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Ribonucleic acid (RNA), is a polymer of repeating units, namely ribonu-
cleotides, with a structure analogous to single-stranded DNA. It has a back-
bone composed of sugars (riboses) and phosphate groups, with organic nitro-
gen bases bonded along it. The differences between RNA and DNA (see Fig.
8.7) concerning their components are (i) sugar deoxyribose which appears in
DNA is replaced in RNA by another sugar, ribose, and (ii) the organic base
thymine (T') that appears in DNA is replaced in RNA by another organic
base, uracil (U). Compared with DNA, RNA molecules are less stable and
exhibit more variability in their three dimensional-structure which underline
their different function.

In living organisms, RNA arises in the process of transcription which in-
volves creating single-stranded RNA, based on a DNA template according to
the complementarity pairing rules A-U, C-G, G — C and U — A. Similarly
to DNA, the RNA chain has a direction, two ends of RNA are labeled 5" and
3’. For example, an RNA strand copied from the left strand of DNA piece
from Fig. 8.4 will have the sequence of bases 3'-UGACUG-5". By the mech-
anism of transcription, many copies of RNA corresponding to one piece of
DNA can be created. The process of transcription is catalyzed by an enzyme
RNA polymerase, which performs two functions: it unwinds the DNA (sepa-
rates the two DNA strands), and slides along the DNA strand, forming RNA
according to the complementarity rules. In eukaryotic organisms, there are
various types of RNA polymerase, specializing in producing different types of
RNA [118, 216, 287].

In the central dogma of molecular biology illustrated in Fig. 8.6, RNA
serves mainly as a carrier of information from the DNA to the ribosomes,
where it is utilized for protein construction. However, recent developments in
molecular biology suggest that the importance of the various kinds of RNA
molecule for the development and functioning of living organisms has not yet
been sufficiently appreciated. In the forthcoming sections, we will mention
these arguments and reference some related recent publications.
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Experimental research on the structure and functions of RNA, proceeds
along many of the directions that we have were already sketched for DNA and
proteins. These include electrophoresis techniques for estimating the length
of molecules, sequencing, blots, and X-ray diffraction and NMR methods for
analysis of the three-dimensional structure. These methods must also be sup-
ported by appropriate developments in bioinformatics, to order, organize, and
make accessible large amounts of data. Information on the sequences of ribonu-
cleotides in RNA, functions of RNA molecules and their spatial structures are
available in appropriate databases, coding RNA sequences are in gene banks
[326], some recently established databases for non coding sequences of RNA
can be found in [106, 181, 318, 334], and databases of spatial structures of
RNA can be found in [321, 329]. The mathematical and computational as-
pects of research on RNA are also in most respects parallel to those for DNA
and/or proteins, concerning inference on function by aligning sequences (as
in the case of DNA and proteins) and studying and predicting the three-
dimensional shapes of RNA molecules associated with efforts to relate the
function of RNA to its spatial conformation.

10.1 The RNA World Hypothesis

The Processes involving replication, transcription, and translation are cat-
alyzed by proteins. On the other hand proteins are constructed on the basis
of the information written in DNA and carried by mRNA. This poses an
evolutionary puzzle about how this functional organization evolved. Early
theories gave prominence to amino acids and short peptides, as the earliest
molecules in evolution. However, explaining the evolutionary scenario by the
protein-first hypothesis suffers from serious problems related mainly to the
lack of molecular mechanisms for the self replication of proteins. The present
hypothesis, called the RNA world hypothesis, is that in the process of evolu-
tion, RNA molecules preceded DNA strands and proteins [98]. The scenario of
self catalytic replication of RNA in the early stages of evolution is being repro-
duced in several laboratory experiments, see, for example, [277] and references
therein.

10.2 The Functions of RNA

On the basis of on their functions, RNA molecules can be divided into two
groups, coding and noncoding. The coding RNA is messenger RNA (mRNA)
assembled by the machinery of (eukaryotic) cell during the processes of tran-
scription, splicing, and polyadenylation. The order of the codons formed by
the ribonucleotides in mRNA corresponds to the order of the amino acids in
the linear content of proteins.
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Noncoding RNA is transcribed from noncoding regions of DNA. Clas-
sically, there are two types of noncoding RNA, transfer RNA (tRNA) and
ribosome RNA (rRNA). The transfer RNAs are short-chain RNA molecules
(74-93 ribonucleotides) involved in transporting amino acid molecules to ribo-
somal sites, where the process of growing polypeptide chains occurs. Ribosome
RNA (rRNA) is a component of ribosomes.

Recently there has been a great interest in RNA transcribed from noncod-
ing regions of DNA, leading to the development of a much broader taxonomy
of noncoding RNA. This direction of development is partly related to recent
theories of the “dark matter of noncoding DNA and RNA”. According to
these theories, noncoding DNA is not “evolutionary junk” in the interpreta-
tion based on the classical molecular-evolutionary viewpoint, but rather has
some important, not yet discovered, function in organisms [186, 187, 198].
One of the chief arguments supporting these theories is based on comparison
of genomes of simple and complex organisms. The scale of complexity, seem-
ingly, is not related to the number of genes nor to the number of chromosomes,
but correlates better with the size of noncoding DNA. The conclusion is that
non coding DNA and the non coding RNA transcribed from it are responsible
for important functions of organisms, which are behind their diversification.
Examples of the functions of noncoding RNAs are [186, 187, 198] regulatory
functions in the process of gene expression, maintaining the telomeres, gene
splicing, and chemical modification of ribosomal RNA. Organizing informa-
tion about RNA families and their functions in a systematic way involves
creating electronic databases that allow the relevant data to be deposited and
downloaded. The Rfam database, [106, 334] contains curated lists of noncod-
ing RNA families, classified by aligning their sequences.

10.3 Reverse Transcription, Sequencing RNA Chains

The standard direction of information flow is copying from the DNA template
to RNA. However, the opposite direction, called reverse transcription, is also
possible. This process is performed by the enzyme reverse transcriptase. In
nature, reverse transcription is often met with in retroviruses, which appear
to consist of two or more RNA molecules and attack the host cells by a self-
replication strategy based on reverse transcription of their sequence to the
host’s genome. A very well known example is the HIV virus.

In the area of scientific research, reverse transcription is most often used for
sequencing RNA by use of polymerase chain reaction (PCR) as in the case of
DNA. The PCR can only be applied to DNA. By using reverse transcription,
RNA can be first copied to DNA and then amplified (replicated) by means of
the PCR.
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10.4 The Northern Blot

The Northern blot is a technique analogous to the Southern blot described
in Chap. 8. RNA from a specimen is separated by electrophoresis and fixed
on a supporting plate. In the next step, single-stranded DNA fragments com-
plementary to the specific mRNA being sought are labeled with radioactive
atoms and then hybridized to the immobilized mRNA. If the specific mRNA
is present, a radioactive band is detected. The name “Northern blot” was
invented by altering the term “Southern blot” used for DNA assays.

10.5 RNA Primary Structure

The primary structure of RNA is the linear sequence of ribonucleotides. Com-
parative sequence analysis of ribonucleotides is a basic premise for the classi-
fication of RNA and prediction of its function and structure. RNA databases
[334] contain a large number RNA sequences, enabling newly discovered se-
quences to be compared with existing RNA families.

10.6 RNA Secondary Structure

The shape of RNA is to a substantial extent formed by a series of hydrogen
bonds that occur between the nitrogen bases in its backbone. These bonds re-
sult in the formation of characteristic motifs, shared by many RNA molecules,
which can be represented graphically by using two-dimensional plots. Graphi-
cal representation of RNA including these motifs is called the secondary struc-
ture of RNA. The motifs encountered in RNA strands are, hairpin loops, inter-
nal loops, multibranched loops, bulges, and stems. An example of a secondary
structure of an RNA strand is presented in Fig. 10.1. Hydrogen bonds occur
between the complementary (Watson Crick) pairs of bases in RNA A-U and
C—-G. Additionally, a bond between GG and U is also energetically favorable
and is often encountered in RNA molecules.

10.7 RNA Tertiary Structure

The formation of the spatial (tertiary) structure of RNA molecules is related
to the occurrence of hydrogen bonds between bases, other than those respon-
sible for the formation of the secondary structure. These additional bonds
contribute to the final 3D shape of RNA molecules. The tertiary structure of
RNA can be established experimentally by X-ray diffraction of crystallized
molecules or by NMR techniques. After the spatial shape has been computed,
the hydrogen bonds that stabilize the spatial form of the molecule can be
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Fig. 10.1. Motifs in RNA secondary structure: stem, hairpin loop, bulge, multi-
branched loop, and internal loop. Nitrogen bases are represented by small circles
and hydrogen bonds between bases are depicted by thin, ladder-like line segments

found by analysis of the distances between the bases and their orientations
[286, 19].

The motifs encountered in RNA tertiary structure and their occurrence in
RNA species are stored in the SCOR database [153, 338]. Among the motifs
in RNA spatial structure probably most important are coaxial bonds, which
contribute to the formation of helical structures in RNA molecules. Other
motifs include pseudoknots, kissing hairpin loops, and ribose zippers.

10.8 Computational Prediction of RNA Secondary
Structure

The most reliable approach for prediction secondary structure, especially for
long RNA sequences, is comparative sequence analysis discussed later in this
chapter. This approach involves alignment of multiple RNA sequences and
uses a covariance-type analysis aiming at identification of conserved base-
pairing interactions in the RNA. Most of the secondary structures of long
RNA sequences, accepted by experts and available via internet were obtained
by using the method of comparative sequence analysis.

In cases where multiple RNA sequences either are not available or do not
have enough diversity for comparative analysis, an alternative method of pre-
diction of RNA folding is energy minimization. Although it is not as accurate
as comparative analysis, it leads to useful predictions and can be applied, for
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example, when one wants to estimate quickly the second-order structure of a
single RNA strand. Numerical minimization of the folding energy is performed
by using the principle of dynamic programming. Below, we describe two basic
algorithms in detail and also mention some other variants. The first approach,
often called the Nussinov algorithm [210] simplifies the energy minimization
problem by using the hypothesis that the more pairings there are between
bases in an RNA strand, the lower the energy of the molecule. The second
approach, [241, 281, 298, 299] assigns thermodynamic energies to motifs in
the secondary structure. These energies depend on the size of the motifs, and
the overall energy of an RNA strand is the sum of the energies of the motifs.
The thermodynamic energies of the motifs have been tabulated [253] and they
allow modeling the true ratios of the energy components. This enables, for ex-
ample, the influence of the temperature on the shape of an RNA molecule to
be modeled and studied.

10.8.1 Nested Structure

An important property of RNA secondary structures is that there are no
crossings between bonds; in other words the structures are nested. The nested
character of the secondary shape of RNA is presented in Fig. 10.2. In the
upper part of this figure, a fragment of RNA of “hairpin* shape is presented
and then in the lower part chain of bases is straightened out. Bonded bases are
connected by half circles. The nested structure requires that the half circles
cannot make crossings.

Observe that if there is at least one bond in an RNA chain then the
secondary structure of this RNA string contains at least one hairpin loop.
Contemplating the lower part of Fig. 10.2, one can notice an analogy between
defining a nested structure of bonds between bases in RNA and arranging left
and right parentheses in the correct order [104]. There is also a correspon-
dence between nested secondary RNA structures and unlabeled trees, whose
terminal leaves correspond to unbonded bases and whose topology reflects the
structure of the bonds [281].

10.8.2 Maximizing the Number of Pairings Between Bases

As already said, the secondary structure of RNA is formed by series of bonds
between bases. We assume that the number of bases in an RNA strand is N
and we denote the sequence of the bases by b1, b, ..., by. In this subsection we
describe an algorithm for maximizing the number of pairings in the sequence
b1,bs,...,bn [210, 281]. Tt does not change the structure of the algorithm if
we assume, more generally, that the score for a pair by—b; is s(by, b;) and we
maximize the sum of scores over all possible nested second-order foldings. This
formulation becomes equivalent to maximizing the number of pairings when
we take s(A,U) = s(C,G) = s(G,U) = 1 for energetically favorable pairs,
and s(by, b;) = —oo for all pairs by—b; other than A-U, C-G, and G-U.
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Fig. 10.2. Illustration of the nested property of the bonds between bases in the
secondary structure of RNA. The upper part presents an example of the fragment
of an RNA chain. In the lower part, the RNA chain is straightened out and bonded
bases are connected by half circles

We introduce two triangular N-dimensional matrices V (4, j) and W (i, j),
1 < j, with the following meaning: V' (i, j) is the score of the best folding of the
RNA subsequence b;, bit1, ..., b;, given that bases b; and b; form a bond, and
W (i, j) is the score of the best folding of the RNA subsequence b;,biy1,...,b;
(no matter whether b; and b; are paired or not).

We shall state and explain recursions for V'(i,j), and W (i,j). We start
from the case where it is given that b; and b; form a bond. We then have

V(i,7) = s(bs,b;) + W(i+1,j—1). (10.1)

In order to formulate a recursive relation for W (4, j) one has to consider the fol-
lowing possibilities: (1) b; and b; form a bond, in which case W (4, j) = V (4, j),
and (2) b; and b; do not form a bond. In case (2), the nested property of
bondings described in Sect. 10.8.1 guarantees that the strand b;,b;41,...,b;
can be split into two strands b;, b;41,...,br and bygy1,br12,...,b; such that
there are no bonds between them, and consequently their total score is
W (i, k) +W(k+1,j). Summing up (1) and (2) we obtain

W(i,7) = max{V (i, ), 1211?2(]“/{/(1’ E)+W(k+1,)]}. (10.2)

The recursions (10.1) and (10.2) can easily be shrunk into one,
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W (i,5) = max{s(b;, b;) +W(i+1,j—1), Zr<n]?<xj[W(z, E)+W(k+1,5)]}. (10.3)

Starting from W (i,7) =0,i=1,2,...,N,and W(4,i+1) =0,i=1,2,...,N—

1 and then using (10.3) we can fill in all entries of W (i,j) i =1,2,... N, i < j.
The algorithm (10.3) has a complexity of order O(N?) since filling in each

entry of N x N matrix requires running the index k over a range O(N).

10.8.3 Minimizing the Energy of RNA Secondary Structure

Predicting the secondary structure of RNA only by maximizing the num-
ber of pairings between bases is an oversimplification. Results closer to the
shapes found in experiments are obtained by assigning energies to the mo-
tifs of RNA secondary structure, i.e., stems, hairpin loops, bulges, internal
loops, and multibranched loops, and searching for the structure with the low-
est energy. This more accurate model assumes that RNA folding stems from
an interplay between the stabilizing role of base pairings and the destabiliz-
ing effects of unpaired segments of hairpin loops, bulges, internal loops, and
multibranched loops.

Hairpin RNA Structure

Let us start by describing an algorithm for minimizing energy of an RNA
strand under some restrictions. Namely, we aim at minimizing the energy of
RNA sequence of bases by, b, ...,by, assuming additionally that (i) b; and
by are paired, and (ii) the possible secondary motifs are hairpin loops, stems,
bulges, and internal loops. We call such a structure a hairpin RNA structure.
Since multibranched loops are excluded, hairpin structures do not branch. An
example of a hairpin RNA structure is shown in Fig. 10.3. As seen in this
figure, a hairpin RNA structure can be thought of as a sequence of motifs,
such as those shown, steml, iloopl, stem2, bulgel, stem3, and hloopl. Each
of the possible motifs is characterized by its size:

stem(k)—a stem of k consecutive pairs of bases;
bulge(1, k), bulge(k, 1)-right and left bulge of k bases,
iloop(k1, k2)—an internal loop of k; bases on the left and ko bases on the
right;
e hloop(k)—a hairpin loop of k bases.

The energies of motifs have been experimentally measured and their values
are available in the literature and on the Internet [253, 344]. The energies of
motifs depend not only on their size but also on the composition of bases, and
it is necessary to specify the location of a motif relative to the sequence of
RNA bases b1,bs,...,by. It is convenient to introduce the concept of motifs
of type 1 and type 2 (based on the presentation in [241]). A motif of type
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hloop1
30
stem3 20
bulge1
stem?2 10
iloop1 40
stem1 1 45

Fig. 10.3. A hairpin structure in RNA secondary folding. On the left-hand side, the
sequence of motifs of the hairpin loop is marked stem1, iloopl, stem2, bulgel, stem3,
hloopl. On the right-hand side, the numbers of ribonucleic bases are depicted, to be
used in the text

1 is a hairpin loop. It is fully specified by a pair of indices is, js of bases,
is,Js € 1,2,..., N, and is denoted by

M1(is, js)- (10.4)

The motifs of type 2 are stems, bulges, and internal loops. These motifs are
defined by specifying indices of paired bases, is, Js, %, jt € 1,2,..., N, where
pairings are i;—js and i;—j¢, and is denoted by

M2(iS)jS7it7jt)' (105)

In (10.4) and (10.5), the subscript s stands for “start” and the subscript
t stands for “termination”. In Fig. 10.3 the ribonucleotides corresponding
to the indices i, js, i¢, j+ are marked in white. The hairpin loop hloopl is a
motif of type 1, and hloopl = M1(21,31); the stem steml is a motif of type
2, and steml = M2(1,45,3,43), and the bulgel is a motif of type 2, and
bulgel = M2(12,35,18,34). We denote energies of motifs (10.4) and (10.5)
by

EM1(iy, js) (10.6)

and

EM2(iS7j87it7jt)7 (107)
respectively Since the motifs in a hairpin RNA structure appear sequentially,
arranging a dynamic programming recursion for minimization of its energy is
particularly easy. We denote by V' (i, j) the lowest folding energy of the RNA
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hairpin structure, over the sequence b;, b4 1, ..., b;, with b; and b; paired. We
can then state the following recursion for V (i, j):

SN EM1(1, ),
Vi, 5) = min { min,, ;, [EM2(i, j,is, ji) + V(ie, ji)]. (10.8)
In (10.8), the indices run over the ranges 1 < ¢ + minimal size of M1 < j < N
and ¢ < 4; + minimal size of M1 < j; < j, and the values of V(7,7) on the
diagonal and neighboring positions are initialized at +oo, V (i,7) = V(4,4 +
1) =...=V(i,i + minimal size of M1) = +o0.

The order of complexity of the algorithm (10.8) is O(N*), because filling
in each of the entries of V (i, j) requires O(N?) operations, following from
minimization over two indices i, j;.

RNA with Multibranched Loops

In our notation multibranched loops are motifs of types 3, 4, and so forth.
Assume that in the RNA sequence by, bs, ..., by ending bases are paired and
that possible motifs are type 1 (10.4), type 2 (10.5), and type 3, denoted
analogously to (10.4) and (10.5) by

Mg(isvjsvihjhi(qu) (109)

and having an energy
EMg(isvjsvitvjtviqvjq)~ (1010)

We denote by V (4, 5) the minimal energy of the RNA strand b;,bi11,...,b;
with b; and b; paired. The recursion analogous to (10.8) for V (i, 7) is

EM1(i,j),
V(i,7) = min ¢ miny, j, [EM2(4, j, ir, 5¢) + V (it, j¢)]
minit,jhiqvjq [EM3(27.77 it, Jts iq7jq) + V(it7jt) + V(Zflv Jq)]
(10.11)
In (10.11), updating V (i, ) requires minimization over four indices, so the
overall complexity of the recursion (10.11) is O(N®).

Comparing (10.11) and (10.8), one can see that adding loops with more
branchings, given by motifs of type 4 and higher, will lead to recursions of
successively higher complexity. In practical calculations related to the min-
imization of RNA folding energies, expressions for energies such as (10.10)
are not, however, used because there are not enough experimental data de-
scribing the exact energies of multibranched loops. Instead, the energies of
multibranched loops are approximated by sums of components related to gen-
erating a multibranched loop (M), closing base pairs (P), and unpaired bases
inside a loop (@). So e.g., the energy of multibranched loop M3 from (10.10)
will be approximated by

EM3(is, js, it, jt, iq, Jq) = M + 3P + Q(ir — is +iq — jr + js — Jg), (10.12)



10.8 Computational Prediction of RNA Secondary Structure 309

where M, P, and @ are appropriate coefficients, and Q(.). Analogous formulas
hold for motifs of type 4 and higher.

Using the approximation (10.12), we can simplify the recursion for mini-
mizing the energies of RNA foldings with multibranched loops. Assume that
in the RNA sequence by, bs,...,bx ending bases are paired and we allow mo-
tifs of all types. Denote by V(i,j) the minimal energy of the RNA strand
bi,biy1,...,b; with b; and b; paired, and by W (%, j) the minimal energy of
the strand b;, bi1,...,b; inside a multibranched loop. Then, for V (i, ), we
have a recursion

EM1(i, j),
V(i,j) = min § min,, j,[EM2(i, j, i, 5¢) + V (ir, 3¢)], (10.13)
M+ P+ ming Wi+ 1,k)+ W(k+1,5—1)).

In the above, the first and second row are the same as in (10.8). The third row
stems from inserting a multibranched loop into the RNA secondary structure.
The components M and P are related to the energy of creation of the multi-
branched loop and to the energy of the closing pairing i—j. The term in the
third row is also called a bifurcation, because the secondary structures related
to W(i+1,k) and W(k+1,5—1) will fold independently one of another. The
recursions for W (i, j) are as follows:

P+V(i.j),
W (i, j) = min g j[ %E;’; i{; (10.14)

ming [W (i, k) + W(k + 1, 5)].

In the above the first row is related to closing the multibranched loop by a
pairing i—j, the second and third rows represent leaving the ith and jth base,
respectively, inside the loop unpaired, and the fourth row is related to adding a
new bifurcation. The computational complexity of the algorithm (10.13) and
(10.14) is O(N*). Before starting the recursions, one must initialize V (i, j)
and W (i, 7) so that the diagonal and neighboring positions are initialized to
+o0, ie, V(i,i) = V(i,i +1) = ... = V(i,7 + minimal size of M1) = +o0,
W(i,i) =W(i,i+1)=...=W(,4i + minimal size of M1) = +o0.

External Bases

Up to now, when discussing minimizing the folding energy of RNA, we as-
sumed that the two terminating bases of the strand were paired, which is not
the most general situation. The ending bases b1,...,b, and by_p,...,bx of
the RNA strand bq,bo,...,by may not form pairings. We shall call the un-
paired bases b1, ...,bp, by_p, ..., bn of the RNA strand by, bo, . .., by external
bases. Generalizing the algorithm (10.13) and (10.14) to the case of external
bases is possible and involves adding one more score matrix W¥(i, j), with
the same recursion scheme as in (10.14)
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Fig. 10.4. Illustration of the secondary structure in RNA called a pseudoknot. The
upper part shows the shape of a pseudoknot. The lower part illustrates the nonnested
character of a pseudoknot

PE +V(i,7),

QF + WE(i 4 1,5),

QF + WE(i,j—1),

ming [WE(@i, k) + WE(k + 1, 5)].

WE(i,7) = min (10.15)

The difference between (10.14) and (10.15) is in the values of the constants
P, @ and PP, QF. For external bases, reasonable values for the parameters
are PP = QF = 0.

10.8.4 Pseudoknots

In Fig. 10.4 we present a motif of RNA structure, called a pseudoknot, which
has not yet been discussed. Pseudoknots are not found in short RNA chains
but they can form in longer RNA molecules. The RNA folding is stabilized
here by additional pairings, which do not form a nested structure. Deriving
dynamic programming algorithms for the analysis and prediction of RNA
secondary structures with pseudoknots is possible [241], however, the time
complexities of these algorithms increases substantially. Although it is possible
to present them in the planar layout, pseudoknots are instead classified as
tertiary motifs of RNA, since their occurrence often contributes to forming a
nonplanar spatial structure of RNA.
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10.9 Prediction of RNA Structure by Comparative
Sequence Analysis

Comparative sequence analysis involves aligning a target RNA sequence with a
block of RNA sequences of known structure. Then, using the correspondences
obtained we can infer the secondary and/or tertiary structure of the target
RNA sequence. The idea, analogous to that used in comparative modeling of
proteins, is that similar sequences of ribonucleotides lead to similar secondary
and tertiary structures of molecules. This idea is related to the paradigm that
homologous RNA species result from an evolutionary relationship and that
functionally homologous regions will adopt similar structures.

In comparative analysis of RNA species, sequences are searched for com-
pensatory base pair changes. If, in the course of evolution, a base pair has
changed, then a compensatory mutation should have occurred on the comple-
mentary string, allowing the molecule to maintain its spatial structure. The
existing software for alignment-based structure prediction of RNA [55, 206],
enables a group of sequences to be aligned with a new target sequence, and
using regions of high sequence conservation of the group as predictors of
secondary-structure motifs in the target sequence. The growing number of
sequences in RNA databases will result in the possibility of quickly adding
new RNA sequences to structured databases of homologous RNA molecules.

10.10 Exercises

1. Assume that RNA chain has length N and the bases are numbered
1,2,...,N. There are K bonds between bases, depicted as follows:

11— J1
12 — Jo

(10.16)
1K — JK-

How can one determine whether these bonds have a nested structure?
Write a computer program for solving this problem.

2. Develop a computer program with graphics for drawing secondary struc-
ture of RNA of length IV, given a list of nested bonds between bases, as
in (10.16).

3. Develop a computer program for maximizing the number of pairings, on
the basis of the algorithm described in Sect. 10.8.2.

4. Download a short tRNA sequence from the GtRNA database [181, 318].
Use the program from Exercise 3 to predict its secondary structure. Com-
pare the structure obtained to that available in the GtRNA database.

5. Present the above RNA sequence to one of the RNA secondary-structure
prediction servers [346].
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6. Develop a computer program for minimizing the free energy of an RNA
sequence using one of the algorithms described in Sect. 10.8.3. Use it to
data from Exercise 4.
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