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My Generalization of Sobolev’s Embedding
Theorem

The original method of proof of Sergei SOBOLEV consisted in writing

oF
u = Z oz, 8% for an elementary solution E of A, (31.1)

and it is not adapted to the case where the derivatives are in different spaces.
A different proof, by Louis NIRENBERG, and also by Emilio GAGLIARDO,
can be used for the case where
Oou N
— e€LP(R")forj=1,...,N; (31.2)
O0x;
In the late 1970s, I had heard a talk about this question by Alois KUFNER,
then I was told that it had been noticed earlier by TROISI.
The case where the derivatives are in the same Lorentz space LP4(RY)
with 1 < p < N can be treated with the theory of interpolation, as was done
by Jaak PEETRE, but the limiting case where

ou

e LNP(RMYfor j=1,...,N 31.3
oz, (R™) for j ; (31.3)

was treated by Haim BREZIS and Stephen WAINGER by analyzing a formula
of O’NEIL about the nonincreasing rearrangement of a convolution product.
The case p = 1 in (31.3) gives u € Co(RY), by noticing that C.(RY) is dense

in LV1(RN), whose dual is LY °°(RYN), which contains the derivatives gTEj'

The case p = oo in (31.3) gives efl*l € L} (R"), and u actually belongs to
BMO(RN).

As far as I know, these classical methods do not permit one to treat the case
where the derivatives are in different Lorentz spaces; of course, this question
is quite academic, but serves as a training ground for situations which often
occur where one has different information in different directions, for example
because some coordinates represent space and another one represents time
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(and one has simplified the physical reality so that the model used has a fake
velocity of light equal to +00).

First, it is useful to observe that Sobolev’s embedding theorem for p = 1 is
related to the isoperimetric inequality. The classical isoperimetric inequality
says that among measurable sets A of RN with a given volume, the (N — 1)-
dimensional measure of the boundary 0 A is minimum when A is a sphere;
equivalently, for a given measure of the boundary, the volume is maximum for
a sphere. Analytically it means that

meas(A) < Co(meas(d A))N/(N_l)7 (31.4)

and it tells what the best constant Cj is, while Sobolev’s embedding theorem
for WELL(RYN) gives

/RN [ul'" dz < Callgrad(u) |}, (31.5)

but does not insist on identifying what the best constant C7 is. The rela-
tion between the two inequalities is that one can apply the last inequality to
u = x4, the characteristic function of A, assuming that A has a finite perime-
ter; of course, x4 does not belong to W11 (RY), but as its partial derivatives

%’;‘? are Radon measures, one may apply the inequality to x4 x 0. and then

1etJ5 tend to 0; in this way one learns that Cy < C. Conversely, knowing
the isoperimetric inequality, one can approach a function u by a sum of char-
acteristic functions, using A, = {z | ne < u(x) < (n + 1)e} and deduce
Sobolev’s embedding theorem, so that C; < Cj and the two inequalities are
then essentially the same. However, the proof of the last part involves the
technical study of functions of bounded variation (denoted by BV'), which is
classical in one dimension, but is indebted to the work of Ennio DE GIORGI!,
FEDERER? and Wendell FLEMING? for the development of the N-dimensional
case.

As I observed, starting from Sobolev’s embedding theorem W1(RN) C
LY (RN) (proven by Louis NIRENBERG), one can easily derive all the results
already obtained, except for the question of identifying the best constants.
For that, one uses the functions ,, adapted to wu, writes

len (@)l < Colley, (wgrad(w)|ls < [¢;, (u)grad(w)||,e™”", (31.6)

by Holder’s inequality, and deduces the same inequality as before, |a,—1 —
anle™’?” € 1P(Z).

! Ennio DE GIORGI, Italian mathematician, 1928-1996. He received the Wolf Prize
in 1990. He worked at Scuola Normale Superiore, Pisa, Italy.

2 Herbert FEDERER, Austrian-born mathematician, born in 1920. He worked at
Brown University, Providence, RI.

3 Wendell Helms FLEMING, American mathematician, born in 1928. He works at
Brown University, Providence, RI.
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However, for the case of derivatives in (different) Lorentz spaces, I could
only prove it by using a multiplicative variant of the isoperimetric inequal-
ity /Sobolev’s embedding theorem.

Lemma 31.1. The Sobolev’s embedding theorem WL (RN) c LV (RN) in its
additive version

for allu € WHY(RYN), (31.7)
1

Il

N
1 gAZ
j=1

is equivalent to the multiplicative version

ou
3xj

1/N
N /

+~<NA H

Jj=1

ou

9, for all u € WHH(RYN). (31.8)

[lul

1

Proof: One rescales with a different scaling in different directions, i.e., one
applies the additive version to v defined by

x x
v(xl,...,xN)zu(/\i,...,/\]]i>, (31.9)

and one obtains

1, Ou

1*§A)\1...>\NZ—||%||1. (31.10)
J

ALY
(A1 Nl y

J
Then one notices that

if A1... Ay = p >0, the minimum of 37, 52 is attained when

J

Aj = Baj for all j and the Lagrange multiplier 3 satisfies (31.11)
BNaq ...any = i, so the minimum is %(al coan)YN,
One applies (31.11) to the case a; = H%Hl and one finds the multiplicative
3

version, as the powers of 11 are identical on both sides of the inequality (because
the inequality is already invariant when one rescales all the coordinates in the
same way). The multiplicative version implies the additive version by the
geometric-arithmetic inequality

1/N< ap+...+ayn

(ay...an)"" < ~ for all ay,...,an >0, (31.12)
which, putting a; = €%, is but the convexity property of the exponential
function. O

Lemma 31.2. Let u satisfy

0
—UEL”J"‘”(RN), with 1 <p; <oo and1<gq; <oo, forj=1,...,N.

aLL'j
(31.13)
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Let pepf, piyp and gepy be defined by

1 _ 1 1
perr N Zj

m
! L — & (31.14)
1

Plrp  Pesf

1 _ 1
QEff_NZJQJ

Then one has
a1 — anle™/Pers € 1915 (Z). (31.15)

One may allow some p; to be 1 or oo, but using only g; = 400 in that case.

Proof: Let f; = 5{’713_ for j = 1,..., N. One applies the multiplicative version
to ¢, (u), and one has to estimate ||¢), (u)f;||l1. A classical result of HARDY
and LITTLEWOOD states that for all f € L'(£2) + L°(£2) and all measurable
subsets w C {2 one has

meas(w)
/ | f(2)|do < /0 F*(s) ds, (31.16)

and as the measure of the points where ¢}, (u) # 0 is at most e, one deduces
that
||(P;;(U)fJH1 SK(@”;fj) forj=1,...,N, (31'17)

and then, using Holder’s inequality,

e % K (e; f;) € 19 (Z) with 0; = 1% for j=1,..., N, imply
i LN (31.18)

e—n/p/effH(pn(u” 1+ <NA (HJ e " K (e fj)) € 1955 (2),

which gives (31.14). In the case where p; = 1, one has (31.18) with §; = 0

and ¢; = +oo, and in the case where p; = 0o, one has (31.18) with 6; =1

and ¢; = +o0. ]
For interpreting Lemma 31.2, one assumes that

for all A > 0, one has meas{z | |u(z)| > A\} < 400, (31.19)

which is a way to impose that u tends to 0 at oco.

If pess < N then it means u € LPers 9/ (RN).

If peff = N and gegy = 1, which means that ¢; = 1 for j = 1,..., N,
then one has |a,—1 — a,| € I1(Z), so that one deduces a bound for a,, i.e.,
u € L=(RM); using the density of C>®(RY) in LPi-'(RY), one deduces that
u € C()(RN)

If peyf = N and 1 < geyy < 00, then for every £ > 0 one has erlul’
L}OC(RN)'

If pers = N and geps = 00, which means that ¢; = oo for j =1,..., N,
one deduces that |a,|<aln| + B, so that there exists €9 >0 such that

;ff c
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esolle L}l (RN). This is the case when all the derivatives belong to
LYN-°(RN), and because log(|z|) is such a function, it is not always true
that e*l“l € L} _(RN) for all K > 0. For that particular space of functions,
u belongs to BMO(RY), which Fritz JOHN and Louis NIRENBERG had in-
troduced for studying the case of W1 N (RY) and they proved that for every
function in BMO(RY) there exists £y > 0, depending upon the semi-norm of
u in BMO(RN), such that esol*l € L] (RN).

If peyy > N then one has u € L>®(RYM). By considering (u — a)4
or (u+ a)_ for a > 0 (and letting then o tend to 0), one may assume
that u € LY(RY), and in applying the usual rescaling argument one
starts from a bound |[ullec < C(||ullrs + Zj||8j7vt||pj,q].)7 where || - ||,
denotes the norm in LP and || - ||, denotes the norm in LP9. Applying
this inequality to u(f\—i,,i—x , and writing g = A;--- Ay, one obtains
ulloe < C (L7 |Julrs + > pt/Pi )\;1H3ju\|pj,qj); the inequality between the
arithmetic mean and the geometric mean implies }, pt/pi A;lHaju”pj’qj >
N p/pess) =N (T 10l 0,) s with equality if all 22/ X710l 4,
are equal, so that ||u||eo gc(ul/r |[] [ N put/Pess = t/N (HJ |‘aju||pj,qj)1/N);
because minimizing pu® A + M"’B for p > 0 gives a,u“_lA — b/fb_lB =0
and p = (bB/aA)Y/(tY) 5o that the minimum is C’A"B'~" with
n = aLer, one deduces that ||ullee < C”||u Q’S(HJ— ||8ju||pj’qj)(1_9)/N, with
0= (1/r()1-|/r](\[1)/71\§)1£?i%)e”)' Choosing r = p;, s = ¢;, and applying the preceding
inequality to the case where u is replaced by 7;.,u — u, one deduces that u is

Holder-continuous of order +; in its ith variable, with ~; = T é:{gﬁﬁ%@ﬁ% )Cff) .

Having different information on derivatives in different directions is usual
for parabolic equations like the heat equation. For example, letting {2 be an
open set of RN, given ug € L?(f2), one can show that there exists a unique
solution u of 2% — Aw = 01in £2x (0, T) satisfying the initial condition u(z,0) =
up(x) in §2 and the homogeneous Dirichlet boundary condition yyu = 0 on
912 x (0,T), in the sense that v € C([0,T]; L*(£2)), u € L*((0,T); H3(£2))
and 2 € L2((0,T); H~1(12)).

If ug € H{(£2) then the solution also satisfies u € C°([0,T]; Hj(£2)),
Au, 9% € L2((0,T); L2(2)) = L?(£2 x (0,T)); if the boundary is of class C*
or if the open set {2 is convex (or if an inequality holds for the total curvature
of the boundary), then one has u € L((0,T); H*(12)).

If ug belongs to an interpolation space between H{(£2) and L?(§2) then
one has intermediate results, but this requires enough smoothness for the
boundary.

As an example, consider a function

u(z,t) defined on RY x R and satisfying u, %, Aue L*(RVTY),  (31.20)
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and this implies that 887’; € L2(RN*Y) for j = 1,...,N (by using Fourier
transform, for example). Denoting the dual variables by (£, 7), the informa-
tion is equivalent to Fu, T Fu, |(>Fu € L*(RN*T1) (and therefore &;Fu €
L3*(RN*1) for j =1,...,N). One has

(14 |7] + |€]*)Fu € LA(RN*1), and if one shows W € LP>°(RN*Y)
for some p € (2,00), then Fu € L¥?(RNT1) with % =1+ % and
we L2 (RNHY), (31.21)

the last property being due to the fact that 1 < ¢ < 2 and F maps
LY(RN*T1) into L°°(RN*1) and L?(RN*!) into itself, and by interpolation
it maps LE2(RN*1) into L7 -2(RN*1). One has W € L®(RNT1), and
it is the behavior at oo that is interesting for obtaining the smallest value of

p, so that one checks for what value of p one has W € LP>°(RN*+1) and
one obtains the same information for the smaller function m One uses

the homogeneity properties of the function, and for A > 0 one computes

meas {(5,7) | m > )\} =\ 1-(NV/2)

31.22
Withszeas{(f,T)\W21}7 ( )

by using the change of coordinates 7 = A~/ and & = A~'/2¢'. This corre-

sponds to p = 1+ & = &£2 which gives ¢ = Q%V:GQ) 2(1{1\{—22) if

N > 3, so one has

and ¢ =

for N >3, one has u € L2N+2)/(N=2).2(RN+1)  [2(RN+1),
for N =2, one has u € L"(R?) for all r € [2,00), (31.23)
for N =1, one has u € L®(R?) N L?(R?).

[Taught on Friday April 7, 2000.]
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