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   Abstract   This introduction provides a telegraphic overview of the processes of zoonotic 
viral emergence, the intricacies of host–virus interactions, and the distinct role of 
biological transitions and modifying factors. The process of emergence is conceptualized 
as two transition stages which are common and required for all disease emergence, 
(1) human contact with the infectious agent and (2) cross-species transmission of the 
agent, and two transition stages which are not required for emergence and appear unavail-
able to many zoonotic pathogens, (3) sustained human-to-human transmission and (4) 
genetic adaptation to the human host. The latter two transitions are presumably prerequi-
sites for the pandemic emergence of a pathogen. The themes introduced herein are ampli-
fied and explored in detail by the contributors to this volume. Each author explores the 
mechanisms and unique circumstances by which evolution, biology, history, and current 
context have contrived to drive the emergence of different zoonotic agents by a series of 
related events; although recognizable similarities exist among the events leading to emer-
gence the details and circumstances are never repetitive.    

   1
Introduction 

 The process of zoonotic disease emergence can be understood by coupling knowl-
edge of how zoonotic viruses have evolved and are maintained among their wild-
life hosts, transmitted across a species barrier to cause productive infection in a 
taxonomically distinct secondary host, initiate a pathologic process causing disease, 
and, by repetitive infection within the secondary host species, result in incident 
morbidity or mortality of sufficient magnitude to be detected and characterized as 
a novel health concern of local, regional, or global significance (see the chapter by 
Childs, this volume). Obviously, we possess no such knowledge for any zoonotic 
virus or zoonotic disease, but casting the emergence process in this context under-
scores how disciplinary boundaries are blurred; advances require approaches span-
ning the spectrum of biological inquiry, and solutions to imminent threats require 
approaches unbounded by the notion of specific scientific discipline. 

 The emergence process involves ecological interactions at the individual, 
species, community, and global scale. The dynamic circumstances and  relative 
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importance of the participants reflect the evolutionary context in which 
 zoonotic agents have become accommodated to, and been accommodated by, 
their reservoir hosts (H R s) (see the chapters by Cleaveland et al. and by Holmes 
and Drummond, this volume), the diversity of reservoir species involved, their 
geographic ranges and the local dispersion of host and pathogen populations. 
In turn, historical factors have modified and blurred traditional patterns of spe-
cies distribution, abundance, and diversity, and are continually transforming 
the landscape of opportunity on which zoonotic viruses with their H R s mingle 
with novel, potentially susceptible secondary host species (H S )s (see the chap-
ters by Daszak et al., Field et al., Regnery, and Wang and Eaton, this volume). 
The current historical circumstances are unprecedented in their efficiency for 
continually shuffling an expanding repertoire of zoonotic viruses and hosts, 
introducing them in novel ecologic circumstances to a wealth of previously 
unavailable and unexplored niches. Within the last decade, the accelerated pace 
of rapid translocations of infected H R s or H S s have heralded a sea change in 
how we view the public health threat posed by zoonotic viruses (Childs 2004), 
as testified by the emergence of SARs coronavirus (SARS CoV) (Drosten et al. 
2003; see the chapter by Wang and Eaton, this volume), influenza A subtype 
H5N1 (Peiris et al. 2004; see chapter by Webby et al., this volume), West Nile 
virus (WNV) (Lanciotti et al. 1999), Nipah virus (NiV) (Chua et al. 1999; see 
the chapter by Field et al., this volume), and Monkeypox virus (Anderson et al. 
2003; see the chapter by Regnery, this volume). 

  1.1
Cross-Species Transmission (Spillover) 

 Inherent in the term “cross-species transmission” (or spillover) is the ability for a 
foreign virus, once introduced into an individual of a H  S  population, to complete 
the virus infectious cycle: (1) adsorption, penetration, and uncoating, or separa-
tion of the viral nucleic acid from the capsid; (2) transcription, translation, and 
replication, and; (3) assembly and release (Nayak 2000). Binding and entry into 
permissive H S  cells is mediated by common or related cellular receptors. Addi-
tional bouts of infection following virus release from infected cells lead to the dis-
semination of virus throughout the host’s tissue(s), precipitating, as a byproduct, 
pathologic alterations in the individual H S  identifiable as symptomatic disease. 

   1.2
Pathogenesis in the Reservoir Host and Secondary Host 

 The pathogenic course of infection and disease within the secondary host (H S ) 
may bear little correspondence to the infectious process and outcome within the 
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reservoir host (H R ). Oral lesions caused by herpesvirus B (CeHV-1)  infection 
among individual macaques of the H R  are transmogrified into an often fatal 
(~70%) meningoencephalitis in the human H S  (Huff and Barry 2003). Hantaviruses 
cause subclinical infections or subtle behavioral changes with limited pathology 
in individual rodents of species constituting the virus-specific H R s (Hinson et al. 
2004; Llyubsky et al. 1996; see the chapter by Klein and Calisher, this volume), 
accompanied by no notable loss of fitness (Childs et al. 1989). However, these 
subtleties are lost in the severe and often fatal hemorrhagic fever with renal syn-
drome (HFRS) and hantavirus pulmonary syndrome (HPS), developing in the 
human H S  after virus spillover (Zaki et al. 1995; Tsai 1987). 

 No matter how different the disease course among the human H S , the patho-
logic component of intra- H R  transmission is highly relevant when consider-
ing strategies to prevent human infection rather than treating post-spillover 
disease (see the chapter by Daniels et al., this volume). Ignoring the intricacies 
of zoonotic virus transmission among wildlife H R s guarantees that solutions 
springing from a traditional anthropocentric disease-treatment/vaccine-preventative 
approach will consider a limited universe of defensive prevention targets and 
generate a restricted arsenal of intervention tools .  

    2
The Comparative Ecology of Zoonosis Emergence and Species Invasion 

  2.1
Four Transition Stages to Emergence:  The First Two Are Prerequisite 

 The ecologic process of zoonotic disease emergence can be schematized by 
four transition stages (Fig.  1 ), of which only the first two are prerequisites for 
emergence: (1) contact between infectious propagules originating from the 
wildlife H R  with individuals of a susceptible H S  and (2) cross-species transmis-
sion, a transition subsuming the complex interactions of the virus infectious 
cycle within the H S  (Nayak 2000; Childs 2004). These first two transitions may 
require a mediating host such as an arthropod vector (H V ) or an intermediary 
vertebrate host (H I ); these additional host populations are readily accommo-
dated by the modular emergence schema (Fig. 1). 

   2.2
Two Transition Stages Are Required for Pandemic Emergence 

 The latter two transition stages demarcate a change in the interrelationship 
of host and virus (Fig. 1): (3) sustained transmission of the once zoonotic 
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virus between members of the new H S , subsequent to, and independent of, 
new spillover events, and (4) genetic adaptation and phenotypic changes 
accompanying sustained intra-H S  transmission. Once sustained trans-
mission occurs within the human host, evolutionary adaptation between 
virus and host can transform the once zoonotic virus into a distinctive 
new virus with a new human H R . The new virus associated with humans 
must be quantitatively and qualitatively different from ancestral strains in 
genetic and phenotypic characters, in order to designate the emergence of 
a new biological entity. With HIV and pandemic influenza subtypes, the 
qualities of the newly adapted viruses to humans are readily apparent in 
terms of host preference and host pathogenicity (Hahn et al. 2000; Claas 
2000). With SARS CoV infecting humans, the specific genetic changes are 
less clear-cut (Song et al. 2005), most probably because the transmission 
of SARS CoV was curtailed early its relationship to the new human host. 
Support for this conclusion is based on the genetic differences accrued by 
SARS CoVs sustained through multiple generations of human-to-human 
transmission as compared with those viruses with shorter interhuman 
 passages (Liu et al. 2005). 

 Some viruses are capable of sustained human-to-human transmission with 
minimal or no genetic change [i.e., SARS CoV; see the chapter by Wang and 
Eaton, this volume, although limits to genetic adaptation within humans may 
be imposed by the requirement for an intermediate vector or extensive prior 
adaptation to a specific reservoir host (Gould et al. 2003)]. The arboviruses, 
yellow fever virus, and the four dengue serotypes circulate in a human-to-
human transmission cycle mediated by anthropophilic H V s after introduction 
by bridging H V s feeding on infected primate H R s (de Silva et al. 1999; Wolfe 
et  al. 2001; Monath 1989; Downs 1982); these viruses appear closely related to 
the wild type viruses circulating in sylvatic cycles, although regional variation 
is apparent (Bryant and Barrett 2003). 

 Viral adaptation to the human H R  appears in most cases to be critical to 
developing a virus with pandemic potential (Mims 1991, 1995). The intro-
duction of avian-like gene segments into preexisting, aerosol-transmitted, 
human influenza A viruses, or alternatively, the introduction of key genetic 
components into preexisting avian viruses (see the chapter by Webby et al., 
this volume) may be prerequisite to pandemic influenza A emergence (Claas 
2000). The emergence of SARS into the human population was accompa-
nied by strong and rapid positive selection of different subtypes of virus as 
indicated by comparisons of sequence data from humans and from palm civets 
and rhinolophid bats, putative H R s, or intermediate hosts (H I s) for SARS 
CoV (Lau et al. 2005; Song et al. 2005; see the chapter by Wang and Eaton, 
this volume). 
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   2.3
The Basic Reproductive Potential  R   0   as a Measure of Viral Relative Fitness 

 To capture the rate at which outbreaks spread among hosts, epidemiologists   have 
relied upon the reproduction potential,  R   0  , as a measure of the expected num-
ber of secondarily infected and infectious hosts produced during the infectious 
period of a single infected host when introduced into a freely mixing population 
of susceptible individuals (Halloran 1998). The relative fitness defined by  R   0   is a 
composite of three terms  c , the contact rate or number of contacts per unit time,  
p  , the transmission probability per contact, and  d , the duration of infectiousness 
(see the chapter by Real and Biek, this volume). Examples of zoonotic viruses tak-
ing alternative paths to emergence, with highly variable  R   0  s are discussed below. 

    3
Modifying Factors in the Emergence Process 

 The underlying feature distinguishing modifying factors (Fig. 1, right panel) 
from transition stages in zoonotic virus emergence (Fig. 1, left panel) is that the 
former requires the substrate provided by the latter on which to act. Modifying 

   Fig. 1  A schema for partitioning the process of zoonotic disease emergence into four 
transitions and modifying factors which alter the likelihood of transitions occurring. 
Disease emergence can occur at the local and regional level or as a pandemic depend-
ing on the nature of the pathogen and the influence of modifying factors. Modifying 
factors are largely responsible for driving the magnitude and geographic scope of 
an emergent event, but by themselves are insufficient to lead to disease emergence. 
Although only a single population source for a zoonotic pathogen is indicated, the 
reservoir host (H R ) population, the schema is modular and readily accommodates 
inclusion of vector (H V ) populations and intermediate vertebrate host (H I  or H S  1 ) 
populations antecedent to spillover to humans (see Fig. 1 in the chapter by Childs, 
this volume). Transition stages, with the exception of contact (Transition 1) and 
cross-species transmission (spillover; Transition 2), are not strictly hierarchical in the 
emergence process. Transition stages are shown to the left of the population boxes and 
the two transitions required for emergence (contact and spillover) are shaded gray. 
In the center are two population boxes, the top shaded box indicating a H R  popula-
tion, in which a zoonotic virus or some other zoonotic pathogen circulates, and the 
bottom shaded box indicating the secondary host population (H S ) affected by patho-
gen spillover (assumed in most instances to be humans). The graded shaded pyramid 
within the HS  population indicates that emergence often proceeds through a gradient 
of human population sizes and social connectivity. Spillover and human transmis-
sion chains in remote villages (apex of pyramid) can lead to spread to urban centers 
(base of pyramid), at which point a pathogen is assumed to have access to the entire 
HS population demarcated by the H S   box. To the left of the population boxes are   
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 Fig. 1    Continued examples of modifying factors. Contact and spillover are  sufficient 
to result in disease emergence at the local, regional, or even continental scale through 
reiterative introductions, as exemplified by zoonotic diseases such as rabies or West 
Nile fever. The two solid black lines with arrowheads leading from the H R   then directly 
through the H S   to local or regional emergence (the first emergence box) represent 
reiterative events as a pathway to emergence. Two other transitions not essential for 
emergence, but critical to pandemic disease emergence, require sustained intra-HS 
transmission of the zoonotic pathogen (Transition 3) and, potentially, adaptation to 
the human host (e.g., SARs coronavirus). Sequential human-to-human transmis-
sion of a zoonotic pathogen at the local and regional scales is indicated by the series 
of broken white lines in the H S   pyramid. Evolutionary forces can transform a zoonotic 
agent into a genetically distinct agent adapted to a new reservoir host, establishing the 
former H S  as a new H R  (e.g., SIV to HIV; avian influenza to pandemic human influ-
enza). This transition and the modifying factors associated with the geographical loca-
tion and context of the initial disease outbreak (white arrows in shaded H S   cone) can 
ultimately precipitate a pandemic emergence (e.g., HIV and pandemic influenza). 
The process of emergence for any zoonotic pathogen can fail at a minimum of three 
points, indicated by the labeled dashed lines with arrowheads leading out of the H S  
population box to the right. Zoonotic pathogens may fail to initiate cross-species 
infection following exposures (top dashed line), fail to generate any additional infec-
tions within the H S  (second dashed line), or experience epidemic fadeout when sus-
tained human-to-human transmission fails and R 0  decreases below unity (third dashed 
line). The initial transition to sustained intra-H S  transmission is prone to failure when 
populations are sparse or social connectivity is limited. (Modified from Childs 2004)  
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factors alter the likelihood of a transition occurring and drive the geographic 
spread and determine the magnitude of morbidity and mortality resulting 
from a particular instance of emergence. 

  3.1
Abiotic Factors in Emergence 

 Abiotic factors alter the potential for contact between H R  and H S  populations, 
or infectious intermediaries, and modulate the potential for spillover; zoonotic 
diseases highly dependent on abiotic factors are often labeled environmentally 
driven epizootics (Allen and Cormier 1996). On a global scale, climate change has 
been increasingly linked to instances of zoonotic disease emergence, with El Nino 
Southern Oscillation (ENSO) providing the largest interannual signal of climate 
variation (Wang et al. 1999). One hypothesized mechanism by which ENSO trig-
gers increased incidence of zoonotic disease among humans, is through a chain 
of sequentially induced events referred to as a trophic cascade (Polis et al. 2000), 
ultimately leading to increased numbers of individuals among H R  or H V  popula-
tions and increasing the risk of human exposure to a zoonotic pathogen (Nicholls 
1986; Kelly-Hope et al. 2004; Bi and Parton 2003; Glass et al. 2002; Anyamba et  al. 
2001). ENSO events have been correlated with increased risk of HPS and plague in 
the southeastern United States (Glass et al. 2002; Parmenter et al. 1999), increased 
infection by Ross River virus in Australia (Lindsay and Mackenzie 1997; Kelly-Hope 
et al. 2004), and arthropod-vectored  Bartonella bacilliformis  and visceral leishmani-
asis in South America (Chinga-Alayo et al. 2004; Franke et al. 2002). 

 Local weather conditions, potentially driven by global climate variation, 
have been repeatedly shown to influence the emergence of zoonotic and vec-
tor-borne viruses. Drought can serve to amplify enzootic transmission of 
St. Louis virus (Shaman et al. 2002) and possibly Japanese encephalitis (Hanna 
et  al. 1999; Mackenzie et al. 2002) and Ebola viruses (Pinzon et al. 2004; see the 
chapter by Gonzalez et al., this volume), ultimately placing humans at higher 
risk for spillover. The converse, excessive rainfall, can increase breeding popula-
tions of H V s, driving enzootic transmission levels of western equine encephalo-
myelitis virus, Ross River virus, and Rift Valley fever virus to heightened levels, 
and ultimately increasing zoonotic virus spillover to humans (Lindsay et al. 
1993; Wegbreit and Reisen 2000; Linthicum et al. 1999). 

   3.2
Evolutionary and Intrinsic Biotic Factors in Emergence 

 Intrinsic biotic and evolutionary factors enhance the ability of certain zoonotic 
viruses, notably those with RNA genomes (Cleaveland et al. 2001; Dobson and 
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Foufopoulos 2001; see the chapters by Cleaveland et al. and by Holmes and 
Drummond, this volume), to cross species barriers. Viruses with high replica-
tion rates, high mutation rates, and increased potential for recombination or 
reassortment may more readily adapt to new fitness landscapes and become 
transmitted among humans to emerge as pandemic threats (Burke 1998; Nichol 
et al. 2000); examples include HIV and subtypes of Influenza A (Hahn et al. 
2000; Claas, 2000; see the chapter by Webby et al., this volume). The intrinsic 
genetic variability in susceptibility to infectious diseases within the human H S  
(Segal and Hill 2003) is further modulated by an individual’s cumulative life 
experience and history of infection by various pathogens, reflected by acquired 
immunological memory or, possibly, an individual’s ancestry and evolutionary 
imprint of prior exposure to pathogens (Gillespie 1975; Lipsitch and Sousa 
2002). Furthermore, immunologic function and the susceptibility of individual 
humans to infection and disease are dynamic and vary with factors such as 
nutritional status and age (Boelle et al. 2004). 

 Strong evolutionary forces may be in play in circumstances where zoonoti-
cally acquired viruses are intermittently maintained among small and sparsely 
distributed human populations where  R   0   may hover close to unity. In theory, 
virus evolution is affected by socially structured host populations, such as 
where some human populations are aggregated in remote villages, with lim-
ited opportunity for social interchange. Models of virus transmission which 
assume homogeneous or freely mixing populations are of limited use in such 
circumstances. In such settings, modest increases in the number of generations 
of human-to-human transmission sustained by a new virus prior to fadeout 
(Fig. 1, second terminal dotted line) improves the likelihood of virus evolution 
to a higher average  R   0  , and hence emergence (Antia et al. 2003). 

 Additionally, sparsely distributed populations where contact rates,  c , 
between infectious and susceptible individuals are low can support bistable 
evolutionary dynamics. One trend leads to the rapid evolution of increas-
ingly virulent viruses. When viruses of relatively low virulence are transmit-
ted among dispersed metapopulations of hosts, the result can be a cluster of 
infected individuals surrounding an index case, which is rapidly transformed 
into a semi-impermeable barrier of immune individuals (Boots et al. 2004), 
effectively terminating additional transmission. Virulent viruses causing lethal 
infections leave no immune survivors to block transmission and, in the course 
of removing infected individuals, further enhance the sparseness of the existing 
social structure. In situations where viruses of relatively low virulence circulate, 
the introduction of a highly virulent virus strain, either through an infected 
immigrant or from viral recombination, can alter the evolutionary trajectory of 
virus–host adaptation favoring selection for increasing virulence and an alter-
native, evolutionarily stable situation (White et al. 2002; Boots et al. 2004). 
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   3.3
Extrinsic Biotic Interactions in Emergence 

 Extrinsic biotic interactions, such as natural or human-assisted translocations of 
infected or latently infected individuals of H R  or H V  species have played an exag-
gerated role in the rapid emergence of zoonotic diseases within the last few years. 
Monkeypox transported with African rodents destined for the US pet trade (Cen-
ters for Disease Control and Prevention 2003; see the chapter by Regnery, this vol-
ume), globe-trotting humans infected with SARS-CoV (Olsen et al. 2003; see the 
chapter by Wang and Eaton, this volume), domestic dogs incubating rabies accom-
panying human colonialists (see the chapter by Nel and Rupprecht, this volume), 
and the stowaway mosquito, bird, or human infected with WNV (Lanciotti et al. 
2002) bear witness to the growing problems of a shrinking interconnected world 
(see the chapter by Daszak et al., this volume). Mosquito-borne viral diseases have 
resulted from the introduction of exotic viruses into indigenous local populations 
of mosquitoes previously not involved as vectors (Lanciotti et al. 2002), in addition 
to the establishment and spread of exotic mosquito species harboring viruses into 
new geographic locations (Lounibos 2002; Mackenzie et al. 2004). 

 However, not all biological invasions or disease introductions survive to 
cause epidemics, as was the case with SARS and monkeypox in North America. 
In contrast, WNV was an entirely different matter. The rapid establishment 
and spread of WNV in North America was nearly assured by the presences 
of indigenous species of competent wild bird H R s and mosquito H V s. Certain 
bird species sustained WNV viremias of sufficient titer and duration to infect 
blood-feeding “bridge vectors” (Turell et al. 2001; Komar et al. 2003), maintain-
ing transmission to humans and spreading WNV as migrating birds followed 
traditional flyways (Peterson et al. 2003). The same extrinsic phenomena of a 
community of seemingly preadapted and widely available potential H V s and 
H R s in conjunction with the biogeography of avian migration aided the intro-
duction and spread of WNV in Europe and the Middle East (Malkinson and 
Banet 2002). By an alternate route of introduction, wind-blown infected mos-
quitoes may have introduced Japanese encephalitis virus (JEV) into northern 
mainland Australia in 1998 (Ritchie and Rochester 2001). 

   3.4
Anthropogenic Influences as a Special Class of Extrinsic Factors in Emergence 

 As indicated above, many of the most important and widely cited factors modi-
fying the scope and scale of zoonotic disease emergence are anthropogenic in 
origin; a few examples are described to highlight their importance and their 
distinctiveness from required transition stages. 
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  3.4.1
Habitat Modification, Human Encroachment, and Modern Agricultural Practices 

 Human population growth and modern agricultural practices have enticed 
human settlers into clearing patches within ecosystems of maximally high 
biodiversity, such as tropical rain forests, converting substantial areas into 
cultivated fields and pastures (Patz et al. 2004; LoGiudice et al. 2003). Com-
mercial farming operations inserted into clearings in forest habitats juxta-
pose and intermingle humans and livestock with native animal populations 
(Kock et al. 2002; Daszak et al. 2001; see the chapter by Field et al., this vol-
ume), and, coincidentally, with whatever zoonotic pathogens exist within 
these natural nidi (Pavlovsky1957). In many instances, the cleared land 
has been used for irrigated agriculture, resulting in an increase in vector-
borne diseases such as JEV as mosquitoes and water bird H R s are brought 
in close proximity to domestic pigs in nearby villages (Morse 1995; Keiser 
et al. 2005). Dams are built to maintain water for human consumption and 
for use in irrigated agriculture, but they too may lead to increased zoonotic 
disease emergence as they provide the milieu for intermingling mosquito 
vectors and reservoir hosts of arboviruses as well as the spread of other 
diseases such as schistosomiasis. 

 Modern agricultural practices have also provided the mechanism by which 
bovine spongiform encephalopathy emerged in the United Kingdom in the 
early 1980s (Pattison 1998). 

   3.4.2
Domestic Animals Provide a Bounty of Novel Niches 

 Species now linked by domestication to  Homo sapiens  provide rich fodder for 
evolutionary forays by zoonotic viruses into potential new hosts. The emer-
gence of zoonotic viruses among humans or domestic livestock where our 
species has drifted into preexisting sylvatic foci of zoonotic viruses is driven 
by local circumstance, history, and serendipity. The role of livestock, such as 
horses and pigs, can be pivotal in a transmission chain leading to human infec-
tion, as illustrated by the henipaviruses (see the chapters by Daniels et al. and 
Field et al., this volume). NiV and HeV first jumped the species barrier to infect 
pigs and horses, respectively, and only then were transmitted by these H I s to 
humans (Barclay and Paton 2000; Chua et al. 1999). However, these two viruses 
also demonstrate the importance of transmissibility in the H I s influencing the 
ultimate emergence of human disease; NiV was readily transmitted among pigs 
while HeV was rarely transmitted among horses or from horse to human (see 
the chapter by Daniels et al., this volume). 
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 Rabies virus associated with domestic dogs incubating infection and 
 transported with humans was the likely source of endemic cycles of rabies 
involving most terrestrial mammals in North and South America and in many 
areas of Africa (Childs et al. 2002; Smith et al. 1992; see the chapter by Nel and 
Rupprecht, this volume). In addition to causing an estimated 50,000 human 
deaths annually, rabies virus associated with domestic dogs have driven naïve 
indigenous populations of African wild dogs ( Lycaon pictus ) and Ethiopian 
wolves ( Canis simensis ) to the threshold of extinction and caused declines 
among other large carnivore populations (Roelke-Parker et al. 1996; Sillero-
Zubiri et al. 1996; Gascoyne et al. 1993; Chapman 1978; see the chapter by Nel 
and Rupprecht, this volume). 

 Other domesticated species have become efficiently enlisted as H I s or H R s, 
in a bridging process leading to human disease. Swine production management 
practices have improved the efficacy of this economically important livestock 
species as an amplifying H I  for JEV and NiV transmission to humans (Daniels 
et al. 2002; Singh and Jamaluddin 2002; Mohd Nor et al. 2000; see the chapter 
by Field et al., this volume). Swine may also serve as the mammalian mixing 
vessel for influenza A viruses of domestic and wild birds, offering the oppor-
tunity for avian viruses to obtain the complement of genes required for their 
sustained transmission within mammalian hosts, such as humans   (Suarez et al. 
2002; Gibbs et al. 2001; see the chapter by Webby et al., this volume). 

   3.4.3
Human Population Demographics and Urbanization 

 Significant changes in the demography of global human populations during 
the past five decades have been driven not only by population growth, but by 
changes in population distribution and social structuring brought about by 
migration, the ongoing movement of persons from rural to urban environ-
ments and the resettlement of refugees. The concentration of humans in the 
urban environment has given rise to mega-cities where a large proportion 
of persons may live in substandard conditions in marginal areas, sometimes 
referred to as shanty towns, surrounding the urban core. The crowded living 
conditions within shanty towns are further degraded by poor sanitation and 
lack of water; these conditions have been associated with the emergence of 
diseases, notably those involving vector-transmitted pathogens (Gratz 1999; 
Gubler 2002; Mackenzie et al. 2004). 

 Urban and periurban changes in land use have altered the availability and 
quality of habitat available to wildlife, and ecological changes in resource avail-
ability have in instances increased the potential for human–animal–vector 
interactions. Later chapters illustrate how ecological changes have influenced 
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the abundance and accessibility of wildlife species serving as reservoir hosts for 
different pathogens, leading to the emergence of zoonotic pathogens associated 
with pteropid bats (see the chapter by Field et al., this volume) and white-tailed 
deer (see the chapter by Paddock and Yabsley, this volume). 

   3.4.4
The Miracle of Modern Transport 

 Perhaps the most influential and certainly the most infamous anthropogenic 
modifiers driving the emergence process have been those enhancing social con-
nectivity through road construction (Larkin 2000), railroads, and, the crown 
jewel of rapid modern transport, jet plane-assisted travel (Fig. 1; Childs 2004; 
see the chapter by Daszak et al., this volume). Nowhere has the role of rapid 
transportation been more evident than with SARS CoV (Table  1 ), where a pre-
sumed focus of human infection in the wet markets of Guangzhou, Guang-
dong Province, China, where live animals or their products are available for 
purchase, was transformed into a global health problem affecting 27 nations 
on every populated continent (Heymann 2004; see the chapter by Wang and 
Eaton, this volume). The human SARS CoV appears to have been inadvertently 
transported to a wet-market, along with an infected H I  or H R , on a journey des-
tined to end with human consumption (Bell et al. 2004). Wildlife farming and 
an immense network of illegal national and international trade in wildlife has been 
fueled by human demands for wildlife products of unusual culinary or  putative 
medicinal properties (Bell et al. 2004). These cultural propensities enriched the 
range of opportunities for novel host/zoonotic virus interchange, but alone, 
as with rapid transport of persons, would not have resulted in a case of SARS 
without the biological capabilities of the virus to readily establish spillover. 

   3.4.5
The Miracle of Modern Medicine 

 Modern medical practices requiring the widespread use of needles, increased 
application of immunosuppressive therapies, organ transplant, and blood 
transfusions have contributed substantially to the spread and emergence of 
zoonotic pathogens (Institute of Medicine 2003; see the chapter by Paddock 
and Yabsley, this volume). In certain exceptional instances, medical technology 
has permitted zoonotic viruses, generally limited in their capacity for human-
to-human transmission, to flirt briefly with the transmission route prerequisite 
to pandemic emergence (Fig. 1). Illustrative of this phenomena were instances 
of WNV and rabies virus transmission from infected donors to susceptible 
recipients receiving blood transfusion (WNV) and organ and tissue transplants 
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(WNV and rabies virus) (Iwamoto et al. 2003; Goldrick 2003; Centers for Disease 
Control and Prevention 2004; Gode and Bhide 1988). These rare instances 
involved transient, human-to-human transmission of viruses normally requir-
ing a mosquito vector (WNV) or direct contact (rabies virus) for their trans-
mission. Medical interventions limited further transmission, although biologic 
constraints inherent to the virus and host would have self-limited any sustained 
human-to-human transmission. 

     4
Invasion Biology as a Paradigm for Disease Emergence 

 The schema for emerging diseases (Fig. 1) emphasizes viral interactions 
within the newly colonized secondary host, of which humans may be but 
one of several susceptible species (H S. . .n ). The process outlined is similar to 
the schema developed to characterize biological invasions by nonindigenous 
species (Kolar and Lodge 2001). The transition states proposed for emerging 
diseases and those for invasive species are largely parallel: (1) contact with 
infectious propagules aligns with the nonindigenous species in a transport 
pathway to a foreign shore; (2) cross-species transmission aligns with the non-
indigenous species surviving transport and being introduced into a foreign 
environment; (3) sustained intra-H S  transmission of a zoonotic virus aligns 
with the establishment (self-perpetuation) of the invasive species within the 
new environment; and (4) sustained intra-H S  transmission accompanied by 
evolutionary adaptation of the once zoonotic virus to a new H R , prior to 
emergence, aligns with adaptive radiation and spread of the invasive species 
beyond the local site of introduction (Grant et al. 2001). 

  4.1
Termination Points and Pitfalls on the Route to Emergence or Invasion 

 The potential terminating points in the process of virus emergence or biological 
invasion (broken arrows leading outside of the H S  population block in Fig. 1) 
are consequences of similar circumstances. Failure to cross the species barrier 
(spillover) aligns with “fails in transport”; failure to sustain transmission, with 
a transmission potential,  R   0  <1, aligns with “fails to establish”; and interruption 
of sustained intra-H S  transmission, an average  R   0  <1, aligns with “noninvasion” 
by the nonindigenous species. Differences between disease emergence and bio-
logical invasion exist, as transitions leading to disease emergence are not strictly 
hierarchical. Reiteration of contact and spillover (Fig. 1, transitions 1 and 2) at 
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sufficiently high levels can suffice for a disease to emerge, but if an invading 
species never moves and perishes at the site of its introduction, even if repeat-
edly introduced to the site, further establishment and spread, prerequisites of 
invasion, is precluded. 

 In addition to biological factors which establish the setting in which zoo-
notic pathogens may emerge (see the chapters by Cleaveland et al. and Daszak 
et al., this volume), the emergence of a zoonotic agent within human or animal 
populations must be detected by humans. Too often the presence of a zoonotic 
agent is first identified by the presence of disease in humans, and surveillance 
for disease emergence is largely restricted to identifying incident cases of disease 
in humans rather than monitoring infection or disease among wildlife H R s or 
H I s (see the chapters by Childs, by Merianos, and by Stallknecht, this volume). 
The challenges present to designing programs aiming to disrupt transmission 
of a zoonotic pathogen within a wildlife reservoir host population prior to 
spillover and disease emergence are discussed in the chapters by Childs and by 
Stallknecht in this volume. 

   4.2
Human Invaded or Human Invader? 

 Altering the environmental unit being invaded produces a radically different 
schema. The invasion process in Fig. 1 has an organismal or medical orienta-
tion, which can be transformed to a population or community orientation 
by regarding humans, rather than a zoonotic pathogen, as the invasive spe-
cies. Human invasion of new habitats and new environments is a frequently 
cited factor in the emergence process of viral zoonoses (Morse 1995; Insti-
tute of Medicine 2003). Where native H R s and H V s and their co-evolved viral 
pathogens exist in natural foci (Pavlovsky 1957), enhanced opportunities for 
novel ecologic interactions await. Initial instances of emergence have proven 
unpredictable as exemplified by HPS resulting from transmission of hantavi-
ruses maintained by sigmodontine rodent H R s in North America (Monroe 
et al. 1999), HIV resulting from transmission of SIVs circulating among non-
human primate H R s in West Africa (Apetrei et al. 2004), and NiV and HeV 
viruses from pteropid bat H R s in Asia and Australia (Field et al. 2001). Herein, 
we stress the organismal– medical orientation, humans colonized or invaded 
by zoonotic viruses. Human intrusion into novel environments is regarded as 
an anthropogenic factor which modifies the likelihood of contact and spill-
over transitions occurring. However, without the preexisting sylvatic zoonotic 
cycle, human invasion alone would not engender the first case of illness along 
the path to emergence. 
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    5
Qualities of Zoonotic Viruses Emerging by Different Transition Routes 

 Insights as to why and how certain zoonotic viruses appear predisposed to 
spillover and the various paths they take in the emergence process, are to be 
gleaned by examining the evolutionary history and current context of where 
and how zoonotic viruses exist and just how they become identified as etiologic 
agents of human disease (see the chapter by Childs, this volume). Predispos-
ing biological characteristics include evidence of multiple H R s (Dobson and 
Foufopoulos 2001; Cleaveland et al. 2001; see the chapters by Cleaveland and 
by Holmes and Drummond, this volume), high replication rates, high muta-
tion rates, and the potential for homologous or heterologous recombination, 
which reach maxima in zoonotic viruses with RNA genomes (Holland et al. 
1982; Arias et al. 2001). 

  5.1
Emergence Via Reiterative Processes of Contact and Spillover 

 Two zoonotic viruses with histories of reemergence are rabies virus and WNV, 
both of which depend solely, with the exception of rare instances mentioned 
above, on repetitive contact and spillover between infected H R s or infected H V s 
(WNV) for their transmission to the human H S . Although the RNA genomes 
of these two zoonotic viruses are markedly different in terms of organization, 
polarity, and replication strategy, both viruses show evidence of reduced posi-
tive selection (Woelk and Holmes 2002), even where established within novel 
H R s or H V s (Holmes et al. 2002). The term “evolutionary generalists” has been 
applied to both viruses as they share, to some extent, the requirement of being 
able to infect and multiply within cells belonging to different species and, in the 
case of vector-borne WNV, the need to infect and multiply within avian, mam-
malian, and insect H R s, H V s, and H S s. The rare instances of human-to-human 
transmission of these viruses are epidemiologically insignificant (Dietzschold 
and Koprowski 2004; Iwamoto et al. 2003). 

   5.2
Spillover Subsequently Sustained by Human-to-Human Transmission 

 Although humans are, with few exceptions, incidental hosts for zoonotic viruses 
emerging from sylvatic transmission cycles, a few zoonotic arboviruses can be 
maintained by human-to-human transmission mediated by anthropophilic 
vectors in urban settings where large populations of humans and competent 
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H V s coexist, particularly in environments with poor sanitation and overcrowding. 
Yellow fever virus (Wolfe et al. 2001; de Silva et al. 1999) and dengue virus serotypes 
(Kuiken et al. 2003; Ksiazek et al. 2003) are arboviruses where major epidemics 
are associated with urban transmission cycles rather than sporadic spillover 
from sylvatic H R s and H V s, and dengue serotypes have become endemic among 
some suitably large human populations in Asia (Gubler 2002). 

 Rabies virus crosses mammalian orders and species and can establish sus-
tained transmission within new H R s (Badrane and Tordo 2001), as has been 
observed on several occasions where bat-associated variants of rabies virus have 
achieved temporary sustained transmission among terrestrial carnivores, such 
as red foxes ( Vulpes vulpes ) and striped skunks ( Mephitis mephitis ) (Daoust et 
al. 1996; Engeman et al. 2003). The maintenance of rabies virus, considered 
a single species of  Lyssavirus , serotype 1/genotype 1, is achieved as a myriad 
of distinct viral variants maintained within different specific mammalian H R s, 
rather than a homogeneous virus infecting multiple H R s; control or elimina-
tion of rabies in a specific H R  may be achieved but the diversity of host–virus 
dyads is a formidable buffer against any overall elimination scheme. 

 Epidemics of rabies virus are sustained when there are sufficient  individuals 
of the primary H R (s) to sustain intra-H  R  transmission, with coincidental spill-
over to H S s by reiterative introductions by inoculation of infectious virus in 
saliva. As rabies is fatal among most mammalian species, population declines 
among the principal H R  generally coincide with declines in incidental rabies 
epizootics among H S s (Gordon et al. 2004; Wandeler et al. 1974). Epizootics 
can reemerge at periodic intervals as H R  populations recover above the criti-
cal threshold density ( K   T   ) required to sustain virus transmission at  R   0   >1  
 (Anderson et al. 1981; Childs et al. 2000; Coyne et al. 1989). 

 In an analogous manner, epidemics caused by WNV involve reiterative intro-
ductions of infectious virus by any of a number of competent mosquito H V  (s). 
WNV readily infects at least three classes of vertebrates (Avia, Mammalia, Rep-
tilia) and mosquito species, and some species of ticks (Gould et al. 2003; Komar 
et al. 2003; Lvov et al. 2004; Sardelis et al. 2002; Turell et al. 2001). Although 
WNV appears to be reasonably homogeneous in regions of North America over 
time, geographic clustering of genetically similar strains is detectable and cer-
tain  epizootiologically dominant genetic clades have emerged, some with shorter 
extrinsic incubation periods within North American vectors (Davis et al. 2003; 
Ebel et al. 2004). Subtleties associated with host–vector–virus relationships are 
being uncovered, such as the greater frequency of  Flavivirus  recombination 
among mosquito H V s compared to tick H V s (Twiddy and Holmes 2003). 

 The temperature and humidity requirements for survival and breeding of 
mosquito vectors, and the demand for temperature-sensitive extrinsic viral 
incubation within H V s, drive the strong seasonal transmission dynamics of 



20 J. E. Childs et al.

WNV and other arboviral diseases. With the onset of cold temperatures in 
 temperate zones, WNV transmission ceases and epidemics of human disease 
desist (Woodring et al. 1996). 

   5.3
The Road to Human Adaptation: A Still-Life with SARS CoV? 

 That SARS-CoV is new to science is not in question. However, the origin of 
SARS-CoV as a human pathogen arising from direct cross-species transmis-
sion of a preexisting, but previously unknown virus (Gibbs et al. 2004;  Holmes 
and Rambaut 2004; see the chapters by Holmes and Drummond and by Wang 
and Eaton, this volume) or as a virus formed from the recombination of exist-
ing mammalian and avian coronaviruses (Rest and Mindell 2003; Zhang 
et al. 2004) has been the subject of debate. SARS- CoV is sufficiently distinct 
in genetic sequence from previously known coronaviruses (Rota et al. 2003) 
that a long history of preexistence with its natural H R  population is surmised 
(Parashar and Anderson 2004). Recently, coronaviruses related to SARS-Cov 
have been amplified by PCR from three communal cave-dwelling species of 
the genus  Rhinolophus  in the family Rhinolophidae. Genome sequence analysis 
indicated that SARS-like coronaviruses among these bats have an almost iden-
tical genome organization to those of SARS-CoVs isolated from humans or 
civets (Li et al. 2005; see the chapter by Wang and Eaton, this volume). These 
data suggest that bats serve as the H R  of SARS-CoV and that palm civets served 
as a H S1  in a chain of events leading to infection of humans as secondarily 
infected H S2 . SARS-CoV’s global emergence may be an extraordinary example 
of a relatively unmodified zoonotic virus, successfully sustained by intrahuman 
transmission. However, increasing data suggest SARS-CoV was a virus rap-
idly adapting to its new human host and the rapid and effective public health 
response terminating its transmission halted an evolutionary dramas in the 
making (see the chapter by Wang and Eaton, this volume). 

 Genetic sequence data indicate that strong positive selection accompanied 
SARS-CoV’s emergence and that distinctive human-associated changes in the 
genome distinguish virulent SARS-CoV from isolates of virus from palm civets 
(Song et al. 2005). Additional data indicate genetic changes were accompanying 
longer chains of human-to-human transmission. Heterogeneous viral sequences 
recovered from a single patient’s samples (Liu et al. 2005) indicate the degree of 
viral variation available for selection within the individual human. These findings 
are compelling evidence of evolutionary events underway, presaging the emer-
gence of a virus with a unique genetic signature associated with its human host. 

 Whatever the exact origin of SARS-CoV, the genetic endowments of this 
virus facilitated cross-species infection. An evolutionary history that includes 
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viral preadaptation permitting infection to occur among a broad range of H R s 
and H S s is suggested by SARS CoV’s ability to infect a range of mammalian 
orders (Ng 2003; Song et al. 2005; Bell et al. 2004). Such preadaptation can be 
assumed to have endowed SARS-CoV with a suite of traits readily adaptable for 
establishing sustained intrahuman transmission (Riley et al. 2003; Isakbaeva 
et al. 2004). Pathogenesis within the novel human host’s respiratory tissues 
offered an efficient means for sustained transmission by expressed droplets, or 
possibly aerosol (Yu et al. 2004). 

 The biological properties of SARS-CoV, the human behaviors and societal 
practices which increased the likelihood of contact and spillover and the rapid 
transport of already infected individuals drove the trajectory of the emergence 
of this global health problem. The distinctions and critical interactions between 
required biological transitions and modifying factors are clearly illuminated by 
this emergence process (Fig. 1, Table 1). Fortunately, SARS-CoV was effectively 
controlled by tried and true public health measures serving to increase social 
distance and diminish infectious contacts,  c  , perhaps curtailing a rapid evolu-
tionary path toward a  R   0   sufficiently high to bypass these methods (Song et al. 
2005; Antia et al. 2003; Fraser et al. 2004). 

   5.4
Adaptation of Zoonotic Viruses to the Human H R  and Pandemic Emergence 

 The zoonotic viruses leading to potentially uncontrolled, pandemic health 
problems have adopted unique qualities associated with their sustained trans-
mission within the human host. Adaptation to the human host may be mediated 
by viral preadaptation to a genetically similar intermediate host, as is hypoth-
esized to occur among swine for avian-adapted influenza A subtypes (see the 
chapter by Webby et al., this volume). Permissive cells for subtype A influ-
enza virus replication in the pig’s respiratory track have cell-surface gly-
coprotein receptors recognized by some avian-adapted viruses, in addition to 
some human-adapted influenza viruses (Basler et al. 2001). In the case of HIV, 
the H R  for SIVs giving rise to HIV-1 was our closest living genetic relative, the 
chimpanzee (  Pan troglodytes troglodytes ) (Gao et al. 1999), and the H R  for HIV-
2 was a sooty mangabey (  Cerocebus atys ) (Hirsch et al. 1989), a respectfully 
close relative of the order Primates. Spillover was enhanced by the enormous 
population of candidate viruses within the genetically heterogeneous “quasi-
species” of viruses present in the infected H R  at spillover. Sustained intrahuman 
transmission was accompanied by viral adaptations to the human host, read-
ily detectable and quantifiable by sequence changes in the RNA genome and 
marked by qualitative phenotypic changes identifiable by host species prefer-
ence and pathogenic interactions (Hirsch et al. 1989; Gao et al. 1999). 
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 Evaluations of the genetic relatedness of HIV-1 and HIV-2 to SIVs  circulating 
among nonhuman primates has led to wide acceptance that these distinc-
tive human lentiviruses, now globally distributed in humans, originated from 
cross-species transmission in the not so distant past, perhaps within the first 
half of the twentieth century (May et al. 2001). The human lentiviruses, HIV-1 
and HIV-2, have evolved and escaped from remote African settings on at least 
eight independent occasions to emerge as distinctive genetic subtypes respon-
sible for regional or pandemic human disease (Apetrei et al. 2004; B. Hahn, 
personal communication). These recognized cases of emergence are certainly 
not the first instances where SIVs have successfully crossed species and evolved 
as distinctive HIVs of humans. Early emergences were likely restricted to local 
occurrences in remote locations where human contact rates,  c  , and popula-
tion size were insufficient to support a  R   0   > 1, even if infections were of a long 
duration,  d ; such occurrences would be highly prone to transmission fadeout 
(Fig. 1). Road construction, automotive transport, and, perhaps, reuse of non-
sterile needles (Gisselquist 2003) were presumably key anthropogenic factors 
increasing the level of social connectivity by providing HIV-infected individu-
als access to larger aggregates of susceptible hosts in cities (Apetrei et al. 2004). 

 The number of SIVs described among nonhuman primates in Africa as 
of 2004 was approximately 40 (Zhuang et al. 2002). The biological capacity 
of lentiviruses includes rapid replication, high mutability, and the highest 
recorded rates of recombination known in virology. Knowledge of the fre-
quency of potential opportunities for SIV spillover, based on transmission of a 
zoo of diverse simian foamy viruses during encounters between monkeys, apes, 
and human hunters in West Africa (Wolfe et al. 2004) indicate transmission 
of blood-borne retroviruses is not rare. These facts highlight two important 
features of emergence; first, emergence is a process, not an event; second, the 
probability of new genetic lineages of human HIVs arising approximates unity. 
The same lessons apply to numerous other conditions which make up the body 
of this volume.    
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