
3

Weak Solutions, Elliptic Problems
and Sobolev Spaces

3.1 Introduction

In Chapter 2 we discussed difference methods for the numerical treatment of
partial differential equations. The basic idea of these methods was to use infor-
mation from a discrete set of points to approximate derivatives by difference
quotients.

Now we start to discuss a different class of discretization methods: the
so-called ansatz methods. An ansatz method is characterized by prescribing
some approximate solution in a certain form. In general, this is done by deter-
mining the coefficients in a linear combination of a set of functions chosen
by the numerical analyst. One cannot then expect to get an exact solution of
the differential equation in all cases. Thus a possible strategy is to determine
the coefficients in a way that approximately satisfies the differential equation
(and perhaps some additional conditions).

For instance, one can require that the differential equation be satisfied
at a specified discrete set of points; this method is called collocation. It is,
however, much more popular to use methods that are based on a weak for-
mulation of the given problem. Methods of this type do not assume that the
differential equation holds at every point. Instead, they are based on a related
variational problem or variational equation. The linear forms defined by the
integrals in the variational formulation require the use of appropriate func-
tion spaces to guarantee, for instance, the existence of weak solutions. It turns
out that existence theorems for weak solutions are valid under assumptions
that are much more realistic than in the corresponding theorems for classical
solutions. Moreover, ansatz functions can have much less smoothness than,
e.g., functions used in collocation methods where the pointwise validity of the
differential equation is required.

As a first simple example let us consider the two-point boundary value
problem

−u′′(x) + b(x)u′(x) + c(x)u(x) = f(x) in Ω := (0, 1) , (1.1)
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u(0) = u(1) = 0 . (1.2)

Let b, c and f be given continuous functions. Assume that a classical solution
exists, i.e., a twice continuously differentiable function u that satisfies (1.1)
and (1.2). Then for an arbitrary continuous function v we have

∫

Ω

(−u′′ + bu′ + cu)v dx =
∫

Ω

fv dx. (1.3)

The reverse implication is also valid: if a function u ∈ C2(Ω̄) satisfies equation
(1.3) for all v ∈ C(Ω̄), then u is a classical solution of the differential equation
(1.1).

If v ∈ C1(Ω̄), then we can integrate by parts in (1.3) and obtain

−u′v |1x=0 +
∫

Ω

u′v′ dx +
∫

Ω

(bu′ + cu)v dx =
∫

Ω

fv dx.

Under the additional condition v(0) = v(1) = 0 this is equivalent to
∫

Ω

u′v′ dx +
∫

Ω

(bu′ + cu)v dx =
∫

Ω

fv dx. (1.4)

Unlike (1.1) or (1.3), equation (1.4) still makes sense if we know only that
u ∈ C1(Ω̄). But we have not yet specified a topological space in which map-
pings implicitly defined by a weak form of (1.1) such as (1.4) have desirable
properties like continuity, boundedness, etc. It turns out that Sobolev spaces,
which generalize Lp spaces to spaces of functions whose generalized derivatives
also lie in Lp, are the correct setting in which to examine weak formulations
of differential equations. The book [Ada75] presents an excellent general sur-
vey of Sobolev spaces. In Section 3.2 we shall give some basic properties of
Sobolev spaces that will allow us to analyse discretization methods—at least
in standard situations.

But first we explain the relationship of the simple model problem (1.1),
(1.2) to variational problems. Assume that b(x) ≡ 0 and c(x) ≥ 0. Define a
functional J by

J(u) :=
1
2

∫

Ω

(u′2 + cu2) dx −
∫

Ω

fu dx. (1.5)

Consider now the following problem: Find a function u ∈ C1(Ω̄) with u(0) =
u(1) = 0 such that

J(u) ≤ J(v) for all v ∈ C1(Ω̄) with v(0) = v(1) = 0 . (1.6)

For such problems a necessary condition for optimality is well known: the first
variation δJ(u, v) must vanish for arbitrarily admissible directions v (see, for
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instance, [Zei90]). This first variation is defined by δJ(u, v) := Φ′(0) where
Φ(t) := J(u + tv) for fixed u, v and real t.

For the functional J(·) defined by (1.5), one has

J(u + tv) =
1
2

∫

Ω

[(u′ + tv′)2 + c(u + tv)2] dx −
∫

Ω

f · (u + tv) dx ,

and consequently

Φ′(0) =
∫

Ω

u′v′ dx +
∫

Ω

c uv dx −
∫

Ω

fv dx.

Thus in the case b(x) ≡ 0, the condition δJ(u, v) = 0 necessary for optimality
in (1.6) is equivalent to the variational equation (1.4). This equivalence estab-
lishes a close connection between boundary value problems and variational
problems. The differential equation (1.1) is described as the Euler equation of
the variational problem (1.6). The derivation of Euler equations for general
variational problems that are related to boundary value problems is discussed
in [Zei90]. Later we shall discuss in more detail the role played by the condition
v(0) = v(1) = 0 in the formulation of (1.4).

Variational problems often appear when modelling applied problems in
the natural and technical sciences because in many situations nature follows
minimum or maximum laws such as the principle of minimum energy.

Next we consider a simple elliptic model problem in two dimensions. Let
Ω ⊂ R

2 be a simply connected open set with a (piecewise) smooth boundary
Γ . Let f : Ω̄ → R be a given function. We seek a twice differentiable function
u that satisfies

−∆u(ξ, η) = f(ξ, η) in Ω , (1.7)
u|Γ = 0. (1.8)

To derive a variational equation, we again take a continuous function v, mul-
tiply (1.7) by v and integrate:

−
∫

Ω

∆uv dx =
∫

Ω

fv dx.

If v ∈ C1(Ω̄) with v|Γ = 0, the application of an integral theorem (the two-
dimensional analogue of integration by parts—see the next section for details)
yields ∫

Ω

(
∂u

∂ξ

∂v

∂ξ
+

∂u

∂η

∂v

∂η

)
dx =

∫

Ω

fv dx. (1.9)

This is the variational equation derived from the boundary value problem
(1.7), (1.8). In the opposite direction, assuming u ∈ C2(Ω), we can infer from
(1.9) that u satisfies the Poisson equation (1.7).
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So far we have said nothing about the existence and uniqueness of solutions
in our new variational formulation of boundary value problems, because to
deal adequately with these topics it is necessary to work in the framework
of Sobolev spaces. In the following sections we introduce these spaces and
discuss not only existence and uniqueness of solutions to variational problems
but also the numerical approximation of these solutions by means of certain
ansatz functions.

3.2 Function Spaces for the Variational Formulation
of Boundary Value Problems

In the classical treatment of differential equations, the solution and certain of
its derivatives are required to be continuous functions. One therefore works
in the spaces Ck(Ω̄) that contain functions with continuous derivatives up
to order k on the given domain Ω, or in spaces where these derivatives are
Hölder continuous.

When the strong form (e.g. (1.7)) of a differential equation is replaced
by a variational formulation, then instead of pointwise differentiability we
need only ensure the existence of some integrals that contain the unknown
function as certain derivatives. Thus it makes sense to use function spaces
that are specially suited to this situation.

We start with some basic facts from functional analysis.
Let U be a linear (vector) space. A mapping ‖ · ‖ : U → R is called a norm

if it has the following properties:

i) ‖u‖ ≥ 0 for all u ∈ U, ‖u‖ = 0 ⇔ u = 0,

ii) ‖λu‖ = | λ | ‖u‖ for all u ∈ U, λ ∈ R,

iii) ‖u + v‖ ≤ ‖u‖ + ‖v‖ for all u, v ∈ U.

A linear space U endowed with a norm is called a normed space. A sequence
{uk} in a normed space is a Cauchy sequence if for each ε > 0 there exists a
number N(ε) such that

‖uk − ul‖ ≤ ε for all k, l ≥ N(ε) .

The next property is of fundamental importance both in existence the-
orems for solutions of variational problems and in proofs of convergence of
numerical methods. A normed space is called complete if every Cauchy se-
quence {uk} ⊂ U converges in U , i.e., there exists a u ∈ U with

lim
k→∞

‖uk − u‖ = 0.

Equivalently,
u = lim

k→∞
uk.
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Complete normed spaces are often called Banach spaces.
Let U , V be two normed spaces with norms ‖ · ‖U and ‖ · ‖V respectively.

A mapping P : U → V is continuous at u ∈ U if for any sequence {uk} ⊂ U
converging to u one has

lim
k→∞

Puk = Pu,

i.e.,
lim

k→∞
‖uk − u‖U = 0 ⇒ lim

k→∞
‖Puk − Pu‖V = 0.

A mapping is continuous if it is continuous at every point u ∈ U .
A mapping P : U → V is called linear if

P (λu + µv) = λPu + µPv for all u, v ∈ U, λ, µ ∈ R.

A linear mapping is continuous if there exists a constant M ≥ 0 such that

‖Pu‖ ≤ M‖u‖ for all u ∈ U.

A mapping f : U → R is usually called a functional. Consider the set of
all continuous linear functionals f : U → R. These form a normed space with
norm defined by

‖f‖∗ := sup
v �=0

|f(v)|
‖v‖ .

This space is in fact a Banach space. It is the dual space U∗ of U . When
f ∈ U∗ and u ∈ U we shall sometimes write 〈f, u〉 instead of f(u).

Occasionally it is useful to replace convergence in the normed space by
convergence in a weaker sense: if

lim
k→∞

〈f, uk〉 = 〈f, u〉 for all f ∈ U∗

for a sequence {uk} ⊂ U and u ∈ U , then we say that the sequence {uk}
converges weakly to u. It is standard to use the notation

uk ⇀ u for k → ∞

to denote weak convergence. If u = limk→∞ uk then uk ⇀ u, i.e. convergence
implies weak convergence, but the converse is false: a weakly convergent se-
quence is not necessarily convergent.

It is particularly convenient to work in linear spaces that are endowed with
a scalar product. A mapping (·, ·) : U ×U → R is called a (real-valued) scalar
product if U has the following properties:

i) (u, u) ≥ 0 for all u ∈ U, (u, u) = 0 ⇔ u = 0,

ii) (λu, v) = λ(u, v) for all u, v ∈ U, λ ∈ R,

iii) (u, v) = (v, u) for all u, v ∈ U,

iv) (u + v, w) = (u,w) + (v, w) for all u, v, w ∈ U.
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Given a scalar product, one can define an induced norm by ‖u‖ :=
√

(u, u).
But not all norms are induced by related scalar products.

A Banach space in which the norm is induced by a scalar product is called
a (real) Hilbert space. From the properties of the scalar product one can
deduce the useful Cauchy-Schwarz inequality:

|(u, v)| ≤ ‖u‖ ‖v‖ for all u, v ∈ U.

Continuous linear functionals on Hilbert spaces have a relatively simple struc-
ture that is important in many applications. It is stated in the next result.

Theorem 3.1 (Riesz). Let f : V → R be a continuous linear functional on
a Hilbert space V . Then there exists a unique w ∈ V such that

(w, v) = f(v) for all v ∈ V.

Moreover, one has ‖f‖∗ = ‖w‖.
The Lebesgue spaces of integrable functions are the starting point for the

construction of the Sobolev spaces. Let Ω ⊂ R
n (for n = 1, 2, 3) be a bounded

domain (i.e., open and connected) with boundary Γ := ∂Ω. Let p ∈ [1,+∞).
The class of all functions whose p-th power is integrable on Ω is denoted by

Lp(Ω) :=
{

v :
∫

Ω

|v(x)|p dx < +∞
}

.

Furthermore

‖v‖Lp(Ω) :=
[ ∫

Ω

|v(x)|p dx

]1/p

is a norm on Lp. It is important to remember that we work with Lebesgue
integrals (see, e.g., [Wlo87]), so all functions that differ only on a set of measure
zero are identified. It is in this sense that ‖v‖ = 0 implies v = 0. Moreover,
the space Lp(Ω) is complete, i.e., is a Banach space.

In the case p = 2 the integral

(u, v) :=
∫

Ω

u(x) v(x) dx

defines a scalar product, so L2(Ω) is a Hilbert space.
The definition of these spaces can be extended to the case p = ∞ with

L∞(Ω) :=
{

v : ess sup
x∈Ω

|v(x)| < +∞
}

and associated norm

‖v‖L∞(Ω) := ess sup
x∈Ω

|v(x)|.



3.2 Adapted Function Spaces 131

Here ess sup denotes the essential supremum, i.e., the lowest upper bound
over Ω excluding subsets of Ω of Lebesgue measure zero.

To treat differential equations, the next step is to introduce derivatives
into the definitions of suitable spaces. In extending the Lebesgue spaces to
Sobolev spaces one needs generalized derivatives, which we now describe. For
the reader familiar with derivatives in the sense of distributions this introduc-
tion will be straightforward.

Denote by clV A the closure of a subset A ⊂ V with respect to the topology
of the space V . For v ∈ C(Ω̄) the support of v is then defined by

supp v := clRn {x ∈ Ω : v(x) 
= 0}.

For our bounded domain Ω, set

C∞
0 (Ω) := {v ∈ C∞(Ω) : supp v ⊂ Ω }.

In our further considerations the role of integration by parts in several dimen-
sions is very important. For instance, for arbitrary u ∈ C1(Ω̄) and v ∈ C∞

0 (Ω)
one has ∫

Ω

∂u

∂xi
v dx =

∫

Γ

uv cos(n, ei) ds −
∫

Ω

u
∂v

∂xi
dx

where ei is the unit vector in the ith coordinate direction and n is the outward-
pointing unit vector normal to Γ . Taking into account that v|Γ = 0 we get

∫

Ω

u
∂v

∂xi
dx = −

∫

Ω

∂u

∂xi
v dx. (2.1)

This identity is the starting point for the generalization of standard derivatives
on Lebesgue spaces.

First we need more notation. To describe partial derivatives one uses a
multi-index α := (α1, . . . , αn) where each αi is a non-negative integer. Set
|α| =

∑
i αi. We introduce

Dαu :=
∂|α|

∂xα1
1 · · ·xαn

n
u

for the derivative of order |α| with respect to the multi-index α.
Now, recalling (2.1), we say that an integrable function u is in a general-

ized sense differentiable with respect to the multi-index α if there exists an
integrable function w with

∫

Ω

uDαv dx = (−1)|α|
∫

Ω

wv dx for all v ∈ C∞
0 (Ω). (2.2)

The function Dαu := w is called the generalized derivative of u with respect
to the multi-index α.
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Applying this definition to each first-order coordinate derivative, we obtain
a generalized gradient ∇u. Furthermore, if for a componentwise integrable
vector-valued function u there exists a integrable function z with

∫

Ω

u∇v dx = −
∫

Ω

zv dx for all v ∈ C∞
0 (Ω),

then we call z the generalized divergence of u and we write divu := z.
Now we are ready to define the Sobolev spaces. Let l be a non-negative

integer. Let p ∈ [2,∞). Consider the subspace of all functions from Lp(Ω)
whose generalized derivatives up to order l exist and belong to Lp(Ω). This
subspace is called the Sobolev space W l

p(Ω) (Sobolev, 1938). The norm in
W l

p(Ω) is chosen to be

‖u‖W l
p(Ω) :=

[ ∫

Ω

∑
|α|≤l

|[Dαu](x)|p dx

]1/p

. (2.3)

Starting from L∞(Ω), the Sobolev space W l
∞(Ω) is defined analogously.

Today it is known that Sobolev spaces can be defined in several other
equivalent ways. For instance, Meyers and Serrin (1964) proved the following
(see [Ada75]):

For 1 ≤ p < ∞ the space C∞(Ω) ∩ W l
p(Ω) is dense in W l

p(Ω). (2.4)

That is, for these values of p the space W l
p(Ω) can be generated by completing

the space C∞(Ω) with respect to the norm defined by (2.3). In other words,

W l
p(Ω) = clW l

p(Ω) C∞(Ω).

This result makes clear that one can approximate functions in Sobolev spaces
by functions that are differentiable in the classical sense. Hence, various de-
sirable properties of Sobolev spaces can be proved by first verifying them for
classical functions and then using the above density identity to extend them
to Sobolev spaces.

When p = 2 the spaces W l
p(Ω) are Hilbert spaces with scalar product

(u, v) =
∫

Ω

( ∑
|α|≤l

DαuDαv
)

dx. (2.5)

It is standard to use the notation H l(Ω) in this case, i.e., H l(Ω) = W l
2(Ω). In

the treatment of second-order elliptic boundary value problems the Sobolev
spaces H1(Ω) play a fundamental role, while for fourth-order elliptic problems
one uses the spaces H2(Ω).

If additional boundary conditions come into the game, then additional
information concerning certain subspaces of these Sobolev spaces is required.
Let us first introduce the spaces
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o
W l

p(Ω) := clW l
p(Ω)C

∞
0 (Ω).

In the case p = 2 these spaces are Hilbert spaces with the same scalar product
as in (2.5), and they are denoted by H l

0(Ω). When l = 1 this space can be
considered as a subspace of H1(Ω) comprising those functions that vanish (in
a certain sense) on the boundary Γ ; we shall explain this in detail later in our
discussion of traces following following Lemma 3.3. The standard notation for
the dual spaces of the Sobolev spaces H l

0(Ω) is

H−l(Ω) :=
(
H l

0(Ω)
)∗

. (2.6)

In some types of variational inequalities—for instance, in mixed formula-
tions of numerical methods—we shall also need special spaces of vector-valued
functions. As an example we introduce

H(div;Ω) := {u ∈ L2(Ω)n : divu ∈ L2(Ω) } (2.7)

with

‖u‖2
div,Ω := ‖u‖2

H(div;Ω) :=
n∑

i=1

‖ui‖2
L2(Ω) + ‖divu‖2

L2(Ω). (2.8)

Now we begin to use Sobolev spaces in the weak formulation of boundary
value problems. Our first example is the Poisson equation (1.7) with homo-
geneous Dirichlet boundary conditions (1.8). The variational problem related
to that example can be stated precisely in the following way:
Find u ∈ H1

0 (Ω) such that

∫

Ω

( ∂u

∂x1

∂v

∂x1
+

∂u

∂x2

∂v

∂x2

)
dx =

∫

Ω

fv dx for all v ∈ H1
0 (Ω). (2.9)

The derivatives here are generalized derivatives and the choice of spaces is
made to ensure the existence of all integrals. Every classical solution of the
Dirichlet problem (1.7), (1.8) satisfies the variational equation (2.9), as we
already saw in (1.9), using integration by parts. But is a weak solution in
the sense of (2.9) also a classical solution? To answer this question we need
further properties of Sobolev spaces. In particular we need to investigate the
following:

• What classical differentiability properties does the weak solution of the
variational problem (2.9) possess?

• In what sense does the weak solution satisfy the boundary conditions?

To address these issues one needs theorems on regularity, embedding and
traces for Sobolev spaces, which we now discuss.

The validity of embedding and trace theorems depends strongly on the
properties of the boundary of the given domain. It is not our aim to discuss
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here minimal boundary assumptions for these theorems, as this is a delicate
task; results in many cases can be found in [Ada75].

Here we assume generally—as already described in Chapter 1.3—that for
every point of the boundary ∂Ω there exists a local coordinate system in which
the boundary corresponds to some hypersurface with the domain Ω lying on
one side of that surface. The regularity class of the boundary (and domain)
is defined by the smoothness of the boundary’s parametrization in this coor-
dinate system: we distinguish between Lipschitz, Ck and C∞ boundaries and
domains.
Many other characterizations of boundaries are also possible.

In most practical applications it is sufficient to consider Lipschitz domains.
In two dimensions, a polygonal domain is Lipschitz if all its interior angles
are less than 2π, i.e., if the domain contains no slits.

Let U , V be normed spaces with norms ‖ · ‖U and ‖ · ‖V . We say the space
U is continuously embedded into V if u ∈ V for all u ∈ U and moreover there
exists a constant c > 0 such that

‖u‖V ≤ c ‖u‖U for all u ∈ U. (2.10)

Symbolically, we write U ↪→ V for the continuous embedding of U into V .
The constant c in inequality (2.10) is called the embedding constant .

The obvious embedding

W l
p(Ω) ↪→ Lp(Ω) for every integer l ≥ 0

is a direct consequence of the definitions of the spaces W l
p(Ω) and Lp(Ω) and

their norms. It is more interesting to study the imbedding relations between
different Sobolev spaces or between Sobolev spaces and the classical spaces
Ck(Ω̄) and Ck,β(Ω̄) with β ∈ (0, 1). The corresponding norms are

||v||Ck(Ω̄) =
∑

|α|≤k

max
x∈Ω̄

|[Dαv](x)|,

||v||Ck,β(Ω̄) = ||v||Ck(Ω̄) +
∑

|α|=k

|Dαv|Cβ(Ω̄)

with the Hölder seminorm

|v|Cβ(Ω̄) = inf{ c : |v(x) − v(y)| ≤ c|x − y|β for all x, y ∈ Ω̄ }.

Then one has the following important theorem (see [Ada75, Wlo87]):

Theorem 3.2 (Embedding theorem). Let Ω ⊂ R
n be a bounded domain

with Lipschitz boundary. Assume that 0 ≤ j ≤ k, 1 ≤ p, q < +∞ and 0 <
β < 1.

i) For k − j ≥ n
(1
p − 1

q
)

one has the continuous embeddings

W k
p (Ω) ↪→ W j

q (Ω),
o

W k
p (Ω) ↪→ o

W j
q (Ω).
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ii) For k − j − β > n
p one has the continuous embeddings

W k
p (Ω) ↪→ Cj,β(Ω̄).

Note that the definition of the Hölder spaces Cj,β(Ω̄) shows that they are
continuously embedded into Cj(Ω̄), i.e.,

Cj,β(Ω̄) ↪→ Cj(Ω̄).

Next we study the behaviour of restrictions of functions u ∈ W l
p(Ω) to the

boundary Γ , which is a key step in understanding the treatment of boundary
conditions in weak formulations. The following lemma from [Ada75] is the
basic tool.

Lemma 3.3 (Trace lemma). Let Ω be a bounded domain with Lipschitz
boundary Γ . Then there exists a constant c > 0 such that

‖u‖Lp(Γ ) ≤ c‖u‖W 1
p (Ω) for all u ∈ C1(Ω̄).

Lemma 3.3 guarantees the existence of a linear continuous mapping

γ : W 1
p (Ω) → Lp(Γ )

which is called the trace mapping. The image of W 1
p (Ω) under this mapping

is a subspace of Lp(Γ ) that is a new function space defined on the boundary
Γ . For us the case p = 2 is particularly important; we then obtain

H1/2(Γ ) := {w ∈ L2(Γ ) : there exists a v ∈ H1(Ω) with w = γv }.

It is possible to define a norm on H1/2(Γ ) by

‖w‖H1/2(Γ ) = inf{ ‖v‖H1(Ω) : v ∈ H1(Ω), w = γv }.

The space dual to H1/2(Γ ) is denoted by H−1/2(Γ ), and its norm is given by

‖g‖H−1/2(Γ ) = sup
w∈H1/2(Γ )

|g(w)|
‖w‖H1/2(Γ )

.

The relationship between the spaces H1(Ω) and H1/2(Γ ) allows a character-
ization of the norms in H1/2(Γ ) and H−1/2(Γ ) by means of suitably defined
variational inequalities; see [BF91].

Taking into account the definition of the spaces
o

W l
p(Ω), Lemma 3.3 implies

that
γu = 0 for all u ∈ o

W 1
p (Ω)

and
γDαu = 0 for all u ∈ o

W l
p(Ω) and |α| ≤ l − 1.
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In handling boundary value problems, we usually need not only the norms
‖ · ‖W l

p(Ω) defined by (2.3) but also the associated seminorms

|u|W s
p (Ω) :=

[ ∫

Ω

∑
|α| =s

|[Dαu](x)|pdx

]1/p

.

It is clear that these seminorms can be estimated by the foregoing norms:

|v|W s
p (Ω) ≤ ‖v‖W l

p(Ω for all v ∈ W l
p(Ω) and 0 ≤ s ≤ l. (2.11)

Is a converse inequality true (at least for certain v)? Here the following
result plays a fundamental role.

Lemma 3.4. Let Ω ⊂ R
n be a bounded domain. Then there exists a constant

c > 0 such that

‖v‖L2(Ω) ≤ c|v|W 1
2 (Ω) for all v ∈ H1

0 (Ω). (2.12)

Inequality (2.12) is known as the Friedrichs inequality. Once again a proof is
in [Ada75].

Remark 3.5. The smallest constant c in Friedrichs’ inequality can be charac-
terized as the reciprocal of the minimal eigenvalue λ of the problem

−∆u = λu on Ω, u|∂Ω=0.

For parallelepipeds Ω the value of this eigenvalue is known. Furthermore, the
eigenvalue does not increase in value if the domain is enlarged. Consequently
in many cases one can compute satisfactory bounds for the constant in (2.12).

A detailed discussion of the values of constants in many fundamental in-
equalities related to Sobolev spaces can be found in the book [Mik86]. �
From Lemma 3.4 and (2.11) it follows that

c1‖v‖W 1
2 (Ω) ≤ |v|W 1

2 (Ω) ≤ ‖v‖W 1
2 (Ω) for all v ∈ H1

0 (Ω) (2.13)

for some constant c1 > 0. Therefore the definition

‖v‖ := |v|W 1
2 (Ω)

is a new norm on H1
0 (Ω), which is equivalent to the H1 norm. This norm is

often used as the natural norm on H1
0 (Ω). It is induced by the scalar product

(u, v) :=
∫

Ω

∑
|α|=1

DαuDαv dx.

Using this scalar product, the unique solvability of the weak formulation of the
Poisson equation with homogeneous boundary conditions follows immediately
from Riesz’s theorem if the linear functional defined by
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v �→
∫

Ω

fv dx

is continuous on H1
0 (Ω). This is true when f ∈ L2(Ω), for instance.

Based on the following inequalities it is possible ([GGZ74], Lemma 1.36)
to define other norms that are equivalent to ‖ · ‖W 1

2 (Ω):

Lemma 3.6. Let Ω ⊂ R
n be a bounded Lipschitz domain. Assume also that

Ω1 is a subset of Ω with positive measure and Γ1 a subset of Γ with positive
(n − 1)-dimensional measure. Then for u ∈ H1(Ω) one has

‖u‖2
L2(Ω) ≤ c

⎧⎨
⎩|u|21,Ω +

( ∫

Ω1

u

)2
⎫⎬
⎭ ,

‖u‖2
L2(Ω) ≤ c

⎧⎨
⎩|u|21,Ω +

( ∫

Γ1

u

)2
⎫⎬
⎭ .

These types of inequalities are proved for the more general W 1,p(Ω) case in
[GGZ74]. In the special case Ω1 = Ω the first inequality is called the Poincaré
inequality. The second inequality generalizes Friedrichs’ inequality.

To simplify the notation, we shall write in future

|v|l,p,Ω := |v|W l
p(Ω) and |v|l,Ω := |v|W l

2(Ω).

Next we consider the technique of integration by parts and study its ap-
plication to the weak formulation of boundary value problems.

Lemma 3.7 (integration by parts). Let Ω ⊂ R
n be a bounded Lipschitz

domain. Then one has∫

Ω

∂u

∂xi
v dx =

∫

Γ

uv cos(n, ei) ds −
∫

Ω

u
∂v

∂xi
dx

for arbitrary u, v ∈ C1(Ω̄). Here n is the outward-pointing unit vector normal
to Γ and ei is the unit vector in the ith coordinate direction.

Hence one obtains Green’s formula:
∫

Ω

∆uv dx =
∫

Γ

∂u

∂n
v ds−

∫

Ω

∇u∇v dx for all u ∈ H2(Ω), v ∈ H1(Ω) (2.14)

—first apply integration by parts to classical differentiable functions then
extend the result to u ∈ H2(Ω) and v ∈ H1(Ω) by a density argument based
on (2.4).

Here and subsequently the term ∇u∇v denotes a scalar product of two
vectors; it could be written more precisely as (∇u)T∇v. In general we tend
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to use the simplified form, returning to the precise form only if the simplified
version could lead to confusion.

The validity of Green’s formula depends strongly on the geometry of Ω.
In general we shall consider only bounded Lipschitz domains so that (2.14)
holds. For its validity on more general domains, see [Wlo87].

Now we resume our exploration of Poisson’s equation with homogeneous
Dirichlet boundary conditions:

−∆u = f in Ω, u|Γ = 0 . (2.15)

Every classical solution u of (2.15) satisfies, as we have seen, the variational
equation ∫

Ω

∇u∇v dx =
∫

Ω

fv dx for all v ∈ H1
0 (Ω). (2.16)

If one defines the mapping a(·, ·) : H1
0 (Ω) × H1

0 (Ω) → R by

a(u, v) :=
∫

Ω

∇u∇v dx,

then Lemma 3.4 ensures the existence of a constant γ > 0 such that

a(v, v) ≥ γ‖v‖2
H1

0 (Ω) for all u, v ∈ H1
0 (Ω).

This inequality is of fundamental importance in proving the existence of a
unique solution u ∈ H1

0 (Ω) of the variational equation (2.16) for each f ∈
L2(Ω). In the next section we shall present a general existence theory for
variational equations and discuss conditions sufficient for guaranteeing that
weak solutions are also classical solutions.

If one reformulates a boundary value problem as a variational equation
in order to define a weak solution, the type of boundary condition plays an
important role. To explain this basic fact, we consider the following example:

−∆u + cu = f in Ω ,
u = g on Γ1 ,

∂u
∂n

+ pu = q on Γ2.
(2.17)

Here Γ1 and Γ2 are subsets of the boundary with Γ1 ∩ Γ2 = ∅, Γ1 ∪ Γ2 = Γ
and the given functions c, f , g, p, q are continuous (say) with c ≥ 0 in Ω. As
usual, multiply the differential equation by an arbitrary function v ∈ H1(Ω),
then integrate over Ω and apply integration by parts to get

∫

Ω

(∇u∇v + c uv) dx −
∫

Γ

∂u

∂n
v ds =

∫

Ω

fv dx.

Taking into account the boundary conditions for u we have
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∫

Ω

(∇u∇v + c uv) dx +
∫

Γ2

(pu − q)v ds −
∫

Γ1

∂u

∂n
v ds =

∫

Ω

fv dx.

On Γ1 we have no information about the normal derivative of u. Therefore
we restrict v to lie in V := { v ∈ H1(Ω) : v|Γ1 = 0 }. Then we obtain the
variational equation
∫

Ω

(∇u∇v + c uv) dx +
∫

Γ2

(pu − q)v ds =
∫

Ω

fv dx for all v ∈ V . (2.18)

Of course, we require u to satisfy u ∈ H1(Ω) and u|Γ1 = g. The variational
equation (2.18) then defines weak solutions of our example (2.17). If the weak
solution has some additional smoothness, then it is also a classical solution:

Theorem 3.8. Let u ∈ H1(Ω) with u|Γ1 = g be a solution of the variational
equation (2.18). Moreover, let u be smooth: u ∈ C2(Ω̄). Then u is a solution
of the boundary value problem (2.17).

Proof: Taking v|Γ1 = 0 into account, Green’s formula applied to (2.18) yields
∫

Ω

(∆u+c u)v dx+
∫

Γ2

(
∂u

∂n
+ pu − q

)
v ds =

∫

Ω

fv dx for all v ∈ V. (2.19)

Because H1
0 (Ω) ⊂ V it follows that
∫

Ω

(∆u + c u)v dx =
∫

Ω

fv dx for all v ∈ H1
0 (Ω).

Hence, using a well-known lemma of de la Vallée-Poussin, one obtains

−∆u + cu = f in Ω.

Now (2.19) implies that
∫

Γ2

(
∂u

∂n
+ pu − q

)
v ds = 0 for all v ∈ V.

Again we can conclude that

∂u

∂n
+ pu = q on Γ2. (2.20)

The remaining condition u|Γ1 = g is already satisfied by hypothesis. This is
a so-called essential boundary condition that does not affect the variational
equation but must be imposed directly on the solution itself.
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Remark 3.9. In contrast to the essential boundary condition, the condition
(2.20) follows from the variational equation (2.18) so it is not necessary to
impose it explicitly on u in the variational formulation of the problem. Observe
that the weak form of the boundary value problem was influenced by (2.20).
Boundary conditions such as (2.20) are called natural boundary conditions.
�

Remark 3.10. Let A be a positive definite matrix. Consider the differential
equation

−div (A grad u) = f in Ω.

Integration by parts gives

−
∫

Ω

div (A grad u) v dx = −
∫

Γ

n · (A grad u) v ds +
∫

Ω

grad v · (A grad u) dx.

In this case the natural boundary conditions contain the so-called conormal
derivative n · (A grad u) instead of the normal derivative ∂u

∂n
that we met in

the special case of the Laplacian (where A is the identity matrix). �

As we saw in Chapter 2, maximum principles play an important role in
second-order elliptic boundary value problems. Here we mention briefly that
even for weak solutions one can have maximum principles. For instance, the
following weak maximum principle (see [GT83]) holds:

Lemma 3.11. Let Ω ⊂ R
n be a bounded Lipschitz domain. If u ∈ H1

0 (Ω)
satisfies the variational inequality

∫

Ω

∇u∇v dx ≥ 0 for all v ∈ H1
0 (Ω) with v ≥ 0,

then u ≥ 0.

Here u ≥ 0 and v ≥ 0 are to be understood in the L2 sense, i.e., almost
everywhere in Ω.

Exercise 3.12. Let Ω = {x ∈ R
n : |xi| < 1 , i = 1, . . . , n }. Prove:

a) The function defined by f(x) = |x1| has on Ω the generalized derivatives

∂f

∂x1
= sign(x1),

∂f

∂xj
= 0 (j 
= 1).

b) The function defined by f(x) = sign(x1) does not have a generalized
derivative ∂f/∂x1 in L2.

Exercise 3.13. Prove: If u : Ω → R has the generalized derivatives v =
Dαu ∈ L2(Ω) and v the generalized derivatives w = Dβv ∈ L2(Ω), then
w = Dα+βu.
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Exercise 3.14. Let Ω ⊂ R
n be a bounded domain with 0 ∈ Ω. Prove that

the function defined by u(x) = ||x||σ2 has first-order generalized derivatives in
L2(Ω) if σ = 0 or 2σ + n > 2.

Exercise 3.15. Let Ω = (a, b) ∈ R. Prove that every function u ∈ H1(Ω) is
continuous, and moreover u belongs to the Hölder space C1/2(Ω).

Exercise 3.16. Let Ω = { (x, y) ∈ R
2 : x2 + y2 < r2

0 } with r0 < 1 . Deter-
mine if the function

f(x, y) =

(
ln

1√
x2 + y2

)k

, where k < 1/2,

is continuous in Ω. Is f ∈ H1(Ω)?

Exercise 3.17. Consider the space of all continuous functions on the interval
[a, b]. Prove that the norms

||f ||1 = max
x∈[a,b]

|f(x)| and ||f ||2 =
∫ b

a

|f(x)|dx

are not equivalent.

Exercise 3.18. Let Ω ⊂ [a1, b1] × · · · × [an, bn] be a convex domain. Let
v ∈ H1

0 (Ω). Prove the Friedrichs inequality
∫

Ω

v2 ≤ γ

∫
Ω

|∇v|2 with γ =
n∑

k=1

(bk − ak)2 .

Exercise 3.19. Let Ω ⊂ R
n. Let u ∈ Hk(Ω) for some integer k. For which

dimensions n does Sobolev’s embedding theorem guarantee that (i) u (ii) ∇u
is continuous?

Exercise 3.20. a) Let Ω = (0, 1) , u(x) = xα. Use this example to show that
it is impossible to improve the continuous embedding H1(Ω) ↪→ C1/2(Ω) to
H1(Ω) ↪→ Cλ(Ω) with λ > 1/2.
b) Investigate for Ω ⊂ R

2 whether or not the embedding H1(Ω) ↪→ L∞(Ω)
holds.

Exercise 3.21. Let Ω ⊂ R
n with 0 ∈ Ω. Does the mapping

g �→ 〈f, g〉 = g(0) for g ∈ H1
0 (Ω)

define a continuous linear functional f on H1
0 (Ω)? If yes, determine ||f ||∗.

Exercise 3.22. Consider the boundary value problem

−u′′ = f on (0, 1), u(−1) = u(1) = 0

with f the δ distribution. How one can define the problem correctly in a weak
sense? Determine the exact solution!
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Exercise 3.23. Consider the boundary value problem

−(a(x)u′)′ = 0 on (0, 1), u(−1) = 3 , u(1) = 0

with

a(x) =
{

1 for − 1 ≤ x < 0,
0.5 for 0 ≤ x ≤ 1.

Formulate the related variational equation and solve the problem exactly.

3.3 Variational Equations and Conforming
Approximation

In the previous section we described the relationship between an elliptic
boundary value problem and its variational formulation in the case of the
Poisson equation with homogeneous Dirichlet boundary conditions. Before we
present an abstract framework for the analysis of general variational equa-
tions, we give weak formulations for some other standard model problems.

Let Ω ⊂ R
2 with Γ = ∂Ω. We consider, for a given sufficiently smooth

function f , the boundary value problem

∂4

∂x4 u(x, y) + 2 ∂4

∂x2 ∂y2 u(x, y) + ∂4

∂y4 u(x, y) = f(x, y) in Ω

u|Γ = ∂
∂n

u|Γ = 0 .

(3.1)

This problem models the behaviour of a horizontally clamped plate under
some given load distribution. Thus the differential equation in (3.1) is often
called the plate equation. In terms of the Laplacian we have equivalently

∆2u = f in Ω,

u|Γ = ∂
∂n

u|Γ = 0.

Now we formulate this problem weakly. Taking into account the boundary
conditions, we apply Green’s formula twice to obtain

∫

Ω

∆2u v dx =
∫

Γ

∂

∂n
(∆u) v ds −

∫

Ω

∇(∆u)∇v dx

= −
∫

Γ

∆u
∂v

∂n
ds +

∫

Ω

∆u∆v dx

=
∫

Ω

∆u∆v dx for all u ∈ H4(Ω), v ∈ H2
0 (Ω).

Therefore, the weak formulation of the given problem (3.1) reads as follows:
Find u ∈ H2

0 (Ω) such that
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∫

Ω

∆u∆v dx =
∫

Ω

fv dx for all v ∈ H2
0 (Ω). (3.2)

With the abbreviations V := H2
0 (Ω) and

a(u, v) :=
∫

Ω

∆u∆v dx, (f, v) :=
∫

Ω

fv dx for all u, v ∈ V,

the variational equation (3.2) can be written in the abstract form

a(u, v) = (f, v) for all v ∈ V.

Using Friedrichs’ inequality one can show that there exists some constant
c > 0 such that

c ‖v‖2
H2(Ω) ≤ a(v, v) for all v ∈ H2

0 (Ω).

This property is critical in the general existence theory for the weak solution
of (3.2), as we shall see shortly in the Lax-Milgram lemma.

Remark 3.24. Up to this point in the plate problem, we considered the bound-
ary conditions

u|Γ =
∂

∂n
u|Γ = 0 ,

which correspond to a clamped plate. Both of these conditions are essential
boundary conditions. If instead we study a simply supported plate, whose
boundary conditions are

u|Γ = 0 and ∆u|Γ = φ ,

then the standard technique produces the weak formulation

a(u, v) = (f, v) +
∫

Γ

φ
∂v

∂n

with u, v ∈ H2(Ω) ∩ H1
0 (Ω). This means that the first boundary condition is

essential but the second is natural. Of course, in practical applications still
other boundary conditions are important and in each case a careful study is
required to classify each condition. �

Our last model problem plays an important role in fluid mechanics. Con-
sider a domain Ω ⊂ R

n for n = 2 or 3 and given functions fi : Ω → R, i =
1, . . . , n. We seek solutions of the following system of partial differential equa-
tions with unknowns ui : Ω → R for i = 1, . . . , n and p : Ω → R:

−∆ui + ∂p
∂xi

= fi in Ω, i = 1, . . . , n,

n∑
i=1

∂ui
∂xi

= 0,

ui|Γ = 0, i = 1, . . . , n.

(3.3)
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This is the so-called Stokes problem. In fluid mechanics, the quantities ui

denote the components of the velocity field while p represents the pressure.
Let u = (u1, .., un) denote a vector-valued function. Let us choose the

function space

V = {u ∈ H1
0 (Ω)n : divu = 0 } ⊂ H(div;Ω).

Then applying our standard technique (multiplication, integration, integration
by parts) and adding all the resulting equations yields the following weak
formulation of (3.3):
Find some u ∈ V with

n∑
i=1

∫

Ω

∇ui∇vi dx =
n∑

i=1

∫

Ω

fivi dx for all v ∈ V. (3.4)

It is remarkable that the pressure p has disappeared: integration by parts in
the corresponding term gives 0 because div v = 0. In the theory of mixed
methods the pressure can be interpreted as a dual quantity; see Chapter 4.6.
Alternative weak formulations of the Stokes problem are also possible.

If we introduce

a(u, v) :=
n∑

i=1

∫

Ω

∇ui∇vi dx and f(v) :=
n∑

i=1

∫

Ω

fivi dx for all u, v ∈ V,

then the weak formulation (3.4) of the Stokes problem can also be written in
the form

a(u, v) = f(v) for all v ∈ V. (3.5)

Now we are ready to present an abstract theory encompassing (2.16), (3.2)
and (3.5). The abstract setting allows us to characterize clearly those proper-
ties of variational equations that guarantee the existence of a unique solution.
Then in every concrete situation one has only to check these properties.

Let V be a given Hilbert space with scalar product (·, ·) and corresponding
norm ‖ · ‖. Furthermore, let there be given a mapping a : V × V → R with
the following properties:

i) for arbitrary u ∈ V , both a(u, ·) and a(·, u) define linear functionals on V ;
ii) there exists a constant M > 0 such that

|a(u, v)| ≤ M‖u‖‖v‖ for all u, v ∈ V ;

iii) there exists a constant γ > 0 such that

a(u, u) ≥ γ‖u‖2 for all u ∈ V.

A mapping a(·, ·) satisfying i) and ii) is called a continuous bilinear form on
V . Property ii) guarantees the boundedness of the bilinear form. The essential
property iii) is called V -ellipticity.

The existence of solutions of variational equations is ensured by the
following fundamental result.
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Lemma 3.25 (Lax-Milgram). Let a(·, ·) : V × V → R be a continuous,
V -elliptic bilinear form. Then for each f ∈ V ∗ the variational equation

a(u, v) = f(v) for all v ∈ V (3.6)

has a unique solution u ∈ V . Furthermore, the a priori estimate

‖u‖ ≤ 1
γ
‖f‖∗. (3.7)

is valid.

Proof: First we show that the solution of (3.6) is unique. Suppose that
u ∈ V and ũ ∈ V are both solutions. Then the linearity of a(·, v) implies that

a(ũ − u, v) = 0 for all v ∈ V.

Choosing v := ũ−u we get a(v, v) = 0, which by V -ellipticity implies that v =
0, as desired. Note that V -ellipticity, however, is stronger than the condition
“a(v, v) = 0 implies v = 0”.

To prove the existence of a solution to (3.6) we use Banach’s fixed-point
theorem. Therefore, we need to choose a contractive mapping that has as a
fixed point a solution of (3.6).

For each y ∈ V the assumptions i) and ii) for the bilinear form guarantee
that

a(y, ·) − f ∈ V ∗.

Hence, Riesz’s theorem ensures the existence of a solution z ∈ V of

(z, v) = (y, v) − r[a(y, v) − f(v)] for all v ∈ V (3.8)

for each real r > 0. Now we define the mapping Tr : V → V by

Try := z

and study its properties—especially contractivity. The relation (3.8) implies

(Try − Trw, v) = (y − w, v) − r a(y − w, v) for all v, w ∈ V. (3.9)

Given p ∈ V , by applying Riesz’s theorem again we define an auxiliary linear
operator S : V → V by

(Sp, v) = a(p, v) for all v ∈ V. (3.10)

Property ii) of the bilinear form implies that

‖Sp‖ ≤ M ‖p‖ for all p ∈ V. (3.11)

The definition of the operator S means that (3.9) can be rewritten as
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(Try − Trw, v) = (y − w − rS(y − w), v) for all v, w ∈ V.

This allows us to investigate whether Tr is contractive:

‖Try − Trw‖2 = (Try − Trw, Try − Trw)

= (y − w − rS(y − w), y − w − rS(y − w))

= ‖y − w‖2 − 2r(S(y − w), y − w) + r2(S(y − w), S(y − w)).

By (3.10) and (3.11) this yields

‖Try − Trw‖2 ≤ ‖y − w‖2 − 2ra(y − w, y − w) + r2M2‖y − w‖2.

Finally, invoking the V -ellipticity of a(·, ·) we get

‖Try − Trw‖2 ≤ (1 − 2rγ + r2M2)‖y − w‖2 for all y, w ∈ V.

Consequently the operator Tr : V → V is contractive if 0 < r < 2γ/M2.
Choose r = γ/M2. Now Banach’s fixed-point theorem tells us that there

exists u ∈ V with Tru = u. Since r > 0, the definition (3.8) of Tr then implies
that

a(u, v) = f(v) for all v ∈ V. (3.12)

The a priori estimate (3.7) is an immediate consequence of the ellipticity
of a(·, ·): choose v = u in (3.6).

We remark that in the case where a(·, ·) is symmetric, the existence of
u in the Lax-Milgram lemma follows directly from Riesz’s theorem. In the
symmetric case, moreover, there is a close relationship between variational
equations and variational problems:

Lemma 3.26. In addition to the assumptions of Lemma 3.25, suppose that
a(·, ·) is symmetric, i.e.,

a(v, w) = a(w, v) for all v, w ∈ V.

Then u ∈ V is a solution of the variational problem

min
v∈V

J(v), where J(v) :=
1
2
a(v, v) − f(v) for v ∈ V, (3.13)

if and only if u is a solution of the variational equation (3.6).

Proof: The symmetry of the bilinear form a(·, ·) implies that

a(w,w) − a(u, u) = a(w + u,w − u)

= 2a(u,w − u) + a(w − u,w − u) for u,w ∈ V.
(3.14)
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First we shall show that (3.6) is a sufficient condition for the optimality of u
in the variational problem (3.13). From (3.14) one has

J(w) = 1
2a(w,w) − f(w)

= 1
2a(u, u) − f(u) + a(u,w − u)

− f(w − u) + 1
2a(w − u,w − u).

(3.15)

Taking v := w − u in (3.6) and using property iii) of the bilinear form a(·, ·)
leads to

J(w) ≥ J(u) for all w ∈ V ;

that is, u is a solution of the variational problem (3.13).

We prove the converse implication indirectly. Given some u ∈ V , assume
that there exists v ∈ V with

a(u, v) 
= f(v).

Because V is a linear space we can assume without loss of generality that in
fact

a(u, v) < f(v). (3.16)

Now set w := u + tv with a real parameter t > 0.
Definition (3.13) implies, using standard properties of a(·, ·) and f , that

J(w) = J(u) + t[a(u, v) − f(v)] + t2
1
2
a(v, v).

By (3.16) we can choose t > 0 in such a way that

J(w) < J(u).

That is, u cannot be an optimal solution of the variational problem. Conse-
quently (3.6) is a necessary optimality condition for the variational problem
(3.13).

Lemma 3.26 can be applied to our familiar example of the Poisson equation
with homogeneous Dirichlet boundary conditions:

−∆u = f on Ω, u|Γ = 0.

We proved already in Section 3.1 that the corresponding bilinear form is V -
elliptic:

a(v, v) ≥ γ‖v‖2
1.

The boundedness of the bilinear form is obvious. Therefore, the Lax-Milgram
lemma tells us that there exists a unique weak solution if we assume only that
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f ∈ H−1(Ω). Because the bilinear form is symmetric, this weak solution is
also a solution of the variational problem

min
v∈H1

0 (Ω)

[
1
2

∫
Ω

(∇v)2 − f(v)
]

.

Next we study the nonsymmetric convection-diffusion problem

−∆u + b · ∇u + cu = f on Ω, u|Γ = 0.

The associated bilinear form

a(u, v) := (∇u,∇v) + (b · ∇u + c u, v)

is not necessarily H1
0 -elliptic. Integration by parts of the term (b ·∇v, v) shows

that the condition
c − 1

2
div b ≥ 0

is sufficient for H1
0 -ellipticity.

Remark 3.27 (Neumann boundary conditions). Consider the boundary value
problem

−∆u + cu = f on Ω,
∂u

∂n
|Γ = 0.

If c(x) ≥ c0 > 0, then the bilinear form

a(u, v) := (∇u,∇v) + (c u, v)

is V -elliptic on V = H1(Ω). The Lax-Milgram lemma can now be readily
applied to the weak formulation of the problem, which shows that it has a
unique solution in H1(Ω).

If instead c = 0, then any classical solution of the Neumann problem above
has the property that adding a constant to the solution yields a new solution.
How does one handle the weak formulation in this case? Is it possible to apply
the Lax-Milgram lemma?

To deal with this case we set V = {v ∈ H1(Ω) :
∫

Γ
v = 0}. Then

Lemma 3.6 implies that the bilinear form a(u, v) = (∇u,∇v) is V -elliptic
with respect to the space V . It is easy to see that the bilinear form is bounded
on V × V . Therefore, surprisingly, our weak formulation for the Neumann
problem with c = 0 is

a(u, v) = (f, v) for all v ∈ V, (3.17)

and this equation has a unique solution u ∈ V for each f ∈ L2(Ω).
But in the case c = 0 if one wants for smooth u to return from the varia-

tional equation (3.17) to the classical formulation of the problem, then (3.17)
must be valid for all v ∈ H1(Ω). On choosing v = 1, this implies the condition
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∫
Ω

f = 0.

In this way we get the well-known solvability condition for classical solutions,
which alternatively follows from the classical formulation by invoking Gauss’s
integral theorem. A detailed discussion of the consequences for the finite ele-
ment method applied to this case can be found in [17]. �

Classical solutions of boundary value problems are also weak solutions. For
the converse implication, weak solutions must have sufficient smoothness to
be classical solutions. We now begin to discuss regularity theorems that give
sufficient conditions for additional regularity of weak solutions. Embedding
theorems are also useful in deducing smoothness in the classical sense from
smoothness in Sobolev spaces.

From [Gri85] we quote

Lemma 3.28. Let Ω be a domain with Ck boundary. If f ∈ Hk(Ω) for some
k ≥ 0, then the solution u of (2.16) has the regularity property

u ∈ Hk+2(Ω) ∩ H1
0 (Ω).

Furthermore, there exists a constant C such that

‖u‖k+2 ≤ C‖f‖k .

A result of this type—where a certain regularity of f yields a higher degree
of regularity in u—is called a shift theorem.

Corollary 3.29. Let Ω ⊂ R
n have Ck boundary. Let f ∈ Hk(Ω) with k > n

2 .
Then the solution u of (2.16) satisfies

u ∈ C2(Ω̄) ∩ H1
0 (Ω).

Thus u is a solution of the boundary value problem (2.15) in the classical
sense.

Proof: Lemma 3.28 implies that u ∈ Hk+2(Ω). Then the continuous embed-
ding W k+2

2 (Ω) ↪→ C2(Ω̄) for k > n/2 yields the result.

The assumption of Lemma 3.28 that the domain Ω possesses a Ck bound-
ary is very restrictive, for in many practical examples the domain has corners.
Thus it is more realistic to assume only that the boundary is piecewise smooth.

What regularity does the solution have at a corner of the domain? To
answer this question, we shall study the Laplace equation in the model domain

Ω =
{(

x
y

)
∈ R

2 : x = r cos ϕ, y = r sin ϕ, r ∈ (0, 1), ϕ ∈ (0, ω)
}

(3.18)
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Figure 3.1 Example: corner singularity

for some parameter ω ∈ (0, 2π); see Figure 3.1. This domain has a piecewise

smooth boundary Γ with corners at the points
(

0
0

)
,

(
1
0

)
and

(
cos ω
sinω

)
.

We decompose Γ into the three smooth pieces

Γ1 =
{(

x
y

)
: x ∈ [0, 1], y = 0

}
,

Γ2 =
{(

x
y

)
: x = r cos ω, y = r sin ω, r ∈ (0, 1)

}
,

Γ3 =
{(

x
y

)
: x = cos ϕ, y = sinϕ, ϕ ∈ (0, ω]

}
.

Then Γ = Γ1 ∪ Γ2 ∪ Γ3. Now consider the following Dirichlet problem for the
Laplacian:

−∆u = 0 in Ω,
u|Γ1∪Γ2 = 0,

u|Γ3 = sin(π
ωϕ).

(3.19)

The problem has the unique solution

u(r, ϕ) = rπ/ω sin
(π

ω
ϕ
)

.

Consequently u ∈ H2(Ω) if and only if ω ∈ (0, π]. We infer that the solutions of
Dirichlet problems in non-convex domains do not in general have the regularity
property u ∈ H2(Ω).

Next, consider instead of (3.19) the boundary value problem
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−∆u = 0 in Ω,
u|Γ1 = 0,

∂u
∂n

|Γ2 = 0,

u|Γ3 = sin( π
2ωϕ).

(3.20)

Its solution is
u(r, ϕ) = rπ/2ω sin

( π

2ω
ϕ
)

.

For this problem with mixed boundary conditions one has u 
∈ H2(Ω) if
ω > π/2. In the case ω = π, for instance, the solution has a corner singularity
of the type r1/2.

These examples show clearly that the regularity of the solution of a bound-
ary value problem depends not only on the smoothness of the data but also
on the geometry of the domain and on the type of boundary conditions. It is
important to remember this dependence to guard against proving convergence
results for discretization methods under unrealistic assumptions. Lemma 3.28,
for instance, is powerful and elegant but it does treat an ideal situation because
of the smoothness of the boundary and the homogeneous Dirichlet boundary
conditions.

In the books of Dauge [Dau88] and Grisvard [Gri85, Gri92] the reader
will find many detailed results regarding the behaviour of solutions of elliptic
boundary value problems in domains with corners. We shall quote only the
following theorem, which ensures H2-regularity for convex domains.

Theorem 3.30. Let Ω be a convex domain. Set V = H1
0 (Ω). Let a(·, ·) be a

V -elliptic bilinear form that is generated by a second-order elliptic differential
operator with smooth coefficients. Then for each f ∈ L2(Ω), the solution u of
the Dirichlet problem

a(u, v) = (f, v) for all v ∈ V

lies in the space H2(Ω). Furthermore, there exists a constant C such that

‖u‖2 ≤ C‖f‖0 .

A similar result holds for elliptic second-order boundary value problems in
convex domains if the boundary conditions are of a different type—but not
mixed as the example above has shown us. For fourth-order boundary value
problems, however, a convex domain is not sufficient in general to guarantee
u ∈ H4(Ω).

Now we start to discuss the approximation of solutions of variational equa-
tions.

First we describe Ritz’s method. It is a technique for approximately solving
variational problems such as (3.13). Instead of solving the given problem in
the space V , which is in general a infinite-dimensional space, one chooses a
finite-dimensional subspace Vh ⊂ V and solves
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min
vh∈Vh

J(vh), where J(vh) =
1
2
a(vh, vh) − f(vh). (3.21)

As Vh is finite-dimensional, it is a closed subspace of V and therefore a Hilbert
space endowed with the same scalar product (·, ·). Consequently the bilinear
form a(·, ·) has the same properties on Vh as on V . Thus our abstract theory
applies to the problem (3.21). Hence (3.21) has a unique solution uh ∈ Vh,
and uh satisfies the necessary and sufficient optimality condition

a(uh, vh) = f(vh) for all vh ∈ Vh. (3.22)

Ritz’s method assumes that the bilinear form a(·, ·) is symmetric. Never-
theless in the nonsymmetric case it is an obvious idea to go directly from the
variational equation

a(u, v) = f(v) for all v ∈ V

to its finite-dimensional counterpart (3.22). The discretization of the vari-
ational equation by (3.22) is called the Galerkin method . Because in the
symmetric case the Ritz method and the Galerkin method coincide, we also
use the terminology Ritz-Galerkin method.

The following result, often called Cea’s lemma, is the basis for most con-
vergence results for Ritz-Galerkin methods:

Theorem 3.31 (Cea). Let a(·, ·) be a continuous, V -elliptic bilinear form.
Then for each f ∈ V ∗ the continuous problem (3.6) has a unique solution
u ∈ V and the discrete problem (3.22) has a unique solution uh ∈ Vh. The
error u − uh satisfies the inequality

‖u − uh‖ ≤ M

γ
inf

vh∈Vh

‖u − vh‖. (3.23)

Proof: Existence and uniqueness of u and uh are immediate consequences of
the Lax-Milgram lemma.

As Vh ⊂ V , it follows from (3.6) that

a(u, vh) = f(vh) for all vh ∈ Vh.

By the linearity of the bilinear form and (3.22) we then get

a(u − uh, vh) = 0 for all vh ∈ Vh.

This identity and linearity yield

a(u − uh, u − uh) = a(u − uh, u − vh) for all vh ∈ Vh.

The V -ellipticity and boundedness of a(·, ·) now imply

γ‖u − uh‖2 ≤ M‖u − uh‖‖u − vh‖ for all vh ∈ Vh.
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The estimate (3.23) follows since vh is an arbitrary element of Vh .

The property
a(u − uh, vh) = 0 for all vh ∈ Vh

that we met in the above proof tells us that the error u−uh is “orthogonal” in
a certain sense to the space Vh of ansatz functions. Galerkin used this idea in
formulating his method in 1915. We call the property Galerkin orthogonality.

Remark 3.32. Cea’s lemma relates the discretization error to the best approx-
imation error

inf
vh∈Vh

‖u − vh‖. (3.24)

Because the two errors differ only by a fixed multiplicative constant, the Ritz-
Galerkin method is described as quasi-optimal.

If as (say) h → 0 the best approximation error goes to zero, then it follows
that

lim
h→0

‖u − uh‖ = 0.

It is often difficult to compute the best approximation error. Then we
choose an easily-computed projector Πh : V → Vh, e.g. an interpolation
operator, and estimate the approximation error by

inf
vh∈Vh

‖u − vh‖ ≤ ‖u − Πhu‖.

In Section 4.4 we shall estimate ‖u − Πhu‖ explicitly for specially chosen
spaces Vh used in finite element methods. �

Remark 3.33. If the bilinear form a(·, ·) is symmetric, then instead of (3.23)
one can prove that

‖u − uh‖ ≤
√

M

γ
inf

vh∈Vh

‖u − vh‖.

�

Remark 3.34. The assumption that Vh ⊂ V guarantees that certain properties
valid on V remain valid on the finite-dimensional space Vh. If we do not
require Vh ⊂ V , then we have to overcome some technical difficulties (see
Chapter 4). Methods with Vh ⊂ V that use the same bilinear form a(·, ·)
and functional f(·) in both the continuous and discrete problems are called
conforming methods. �

Remark 3.35. For the practical implementation of the Galerkin method one
needs a suitably chosen space of ansatz functions Vh ⊂ V and one must
compute a(w, v) and f(v) for given v, w ∈ Vh. The exact computation of the
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integrals involved is often impossible, so quadrature formulas are used. But
the introduction of such formulas is equivalent to changing a(·, ·) and f(·), so
it makes the method nonconforming; see Chapter 4. �

Remark 3.36. The dimension of Vh is finite. Thus this space has a basis, i.e.,
a finite number of linearly independent functions ϕi ∈ Vh, for i = 1, . . . , N ,
that span Vh:

Vh =

{
v : v(x) =

N∑
i=1

diϕi(x)

}
.

Because a(·, ·) and f(·) are linear, the relation (3.22) is equivalent to

a(uh, ϕi) = f(ϕi), i = 1, . . . , N.

Writing the unknown uh ∈ Vh as

uh(x) =
N∑

j=1

sjϕj(x), x ∈ Ω,

the unknown coefficients sj ∈ R (j = 1, . . . , N) satisfy the linear system of
equations

N∑
j=1

a(ϕj , ϕi)sj = f(ϕi), i = 1, . . . , N. (3.25)

We call the system (3.25) the Galerkin equations. In Chapter 8 we shall discuss
its properties in detail, including practical effective methods for its solution.
For the moment we remark only that the V -ellipticity of a(·, ·) implies that
the coefficient matrix of (3.25) is invertible: let z = (z1, . . . , zN ) ∈ R

N be a
solution of the homogeneous system

N∑
j=1

a(ϕj , ϕi)zj = 0, i = 1, . . . , N. (3.26)

Then
N∑

i=1

N∑
j=1

a(ϕj , ϕi)zjzi = 0.

By the linearity of a(·, ·) this is the same as

a

⎛
⎝ N∑

j=1

zjϕj ,

N∑
i=1

ziϕi

⎞
⎠ = 0,

which by V -ellipticity forces

N∑
j=1

zjϕj = 0.
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Because the functions ϕj are linearly independent, we get z = 0. That is, the
homogeneous system (3.26) has only the trivial solution. Consequently the
coefficient matrix of (3.25) is nonsingular. �

In the derivation of the Galerkin equations (3.25) we used the same basis
functions {ϕi}N

i=1 of Vh for both the ansatz and the test functions. This guar-
antees that the stiffness matrix Ah = (aij) = (a(ϕj , ϕi)) has nice properties;
in the case of a symmetric bilinear form the stiffness matrix is symmetric and
positive definite.

Alternatively, one can use different spaces Vh and Wh for the ansatz and
the test functions, but they must have the same dimension. Let us denote by
{ϕi}N

i=1 and {ψi}N
i=1 the basis functions of Vh and Wh, i.e.,

Vh = span{ϕi}N
i=1 , Wh = span{ψi}N

i=1 .

Setting

uh(x) =
N∑

j=1

sj ϕj(x),

the discrete variational equation

a(uh, vh) = f(vh) for all vh ∈ Wh (3.27)

is equivalent to

N∑
j=1

a(ϕj , ψi) sj = f(ψi), i = 1, . . . , N. (3.28)

This generalization of the Galerkin method, where the ansatz functions differ
from the test functions, is called the Petrov-Galerkin method .

One could choose Vh and Wh with the aim of imposing certain properties
on the discrete problem (3.28), but Petrov-Galerkin methods are more usually
the result of a weak formulation that is based on different ansatz and test
spaces: see the next Section. For instance, they are often used in the treatment
of first-order hyperbolic problems and singularly perturbed problems.

Setting J(v) = 1
2a(v, v) − f(v), here is a summary of our basic discretiza-

tions for variational equations:
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variational equation

a(u, v) = f(v)

for all v ∈ V

variational problem

min
v∈V

J(v)

Galerkin method

a(uh, vh) = f(vh)

for all vh ∈ Vh

Ritz method

min
vh∈Vh

J(vh)

Galerkin equations

N∑
j=1

a(ϕj , ϕi)sj = f(ϕi)

i = 1, . . . , N

Petrov-Galerkin
equations

N∑
j=1

a(ϕj , ψi)sj = f(ψi)

i = 1, . . . , N

� �

� �

⇐⇒
by

symmetry

⇐⇒
by

symmetry

Before continuing our study of the properties of the Ritz-Galerkin method,
we illustrate it by some simple examples.

Example 3.37. Let us study the two-point boundary value problem

−u′′ = f in (0, 1),
u(0) = u(1) = 0.

(3.29)

We choose V = H1
0 (0, 1). As the Dirichlet boundary conditions are homoge-

neous, integration by parts generates the bilinear form
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a(u, v) =

1∫

0

u′(x)v′(x) dx. (3.30)

Next we choose as ansatz functions

ϕj(x) = sin(jπx), j = 1, . . . , N,

and set h := 1/N . Then Vh ⊂ V is defined by

Vh := span{ϕj}N
j=1 :=

{
v : v(x) =

N∑
j=1

cjϕj(x)
}

.

It is possible to show (see, e.g., [Rek80]) that

lim
h→0

[
inf

v∈Vh

‖u − v‖
]

= 0

for any given u ∈ V . The estimate (3.23) proves convergence of the Galerkin
method in this case. Now

a(ϕi, ϕj) = π2
1∫
0

ij cos(iπx) cos(jπx) dx

=
{

π2j2/2 if i = j,
0 if i 
= j.

Setting

qi :=

1∫

0

f(x)ϕi(x) dx,

the solution of the Galerkin equations (3.25) is easily seen to be

sj =
2qj

π2j2
, j = 1, . . . , N. (3.31)

The Galerkin approximation uh for the solution of (3.22) is then

uh(x) =
N∑

j=1

sj sin(jπx).

Why was it possible to derive an explicit formula for the Galerkin approxi-
mation? The reason is that our ansatz functions were the eigenfunctions of the
differential operator of (3.29). This is an exceptional situation, since in general
the differential operator’s eigenfunctions are not known. Consequently, we do
not usually have the orthogonality relation

a(ϕi, ϕj) = 0 for i 
= j.

�
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Example 3.38. Let us modify problem (3.29) by considering instead the
problem

−u′′ = f in (0, 1),
u(0) = u′(1) = 0. (3.32)

The condition u′(1) = 0 is a natural boundary condition. In the weak for-

mulation we get a(u, v) =
1∫
0

u′(x)v′(x) dx as before but now the underlying

function space is
V = { v ∈ H1(0, 1) : v(0) = 0}.

We choose Vh to be the polynomial subspace

Vh = span
{

1
i
xi

}N

i=1

. (3.33)

The Galerkin method generates a linear system of equations

As = b (3.34)

for the unknown coefficients si ∈ R, i = 1, . . . , N , in the representation

uh(x) =
N∑

i=1

si

i
xi.

The entries in the coefficient matrix A = (aij) are

aij = a(ϕj , ϕi) =
1

i + j − 1
, i, j = 1, . . . , N.

This particular matrix A is called the Hilbert matrix. It is well known to be
extremely ill-conditioned. For example, when N = 10 the condition number
cond(A) is approximately 1013.

The example reveals that the choice of the ansatz functions is very
important—the Galerkin method with ansatz (3.33) for the boundary value
problem (3.37) is impracticable because the linear system generated is numer-
ically unstable and cannot be solved satisfactorily owing to rounding errors.
�

Example 3.39. Consider again the boundary value problem (3.29) with V =
H1

0 (0, 1). Now we choose the discrete space Vh = span{ϕj}N
j=1 to be the span

of the piecewise linear functions

ϕj(x) =

⎧⎪⎪⎨
⎪⎪⎩

x − xj−1

h
if x ∈ (xj−1, xj ],

xj+1 − x
h

if x ∈ (xj , xj+1),
0 otherwise.

(3.35)
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where j = 1, . . . , N − 1. Here {xj}N
j=0 is an equidistant mesh on the given

interval (0, 1), i.e., xj = j · h for j = 0, 1, . . . , N with h = 1/N . The best
approximation error (3.24) from this discrete space will be studied in detail
in Chapter 4.

From (3.30) and (3.35) it follows that

a(ϕi, ϕj) =

⎧⎪⎨
⎪⎩

2
h

if i = j,

− 1
h

if |i − j| = 1,

0 otherwise.

(3.36)

The Galerkin equations (3.23) yield in this case the linear tridiagonal system

−si−1 + 2si − si+1 = h
1∫
0

f(x)ϕi(x) dx , i = 1, . . . , N − 1,

s0 = sN = 0,

(3.37)

for the unknown coefficients si in the representation uh(x) =
N−1∑
i=1

siϕi(x)

of the approximate solution. Because ϕi(xj) = δij , we have the important
property si = uh(xi) for all i.

For smooth f there exists a constant L such that∣∣∣∣∣∣ f(xi) −
1
h

1∫

0

f(x)ϕi(x) dx

∣∣∣∣∣∣ ≤
2
3

Lh2 for i = 1, . . . , N − 1.

This observation reveals the affinity of (3.37) with the standard central differ-
ence scheme for the boundary value problem (3.29). More precisely, (3.37) is a
difference scheme where each function value f(xi) is replaced by the integral

mean 1
h

1∫
0

f(x)ϕi(x) dx. �

We hope that the examples discussed above make clear the importance of
choosing a good discrete space Vh in the Galerkin method.

The finite element method, which we shall discuss in great detail in Chap-
ter 4, generalizes the choice of ansatz functions in Example 3.39: one uses
ansatz functions—often piecewise polynomials—with a relatively small sup-
port

suppϕi := clRn{x ∈ Ω : ϕi(x) 
= 0 },
and one aims to ensure that the quantity

N∑
i=1

card{ j ∈ {1, ..., N} : (suppϕi ∩ suppϕj) 
= ∅ }

is not too large since it is an upper bound for the number of nonzero elements
in the stiffness matrix A = (a(ϕj , ϕi))N

i,j=1 of the Galerkin system (3.25).
Let us go through the details of the method for a simple example in 2D:
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Example 3.40. Let Ω = (0, 1) × (0, 1) ⊂ R
2. Consider the boundary value

problem
−∆u = f in Ω,

u|Γ = 0.
(3.38)

We choose V = H1
0 (Ω) for the weak formulation and decompose Ω into a

uniform triangular mesh as in Figure 3.2:
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Figure 3.2 uniform triangular mesh

The decomposition of Ω is generated by a uniform mesh of mesh size
h = 1/N in each of the coordinate directions ξ and η, then the resulting
squares are bisected by drawing diagonals as in Figure 3.2.

Denote the inner mesh points by xi =
(

ξi

ηi

)
for i = 1, . . . ,M with M =

(N − 1)2, and the points on the boundary by xi for i = M + 1, . . . , N2.
Analogously to Example 3.39 we define the piecewise linear ansatz functions
ϕi ∈ C(Ω) indirectly by the property

ϕi(xj) := δij , i = 1, . . . , M, j = 1, . . . , N. (3.39)

Then for the support of each basis function ϕi we have

supp ϕi =
{(

ξ
η

)
∈ Ω̄ : |ξ − ξi| + |η − ηi| + |ξ − η − ξi + ηi| ≤ 2h

}
.

Using the bilinear form

a(u, v) =
∫

Ω

∇u∇v dx,

the Galerkin method generates the linear system
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As = b (3.40)

with stiffness matrix A = (aij)M
i,j=1 and right-hand side vector b = (bi)M

i=1.
A direct computation yields

aij =

⎧⎨
⎩

4 if i = j,
−1 if |ξi − ξj | + |ηi − ηj | = h,

0 otherwise,

and
bi =

∫

Ω

f(x)ϕi(x) dx.

The small support of each basis function results in only five nonzero elements
in each row of the stiffness matrix. Similarly to Example 3.39, we recognize the
affinity of this method with the five-point difference scheme for the boundary
value problem (3.38) that appeared in Chapter 2. �

The examples and model problems we have just studied, though they
are relatively simple, nevertheless demonstrate some essential features of the
Galerkin method:

• It is necessary to choose a discrete space that has good approximation
properties and generates linear systems that can be solved efficiently.

• When using piecewise-defined ansatz functions one has to ensure that the
discrete space satisfies Vh ⊂ V . As we shall see, this is not a problem for
elliptic second-order problems but difficulties can arise with, e.g., fourth-
order problems where globally smooth functions are needed and for the
Stokes problem where some care is needed to satisfy the divergence con-
dition.

• The computation of the stiffness matrix A = (aij)ij with aij = a(ϕj , ϕi)
and the vector b of the Galerkin equations both require, in general, the
application of numerical integration.

These and other requirements have lead to intensive work on several man-
ifestations of the Galerkin method. The most popular variants are spec-
tral methods, where (usually) orthogonal polynomials are used as ansatz
functions—for an excellent overview of spectral methods see [QV94]and the
recent [CHQZ06]—and the finite element method where splines as used as
ansatz functions. In Chapter 4 we shall examine the finite element method
in detail; as well as presenting the basic facts and techniques, we also discuss
advances in the method and its practical implementation.

Exercise 3.41. Approximately solve the boundary value problem

Lu := u′′ − (1 + x2)u = 1 on (−1, 1), u(−1) = u(1) = 0,

using the ansatz
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ũ(x) = c1ϕ1(x) + c2ϕ2(x) with ϕ1(x) = 1 − x2 , ϕ2(x) = 1 − x4.

Determine c1 and c2

a) by means of the Ritz-Galerkin technique;
b) using the “Galerkin equations”

(Lũ − 1, ϕ1) = 0, (Lũ − 1, ϕ2) = 0;

c) by computing

min
ũ

∫ 1

−1

[
(ũ′)2 + (1 + x2)ũ2 + 2ũ

]
dx.

Exercise 3.42. Consider the boundary value problem

−�u(x, y) = π2 cos πx in Ω = (0, 1) × (0, 1) ,

∂u

∂n
= 0 on ∂Ω .

a) Construct the weak formulation and compute a Ritz-Galerkin approxima-
tion ũ using the basis

ϕ1(x, y) = x − 1/2 , ϕ2(x, y) = (x − 1/2)3 .

b) Verify that the problem formulated in a) has a unique solution in

W =
{

v ∈ H1(Ω) :
∫

Ω

v = 0
}

and that ũ ∈ W .
c) Verify that the problem formulated in a) does not have a unique classical
solution in C2(Ω). Determine the solution u in C2(Ω) ∩ W . For the approxi-
mation ũ, determine
– the pointwise error at x = 0.25
– the defect (i.e., amount by which it is in error) in the differential equation

at x = 0.25
– the defect in the boundary condition at x = 0.

Exercise 3.43. Let Ω = { (x, y) ∈ R
2 : x > 0, y > 0, x + y < 1 }. Approxi-

mately determine the minimal eigenvalue in the eigenvalue problem

�u + λu = 0 inΩ , u = 0 on ∂Ω

by using the ansatz function ũ(x, y) = xy(1 − x − y) and computing λ̃ from
the Galerkin orthogonality property

∫
Ω

(�ũ + λ̃ũ)ũ = 0.
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Exercise 3.44. Let Ω ⊂ R
N be a bounded domain.

a) Verify that

||u||2Ω,c =
∫

Ω

[|grad u|2 + c(x)u2]dx

defines a norm on V = H1
0 (Ω) if the function c ∈ L∞(Ω) is nonnegative al-

most everywhere.
b) Prove the coercivity over V of the bilinear form associated with the Lapla-
cian and discuss the dependence of the coercivity constant on the norm used.

In the remaining sections of this chapter we shall present some generaliza-
tions of the earlier theory that include certain nonlinear features.

3.4 Weakening V-ellipticity

In Section 3.3 we investigated elliptic variational equations and used the
Lax-Milgram lemma to ensure existence and uniqueness of solutions for both
the continuous problem and its conforming Galerkin approximation. The V -
ellipticity of the underlying bilinear form a(·, ·) was a key ingredient in the
proofs of the Lax-Milgram and Cea lemmas.

In the present section we weaken the V -ellipticity assumption. This is
important, for example, when analysing finite element methods for first-order
hyperbolic problems or mixed finite element methods.

First we study variational equations that satisfy some stability condition
and hence derive results similar to the Lax-Milgram lemma.

Let V be a Hilbert space and a : V × V → R a continuous bilinear form.
Then there exists a constant M > 0 such that

|a(u, v)| ≤ M ‖u‖ ‖v‖ for all u, v ∈ V. (4.1)

Now we assume that the variational equation

a(u, v) = f(v) for all v ∈ V (4.2)

has for each f ∈ V ∗ a solution u ∈ V that satisfies the stability condition

‖u‖ ≤ σ ‖f‖∗ (4.3)

for some constant σ > 0. This stability condition implies uniqueness of the
solution of the variational equation (4.2): for if two elements ũ, û ∈ V are
solutions of (4.2), then the linearity of a(·, ·) leads to

a(ũ − û, v) = 0 for all v ∈ V,

and now the estimate (4.3) yields

0 ≤ ‖ũ − û‖ ≤ (σ) (0) ,
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whence ũ = û.
Consider a conforming Ritz-Galerkin approximation of the problem (4.2).

Thus with Vh ⊂ V we seek uh ∈ Vh such that

a(uh, vh) = f(vh) for all vh ∈ Vh. (4.4)

Analogously to the continuous problem, we require that for each f ∈ V ∗ the
discrete problem (4.4) is solvable and that its solution uh ∈ Vh satisfies

‖uh‖ ≤ σh ‖f‖∗,h (4.5)

for some constant σh > 0. Here we used

‖f‖∗,h := sup
vh∈Vh

|f(vh)|
‖vh‖

.

Then, similarly to Cea’s lemma, we obtain:

Lemma 3.45. Assume that the bilinear form a(·, ·) is continuous on V ×
V , with M defined in (4.1). Assume that both the continuous problem (4.2)
and the discrete problem (4.4) have solutions, and that the solution uh of the
discrete problem satisfies the stability estimate (4.5). Then the error of the
Ritz-Galerkin approximation satisfies the inequality

‖u − uh‖ ≤ (1 + σhM) inf
vh∈Vh

‖u − vh‖.

Proof: Since u ∈ V and uh ∈ Vh satisfy (4.2) and (4.4) respectively and
Vh ⊂ V , we get

a(u − uh, vh) = 0 for all vh ∈ Vh.

Hence, for arbitrary yh ∈ Vh one has

a(uh − yh, vh) = a(u − yh, vh) for all vh ∈ Vh.

But a(u − yh, ·) ∈ V ∗ so the stability estimate (4.5) implies that

‖uh − yh‖ ≤ σh ‖a(u − yh, ·)‖∗,h.

The continuity of a(·, ·) and the property Vh ⊂ V then lead to

‖uh − yh‖ ≤ σh M ‖u − yh‖.

An application of the triangle inequality yields

‖u − uh‖ ≤ ‖u − yh‖ + ‖yh − uh‖ ≤ (1 + σhM) ‖u − yh‖.

As yh ∈ Vh is arbitrary, the statement of the lemma follows.
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Remark 3.46. If for a family of discretizations the variational equations (4.4)
are uniformly stable, i.e., there exists a constant σ̃ > 0 with

σh ≤ σ̃ for all h < h0,

with some h0 > 0 then, like Cea’s lemma in the case of V -ellipticity, our
Lemma 3.45 guarantees the quasi-optimalitity of the Ritz-Galerkin method.
�

In Section 4.6 we shall apply these results to extended variational equations
that correspond to so-called mixed formulations. Special conditions there will
ensure existence of solutions and the uniform stability of the discrete problem.

Next we consider a different weakening of V -ellipticity. Recall that in Sec-
tion 3.3 we already met Petrov-Galerkin methods, where it can be useful to
choose differing ansatz and test spaces. This is of interest in various situa-
tions such as first-order hyperbolic problems, singularly perturbed problems,
and error estimates in norms other than the norm on V (e.g. for second-order
problems the norm on V is typically an “energy norm”, but one might desire
an error estimate in the L∞ norm).

Example 3.47. Let us consider the first-order hyperbolic convection problem

b · ∇u + cu = f in Ω, u = 0 on Γ−.

Here the inflow boundary of Ω is defined by Γ− = {x ∈ Γ : b · n < 0}, where
n is as usual an outer-pointing unit vector that is normal to the boundary Γ .
Setting

W = L2(Ω), V = H1(Ω)

and
a(u, v) = −

∫
Ω

u div(bv) +
∫

Γ\Γ−
(b · n)uv +

∫
Ω

cuv,

a standard weak formulation of the problem reads as follows:
Find u ∈ W such that

a(u, v) = f(v) for all v ∈ V.

It turns out that for this problem it is useful to work with different ansatz
and test spaces. �

Analogously to this example, consider the general problem: Find u ∈ W
such that

a(u, v) = (f, v) for all v ∈ V, (4.6)

where W and V are Hilbert spaces that are not necessarily identical. The
following generalization of the Lax-Milgram lemma goes back to Nečas (1962);
its proof is similar to our earlier proof of Lax-Milgram. (see also [EG04])
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Theorem 3.48. Let W and V be two Hilbert spaces with norms ‖ ·‖W and ‖ ·
‖V . Assume that the bilinear form a(·, ·) on W×V has the following properties
(with constants C and γ > 0):

|a(w, v)| ≤ C‖w‖W ‖v‖V for all v ∈ V, w ∈ W,

sup
v∈V

a(w, v)
‖v‖V

≥ γ‖w‖W for all w ∈ W,

and

sup
w∈W

a(w, v) > 0 for all v ∈ V.

Then (4.6) has for each f ∈ V ∗ a unique solution u with

‖u‖W ≤ 1
γ
‖f‖∗.

Babus̆ka (see [8]) formulated the corresponding generalization of Cea’s lemma
using the discrete condition

sup
vh

a(wh, vh)
‖vh‖Vh

≥ γh‖wh‖Wh
for all wh ∈ Wh, (4.7)

for some constant γh > 0. It is important to note that the discrete condi-
tion (4.7) does not in general follow from its continuous counterpart. Never-
theless there are several techniques available to investigate its validity—see
Chapter 4.6.

Babus̆ka proved the error estimate

‖u − uh‖ ≤ (1 + C/γh) inf
vh∈Vh

‖u − vh‖. (4.8)

Recently it was shown in [124] that one can remove the constant 1 from this
estimate.

Finally, as a third extension of V -ellipticity, we discuss V -coercivity.
Let V ⊂ H1(Ω) be a space related to the weak formulation of a problem

based on a second-order differential operator. We say that a bilinear form
a(·, ·) is V -coercive if there exist constants β and γ > 0 such that

a(v, v) + β‖v‖2
0 ≥ γ‖v‖2

1 for all v ∈ V.

In this situation the operator A : V �→ V ∗ defined by

〈Av,w〉 := a(v, w),

still satisfies the so-called Riesz-Schauder theory. With some further assump-
tions, one has (see Chapter 8 of [Hac03a]) the following error estimate for the
Ritz-Galerkin method:
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Theorem 3.49. Assume that the variational equation

a(u, v) = f(v) for all v ∈ V,

where the bilinear form is V -coercive, has a solution u. If the bilinear form
a(·, ·) is moreover continuous and satisfies

inf
{

sup{|a(u, v)| : v ∈ Vh, ‖v‖ = 1} : u ∈ Vh, ‖u‖ = 1
}

= γh > 0,

then the Ritz-Galerkin discrete problem has a solution uh whose error is
bounded by

‖u − uh‖ ≤ (1 + C/γh) inf
w∈Vh

‖u − w‖.

In [Hac03a] the validity of the inf-sup condition used in this theorem is
discussed.

3.5 Extensions to Nonlinear Boundary Value Problems

In the previous sections we discussed abstract variational equations that
treated only linear boundary value problems. Under certain conditions it
is possible, however, to extend the technique used in the proof of the Lax-
Milgram lemma—the construction of a suitably chosen contractive mapping—
to more general differential operators. In this context monotone operators play
an essential role; see [GGZ74, Zei90, ET76]. A different approach to proving
the existence of solutions of nonlinear boundary value problems is to combine
monotone iteration schemes with compactness arguments. To use this tech-
nique one needs assumptions that guarantee the monotonicity of the iteration
process and carefully chosen starting points for the iteration; see [LLV85].

We now sketch the basic facts of the theory of monotone operators. This
will enable us to apply the Galerkin method to some nonlinear elliptic bound-
ary value problems.

Let V be a Hilbert space with scalar product (·, ·) and let B : V → V be
an operator with the following properties:

i) There exists a constant γ > 0 such that

(Bu − Bv, u − v) ≥ γ‖u − v‖2 for all u, v ∈ V.

ii) There exists a constant M > 0 such that

‖Bu − Bv‖ ≤ M‖u − v‖ for all u, v ∈ V.

Property (i) is called strong monotonicity, and (ii) Lipschitz continuity of the
operator B.

Consider the abstract operator equation: find u ∈ V with

Bu = 0. (5.1)
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This is equivalent to the nonlinear variational equation

(Bu, v) = 0 for all v ∈ V. (5.2)

The next statement generalizes the Lax-Milgram lemma:

Lemma 3.50. Assume that B is monotone and Lipschitz continuous. Then
equation (5.1) has a unique solution u ∈ V . This solution is a fixed point of
the auxiliary operator Tr : V → V defined by

Trv := v − rBv , v ∈ V,

which is contractive when the parameter r lies in
(
0,

2γ
M2

)
.

Proof: As in the proof of the Lax-Milgram lemma we check whether Tr is
contractive:

‖Try − Trv‖2 = ‖y − rBy − [v − rBv]‖2

= ‖y − v‖2 − 2r(By − Bv, y − v) + r2‖By − Bv‖2

≤ (1 − 2γr + r2M2)‖y − v‖2 for all y, v ∈ V.

Hence Tr is indeed a contraction mapping for r ∈ (0, 2γ
M2 ). Consequently Tr

possesses a unique fixed point u ∈ V , i.e.,

u = Tru = u − rBu.

That is, u is a solution of the operator equation (5.1).
Uniqueness of the solution follows immediately from the strong monotonic-

ity property using the same argument as in the proof of the Lax-Milgram
lemma.

Next we consider operators A : V → V ∗. Here V ∗ denotes the dual space
of V and 〈·, ·〉 the dual pairing, i.e., 〈l, v〉 denotes the value of the continuous
linear functional l ∈ V ∗ applied to v ∈ V . We assume that A has the following
properties:

i) The operator A is strongly monotone, i.e, there exists a constant γ > 0 such
that

〈Au − Av, u − v〉 ≥ γ‖u − v‖2 for all u, v ∈ V.

ii) The operator A is Lipschitz continuous, i.e., there exists a constant M > 0
such that

‖Au − Av‖∗ ≤ M‖u − v‖ for all u, v ∈ V.

Then the problem
Au = f (5.3)
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has for each f ∈ V ∗ a unique solution u ∈ V .
This statement follows immediately from Lemma 3.50 using the auxiliary

operator B : V → V defined by

Bv := J(Av − f), v ∈ V.

Here J : V ∗ → V denotes the Riesz operator that maps each continuous linear
functional g ∈ V ∗ to an element Jg ∈ V such that

〈g, v〉 = (Jg, v) for all v ∈ V.

Problem (5.3) is equivalent to the nonlinear variational equation

〈Au, v〉 = 〈f, v〉 for all v ∈ V. (5.4)

Existence and uniqueness of solutions hold not only for the case of a Hilbert
space V , as in fact it is sufficient that V be a reflexive Banach space—see
[Zei90].

We now discuss two examples of nonlinear elliptic boundary value prob-
lems that can be treated with the theory of this section. Note however that
some important practical problems cannot be dealt with using monotone and
Lipschitz continuous operators; then more sophisticated techniques are nec-
essary. First we present a semi-linear problem and then a special quasi-linear
boundary value problem.

Example 3.51. Let Ω ⊂ R
2 be a bounded domain with smooth boundary Γ .

Consider the weakly nonlinear problem

−div (M grad u) + F (x, u(x)) = 0 in Ω,
u|Γ = 0.

(5.5)

Here M = M(x) = (mij(x)) is a matrix-valued function satisfying the esti-
mate

σ‖z‖2 ≥ zT M(x)z ≥ σ‖z‖2 for all x ∈ Ω, z ∈ R
2, (5.6)

for some constants σ ≥ σ > 0. Furthermore, let F : Ω × R −→ R be a
continuous function with the properties

|F (x, s) − F (x, t)| ≤ L |s − t|
(F (x, s) − F (x, t))(s − t) ≥ 0

}
for all x ∈ Ω, s, t ∈ R, (5.7)

where L is some constant. Choose V = H1
0 (Ω). Define a mapping a(·, ·) :

V × V → R by

a(u, v) :=
∫

Ω

[
(∇u)T MT∇v + F (x, u(x))v

]
dx , u, v ∈ V.
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For fixed u ∈ V our assumptions guarantee that a(u, ·) ∈ V ∗. We define the
related operator A : V → V ∗ by Au := a(u, ·) and study its properties.

First we obtain

|〈Au, v〉 − 〈Ay, v〉|

=

∣∣∣∣∣∣
∫

Ω

[
(∇u −∇y)T MT∇v + (F (x, u(x)) − F (x, y(x)))v(x)

]
dx

∣∣∣∣∣∣
≤
∫

Ω

(σ‖∇u −∇v‖ ‖∇v‖ + L ‖u − y‖ ‖v‖) dx

≤ c ‖u − y‖ ‖v‖.

Hence the operator A is Lipschitz continuous.
Friedrichs’ inequality, (5.6) and (5.7) give the following estimates:

〈Au − Av, u − v〉 =
∫

Ω

∇(u − v)T MT∇(u − v) dx

+
∫

Ω

(F (x, u(x)) − F (x, v(x)))(u(x) − v(x)) dx

≥ σ

∫

Ω

∇(u − v)∇(u − v) dx

≥ σγ ‖u − v‖2 for all u, v ∈ V.

Thus A is strongly monotone as well and our earlier theory is applicable. �

The next example sketches the analysis of a quasi-linear boundary value
problem. This is more difficult to handle than Example 3.51, so we omit the
details which can be found in [Zei90].

Example 3.52. Consider the following equation, where a nonlinearity appears
in the main part of the differential operator:

−
∑

i

∂

∂xi

(
ϕ(x, |Du|) ∂u

∂xi

)
= f(x) in Ω.

Assume homogeneous Dirichlet boundary conditions for u, and that ϕ is a
continuous function satisfying the following conditions:

(i) ϕ(x, t)t − ϕ(x, s)s ≥ m(t − s) for all x ∈ Ω, t ≥ s ≥ 0, m > 0;

(ii) |ϕ(x, t)t − ϕ(x, s)s| ≤ M |t − s| for all x ∈ Ω, t, s ≥ 0, M > 0.

If, for instance, ϕ(x, t) = g(t)/t and g is differentiable, then both these con-
ditions are satisfied if

0 < m ≤ g′(t) ≤ M.
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Under these hypotheses one can show that the theory of monotone and
Lipschitz continuous operators is applicable, and deduce the existence of weak
solutions for this nonlinear boundary value problem. Of course, the conditions
(i) and (ii) are fairly restrictive. �

If one has both strong monotonicity and Lipschitz continuity, then it is
not difficult to generalize Cea’s lemma:

Lemma 3.53. Let A : V → V ∗ be a strongly monotone, Lipschitz continuous
operator. Let f ∈ V ∗. If Vh ⊂ V is a finite-dimensional subspace of V , then
there exists a unique uh ∈ Vh satisfying the discrete variational equation

〈Auh, vh〉 = 〈f, vh〉 for all vh ∈ Vh. (5.8)

Moreover, the error u−uh of the Galerkin method satisfies the quasi-optimality
estimate

‖u − uh‖ ≤ M

γ
inf

vh∈Vh

‖u − vh‖.

Proof: The finite dimensionality of Vh implies that it is a closed subspace
of V and therefore it too is a Hilbert space with the same inner product as
V . Clearly A is strongly monotone and Lipschitz continuous on Vh. These
properties yield existence and uniqueness of a solution uh ∈ Vh of the discrete
problem (5.8).

From (5.4), (5.8), Vh ⊂ V and uh ∈ Vh we have

〈Au − Auh, vh − uh〉 = 0 for all vh ∈ Vh.

This identity, strong monotonicity and Lipschitz continuity together imply

γ ‖u − uh‖2 ≤ 〈Au − Auh, u − uh〉
= 〈Au − Auh, u − vh〉
≤ M ‖u − uh‖ ‖u − vh‖ for all vh ∈ Vh,

and the desired result follows.

Unlike the case of linear boundary value problems, the Galerkin equations
(5.8) are now a set of nonlinear equations. With the ansatz

uh(x) =
N∑

j=1

sj ϕj(x),

the Galerkin equations are equivalent to the nonlinear system

〈A(
n∑

j=1

sjϕj), ϕi〉 = 〈f, ϕi〉, i = 1, . . . , N.
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In principle, this nonlinear system can be solved by standard techniques
such as Newton’s method; see [Sch78, OR70]. But because the number of
unknowns is in general large and the conditioning of the problem is bad, one
should take advantage of the special structure of the system.

Moreover, one can systematically use information from discretizations on
coarser meshes to obtain good starting points for iterative solution of the
system on finer meshes. In [4] a variant of Newton’s method exploits properties
of the discretization on coarse and finer meshes. In [OR70] Newton’s method
is combined with other iterative methods suited to the discretization of partial
differential equations.

Alternatively, one could deal with a nonlinear problem at the continuous
level by some successive linearization technique (such as Newton’s method)
applied in an infinite-dimensional function space. The application of Newton’s
method does however demand strong regularity assumptions because differ-
entiation is required.

A further linearization technique at the continuous level is the method of
frozen coefficients. To explain this technique we consider the boundary value
problem

−div (D(x, u,∇u) grad u) = f in Ω,
u|Γ = 0,

(5.9)

with a symmetric positive-definite matrix-valued function D(·, ·, ·). Let u0 ∈
V = H1

0 (Ω) be a suitably chosen starting point for the iteration. Then a
sequence {uk} ⊂ V of approximate solutions for (5.9) is generated, where
(given uk) the function uk+1 is a solution of the linear problem

∫

Ω

∇uk+1D(x, uk,∇uk)∇v dx =
∫

Ω

fv dx for all v ∈ V.

This technique is also known as the secant modulus method or Kačanov
method. Its convergence properties are examined in [Neč83] and [Zei90].
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