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My Generalization of Sobolev’s Embedding
Theorem

The original method of proof of Sergei SOBOLEV consisted in writing

u =
∑

j

∂u

∂xj
�

∂E

∂xj
for an elementary solution E of ∆, (31.1)

and it is not adapted to the case where the derivatives are in different spaces.
A different proof, by Louis NIRENBERG, and also by Emilio GAGLIARDO,

can be used for the case where

∂u

∂xj
∈ Lpj (RN ) for j = 1, . . . , N ; (31.2)

In the late 1970s, I had heard a talk about this question by Alois KUFNER,
then I was told that it had been noticed earlier by TROISI.

The case where the derivatives are in the same Lorentz space Lp,q(RN )
with 1 < p < N can be treated with the theory of interpolation, as was done
by Jaak PEETRE, but the limiting case where

∂u

∂xj
∈ LN,p(RN ) for j = 1, . . . , N, (31.3)

was treated by Häım BREZIS and Stephen WAINGER by analyzing a formula
of O’NEIL about the nonincreasing rearrangement of a convolution product.
The case p = 1 in (31.3) gives u ∈ C0(RN ), by noticing that Cc(RN ) is dense
in LN,1(RN ), whose dual is LN ′,∞(RN ), which contains the derivatives ∂E

∂xj
.

The case p = ∞ in (31.3) gives eε |u| ∈ L1
loc(R

N ), and u actually belongs to
BMO(RN ).

As far as I know, these classical methods do not permit one to treat the case
where the derivatives are in different Lorentz spaces; of course, this question
is quite academic, but serves as a training ground for situations which often
occur where one has different information in different directions, for example
because some coordinates represent space and another one represents time
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(and one has simplified the physical reality so that the model used has a fake
velocity of light equal to +∞).

First, it is useful to observe that Sobolev’s embedding theorem for p = 1 is
related to the isoperimetric inequality. The classical isoperimetric inequality
says that among measurable sets A of RN with a given volume, the (N − 1)-
dimensional measure of the boundary ∂ A is minimum when A is a sphere;
equivalently, for a given measure of the boundary, the volume is maximum for
a sphere. Analytically it means that

meas(A) ≤ C0

(
meas(∂ A)

)N/(N−1)
, (31.4)

and it tells what the best constant C0 is, while Sobolev’s embedding theorem
for W 1,1(RN ) gives

∫

RN

|u|1∗
dx ≤ C1||grad(u)||N/(N−1)

1 , (31.5)

but does not insist on identifying what the best constant C1 is. The rela-
tion between the two inequalities is that one can apply the last inequality to
u = χA, the characteristic function of A, assuming that A has a finite perime-
ter; of course, χA does not belong to W 1,1(RN ), but as its partial derivatives
∂χA

∂xj
are Radon measures, one may apply the inequality to χA � �ε and then

let ε tend to 0; in this way one learns that C0 ≤ C1. Conversely, knowing
the isoperimetric inequality, one can approach a function u by a sum of char-
acteristic functions, using An = {x | nε ≤ u(x) < (n + 1)ε} and deduce
Sobolev’s embedding theorem, so that C1 ≤ C0 and the two inequalities are
then essentially the same. However, the proof of the last part involves the
technical study of functions of bounded variation (denoted by BV ), which is
classical in one dimension, but is indebted to the work of Ennio DE GIORGI1,
FEDERER2 and Wendell FLEMING3 for the development of the N -dimensional
case.

As I observed, starting from Sobolev’s embedding theorem W 1,1(RN ) ⊂
L1∗

(RN ) (proven by Louis NIRENBERG), one can easily derive all the results
already obtained, except for the question of identifying the best constants.
For that, one uses the functions ϕn adapted to u, writes

||ϕn(u)||1∗ ≤ C0||ϕ′
n(u)grad(u)||1 ≤ ||ϕ′

n(u)grad(u)||pen/p′
, (31.6)

by Hölder’s inequality, and deduces the same inequality as before, |an−1 −
an|en/p∗ ∈ lp(Z).

1 Ennio DE GIORGI, Italian mathematician, 1928–1996. He received the Wolf Prize
in 1990. He worked at Scuola Normale Superiore, Pisa, Italy.

2 Herbert FEDERER, Austrian-born mathematician, born in 1920. He worked at
Brown University, Providence, RI.

3 Wendell Helms FLEMING, American mathematician, born in 1928. He works at
Brown University, Providence, RI.
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However, for the case of derivatives in (different) Lorentz spaces, I could
only prove it by using a multiplicative variant of the isoperimetric inequal-
ity/Sobolev’s embedding theorem.

Lemma 31.1. The Sobolev’s embedding theorem W 1,1(RN ) ⊂ L1∗
(RN ) in its

additive version

||u||1∗ ≤ A

N∑

j=1

∣∣∣∣

∣∣∣∣
∂u

∂xj

∣∣∣∣

∣∣∣∣
1

for all u ∈ W 1,1(RN ), (31.7)

is equivalent to the multiplicative version

||u||1∗ ≤ N A

⎛

⎝
N∏

j=1

∣∣∣∣

∣∣∣∣
∂u

∂xj

∣∣∣∣

∣∣∣∣
1

⎞

⎠
1/N

for all u ∈ W 1,1(RN ). (31.8)

Proof : One rescales with a different scaling in different directions, i.e., one
applies the additive version to v defined by

v(x1, . . . , xN ) = u

(
x1

λ1
, . . . ,

xN

λN

)
, (31.9)

and one obtains

(λ1 . . . λN )1/1∗ ||u||1∗ ≤ Aλ1 . . . λN

∑

j

1
λj

∣∣∣∣ ∂u

∂xj

∣∣∣∣
1
. (31.10)

Then one notices that

if λ1 . . . λN = µ > 0, the minimum of
∑

j
αj

λj
is attained when

λj = β αj for all j and the Lagrange multiplier β satisfies
βNα1 . . . αN = µ, so the minimum is N

µ (α1 . . . αN )1/N .
(31.11)

One applies (31.11) to the case αj =
∣∣∣∣ ∂u

∂xj

∣∣∣∣
1

and one finds the multiplicative
version, as the powers of µ are identical on both sides of the inequality (because
the inequality is already invariant when one rescales all the coordinates in the
same way). The multiplicative version implies the additive version by the
geometric-arithmetic inequality

(a1 . . . aN )1/N ≤ a1 + . . . + aN

N
for all a1, . . . , aN > 0, (31.12)

which, putting aj = ezj , is but the convexity property of the exponential
function. ��
Lemma 31.2. Let u satisfy

∂u

∂xj
∈ Lpj ,qj (RN ), with 1 < pj < ∞ and 1 ≤ qj ≤ ∞, for j = 1, . . . , N.

(31.13)
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Let peff , p∗eff and qeff be defined by

1
peff

= 1
N

∑
j

1
pj

1
p∗

eff
= 1

peff
− 1

N

1
qeff

= 1
N

∑
j

1
qj

.

(31.14)

Then one has
|an−1 − an|en/p∗

eff ∈ lqeff (Z). (31.15)

One may allow some pj to be 1 or ∞, but using only qj = +∞ in that case.

Proof : Let fj = ∂u
∂xj

for j = 1, . . . , N . One applies the multiplicative version
to ϕn(u), and one has to estimate ||ϕ′

n(u)fj ||1. A classical result of HARDY

and LITTLEWOOD states that for all f ∈ L1(Ω) + L∞(Ω) and all measurable
subsets ω ⊂ Ω one has

∫

ω

|f(x)| dx ≤
∫ meas(ω)

0

f∗(s) ds, (31.16)

and as the measure of the points where ϕ′
n(u) �= 0 is at most en, one deduces

that
||ϕ′

n(u)fj ||1 ≤ K(en; fj) for j = 1, . . . , N, (31.17)

and then, using Hölder’s inequality,

e−nθj K(en; fj) ∈ lqj (Z) with θj = 1
p′

j
for j = 1, . . . , N, imply

e−n/p′
eff ||ϕn(u)||1∗ ≤ N A

(∏
j e−nθj K(en; fj)

)1/N

∈ lqeff (Z),
(31.18)

which gives (31.14). In the case where pj = 1, one has (31.18) with θj = 0
and qj = +∞, and in the case where pj = ∞, one has (31.18) with θj = 1
and qj = +∞. ��

For interpreting Lemma 31.2, one assumes that

for all λ > 0, one has meas{x | |u(x)| > λ} < +∞, (31.19)

which is a way to impose that u tends to 0 at ∞.
If peff < N then it means u ∈ Lp∗

eff ,qeff (RN ).
If peff = N and qeff = 1, which means that qj = 1 for j = 1, . . . , N ,

then one has |an−1 − an| ∈ l1(Z), so that one deduces a bound for an, i.e.,
u ∈ L∞(RN ); using the density of C∞

c (RN ) in Lpj ,1(RN ), one deduces that
u ∈ C0(RN ).

If peff = N and 1 < qeff < ∞, then for every κ > 0 one has eκ |u|q
′
eff ∈

L1
loc(R

N ).
If peff = N and qeff = ∞, which means that qj = ∞ for j = 1, . . . , N ,

one deduces that |an| ≤α |n| + β, so that there exists ε0 > 0 such that
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eε0|u| ∈L1
loc(R

N ). This is the case when all the derivatives belong to
LN,∞(RN ), and because log(|x|) is such a function, it is not always true
that eκ |u| ∈ L1

loc(R
N ) for all κ > 0. For that particular space of functions,

u belongs to BMO(RN ), which Fritz JOHN and Louis NIRENBERG had in-
troduced for studying the case of W 1,N (RN ), and they proved that for every
function in BMO(RN ) there exists ε0 > 0, depending upon the semi-norm of
u in BMO(RN ), such that eε0|u| ∈ L1

loc(R
N ).

If peff > N then one has u ∈ L∞(RN ). By considering (u − α)+
or (u + α)− for α > 0 (and letting then α tend to 0), one may assume
that u ∈ L1(RN ), and in applying the usual rescaling argument one
starts from a bound ||u||∞ ≤ C

(||u||r,s +
∑

j ||∂ju||pj ,qj

)
, where || · ||p

denotes the norm in Lp and || · ||p,q denotes the norm in Lp,q. Applying
this inequality to u

(
x1
λ1

, . . . , xN

λN

)
, and writing µ = λ1 · · ·λN , one obtains

||u||∞ ≤ C
(
µ1/r ||u||r,s +

∑
j µ1/pj λ−1

j ||∂ju||pj ,qj

)
; the inequality between the

arithmetic mean and the geometric mean implies
∑

j µ1/pj λ−1
j ||∂ju||pj ,qj

≥
N µ(1/peff )−(1/N)

(∏
j ||∂ju||pj ,qj

)1/N , with equality if all µ1/pj λ−1
j ||∂ju||pj ,qj

are equal, so that ||u||∞≤C
(
µ1/r ||u||r,s+N µ1/peff µ−1/N

(∏
j ||∂ju||pj ,qj

)1/N)
;

because minimizing µa A + µ−bB for µ > 0 gives aµa−1A − b µ−b−1B = 0
and µ = (bB/aA)1/(a+b), so that the minimum is C ′AηB1−η with
η = b

a+b , one deduces that ||u||∞ ≤ C ′′||u||θr,s
(∏

j ||∂ju||pj ,qj

)(1−θ)/N , with

θ = (1/N)−(1/peff )
(1/r)+(1/N)−(1/peff ) . Choosing r = pi, s = qi, and applying the preceding

inequality to the case where u is replaced by τt ei
u− u, one deduces that u is

Hölder-continuous of order γi in its ith variable, with γi =
(1/N)−(1/peff )

(1/pi)+(1/N)−(1/peff ) .
Having different information on derivatives in different directions is usual

for parabolic equations like the heat equation. For example, letting Ω be an
open set of RN , given u0 ∈ L2(Ω), one can show that there exists a unique
solution u of ∂u

∂t −∆u = 0 in Ω×(0, T ) satisfying the initial condition u(x, 0) =
u0(x) in Ω and the homogeneous Dirichlet boundary condition γ0u = 0 on
∂Ω × (0, T ), in the sense that u ∈ C

(
[0, T ];L2(Ω)

)
, u ∈ L2

(
(0, T );H1

0 (Ω)
)

and ∂u
∂t ∈ L2

(
(0, T );H−1(Ω)

)
.

If u0 ∈ H1
0 (Ω) then the solution also satisfies u ∈ C0

(
[0, T ];H1

0 (Ω)
)
,

∆u, ∂u
∂t ∈ L2

(
(0, T );L2(Ω)

)
= L2

(
Ω × (0, T )

)
; if the boundary is of class C1

or if the open set Ω is convex (or if an inequality holds for the total curvature
of the boundary), then one has u ∈ L2

(
(0, T );H2(Ω)

)
.

If u0 belongs to an interpolation space between H1
0 (Ω) and L2(Ω) then

one has intermediate results, but this requires enough smoothness for the
boundary.

As an example, consider a function

u(x, t) defined on RN × R and satisfying u,
∂u

∂t
,∆u ∈ L2(RN+1), (31.20)
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and this implies that ∂u
∂xj

∈ L2(RN+1) for j = 1, . . . , N (by using Fourier
transform, for example). Denoting the dual variables by (ξ, τ), the informa-
tion is equivalent to Fu, τ Fu, |ξ|2Fu ∈ L2(RN+1) (and therefore ξjFu ∈
L2(RN+1) for j = 1, . . . , N). One has

(1 + |τ | + |ξ|2)Fu ∈ L2(RN+1), and if one shows 1
1+|τ |+|ξ|2 ∈ Lp,∞(RN+1)

for some p ∈ (2,∞), then Fu ∈ Lq,2(RN+1) with 1
q = 1

2 + 1
p and

u ∈ Lq′,2(RN+1), (31.21)

the last property being due to the fact that 1 < q < 2 and F maps
L1(RN+1) into L∞(RN+1) and L2(RN+1) into itself, and by interpolation
it maps Lq,2(RN+1) into Lq′,2(RN+1). One has 1

1+|τ |+|ξ|2 ∈ L∞(RN+1), and
it is the behavior at ∞ that is interesting for obtaining the smallest value of
p, so that one checks for what value of p one has 1

|τ |+|ξ|2 ∈ Lp,∞(RN+1) and
one obtains the same information for the smaller function 1

1+|τ |+|ξ|2 . One uses
the homogeneity properties of the function, and for λ > 0 one computes

meas
{

(ξ, τ) | 1
|τ |+|ξ|2 ≥ λ

}
= C λ−1−(N/2)

with C = meas
{

(ξ, τ) | 1
|τ |+|ξ|2 ≥ 1

}
,

(31.22)

by using the change of coordinates τ = λ−1τ ′ and ξ = λ−1/2ξ′. This corre-
sponds to p = 1 + N

2 = N+2
2 , which gives q = 2(N+2)

N+6 and q′ = 2(N+2)
N−2 if

N ≥ 3, so one has

for N ≥ 3, one has u ∈ L2(N+2)/(N−2),2(RN+1) ∩ L2(RN+1),
for N = 2, one has u ∈ Lr(R3) for all r ∈ [2,∞),
for N = 1, one has u ∈ L∞(R2) ∩ L2(R2).

(31.23)

[Taught on Friday April 7, 2000.]
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