distribution with variance σ2(ph). This easily implies the convergence of dis-
tributions.

It is worth stressing again that the arguments presented in this section
were based on the assumption that h is small, thus allowing us to state the
convergence of the normalized sums ζn to the Gaussian distribution, provided
the distribution of ξi is a small perturbation of the Gaussian distribution. The
proof of the Central Limit Theorem in Section 10.1 went through regardless
of this assumption.
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10.4 Probabilities of Large Deviations

In the previous chapters we considered the probabilities

P(|
n∑

i=1

ξi −
n∑

i=1

mi| ≥ t)

with mi = Eξi for sequences of independent random variables ξ1, ξ2, ..., and
we estimated these probabilities using the Chebyshev Inequality

P(|
n∑

i=1

ξi −
n∑

i=1

mi| ≥ t) ≤
∑n

i=1 di

t2
, di = Var(ξi).

In particular, if the random variables ξi are identically distributed, then for
some constant c which does not depend on n, and with d = d1:

a) for t = c
√

n we have d
c2 on the right-hand side of the inequality;

b) for t = cn we have d
c2n on the right-hand side of the inequality.

We know from the Central Limit Theorem that in the case a) the corre-
sponding probability converges to a positive limit as n → ∞. This limit can
be calculated using the Gaussian distribution. This means that in the case
a) the order of magnitude of the estimate obtained from the Chebyshev In-
equality is correct. On the other hand, in the case b) the estimate given by
the Chebyshev Inequality is very crude. In this section we obtain more precise
estimates in the case b).

Let us consider a sequence of independent identically distributed random
variables. We denote their common distribution function by F . We make the
following assumption about F

R(λ) =
∫ ∞

−∞
eλxdF (x) < ∞ (10.16)

for all λ, −∞ < λ < ∞. This condition is automatically satisfied if all the ξi

are bounded. It is also satisfied if the probabilities of large values of ξi decay
faster than exponentially.

We now note several properties of the function R(λ). From the finiteness
of the integral in (10.16) for all λ, it follows that the derivatives

R′(λ) =
∫ ∞

−∞
xeλxdF (x), R′′(λ) =

∫ ∞

−∞
x2eλxdF (x)

exist for all λ. Let us consider m(λ) = R′(λ)
R(λ) . Then

m′(λ) =
R′′(λ)
R(λ)

− (
R′(λ)
R(λ)

)2 =
∫ ∞

−∞

x2

R(λ)
eλxdF (x) − (

∫ ∞

−∞

x

R(λ)
eλxdF (x))2.

We define a new distribution function Fλ(x) = 1
R(λ)

∫
(−∞,x]

eλtdF (t) for each
λ. Then m(λ) =

∫ ∞
−∞ xdFλ(x) is the expectation of a random variable with
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this distribution, and m′(λ) is the variance. Therefore m′(λ) > 0 if F is a non-
trivial distribution, that is it is not concentrated at a point. We exclude the
latter case from further consideration. Since m′(λ) > 0, m(λ) is a monotoni-
cally increasing function.

We say that M+ is an upper limit in probability for a random variable ξ
if P(ξ > M+) = 0, and P(M+ − ε ≤ ξ ≤ M+) > 0 for every ε > 0. One can
define the lower limit in probability in the same way. If P(ξ > M) > 0 (P(ξ <
M) > 0) for any M , then M+ = ∞ (M− = −∞). In all the remaining cases
M+ and M− are finite. The notion of the upper (lower) limit in probability
can be recast in terms of the distribution function as follows:

M+ = sup{x : F (x) < 1}, M− = inf{x : F (x) > 0}.

Lemma 10.11. Under the assumption (10.16) on the distribution function,
the limits for m(λ) are as follows:

lim
λ→∞

m(λ) = M+, lim
λ→−∞

m(λ) = M−.

Proof. We shall only prove the first statement since the second one is proved
analogously. If M+ < ∞, then from the definition of Fλ

∫

(M+,∞)

dFλ(x) =
1

R(λ)

∫

(M+,∞)

eλxdF (x) = 0

for each λ. Note that
∫
(M+,∞)

dFλ(x) = 0 implies that

m(λ) =
∫

(−∞,M+]

xdFλ(x) ≤ M+,

and therefore limλ→∞ m(λ) ≤ M+. It remains to prove the opposite inequal-
ity.

Let M+ ≤ ∞. If M+ = 0, then m(λ) ≤ 0 for all λ. Therefore, we can
assume that M+ �= 0. Take M ∈ (0,M+) if M+ > 0 and M ∈ (−∞,M+) if
M+ < 0. Choose a finite segment [A,B] such that M < A < B ≤ M+ and∫
[A,B]

dF (x) > 0. Then
∫

(−∞,M ]

eλxdF (x) ≤ eλM ,

while ∫

(M,∞)

eλxdF (x) ≥ eλA

∫

[A,B]

dF (x),

which implies that
∫

(−∞,M ]

eλxdF (x) = o(
∫

(M,∞)

eλxdF (x)) as λ → ∞.
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Similarly, ∫

(−∞,M ]

xeλxdF (x) = O(eλM ),

while

|
∫

(M,∞)

xeλxdF (x)| = |
∫

(M,M+]

xeλxdF (x)| ≥ min(|A|, |B|)eλA

∫

[A,B]

dF (x),

which implies that
∫

(−∞,M ]

xeλxdF (x) = o(
∫

(M,∞)

xeλxdF (x)) as λ → ∞.

Therefore,

lim
λ→∞

m(λ) = lim
λ→∞

∫
(−∞,∞)

xeλxdF (x)
∫
(−∞,∞)

eλxdF (x)
= lim

λ→∞

∫
(M,∞)

xeλxdF (x)
∫
(M,∞)

eλxdF (x)
≥ M.

Since M can be taken to be arbitrary close to M+, we conclude that
limλ→∞ m(λ) = M+. �

We now return to considering the probabilities of the deviations of sums of
independent identically distributed random variables from the sums of their
expectations. Consider c such that m = Eξi < c < M+. We shall be interested
in the probability Pn,c = P(ξ1 + ... + ξn > cn). Since c > m, this is the
probability of the event that the sum of the random variables takes values
which are far away from the mathematical expectation of the sum. Such values
are called large deviations (from the expectation). We shall describe a method
for calculating the asymptotics of these probabilities which is usually called
Kramer’s method.

Let λ0 be such that m(λ0) = c. Such λ0 exists by Lemma 10.11 and is
unique since m(λ) is strictly monotonic. Note that m = m(0) < c. Therefore
λ0 > 0 by the monotonicity of m(λ).

Theorem 10.12. Pn,c ≤ Bn(R(λ0)e−λ0c)n, where limn→∞ Bn = 1
2 .

Proof. We have

Pn,c =
∫

...

∫

x1+...+xn>cn

dF (x1)...dF (xn)

≤ (R(λ0))ne−λ0cn

∫

...

∫

x1+...+xn>cn

eλ0(x1+...+xn)

(R(λ0))n
dF (x1)...dF (xn)

= (R(λ0)e−λ0c)n

∫

...

∫

x1+...+xn>cn

dFλ0(x1)...dFλ0(xn).
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To estimate the latter integral, we can consider independent identically dis-
tributed random variables ξ̃1, ..., ξ̃n with distribution Fλ0 . The expectation of
such random variables is equal to

∫
R

xdFλ0(x) = m(λ0) = c. Therefore
∫

...

∫

x1+...+xn>cn

dFλ0(x1)...dFλ0(xn) = P(ξ̃1 + ... + ξ̃n > cn)

= P(ξ̃1 + ... + ξ̃n − nm(λ0) > 0)

= P(
ξ̃1 + ... + ξ̃n − nm(λ0)√

nd(λ0)
> 0) → 1

2

as n → ∞. Here d(λ0) is the variance of the random variables ξ̃i, and the con-
vergence of the probability to 1

2 follows from the Central Limit Theorem. �

The lower estimate turns out to be somewhat less elegant.

Theorem 10.13. For any b > 0 there exists p(b, λ0) > 0 such that

Pn,c ≥ (R(λ0)e−λ0c)ne−λ0b
√

npn,

with limn→∞ pn = p(b, λ0) > 0.

Proof. As in Theorem 10.12,

Pn,c ≥
∫

...

∫

cn<x1+...+xn<cn+b
√

n

dF (x1)...dF (xn)

≥ (R(λ0))ne−λ0(cn+b
√

n)

∫

...

∫

cn<x1+...+xn<cn+b
√

n

dFλ0(x1)...dFλ0(xn).

The latter integral, as in the case of Theorem 10.12, converges to a positive
limit by the Central Limit Theorem. �

In Theorems 10.12 and 10.13 the number R(λ0)e−λ0c = r(λ0) is involved.
It is clear that r(0) = 1. Let us show that r(λ0) < 1. We have

ln r(λ0) = lnR(λ0) − λ0c = lnR(λ0) − ln R(0) − λ0c.

By Taylor’s formula,

ln R(λ0) − ln R(0) = λ0(ln R)′(λ0) −
λ2

0

2
(ln R)′′(λ1),

where λ1 is an intermediate point between 0 and λ0. Furthermore,

(ln R)′(λ0) =
R′(λ0)
R(λ0)

= m(λ0) = c, and (ln R)′′(λ1) > 0,

since it is the variance of the distribution Fλ1 . Thus

ln r(λ0) = −λ2
0

2
(ln R)′′(λ1) < 0.

From Theorems 10.12 and 10.13 we obtain the following corollary.
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Corollary 10.14.

lim
n→∞

1
n

ln Pn,c = ln r(λ0) < 0.

Proof. Indeed, let b = 1 in Theorem 10.13. Then

ln r(λ0) −
λ0√
n
− ln pn

n
≤ ln Pn,c

n
≤ ln r(λ0) +

1
n

ln Bn.

We complete the proof by taking the limit as n → ∞. �

This corollary shows that the probabilities Pn,c decay exponentially in n.
In other words, they decay much faster than suggested by the Chebyshev
Inequality.

10.5 Other Limit Theorems

The Central Limit Theorem applies to sums of independent identically dis-
tributed random variables when the variances of these variables are finite.
When the variances are infinite, different Limit Theorems may apply, giving
different limiting distributions.

As an example, we consider a sequence of independent identically distrib-
uted random variables ξ1, ξ2, ..., whose distribution is given by a symmetric
density p(x), p(x) = p(−x), such that

p(x) ∼ c

|x|α+1
as |x| → ∞, (10.17)

where 0 < α < 2 and c is a constant. The condition of symmetry is imposed
for the sake of simplicity. Consider the normalized sum

ηn =
ξ1 + ... + ξn

n
1
α

.

Theorem 10.15. As n → ∞, the distributions of ηn converge weakly to a
limiting distribution whose characteristic function is ψ(λ) = e−c1|λ|α , where
c1 is a function of c.

Remark 10.16. For α = 2, the convergence to the Gaussian distribution is also
true, but the normalization of the sum is different:

ηn =
ξ1 + ... + ξn

n
1
2 ln n

.

Remark 10.17. For α = 1 we have the convergence to the Cauchy distribution.

In order to prove Theorem 10.15, we shall need the following lemma.
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Lemma 10.18. Let ϕ(λ) be the characteristic function of the random vari-
ables ξ1, ξ2, .... Then,

ϕ(λ) = 1 − c1|λ|α + o(|λ|α) as λ → 0.

Remark 10.19. This is a particular case of the so-called Tauberian Theorems,
which relate the behavior of a distribution at infinity to the behavior of the
characteristic function near λ = 0.

Proof. Take a constant M large enough, so that the density p(x) can be
represented as p(x) = c(1+g(x))

|x|α+1 for |x| ≥ M , where g(x) is a bounded function,
g(x) → 0 as |x| → ∞. For simplicity of notation, assume that λ → 0+. For
λ < 1/M we break the integral defining ϕ(λ) into five parts:

ϕ(λ) =
∫ − 1

λ

−∞
p(x)eiλxdx +

∫ −M

− 1
λ

p(x)eiλxdx +
∫ M

−M

p(x)eiλxdx

+
∫ 1

λ

M

p(x)eiλxdx +
∫ ∞

1
λ

p(x)eiλxdx

= I1(λ) + I2(λ) + I3(λ) + I4(λ) + I5(λ).

The integral I3(λ) is a holomorphic function of λ equal to
∫ M

−M
p(x)dx at

λ = 0. The derivative I ′3(0) is equal to
∫ M

−M
p(x)ixdx = 0, since p(x) is an

even function. Therefore, for any fixed M

I3(λ) =
∫ M

−M

p(x)dx + O(λ2) as λ → 0.

Using a change of variables and the Dominated Convergence Theorem, we
obtain

I1(λ) =
∫ − 1

λ

−∞
p(x)eiλxdx =

∫ − 1
λ

−∞

c(1 + g(x))
|x|α+1

eiλxdx

= cλα

∫ −1

−∞

(1 + g( y
λ ))

|y|α+1
eiydy ∼ cλα

∫ −1

−∞

eiy

|y|α+1
dy.

Similarly,

I5(λ) ∼ cλα

∫ ∞

1

eiy

|y|α+1
dy.

Next, since p(x) is an even function,

I2(λ) + I4(λ) =
∫ −M

− 1
λ

p(x)(eiλx − 1 − iλx)dx +
∫ 1

λ

M

p(x)(eiλx − 1 − iλx)dx



10.5 Other Limit Theorems 149

+
∫ −M

− 1
λ

p(x)dx +
∫ 1

λ

M

p(x)dx. (10.18)

The third term on the right-hand side is equal to

∫ −M

− 1
λ

p(x)dx =
∫ −M

−∞
p(x)dx −

∫ − 1
λ

−∞

c(1 + g(x))
|x|α+1

dx

=
∫ −M

−∞
p(x)dx + c0λ

α + o(λα) ,

where c0 is some constant. Similarly,

∫ 1
λ

M

p(x)dx =
∫ ∞

M

p(x)dx + c0λ
α + o(λα).

The first two terms on the right-hand side of (10.18) can be treated with the
help of the same change of variables that was used to find the asymptotics of
I1(λ). Therefore, taking into account the asymptotic behavior of each term,
we obtain

I1(λ) + I2(λ) + I3(λ) + I4(λ) + I5(λ)

=
∫ ∞

−∞
p(x)dx − c1λ

α + o(λα) = 1 − c1λ
α + o(λα),

where c1 is another constant. �

Proof of Theorem 10.15. The characteristic function of ηn has the form

ϕηn
(λ) = Ee

iλ
ξ1+...+ξn

n1/α = (ϕ(
λ

n1/α
))n.

In our case, λ is fixed and n → ∞. Therefore we can use Lemma 10.18 to
conclude

(ϕ(
λ

n1/α
))n = (1 − c1|λ|α

n
+ o(

1
n

))n → e−c1|λ|α .

By remark 9.11, the function e−c1|λ|α is a characteristic function of some dis-
tribution. �

Consider a sequence of independent identically distributed random vari-
ables ξ1, ξ2, ... with zero expectation. While both Theorem 10.15 and the Cen-
tral Limit Theorem state that the normalized sums of the random variables
converge weakly, there is a crucial difference in the mechanisms of convergence.
Let us show that, in the case of the Central Limit Theorem, the contribution
of each individual term to the sum is negligible. This is not so in the situation
described by Theorem 10.15. For random variables with distributions of the
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form (10.17), the largest term of the sum is commensurate with the entire
sum.

First consider the situation described by the Central Limit Theorem. Let
F (x) be the distribution function of each of the random variables ξ1, ξ2, ...,
which have finite variance. Then, for each a > 0, we have

nP(|ξ1| ≥ a
√

n) = n

∫

|x|≥a
√

n

dF (x) ≤ 1
a2

∫

|x|≥a
√

n

x2dF (x).

The last integral converges to zero as n → ∞ since
∫

R
x2dF (x) is finite.

The Central Limit Theorem states that the sum ξ1 + ... + ξn is of order√
n for large n. We can estimate the probability that the largest term in the

sum is greater than a
√

n for a > 0. Due to the independence of the random
variables,

P( max
1≤i≤n

|ξi| ≥ a
√

n) ≤ nP(|ξ1| ≥ a
√

n) → 0 as n → ∞.

Let us now assume that the distribution of each random variable is given
by a symmetric density p(x) for which (10.17) holds. Theorem 10.15 states
that the sum ξ1 + ...+ ξn is of order n

1
α for large n. For a > 0 we can estimate

from below the probability that the largest term in the sum is greater than
an

1
α . Namely,

P( max
1≤i≤n

|ξi| ≥ an
1
α ) = 1 − P( max

1≤i≤n
|ξi| < an

1
α ) = 1 − (P(|ξ1| < an

1
α ))n

= 1 − (1 − P(|ξ1| ≥ an
1
α ))n.

By (10.17),

P(|ξ1| ≥ an
1
α ) ∼

∫

|x|≥an
1
α

c

|x|α+1
dx =

2c

αaαn
.

Therefore,

lim
n→∞

P( max
1≤i≤n

|ξi| ≥ an
1
α ) = lim

n→∞
(1 − (1 − 2c

αaαn
)n) = 1 − exp(− 2c

αaα
) > 0.

This justifies our remarks on the mechanism of convergence of sums of random
variables with densities satisfying (10.17).

Consider an arbitrary sequence of independent identically distributed ran-
dom variables ξ1, ξ2, .... Assume that for some An, Bn the distributions of the
normalized sums

ξ1 + ... + ξn − An

Bn
(10.19)

converge weakly to a non-trivial limit.

Definition 10.20. A distribution which can appear as a limit of normalized
sums (10.19) for some sequence of independent identically distributed random
variables ξ1, ξ2, ... and some sequences An, Bn is called a stable distribution.
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There is a general formula for characteristic functions of stable distribu-
tions. It is possible to show that the sequences An, Bn cannot be arbitrary.
They are always products of power functions and the so-called “slowly chang-
ing” functions, for which a typical example is any power of the logarithm.

Finally, we consider a Limit Theorem for a particular problem in one-
dimensional random walks. It provides another example of a proof of a Limit
Theorem with the help of characteristic functions. Let ξ1, ξ2, ... be the consec-
utive moments of return of a simple symmetric one-dimensional random walk
to the origin. In this case ξ1, ξ2 − ξ1, ξ3 − ξ2, ... are independent identically
distributed random variables. We shall prove that the distributions of ξn/n2

converge weakly to a non-trivial distribution.
Let us examine the characteristic function of the random variable ξ1. Recall

that in Section 6.2 we showed that the generating function of ξ1 is equal to

F (z) = Ezξ1 = 1 −
√

1 − z2.

This formula holds for |z| < 1, and can be extended by continuity to the unit
circle |z| = 1. Here, the branch of the square root with the non-negative real
part is selected. Now

ϕ(λ) = Eeiλξ1 = E(eiλ)ξ1 = 1 −
√

1 − e2iλ.

Since ξn is a sum of independent identically distributed random variables, the
characteristic function of ξn

n2 is equal to

(ϕ(
λ

n2
))n = (1 −

√

1 − e
2iλ
n2 )n = (1 −

√
−2iλ

n
+ o(

1
n

))n ∼ e
√
−2iλ.

By Remark 9.11, this implies that the distribution of ξn

n2 converges weakly to
the distribution with the characteristic function e

√
−2iλ.

10.6 Problems

1. Prove the following Central Limit Theorem for independent identically
distributed random vectors. Let ξ1 = (ξ(1)

1 , ..., ξ
(k)
1 ), ξ2 = (ξ(1)

2 , ..., ξ
(k)
2 ), ... be

a sequence of independent identically distributed random vectors in R
k. Let

m and D be the expectation and the covariance matrix, respectively, of the
random vector ξ1. That is,

m = (m1, ...,mk), mi = Eξ
(i)
1 , and D = (dij)1≤i,j≤k, dij = Cov(ξ(i)

1 , ξ
(j)
1 ).

Assume that |dij | < ∞ for all i, j. Prove that the distributions of

(ξ1 + .. + ξn − nm)/
√

n
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converge weakly to N(0,D) distribution as n → ∞.

2. Two people are playing a series of games against each other. In each game
each player either wins a certain amount of money or loses the same amount
of money, both with probability 1/2. With each new game the stake increases
by a dollar. Let Sn denote the change of the fortune of the first player by the
end of the first n games.

(a) Find a function f(n) such that the random variables Sn/f(n) converge
in distribution to some limit which is not a distribution concentrated at zero
and identify the limiting distribution.

(b) If Rn denotes the change of the fortune of the second player by the end
of the first n games, what is the limit, in distribution, of the random vectors
(Sn/f(n), Rn/f(n))?

3. Let ξ1, ξ2, ... be a sequence of independent identically distributed random
variables with Eξ1 = 0 and 0 < σ2 = Var(ξ1) < ∞. Prove that the distrib-
utions of (

∑n
i=1 ξi)/(

∑n
i=1 ξ2

i )1/2 converge weakly to N(0, 1) distribution as
n → ∞.

4. Let ξ1, ξ2, ... be independent identically distributed random variables such
that P(ξn = −1) = P(ξn = 1) = 1/2. Let ζn =

∑n
i=1 ξi. Prove that

lim
n→∞

P(ζn = k2 for some k ∈ N) = 0.

5. Let ω = (ω0, ω1, ...) be a trajectory of a simple symmetric random walk
on Z

3. Prove that for any ε > 0

P( lim
n→∞

(nε− 1
6 ||ωn||) = ∞) = 1.

6. Let ξ1, ξ2, ... be independent identically distributed random variables such
that P(ξn = −1) = P(ξn = 1) = 1/2. Let ζn =

∑n
i=1 ξi. Find the limit

lim
n→∞

ln P((ζn/n) > ε)
n

.

7. Let ξ1, ξ2, ... be independent identically distributed random variables with
the Cauchy distribution. Prove that

lim inf
n→∞

P(max(ξ1, ..., ξn) > xn) ≥ exp(−πx).

for any x ≥ 0.

8. Let ξ1, ξ2, ... be independent identically distributed random variables with
the uniform distribution on the interval [−1/2, 1/2]. What is the limit (in
distribution) of the sequence
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ζn = (
n∑

i=1

1/ξi)/n.

9. Let ξ1, ξ2, ... be independent random variables with uniform distribution
on [0, 1]. Given α ∈ R, find an and bn such that the sequence

(
n∑

i=1

iαξi − an)/bn

converges in distribution to a limit which is different from zero.

10. Let ξ1, ξ2, ... be independent random variables with uniform distribution
on [0,1]. Show that for any continuous function f(x, y, z) on [0, 1]3

1√
n

(
n∑

j=1

f(ξj , ξj+1, ξj+2) − n

∫ 1

0

∫ 1

0

∫ 1

0

f(x, y, z)dxdydz)

converges in distribution.
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