
6

XML Security

Claudio A. Ardagna, Ernesto Damiani, Sabrina De Capitani di Vimercati,
and Pierangela Samarati

Università degli Studi di Milano
Italia

Summary. The extensible markup language (XML) is a markup language pro-
moted by the World Wide Web consortium (W3C). XML overcomes the limitations
of hypertext markup language (HTML) and represents an important opportunity
to solve the problem of protecting information distributed on the Web, with the
definition of access restrictions directly on the structure and content of the docu-
ment. This chapter summarizes the key XML security technologies and provides an
overview of how they fit together and with XML. It should serve as a roadmap for
future research and basis for further exploration of relevant scientific literature and
standard specifications.

6.1 Introduction

Accessing information on the global Internet has become an essential require-
ment of the modern economy. Recently, focus has shifted from access to tra-
ditional information stored in WWW sites to access to large e-services such
as e-government services, remote banking, or airline reservation systems. Se-
curity has always been of paramount importance to ensure data protection
and transactions integrity and to maintain information privacy and confiden-
tiality. In today’s web-based business environment, however, the means for
providing that security have changed dramatically. One of the most challeng-
ing problems in managing large, distributed, and heterogeneous networked
systems is specifying and enforcing security policies regulating interactions
between parties and access to services and resources. Superimposing a single
pervasive security infrastructure over the Internet turned out to be difficult,
due to system heterogeneity and conflicting security requirements.

An essential requirement of new Internet-wide security standards is that
they apply to content created using extensible markup language (XML) [1, 2].
XML has been adopted widely for a great variety of applications and types
of content. Examples of XML-based markup languages are security assertion
markup language (SAML) (see [3] for more details) used to exchange security



72 C.A. Ardagna, E. Damiani, S. De Capitani di Vimercati, P. Samarati

credentials among different parties, geography markup language (GML), wire-
less markup language (WML), physical markup language (PML), and math-
ematical markup language (MathML) (http://www.w3.org/Math/), just to
name a few. XML is also at the basis of interoperability protocols used to
integrate applications across the Internet, such as Web services protocols:
the Web service technology relies on different XML-based languages such as
Simple Object Access Protocol (SOAP), Web Service Definition Language
(WSDL), and Universal Description Discovery and Integration (UDDI) [4].
In this scenario, it is necessary to provide integrity, confidentiality and other
security benefits to XML documents or portions of them, in a way that does
not prevent further processing by standard XML tools.

Traditionally, XML security has developed along two distinct though re-
lated lines of research, corresponding to two facets of the XML security notion.
The first facet defines XML security as a set of security techniques (access
control [5], differential encryption [6], digital signature [7]) tightly coupled
with XML to maintain the main features of the XML semi-structured data
model while adding to it all necessary security capabilities. This is especially
important in XML-based protocols, such as SOAP [8], which are explicitly
designed to allow intermediary processing and modification of messages [9].
XML security relies on some legacy security algorithms and tools, but the ac-
tual formats used to implement security requirements are specifically aimed at
XML applications, supporting common XML technical approaches for manag-
ing content, such as specifying content with uniform resource identifier strings
(URIs) or using other XML standard definitions like XPath and XQuery for
locating portions of XML content. A second important facet of XML secu-
rity deals with models and languages specifying and exchanging access con-
trol policies to generic resources (see Chap. 4 for more details), which may
or may not comply with the XML data model [10]. XML appears in fact a
natural choice as the basis for the common security policy language, due to
the ease with which its syntax and semantics can be extended and the wide-
spread support that it enjoys from all the main platform and tool vendors.
To this purpose, several proposals have been introduced for access control to
distributed heterogeneous resources from multiple sources. One of the most
important XML-based language is extensible access control markup language
(XACML) [11, 12], a language for defining rules and policies for controlling
access to information. Another security aspect that needs to be taken into
consideration is the secure and selective dissemination of XML documents.
Often, XML documents contain information with different level of sensitivity,
which has to be shared by user communities and managed according to access
control policies.

In this chapter, we illustrate recent proposals and ongoing work address-
ing XML security. The remainder of this chapter is organized as follows.
Section 6.2 describes the main characteristics of XML signature and XML
encryption. We also briefly review the XML key management specification.



6 XML Security 73

Section 6.3 describes the XACML policy language and the WS-Policy lan-
guage. Finally, Sect. 6.4 gives our conclusions.

6.2 XML Data Protection

Current security technologies are not sufficient for securing business trans-
actions on the Net. XML represents an important opportunity to solve the
problem of protecting information distributed on the Web, by ensuring au-
thenticity, data integrity, and support for nonrepudiation. To this purpose,
two important initiatives are XML signature [7, 13] and XML encryption.
XML signature is a joint effort between the World Wide Web consortium
(W3C) and the internet engineering task force (IETF), and XML encryption
is a W3C effort. In the remainder of this section, we first describe the main
characteristics of these two proposals and then briefly present the XML key
management specification.

6.2.1 XML Signature

An XML signature is a digital signature obtained by applying a digital sig-
nature operation to arbitrary data. The concept of a digital signature is not
new and several technologies have already been presented to the community
(e.g., public key cryptography standards [14]). However, while the existing
technologies allow us to sign only a whole XML document, XML signature
provides a means to sign a portion of a document. This functionality is very
important in a distributed multi party environment, where the necessity to
sign only a portion of a document arises whenever changes and additions to
the document are required. For instance, consider a patient record stored in a
hospital repository. This record can contain several entries (diagnoses) coming
from several doctors. Each doctor wants to take responsibility only over her
diagnosis. In this case, every additional diagnosis added to the patient record
must be singularly signed. This important feature is supported by XML signa-
ture. The extensible nature of XML also allows support for multiple signatures
inside the same document. It is also important to highlight that the possibility
of signing online a portion of a document and inserting the signature inside
the document avoids the development of ad hoc methods to manage persistent
signatures, and provides a flexible mechanism to sign and preserve part of the
document.

The data to be signed are first digested (a digest is a fixed-length represen-
tation of a resource and is created using, for example, a hash function such as
SHA-1) and the resulting value is placed in an element, called DigestValue,
together with other information. This element is then digested and cryp-
tographically signed. An XML signature is inserted in the signature ele-
ment and it can be associated with the data objects in three different ways:
(i) enveloping signature, where the signature element embedded the data



74 C.A. Ardagna, E. Damiani, S. De Capitani di Vimercati, P. Samarati

<patient>
<patientId>123a45d</patientId>
<diagnosis id="Diagnosis001">...</diagnosis>
<Signature Id="Signature001" xmlns="http://www.w3.org/2000/09/xmldsig#">

<SignedInfo>
<CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>
<SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"/>
<Reference URI="#Diagnosis001">

<Transforms>
<Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>

</Transforms>
<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<DigestValue>dh5gf68fhgfjt7FHfdgS55FghG=</DigestValue>

</Reference>
</SignedInfo>
<SignatureValue>MC0CFFrVLtRlk=...</SignatureValue>
<KeyInfo>...</KeyInfo>

</Signature>
</patient>

Fig. 6.1. An example of internal XML detached signature

to be signed; (ii) enveloped signature, where the signature is a child ele-
ment of the data to be signed; (iii) detached signature, where the signature
element and the signed data objects are separated. Figure 6.1 illustrates
an example of internal detached signature, where a doctor’s diagnosis (ele-
ment diagnosis) is signed. As is visible from this example, the signature
element is inserted within the XML document as a sibling of the signed
element. The signature element contains three subelements: SignedInfo,
SignatureValue, and KeyInfo.

The required SignedInfo element contains the information signed and
has three subelements: the required CanonicalizationMethod element de-
fines the algorithm used to canonicalize the SignedInfo element before it is
signed or validated; the required SignatureMethod element specifies the dig-
ital signature algorithm used to generate the signature (DSA-SHA1, in our
example); one or more Reference elements identify the data that is digested
via a URI. The Reference element contains: an option Transforms element
that in turn contains a list of one or more Transform elements describing a
transformation algorithm used to transform the data before they are digested;
the DigestMethod element specifies the method used to generate the digest
value reported in the DigestValue element.

The SignatureValue element contains the signature value computed over
the SignedInfo element.

Finally, the KeyInfo element indicates the key that must be used for sig-
nature validation.

6.2.2 XML Encryption

XML encryption [6] can be used to encrypt arbitrary data. As for XML sig-
nature, the main advantage given by XML encryption is that it supports the



6 XML Security 75

<patient>
<patientId>123a45d</patientId>
<diagnosis id="Diagnosis001">

<EncryptedData Type="http://www.w3.org/2001/04/xmlenc#Element"
xmlns="http://www.w3.org/2001/04/xmlenc#">
<EncryptionMethod Algorithm=’http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>

<ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
...

</ds:KeyInfo>
<CipherData>

<CipherValue>H343HJS90F</CipherValue>
</CipherData>

</EncryptedData>
</PaymentInfo>

</diagnosis>
</patient>

Fig. 6.2. An example of XML encryption

encryption of specific portions of an XML document rather than the com-
plete document. This feature is particularly important in a business scenario,
where different remote parties cooperate to provide a service. A consequence
of partial encryption is also support for multiple encryptions. For instance, in
a health-care scenario, when a patient goes to a hospital for a visit, her record
contains both doctor’s diagnosis and information for billing payment. In this
case payment information must not be seen by a doctor and diagnosis must
not be seen by the billing administrator. This requirement can be obtained by
encrypting the two types of information using a different encryption key. XML
encryption supports encryption at different granularity levels: document, el-
ement, and element-content level. As an example, suppose that we need to
encrypt the diagnosis specified within a patient record. Figure 6.2 illustrates
the XML encryption, where the content of the diagnosis element has been
replaced by the EncryptedData element with attribute Type, which specifies
the type of the encrypted data (Element in the example). The EncryptedData
element contains: the EncryptionMethod element, which keeps track of the
algorithm used to encrypt the data object; the KeyInfo element, which car-
ries information about the key used to encrypt the data; and the CipherData
element, which in turn has a subelement, namely CipherValue, containing
the encrypted value.

6.2.3 XML Key Management Specification (XKMS)

XML signature and XML encryption specifications provide mechanisms to
sign and encrypt XML documents in critical e-services scenario and they
involve the use of cryptographic keys. The need to integrate public key in-
frastructure (PKI) [14, 15] and digital certificates with XML-based applica-
tions arises and a W3C working group has been developing an open specifi-
cation named XML key management specification (XKMS) [13, 16].

XKMS specifies a protocol for distributing and registering public keys,
used together with XML Signature and XML Encryption. The main goal of



76 C.A. Ardagna, E. Damiani, S. De Capitani di Vimercati, P. Samarati

XKMS is to allow the development of XML-based trust services managing
PKI-based cryptographic keys. XKMS is also aimed at reducing the complex-
ity of PKI technology by simplifying the addition of security mechanisms in
applications and relying on a trusted third party for all the activities related
to PKI tasks.

In particular, XKMS specifies protocols for registering, distributing, and
processing public keys that are fully integrable with XML signature and XML
encryption. At a high level, the protocol defines a set of predefined services, a
set of message formats, communication protocols bindings, processing rules,
error models, and responsibilities. XKMS is composed of two major compo-
nents described below.

XML Key Information Service Specification (X-KISS)

X-KISS defines a protocol that manages public key information providing
two services, locate and validate, used to process and validate public keys,
respectively. More precisely, X-KISS is the protocol that provides support for
processing the ds:KeyInfo element used by both XML signature and XML
encryption. Relying on the X-KISS service, the application is not involved in
all the activities requiring an interaction with the public key infrastructure,
which could require some knowledge about specific standards such as X.509,
Simple PKI, and so forth. X-KISS allows the definition of the information
that gives to the verifier suggestions on the public key to use. X-KISS is de-
fined as a three-layer service: with the tier-0 service the processing of element
ds:KeyInfo is by the applications; with the tier-1 service the processing of
element ds:KeyInfo is delegated to a service; with the tier-2 the processing of
element ds:KeyInfo is delegated to a service that can also provide additional
information on the data specified in the ds:KeyInfo element.

XML Key Registration Service Specification (X-KRSS)

X-KRSS defines a protocol that accepts the registration of public key informa-
tion and is responsible for the entire key lifecycle management. In particular,
X-KRSS supports the following four operations, involved in the management
of public keys and provided by a registration service. The registration opera-
tion allows every entity to register a particular public key, binding it to some
information. The generation of a public key could be performed by both a
client or the registration server. The registration service can require the client
to provide additional information to authenticate the request and if the client
has generated the 〈public, private〉 key pair itself, the service could require
the client to provide a proof of possession of the corresponding private key.
The revocation operation allows every entity to revoke a previously issued
key registration. The recovering operation allows every entity to recover the
private key associated with a registered public key. Note that the recovering
operation could require time and the Registration Service often performs a



6 XML Security 77

revoking operation after a recovering request. The Reissue operation allows a
previously registered key binding to be reissued.

A registration service needs to guarantee the validity of all requests, their
authenticity and integrity, and needs to manage proofs of possession of private
keys. To this purpose, a registration service sets an authentication policy
defining an authentication mechanism that establishes offline a secret with a
client.

6.3 XML-Based Access Control Languages

Initially, XML-based access control languages were thought to be only for
the protection of resources that were themselves XML files [17, 18, 19, 20].
Recent proposals instead use XML to define languages for expressing protec-
tion requirements for any kind of data/resources [3, 12, 21, 22]. Two relevant
XML-based access control languages are the extensible access control markup
language (XACML) [11, 12] and WS-Policy [22]. Based on WS-Security [23],
WS-Policy provides a grammar for expressing Web service policies. XACML is
the result of an Organization for the Advancement of Structured Information
Standards (OASIS) standardization effort proposing an XML-based language
to express and interchange access control policies. XACML is designed to
express authorization policies in XML against objects that can themselves
be identified in XML. While XACML and WS-Policy share some common
characteristics, XACML has the advantage of enjoying an underlying policy
model as a basis, resulting in a clean and unambiguous semantics of the lan-
guage [21]. In the remainder of this section, we illustrate the main features of
both XACML and WS-Policy.

6.3.1 XACML

The major functionalities offered by XACML can be summarized as follows.

• Policy combination. XACML provides a method for combining policies
independently specified. Different entities can then define their policies on
the same resource. When an access request on that resource is submitted,
the system has to take into consideration all these policies.

• Combining algorithms. Since XACML supports the definition of policies
independently specified, there is the need for a method for reconciling such
a policies when their evaluation is contradictory. XACML supports differ-
ent combining algorithms, each representing a way of combining multiple
decisions into a single decision.

• Attribute-based restrictions. XACML supports the definition of policies
based on properties (attributes) associated with subjects and resources
other than their identities. This allows the definition of powerful policies
based on generic properties associated with subjects (e.g., name, address,



78 C.A. Ardagna, E. Damiani, S. De Capitani di Vimercati, P. Samarati

Access
Requester

2.Access
Request

�� PEP 13.Obligations ��

3.Request

��

Obligations
Service

PDP 5.Attribute
Queries

��

11.Response
Context

��

Context
Handler

12.Response

��

6.Attribute
Query

��

4.Request
Notification

��

10.Attributes��

Resource9.Resource
Content

��

7c.Resource
Attributes

��������������������

PIP

8.Attribute

��

PAP

1.Policy

��

Subjects

7a.Subject
Attributes

��

Environment

7b.Environment
Attributes

��������������������

Fig. 6.3. Overview of XACML dataflow [11]

occupation) and resources. XACML includes some built-in operators for
comparing attribute values and provides a method of adding nonstandard
functions.

• Multiple subjects. XACML allows the definition of more than one subject
relevant to a decision request.

• Policy distribution. Policies can be defined by different parties and enforced
at different enforcement points. Also, XACML allows one policy to contain
or refer to another.

• Implementation independence. XACML provides an abstraction layer that
isolates the policy-writer from the implementation details. This means that
different implementations should operate in a consistent way, regardless of
the implementation itself.

• Obligations. XACML provides a method for specifying some actions, called
obligations, that must be fulfilled in conjunction with the policy enforce-
ment.



6 XML Security 79

A typical scenario involving XACML is when someone wants to perform
an action on a resource. For instance, suppose that a physician wants to access
a patient’s record for inquiry only. The physician would log on to the hospital
information system, enter the patient identifier, and retrieve the corresponding
record. Data flow through a XACML model can be summarized as follow (see
the entities involved and the data flow in Fig. 6.3).

• The requester sends an access request to the policy evaluation point (PEP)
module, which has to enforce the access decision that will be taken by the
policy decision point.

• The PEP module sends the access request to the context handler that
translates the original request into a canonical format, called XACML re-
quest context , by querying the policy information point (PIP) module. The
PIP provides attribute values about the subject, resource, and action. To
this purpose, PIP interacts with the subjects, resource, and environment
modules. The environment module provides a set of attributes that are rel-
evant to take an authorization decision and are independent of a particular
subject, resource, and action.

• The context handler sends the XACML request to the policy decision point
(PDP). The PDP identifies the applicable policies by means of the policy
administration point (PAP) module and retrieves the required attributes
and, possibly, the resource from the context handler.

• The PDP then evaluates the policies and returns the XACML response
context to the Context Handler. The context handler translates the
XACML response context to the native format of the PEP and returns
it to the PEP together with an optional set of obligations.

• The PEP fulfils the obligations and, if the access is permitted, it performs
the access. Otherwise, the PEP denies access.

As described above, XACML defines a canonical form of the request/response
managed by the PDP, allowing policy definition and analysis without tak-
ing into account application environment details. Any implementation has to
translate the attribute representations in the application environment (e.g.,
SAML, .NET, Corba [24]) into the XACML context. For instance, an ap-
plication can provide a SAML [3] message that includes a set of attributes
characterizing the subject making the access request. This message has to
be converted to the XACML canonical form and, analogously, the XACML
decision has then to be converted to the SAML format.

Policy Set, Policy and Rule

XACML relies on a model that provides a formal representation of the access
control security policy and its working. This modeling phase is essential to
ensure a clear and unambiguous language, which could otherwise be subject
to different interpretations and uses. The main concepts of interest in the
XACML policy language model are rule, policy , and policy set .



80 C.A. Ardagna, E. Damiani, S. De Capitani di Vimercati, P. Samarati

An XACML policy has, as root element, either Policy or PolicySet. A
PolicySet is a collection of Policy or PolicySet elements. An XACML pol-
icy consists of a target , a set of rules, an optional set of obligations, and a
rule combining algorithm. A Target basically consists of a simplified set of
conditions for the subject, resource, and action that must be satisfied for a
policy to be applicable to a given request. If all the conditions of a Target are
satisfied, then its associated Policy (or PolicySet) applies to the request. If
a policy applies to all entities of a given type, that is, all subjects, actions, or
resources, an empty element, named AnySubject, AnyAction, AnyResource,
respectively, is used. The components of a rule are a target , an effect , and
a condition. The target defines the set of resources, subjects, and actions to
which the rule is intended to apply. The effect of the rule can be permit or
deny. The condition represents a boolean expression that may further refine
the applicability of the rule. Note that the target element is an optional el-
ement: a rule with no target applies to all possible requests. An Obligation
specifies an action that has to be performed in conjunction with the enforce-
ment of an authorization decision. For instance, an obligation can state that
all accesses to medical data have to be logged. Note that only policies that
are evaluated and have returned a response of permit or deny can return
obligations. This means that if a policy evaluates to indeterminate or not
applicable, the associated obligations are not considered. Each Policy also
defines a rule combining algorithm used for reconciling the decisions each rule
makes. The final decision value, called the authorization decision, inserted in
the XACML context by the PDP is the value of the policy as defined by the
rule combining algorithm. XACML defines different combining algorithms.
The deny overrides algorithm states that, if there exists a rule that evaluates
to deny or if all rules evaluate to not applicable, the result is deny. If all
rules evaluate to permit, the result is permit. If some rules evaluate to permit
and some evaluate to not applicable, the result is permit. The permit over-
rides algorithm states that, if there exists a rule that evaluates to permit, the
result is permit. If all rules evaluate to not applicable, the result is deny.
If some rules evaluate to deny and some evaluate to not applicable, the
result is deny. The first applicable algorithm states that each rule has to be
evaluated in the order in which it appears in the Policy. For each rule, if
the target matches and the conditions evaluate to true, the result is the ef-
fect (permit or deny) of such a rule. The only-one-applicable algorithm states
that, if more than one rule applies, the result is indeterminate. If no rule
applies, the result is not applicable. If only one policy applies, the result
coincides with the result of evaluating that rule. According to the selected
combining algorithm, the authorization decision returned to the PEP can be
permit, deny, not applicable (when no applicable policies or rules could
be found), or indeterminate (when some errors occurred during the access
control process).

An important feature of XACML is that a rule is based on the def-
inition of attributes corresponding to specific characteristics of a subject,



6 XML Security 81

resource, action, or environment. For instance, a physician at a hospital
may have the attribute of being a researcher, a specialist in some field, or
many other job roles. According to these attributes, the physician can be
able to perform different functions within the hospital. Attributes are identi-
fied by the SubjectAttributeDesignator, ResourceAttributeDesignator,
ActionAttributeDesignator, and EnvironmentAttributeDesignator ele-
ments. These elements use the AttributeValue element to define the re-
quested value of a particular attribute. Alternatively, the AttributeSelector
element can be used to specify where to retrieve a particular attribute. Note
that both the attribute designator and AttributeSelector elements can re-
turn multiple values. For this reason, XACML provides an attribute type
called bag , an unordered collection that can contain duplicates values for a
particular attribute. In addition, XACML defines other standard value types
such as string, boolean, integer, time, and so on. Together with these attribute
types, XACML also defines operations to be performed on the different types
such as equality operation, comparison operation, string manipulation, and
so on.

As an example of XACML policy, suppose that a hospital defines a high-
level policy stating that “any user with role head physician can read the
patient record for which she is designated as head physician”. Figure 6.4 il-
lustrates the XACML policy corresponding to this high-level policy. The policy
applies to requests on the http://www.example.com/hospital/patient.xsd
resource. The policy has one rule with a target that requires a read action,
a subject with role head physician and a condition that applies only if the
subject is the head physician of the requested patient. For more details about
roles and role-based access control (RBAC) see Chap. 5.

XACML Request and Response

XACML also defines a standard format for expressing requests and responses.
The original request submitted by the PEP is then translated through the
context handler in a canonical form, then forwarded to the PDP to be eval-
uated. Such a request contains attributes for the subject, resource, action,
and, optionally, for the environment. Each request includes exactly one set
of attributes for the resource and action and at most one set of environment
attributes. There may be multiple sets of subject attributes each of which is
identified by a category URI.

A response element contains one or more results corresponding to an eval-
uation. Each result contains three elements, namely Decision, Status, and
Obligations. The Decision element specifies the authorization decision (i.e.,
permit, deny, indeterminate, not applicable), the Status element indi-
cates if some error occurred during the evaluation process, and the optional
Obligations element states the obligations that the PEP must fulfil. For in-
stance, suppose that a user, belonging to role head physician and with ID
354850273 wants to read resource www.example.com/hospital/patient.xsd



82 C.A. Ardagna, E. Damiani, S. De Capitani di Vimercati, P. Samarati

<Policy PolicyId="Pol1"
RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:
rule-combining-algorithm:permit-overrides">
<Target>

<Subjects> <AnySubject/> </Subjects>
<Resources>

<Resource>
<ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:stringmatch">

<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">
http://www.example.com/hospital/patient.xsd

</AttributeValue>
<ResourceAttributeDesignator

DataType="http://www.w3.org/2001/XMLSchema#string"
AttributeId="urn:oasis:names:tc:xacml:1.0:resource:target-namespace"/>

</ResourceMatch>
</Resource>

</Resources>
<Actions> <AnyAction/> </Actions>

</Target>
<Rule RuleId="ReadRule" Effect="Permit">

<Target>
<Subjects>

<Subject>
<SubjectMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">
head physician

</AttributeValue>
<SubjectAttributeDesignator

AttributeId= "urn:oasis:names:tc:xacml:2.0:example:attribute:role"
DataType="http://www.w3.org/2001/XMLSchema#string"/>

</SubjectMatch>
</Subject>

</Subjects>
<Resources> <AnyResource/> </Resources>
<Actions>

<Action>
<ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">
read

</AttributeValue>
<ActionAttributeDesignator

DataType="http://www.w3.org/2001/XMLSchema#string"
AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"/>

</ActionMatch>
</Action>

</Actions>
</Target>
<Condition FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-equal">

<SubjectAttributeDesignator DataType="http://www.w3.org/2001/XMLSchema#string"
AttributeId="urn:oasis:names:tc:xacml:1.0:subject:head-physicianID"/>

<AttributeSelector RequestContextPath="/ctx:Request/ctx:Resource/ctx:
ResourceContent/hospital:record/hospital:patient/hospital:
patient-head-physicianID"
DataType="http://www.w3.org/2001/XMLSchema#string"/ >

</Condition>
</Rule>

</Policy>

Fig. 6.4. An example XACML policy

with patient ID equal to 123a45d. This request is compared with the XACML
policy in Fig. 6.4. The result of this evaluation is that the user is allowed
(permit) to access the requested patient record.



6 XML Security 83

6.3.2 WS-Policy

Web service policy framework (WS-Policy) provides a generic model and a
flexible and extensible grammar for describing and communicating the poli-
cies of a Web service [22]. The WS-Policy includes a set of general messaging
related assertions defined in WS-PolicyAssertions [25] and a set of security
policy assertions related to supporting the WS-Security specification defined
in WS-SecurityPolicy [26]. In addition, WS-PolicyAttachment [27] defines how
to attach these policies to Web services or other subjects such as service lo-
cators. A WS-Policy is a collection of one or more policy assertions that
represent an individual preference, requirement, capability, or other proper-
ties that have to be satisfied to access the policy subject associated with the
assertion. The XML representation of a policy assertion is called a policy ex-
pression.1 Element wsp:Policy is the container for a policy expression. Policy
assertions are typed and can be simple or complex. A simple policy can be
compared to other assertions of the same type without any special considera-
tion about the semantics’ assertion. A complex policy requires comparison by
means of type-specific assertions. The assertion type can be defined in such a
way that the assertion is parameterized. For instance, an assertion describing
the maximum acceptable password size (number of characters) would likely
accept an integer parameter indicating the maximum character count. In con-
trast, an assertion that simply indicates that a password is required does not
need parameters; its presence is enough to convey the assertion. Every policy
assertion could be defined optional. WS-Policy provides an element, called
wsp:PolicyReference, that can be used for sharing policy expressions be-
tween different policies. Conceptually, when there is a reference, it is replaced
by the content of the referenced policy expression. WS-Policy also provides
two operators, namely wsp:All and wsp:ExactlyOne, that can be used for
combining policy assertions. The first operator requires that all of its child
elements be satisfied; the second operator requires that exactly one of its child
elements be satisfied. In case no operator is specified, the wsp:All operator
is taken as default.

Figure 6.5(a) illustrates a simple example of policy stating that the access
is granted if exactly one security token among the following is provided: a
Kerberos certificate and a UsernameToken with Username Bob; an X509 cer-
tificate and a UsernameToken with Username Bob; an X509 certificate and a
UsernameToken with Username Alice. The third option corresponds to the
referred policy, called opts, illustrated in Fig. 6.5(b).

1 Note that using XML to represent policies facilitates interoperability between
heterogeneous platforms and Web service infrastructures.



84 C.A. Ardagna, E. Damiani, S. De Capitani di Vimercati, P. Samarati

<wsp:Policy xmlns:wsp=". . ." xmlns:wsse=". . .">
<wsp:ExactlyOne>
<wsp:All>
<wsse:SecurityToken>
<wsse:TokenType>wsse:Kerberosv5TGT</wsse:TokenType>

</wsse:SecurityToken>
<wsse:SecurityToken>
<wsse:TokenType>wsse:UsernameToken</wsse:TokenType>
<wsse:Username>Bob</wsse:Username>

</wsse:SecurityToken>
</wsp:All>
<wsp:All>
<wsse:SecurityToken>
<wsse:TokenType>wsse:X509v3</wsse:TokenType>

</wsse:SecurityToken>
<wsse:SecurityToken>
<wsse:TokenType>wsse:UsernameToken</wsse:TokenType>
<wsse:Username>Bob</wsse:Username>

</wsse:SecurityToken>
</wsp:All>
<wsp:PolicyReference URI="#opts" />

</wsp:ExactlyOne>
</wsp:Policy>

(a)

<wsp:Policy xmlns:wsse=". . ."
xmlns:ns=". . .">
<wsp:All wsu:Id="opts">

<wsse:SecurityToken>
<wsse:TokenType>

wsse:X509v3
</wsse:TokenType>

</wsse:SecurityToken>
<wsse:SecurityToken>

<wsse:TokenType>
wsse:UsernameToken

</wsse:TokenType>
<wsse:Username>

Alice
</wsse:Username>

</wsse:SecurityToken>
</wsp:All>

</wsp:Policy>

(b)

Fig. 6.5. A simple example of WS-Policy (a) and the corresponding referred WS-
Policy (b)

6.4 Conclusions

In this chapter we introduced the most important XML security technologies.
We described two important initiatives, namely XML signature and XML
encryption, facing the problem of protecting information distributed on the
Internet. We then briefly reviewed the XML key management specification,
which provides facilities for the management of public keys used together
with XML signature and XML encryption. We concluded the chapter with
the description of two XML-based access control languages, namely XACML
and WS-Policy, discussing their peculiarities and their principal features.

6.5 Acknowledgements

This work was supported in part by the European Union within the PRIME
Project in the FP6/IST Programme under contract IST-2002-507591 and by
the Italian MIUR within the KIWI and MAPS projects.

References

1. Apache XML Project. http://xml.apache.org/.
2. N. Bradley (2002). The XML Companion. Addison Wesley, 3rd edition.



6 XML Security 85

3. OASIS Security Services TC. http://www.oasis-open.org/committees/tc ho-
me.php?wg abbrev=security.

4. E. Newcomer (2002). Understanding Web Services: XML, WSDL, SOAP, and
UDDI. Addison Wesley.

5. P. Samarati, S. De Capitani di Vimercati (2001). Access control: Policies, mod-
els, and mechanisms. In Focardi R, Gorrieri R, editors, Foundations of Security
Analysis and Design, LNCS 2171. Springer-Verlag.

6. XML Encryption Syntax and Processing, W3C Recommendation (2002).
http://www.w3.org/TR/xmlenc-core/.

7. XML-Signature Syntax and Processing, W3C Recommendation (2002).
http://www.w3.org/TR/xmldsig-core/.

8. D. Box et al. (2000). Simple Object Access Protocol (SOAP) version 1.1.
http://www.w3.org/TR/SOAP.

9. E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, P. Samarati (2002).
Securing SOAP E-services. International Journal of Information Security (IJIS),
1(2):100–115.

10. E. Damiani, S. De Capitani di Vimercati, P. Samarati (2002). Towards securing
XML web services. In Proc. of the 2002 ACM Workshop on XML Security,
Washington, DC, USA.

11. OASIS eXtensible Access Control Markup Language TC. http://www.oasis-
open.org/committees/tc home.php?wg abbrev=xacml.

12. T. Moses (2005). eXtensible Access Control Markup Language (XACML) ver-
sion 2.0. http://docs.oasis-open.org/xacml/2.0/access control-xacml-2.0-core-
spec-os.pdf.

13. B. Galbraith, W. Hankinson, A. Hiotis, M. Janakiraman, D.V. Prasad, R.
Trivedi, D. Whitney (2002). Professional Web Services Security. Wrox Press.

14. A. Arsenault, S. Turner (2002). Internet X.509 Public Key Infrastructure:
Roadmap. Internet Draft, Internet Engineering Task Force.

15. A. Essiari, S. Mudumbai, M.R. Thompson (2003). Certificate-Based Autho-
rization Policy in a PKI Environment. ACM Transactions on Information and
System Security, 6(4):566–588.

16. W. Ford et al (2001). XML Key Management Specification (XKMS), W3C
Note. http://www.w3.org/TR/xkms/.

17. E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, P. Samarati (2000).
Securing XML documents. In Proc. of the 2000 International Conference on
Extending Database Technology (EDBT2000), Konstanz, Germany.

18. E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, P. Samarati (2002). A
fine-grained access control system for XML documents. ACM Transactions on
Information and System Security (TISSEC), 5(2):169–202.

19. A. Gabillon (2004). An authorization model for XML databases. In Proc. of the
ACM Workshop Secure Web Services, George Mason University, Fairfax, VA,
USA.

20. A. Gabillon, E. Bruno (2001). Regulating access to XML documents. In Proc. of
the Fifteenth Annual IFIP WG 11.3 Working Conference on Database Security,
Niagara on the Lake, Ontario, Canada.

21. C.A. Ardagna, E. Damiani, S. De Capitani di Vimercati, P. Samarati (2004).
XML-based access control languages. Information Security Technical Report.

22. S. Bajaj et al (2004). Web Services Policy Framework (WS-Policy).
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnglobsp-
ec/html/ws-policy.asp.



86 C.A. Ardagna, E. Damiani, S. De Capitani di Vimercati, P. Samarati

23. B. Atkinson, G. Della-Libera et all (2002). Web services security (WS-Security).
http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-security.asp.

24. Object Management Group. The CORBA Security Service Specification.
ftp://ftp.omg.org/pub/docs/ptc.

25. D. Box et al. (2003). Web Services Policy Assertions Language (WS-
PolicyAssertions) version 1.1. http://msdn.microsoft.com/library/en-us/
dnglobspec/html/ws-policyassertions.asp.

26. G. Della-Libera et al (2005). Web Services Security Policy Language
(WS-SecurityPolicy). http://msdn.microsoft.com/library/en-us/dnglobspec/
html/ws-securitypolicy.pdf.

27. S. Bajaj et al. (2006). Web Services Policy Attachment (WS-PolicyAttachment)
version 1.2. http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-
policyattachment.asp.



http://www.springer.com/978-3-540-69860-9


