Uniform and Flexible Data Management in
Workflow Management Systems

Johann Eder, Marek Lehmann

University of Vienna, Austria

Abstract. Various kinds of data are processed in workflow management systems: from
case data to control data, from internal data to access to external databases or docu-
ments exchanged in inter-organizational workflows. We propose a uniform treatment
of all kinds of business data in workflows. This is achieved by an abstraction mecha-
nism which enables the transparent access to data in any source in a uniform way.
Moreover, we ensure simplicity by binding the human user interface layer of the
workflow system with XML-based forms. The concept contributes to transparency of
data location, and logical and physical independence of data, business logic and pres-
entation in workflow systems. It facilitates the reuse of predefined activities and forms
on different data sets and eases the interaction of a workflow with its environment by
abstracting from the actual representation of data.

1 Introduction

There is already a quite long history of endeavours to model business proc-
esses and support their execution. A particular role always played the two
intertwined, but separate aspects: the data or structural aspect and the dy-
namic, behavioural or process aspect [23,24]. Workflow management sys-
tems are a successful product of these research and development efforts.
As we will argue below, workflow management typically focuses on the
process aspect of business processes. In this paper we argue that workflow
management systems should improve the management and handling of
data and present an approach for uniform and flexible data management in
Workflow Management Systems.

Workflow processes may involve different kinds of business data. Each
workflow management system(W{fMS)[1] must be able to handle these

92 Johann Eder, Marek Lehmann

data, which may come from many different sources. These data are used in
two different ways. First, they are required by individual activities. Sec-
ond, the WfMS uses data to make automatically the control flow decisions
based on data values. Clearly, workflow management would be not possi-
ble without data. It is perhaps surprising, that the data perspective in
workflow management was usually left in the background[7].Only quite
recently interest in data management aspects of workflow systems in-
creased somewhat with the analysis of workflow data patterns[18] which
in particular showed how complex the handling of data in workflow man-
agement system actually is.

Workflow Management systems (WfMSs) are not intended to provide
general data management systems capabilities, although they have to be
able to work with large amounts of data coming from different sources.
Business data, describing persistent business information necessary to run
an enterprise, maybe controlled either by a WfMS or be managed in exter-
nal systems (e.g. corporate database).The WIMS needs a direct data access
to make control flow decisions based upon data values. An important
drawback is that WfMS-external data can only be used indirectly for this
purpose, e.g. be queried for control decisions. Therefore, most of the activ-
ity programming is related to accessing external databases[3], a great im-
pediment for flexibility, understandability and changeability of
workflows[8]. On the other hand, data used within a workflow system may
be in different types and formats. Basically each product uses different,
proprietary solutions varying from the minimal set of built-in primitive
types(number, string, date) to user defined types. This sometimes causes
inconsistency with the XML data format used in inter organizational
workflows and by web services.

In a typical workflow, performing of a manual task is often associated
with filling in some form (e.g. purchase order form).A form has a certain
format and is composed of a number of fields with some kind of structure.
These fields are mapped to the data used within the workflow. Existing
WIMSs support form based manual tasks in two ways: they offer their own
proprietary form format or allow web based solutions to be used. The
drawback of the former case is, that the client software must understand
the form format. The client software must be installed on a machine of
each human workflow participant which increases installation and mainte-
nance costs. In the latter case, the workflow management system may offer
web based form processing like HTML forms (e.g.PantaRhei[11]).Well
accepted and understood web standards enable the use of many design
tools and do not require specific client software, except a standard web
browser. On the other hand, HTML-based solutions are very limited.

Uniform and Flexible Data Management in Workflow Systems 93

Forms described in HTML are flat, more sophisticated user interface and
client behaviour requires lot of programming in scripting languages(e.g.
JavaScript) or form processing on the server side. Another important
drawback is the necessity to provide the mapping between HTML form
fields, represented as a set of attribute-value pairs, and data used internally
in a workflow.

We propose to solve all three presented problems. The problematic issue
of data location is sorted out by the introduction of data access plug-ins
which manage the distributed data sources, so that access to business data
is transparent. Limitations of the internal data formats are avoided by bas-
ing our system upon XML which provides a flexible data representation.
The third problem solved concerns the complexity of the interface layer in
most workflow management systems. In order to provide fast and easy
communication with the human actors, we use XForms technology to pre-
sent XML data in a web browser. We validated the functionality of the
proposed approach in a prototype WfMS.

Section 2 presents our mechanism for accessing transparently business
data stored in many different data sources. An XML based user interface is
described in Sec. 3. Both these mechanisms are incorporated into our
workflow metamodel in Sec. 4 and the prototype architecture in Sec. 5. We
discuss related work in Sec.6 and draw some conclusions in Sec.7.

2 Uniform XML Based Data Access

We propose to provide the workflow management system with a uniform
and transparent access method to all business data stored in any data
source. The workflow management system should be able to use data com-
ing from external and independent systems to determine a state transition
or to pass it between activities as parameters. This is achieved by an ab-
straction layer called data access plug-ins [13]. Data access plug-ins are
reusable and interchangeable wrappers around external data sources which
present to the workflow management system the content of underlying data
sources and manage the access to it. The functionality of external data
sources is abstracted in these plug-ins.

On the other hand, we propose to use XML as the main business data
format at every stage of workflow processing. The workflow management
system should be able to test conditions on XML data to determine the sta-
te transitions, regardless of where these data are stored and maintained.
Data passing between activities should also rely on XML-standards, inde-
pendent of whether these activities are internal to a workflow or external.

94 Johann Eder, Marek Lehmann

Both goals aim at a seamless integration of intra-and inter-organizational
workflows and on location transparency of data.

2.1 Data Access Plug-ins

A data access plug-in is a wrapper presenting to the workflow management
system the content of external data sources as XML documents. Each data
access plug-in provides documents in one or several predefined XML
Schema types. Both a data access plug-in and XML Schema types served
by this plug-in are registered to the workflow management system. Once
registered, a data access plug-in can be reused in many workflow
definitions to access external data as XML documents of a given type. A
workflow designer specifies in a workflow definition which document
should be accessed by which data access plug-in.

Consider the following frequent scenario: an enterprise has a large data-
base with the customer data stored in several relations and used in many
processes.

In our approach the company defines a complex XML Schema type de-
scribing customer data and implements a data access plug-in which wraps
this database and retrieves and stores customer data in XML format. This
has several advantages:

¢ Business data from external systems are accessible by the WfMS. Thus,
these data can be passed to activities and used to make control flow de-
cisions.

e Activities can be parameterized with XML documents of predefined
types. The logic for accessing external data sources is hidden in a data
access plug-in fetching documents passed to activities at runtime. This
allows activities to be truly reusable and independent of physical data
location.

e Making external data access explicit with the data access plug-ins rather
than hiding it in the activities improves the understandability, maintain-
ability and auditability of process definitions.

e Both data access plug-ins and XML Schema type are reusable.

o This solution is easily evolvable. If the customer data have to be moved
to a different database, it is sufficient to use another data access plug-in.
The process definition and activities remain basically unchanged.

The task of a data access plug-in is to translate the operations on XML
documents to the underlying data sources. A data access plug-in exposes to
the workflow management system using a simple interface which allows
XML documents to be read, written or created in a collection of many

Uniform and Flexible Data Management in Workflow Systems 95

documents of the same XML Schema type. Each document in the collec-
tion is identified by a unique identifier. The plug-in must be able to iden-
tify the document in the collection given only this identifier.

Each data access plug-in allows an XPath expression to be evaluated on
a selected XML document. The XML documents used within a workflow
can be used by the workflow engine to control the processing flow. This is
done in conditional split nodes by evaluating the XPath conditions on
documents. If a given document is stored in an external data source and
accessed by a data access plug-in, then the XPath condition has to be
evaluated by this plug-in. XPath is also used to access data values in XML
documents.

Data access plug-ins can be used in workflow definitions described in
our workflow definition language WDL-X. A sample WDL-X fragment of
an order processing workflow is presented in Fig. 1. There is a declaration
of two documents typed with XML Schema. An order document is of type
orderType (line 3) and is accessed by a data access plug-in or-
derDbPlugin, i.e. it is stored outside of the workflow repository. A docu-
ment describing an invoice is stored in the repository (line 4).

1: <process name="processOrder" owner="marek" version="1.0">
2: <documents>
3: <document name="order" type="orderType" accessPlugin="orderDbPlugin"/>

4: <document name="invoice" type
5: </documents>

invoiceType"/>

Fig. 1. SampleWDL-Xscriptfragment with a declaration of a document accessed
by a plug-in

A data access plug-in can be wrapped around any data source, if it pro-
vides the described basic functionality. In particular a data access plug-in
can be also wrapped around a web service. In this case the functionality of
a data access plug-in is limited only to read mechanisms (i.e. open and re-
trieve document, test XPath expression) and update operations are not al-
lowed. This limitation is imposed by two facts: the data access plug-ins are
intended only to serve data, but the web services offer interfaces to provide
services and have active properties. A call to a web service can start an ex-
ternal workflow. Such a behaviour initiated by a data access plug-in would
make the workflow definition obscure and very difficult to analyze and
maintain. Therefore, we argue that an implementation of a data access
plug-in based on a web service should be done very carefully to avoid un-
welcome side effects during the workflow execution. On the other hand,
the web services are very good sources of data. A recent empirical study

96 Johann Eder, Marek Lehmann

shows that majority (up to 84%) of existing public web services are simply
data sources, and most of them offer just one operation[14]. Such web ser-
vices can provide data which are completely managed outside the context
of an active workflow instance, e.g. credit card validity, tax rates, metal
and oil prices, currency exchange rates.

2.2 Generic Data Access Plug-in

A proposal we described in [13] required data access plug-ins to be defined
each time from scratch. On the other hand, most business data remain
stored in relational databases. Therefore, a generic and expandable solu-
tion for relational data sources was needed. A generic data access plug-in
(GDAP) offers basic operations and can be extended by users to their
specific data sources. GDAP is responsible for mapping of the hierarchical
XML documents used by workflows and activities into flat relational data
model used by external databases. Thus, documents produced by GDAP
can be seen as XML views of relational data.

The workflows and activities managed by the WfMS can run for a long
time. In a loosely coupled WfMS scenario it is neither reasonable nor pos-
sible to lock data in the original database for processing time in a
workflow. At the same time these data can be modified by other systems or
workflows[7]. In order to provide optimistic concurrency control, some
form of view invalidation is required[20]. Therefore, GDAP provides a
view freshness control and view invalidation method. In case of view up-
date operations GDAP automatically checks whether the view is not stale
before propagating update to the original database.

3 XML Based User Interface

We propose an XForms based user interface to the manual tasks. XForms
is a new standard[10] for describing forms. It is both XML based and web
enabled. These features are very important. First, we use XML as the data
format internally in the workflow management system and to communicate
with the external systems. Because XForms are designed to work with
XML, there are no inconsistencies and no need for special data mappings
or transformations. On the other hand, by giving access to manual tasks
from a simple web browser, we provide access to workflow applications
for a large number of users at very low installation and maintenance cost.
Moreover, this enables external users(e.g. customers) to initiate and take

Uniform and Flexible Data Management in Workflow Systems 97

part in a workflow, e.g. by submitting an order request from their own web
browser. Thus, enterprise-wide and inter-organizational workflows can be
easily created with standardized tools [3].

Traditionally such functionality was provided by HTML forms, but for
large and complex systems it is obvious, that HTML forms have many dis-
advantages. Traditional forms remember the data entered by the user in a
flat form, as a set of attribute-value pairs. Such data, when received by the
server, have to be additionally processed and validated. Another problem
was caused by the necessity to provide a mapping between flat HTML
forms and data format used internally in the workflow, e.g. hierarchical
XML is usually mapped into HTML with XSLT[2]. On the contrary, the
XForms standard allows data to be validated on the client side. Moreover,
XForms provide a more advanced graphical interface together with data
derivation and calculation mechanisms. XForms make clear distinction be-
tween the data content and the graphical presentation. What is most impor-
tant, XForms are designed to work with XML. All these features make
XForms an ideal technology for workflow management systems.

An XForm has a set of input and output parameters which are defined in
its code. Each XForm parameter has its unique string identifier and is an
XML document which may by typed by an XML Schema type. A form
can accept a set of XML Schema typed XML documents as the input pre-
sented to a user and used for internal calculations. It can also produce
XML documents as output.

A manual task has also a set of input and output parameters which are
XML documents described by XML Schema types. The user interface to
such manual tasks is provided by XForms. When a user chooses a manual
task from a worklist, all the required documents are retrieved(possibly
with data access plug-ins) and passed to a XForm as input parameters. The
parameterized XForm is presented to the user. After the user finishes the
interaction with the XForm, the results are sent as one or more XML docu-
ments to the workflow management system which saves them in appropri-
ate locations (possibly using data access plug-ins).

A manual task can have associated a default form in its definition as
presented in Fig. 2. The important issue is to provide a mapping between
the parameters of a manual task and an XForm. Each formal parameter of
the task is mapped to a formal parameter of the form. The number of the
parameters must be the same, mapped parameters must have the same
XML Schema type and same input mode (/N, INOUT, OUT). The actual
parameters of a task instance are used to parameterize a form template at
runtime, and a complete and parameterized XForm is send to the client.

98 Johann Eder, Marek Lehmann

1: <manualTaskDefinition name="producelnvoice" owner="marek"
defaultForm="invoiceForm">
2: <formalParameters>
<formalParameter name="order" inputMode="IN"
dataType="orderType"
mapToFormParam="order"/>
4: <formalParameter name="invoice"
inputMode="OUT"
dataType="invoiceType"
mapToFormParam="invoice"/>

w

5: </formalParameters>
6: </manualTaskDefinition>

Fig. 2. WDL-X definition of a manual task with an associated default form

Forms are reusable. The same XForm can be used by different manual

tasks and can take different documents as input. A workflow designer
specifies a default form for each manual task registered in the workflow
management system. When the task is used as a single step in a workflow
definition, the system uses its default form to provide the user interface.
The workflow designer may override this default form in a particular
workflow definition and specify that, a manual task used in a particular
step should use a different form. This makes the task independent from the
user interface representation. For example the same manual task may have
different interface to different users, e.g. different to a secretary and

different to a manager.

4 Workflow Metamodel

We propose a new workflow metamodel which captures both data access
plug-ins and forms together with reusable workflows and activities and as-
sociated data (Fig. 3).The metamodel reflects the nested structure of com-
plex activities and supports the graph representation of workflows. The
metamodel is tailored to the purpose of this paper and, therefore, does not
contain all components required in a workflow metamodel, e.g. we do not
consider the organizational structure.

A workflow uses activities and can have a set of declared documents.
Documents can be passed to activities as parameters. An activity is either a
task, a complex activity or a (sub-) workflow. An activity can be used to
compose complex activities and workflows. An activity occurrence in such
a composition is represented by a step. One activity can be represented by

Uniform and Flexible Data Management in Workflow Systems 99

several steps in one or several other complex activities or workflows. In
other words, steps are placeholders for reusable activities. Between the
subsequent steps there is additionally a transition from a predecessor to a
successor. The control structure of a complex activity is described by its
type (seq for sequence, par for parallel and cond for conditional). We limit
our metamodel only to the description of full blocked workflows [26].

In the presented metamodel, workflow graphs can be viewed on
different levels of detail. A workflow or a complex activity can be viewed
as a composed whole, with all its relations to the subactivities. It can also
be viewed decomposed into a full flattened graph. This is achieved by ac-
tivity steps and control steps. An attribute fype of a step can have either a
value activity (for activity steps) or one of the following for the control
steps: par-split, par-join, cond-split or cond-join. An activity step offers a
compact view of a complex activity. In a graph representation it would be
a complex activity represented as a single box. An activity step has a
method flatten which eliminates a level of composition. A control step
represents a control element such as a split or a join. As we permit only
full blocked workflows, each join has a corresponding split and vice versa.
This is represented by a recursive relation is_counterpart. Corresponding
control steps are the boundaries of a complex activity. The control steps
offer a more detailed view on a workflow graph. They have a method
unflatten which is inverse to the method flatten. Both methods are de-
scribed in [12].

Each document used in a workflow definition is typed with an XML
Schema type (DocType) which has a unique name. The XML documents
may be used as variables declared in a workflow definition, or used as
formal parameters to activities. An XML document declared in a workflow
definition can be accessed by a data access plug-in. Each data access plug-
in can serve documents of predefined XML Schema types. The XML
Schematype of a document accessed by the data access plug-in must by
among types supported by this plug-in.

Each workflow can have many workflow instances. Within a workflow
instance are instantiated documents and steps of a corresponding workflow
definition. Step instances represent actual activity instances. Which activ-
ity is instantiated by a given step instance is described by the relation be-
tween a step instance and a corresponding step and the relation between a
step and an activity. A fype of a step instance is the same as a type of a
corresponding step. The step instances form a workflow instance graph.
Each step can have predecessors and successors and the transitions be-
tween them. The hierarchical structure of activity instances is reflected by
the recursive relation parent.

100

Johann Eder, Marek Lehmann

1 Workflow
-whid[1]
-name[1 .
1 -descri[pt]ion[ﬂ Iwf_consist _of » transition
-version[1] -1
-owner(1] -pred -succ
* *
1. - Step
s -sid[1]
wf_uses » Activity 4 _belongs to —|-predicate(0..1]
\;* -aid[1] -type[1] 1
-type[1] 1
-name[1] consist_of » *
-description[1]
-precondition[1] | -sub
0..* |-postcondition[1]["« parent»
{disjoint, complete}
{disjoint, complete} _super
Task ComplexActivity ActivityStep ControlStep
" getChidren() 0.1 +flatten() +unflatten()
0~ * 0.1 0.1
- -split -join
is_counterpart
Form
-name[1]
| 0..1 [-formalParam[1.."]| 1 -
defaultForm loverrideForm
-paramMapl[1..*]| -paramMap[1..*]
isP. t
{ ISrarameter instanceOf »
< declared_in
0.* 0.*
Document
DocType | 4 4isOf 0. i < instanceOf
-name[1] did[1]
-name[1] 1
1. < accessedBy 0.*
0.1
DataAccessPlugin
-name[1] 0..*
0..* |-readOnly[1]
«canStore |*readDoc() 0.1 Leenecly Fu.w"
+writeDoc() -|nt|§i[1]
+createDoc() 0..*|-extid[0..1]
+testXPath()
0.~
! ‘ 0.x
« instanceOf Wl..u'r\fiuwm;x « belongs to *| Steplnst
o Swhid[1] Csidi[1]
N -sub —|typel1] : _suce
‘ -state[1]
parent transition
> *
-super -pred

Fig. 3. Workflow metamodel

Uniform and Flexible Data Management in Workflow Systems 101

WMS
Data Access
Plugin Manager
S —
XML Workflow | Workflow
> Engine Repository
Data Access
External Data Sources Plug-ins / \
Program Worklist
Interaction Manager
Manager
Y A
XForms
XML
v \

External
Systems

Worklist handler
Fig. 4. Proposed WfMS architecture with data access plug-ins

Instances of documents, declared in the workflow definition as accessed
with a data access plug-in, are served at runtime by this plug-in. Each
document instance has a unique internal identifier, used by the workflow
management system. The instances of documents accessed by a data ac-
cess plug-in have additionally an external identifier, used by the plug-in to
identify the document instance. This is a reference to the actual document
content in an external data source.

A manual task registered in the workflow management system, may
have a default XForm. Each form has a unique name and a set of formal
parameters. The parameters of the manual task are mapped into parameters
of the form. A workflow designer may override this default form in a
workflow definition, and decide to use a different form for a particular step
corresponding to this manual task. In this case the parameter mapping
must be also provided.

5 Proposed Architecture and Prototype

We propose a new architecture of a workflow management system which
supports the usage of XML documents at every stage of workflow process-
ing. This architecture allows the workflow management system to trans-
parently access many sources of business data via data access plug-ins and

102 Johann Eder, Marek Lehmann

to provide user interface to manual task with XForms. The architecture is
presented in Fig. 4.

The workflow engine provides operational functions to support the exe-
cution of workflow instances, based on the workflow definitions. The
workflow repository stores both workflow definitions and workflow in-
stances (control data). It can also contain business data local to the
workflow management system, i.e. local XML documents. The program
interaction manager calls programs implementing automated activities.

The worklist manager is responsible for worklists of the human actors
and for the interaction with the client software (worklist handlers). Human
actors execute the manual tasks with a user interface provided by XForms.
Therefore, the worklist handler must be capable of handling XForms. The
worklist manager parameterizes XForm templates with XML documents
passed as actual parameters to manual tasks and sends these XForms to the
worklist handler. The worklist handler may send back the output XML
documents.

The access to external data sources is provided with data access plug-
ins. The data access plug-in manager is responsible for registering and
managing data access plug-ins. The WIMS is extensible, because new data
access plug-ins can be registered to the manager and used in the workflow
definitions. This architecture is very flexible, because existing data access
plug-ins may be replaced by new ones without any integration into exist-
ing workflow definitions.

The presented architecture was prototypically implemented [22]. A
lightweight workflow engine was implemented as a Java servlet, which
produced parameterized XForms instead of standard HTML to communi-
cate with clients. We used Apache Tomcat as a servlet container and the
DENG browser' to present XForms. The prototype represented internally
all business data as XML documents accessed by data access plug-ins. Our
implementation included GDAP for relational databases and another one
for XML files stored in a file system.

The current implementation of the GDAP for relational databases [9]
takes advantage of the XML-DBMS middleware for transferring data be-
tween XML documents and relational databases [6]. XML-DBMS maps
the XML document to the database according to an object-relational map-
ping in which element types are generally viewed as classes and attributes
and XML text data as properties of those classes. An XML-based mapping
language allows the user to define an XML view of relational data by
specifying these mappings. The XML-DBMS supports also insert, update
and delete operations.

! See http://sourgeforge.net/projects/dengmx

Uniform and Flexible Data Management in Workflow Systems 103

6 Related Work

In most existing workflow management systems, data used to control the
flow of the workflow instances (i.e. workflow relevant data) are controlled
by the workflow management system itself and stored in the workflow re-
pository. If these data originate in external data sources, then external data
are usually copied into the workflow repository. There is no universal
standard for accessing external data in workflow management systems.
Basically each product uses different solutions [19]. A chain of so called
materialization and dematerialization programs was proposed in [16].Such
chains can be attached to activities. On the contrary, we proposed to asso-
ciate data access plug-ins to documents used in a workflow and not to ac-
tivities. This has two main advantages. First, it allows a business logic of
activities to be separated from a data access logic of data access plug-ins.
Second, both the activity and the data access plug-in are independent and
can be reused in many workflow definitions and easily maintained and re-
placed.

The importance of XML technology is increasing tremendously in the
workflow management. Workflow management systems [26], B2B stan-
dards [21], and Web services [4] use XML as a data format. Methods for
integrating workflow management systems with standards for web services
are becoming more important [17, 21].Web services are sometimes treated
as data sources and composed using data integration techniques [25]. An-
other approach for processing XML documents in workflow management
systems is presented in [5]. The authors proposed to partition a single
XML document into several meaningful segments, i.e. units of work that
can be performed by an activity in a workflow process.

Forms used for manual tasks can have proprietary format or use HTML
like in PantaRhei [11]. PantaRhei used even a form-flow metaphor to pro-
vide access to workflow specific data. The authors of [2] proposed to use
process aware XSLT style sheets to provide an active user interface to
XML data used in workflows. There are also proposals to use XSLT to
produce GUI for web services [15]. But mixing XSLT with the business
logic can make a workflow definition very obscure. The XForms which
provide only presentation and are reusable and data and business logic in-
dependent are a great step forward.

104 Johann Eder, Marek Lehmann

7 Conclusions

It was our ambition to show that integrated consideration of the data as-
pects and the dynamic aspects of workflow systems is possible and that
this integrated view can lead to rather lean and flexible systems which are
comparatively easy to comprehend and use due to uniform general archi-
tectural principles. We did so by designing and implementing a small
workflow management system which shows how data management can be
both flexible and uniform.

The main contributions of the presented approach for uniform access to
data in workflows are:

e Separation of the business logic (activities), data access mechanism
(data access plug-ins) and user interface (XForms).

e All data in workflows (application data, workflow relevant data, data in
external sources, etc.) are described, represented and processed uni-
formly.

o We offer a simple and transparent mechanism for accessing data stored
in many different data sources (workflow repository, external systems).

e Seamless integration with external systems can be achieved by ex-
change of process and application data in XML format.

e XML datatypes and data access plug-ins can be reused in many
workflow definitions.

e Reusability of activities is made easier and is no longer prohibited by
differences in data representation.

Thanks to XForms and the way they are parameterized in our system,
the user interface to manual tasks is more flexible and modular. Moreover,
the interface is not fixed, as in many typical applications, but the XForms
templates can be easily redesigned and improved, without the need to
change the implementation. And last but not least, the use of browser en-
sures portability which is nowadays a very important feature.

The concept and the architecture we propose strives for achieving true
physical and logical independence of process and data. The abstraction
represented in exchangeable plug-ins for data access frees workflow
definitions from the accidentiality of representation formats. Besides the
obvious advantages for intra-and interorganisational exchange of data and
documents, maintenance and evolution of workflow systems will benefit
considerably.

Uniform and Flexible Data Management in Workflow Systems 105

Acknowledgments We would like to thank our students: Christian Dreier,
Maciej Siekierski and Aleksandra Wojnowska, who implemented the pro-
totype WIMS and GDAP.

References

[1] van der Aalst, W., van Hee, K.: Workflow Management: Models, Methods,
and Systems. MIT press, Cambridge, MA, 2002.

[2] Aberer, K., Datta, A., Despotovic, Z :Separating business process from user in-
teraction utilizing process-aware xslt style-sheets. In WECWIS’02: Proceed-
ings of the Fourth IEEE International Workshop on Advanced Issues of E-
Commerce and Web-Based Information Systems (WECWIS’02), page 69.
IEEE Computer Society, 2002.

[3] Ader, M.: Workflow and business process management comparative study.
Volume 2. Technical report, Workflow & Groupware Strat’egies, June 2003.

[4] Andrews, S., Curbera, F., Dholakia, H.,Goland, Y., Klein, J., Leymann, F.,
Liu, K., Roller, D., Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.:
Business process execution language for web services (bpel4ws). Technical
Report 1.1, BEA, IBM, Microsoft, SAP, Siebel Systems, 5 May 2003.

[5] Bae, H., Kim, H.: A document-process association model for workflow man-
agement. Comput. Ind., 47(2):139-154, 2002.

[6] Bourret, R.: Xml-dbms middleware. Viewed: May 2005, http://www.”
rpbourret.com/xmldbms/index.htm.

[7] Bussler. C.: Has workflow lost sight of dataflow?, 1999. High Performance
Transaction System Workshop 1999.

[8] Carlsen, S., Krogstie, J., Selvberg, A., Lindland, O.1.: Evaluating
flexible workflow systems. In Hawaii International Conference on System
Sciences (HICSS-30), 1997.

[9] Dreier, C.: Generischer datenzugriff in xml-gest utzten lighweight workflow
management system. Master’s thesis, University of Klagenfurt, 2005.

[10] Dubinko, M., Klotz Jr. L.L., Merrick, R., Raman, T.V.: Xforms 1.0. W3c rec-
ommendation, World Wide Web Consortium (W3C), 14 October 2003.

[11] Eder, J., Groiss, H., Liebhart, W.: The workflow managament system panta
rhei. In A. Dogac, L. Kalinichenko, T. "Oszu, and A.Sheth, editors, Workflow
Management Systems and Interoperability. Springer-Verlag, 1998.

[12] Eder, J., Gruber, W.: A meta model for structured workflowssupporting
workflow transformations. In Proceedings of the 6th East European Confer-
ence on Advances in Databases and Information Systems (ADBIS 2002), vol-
ume 2435 of Lecture Notes in Computer Science, pages 326-339. Springer-
Verlag, 2002.

[13] Eder, J., Lehmann, M.: Uniform access to data in workflows. In Kurt Bauk-
necht, Martin Bichler, and Birgit Proll, editors, Proceedings of the 5th Interna-
tional Conference on E-Commerce and Web Technologies, EC-Web 2004,

106 Johann Eder, Marek Lehmann

volume 3182 of LNCS, pages 6675, Zaragoza, Spain, August/September
2004. Springer-Verlag.

[14] Fan, J., Kambhampati, S.: A snapshot of public web services. SIGMOD Re-
cord, 34(1):24-32, March 2005.

[15] Kassoff, M., Kato, D., Mohsin, W.: Creating guis for web services IEEE
Internet Computing, 7(5):66—73, 2003.

[16] Leymann, F., Roller, D.: Production Workflow. Concepts and Techniques.
Prentice-Hall PTR, Upper Saddle River, New Jersey, USA, 1999.

[17] Lienhard, H.: Web services and workflow - a unified approach. In Workflow-
cHandbook 2003, pages 49—-60. Workflow Management Coalition, 2003.

[18] Russell, N., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.:
Workflow data patterns. Proc. of 24th Int. Conf. on Conceptual Modeling
(ER05), 3716:353-368.

[19] Russell, N., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.:
Workflow data patterns. Technical Report FIT-TR-2004-01, Queensland Uni-
versity of Technology, Brisbane, Australia, April 2004.

[20] Rys, M.: Bringing the internet to your database: Using sqlserver 2000 and
xml to build loosely-coupled systems. In Proceedings of the 17th International
Conference on Data Engineering ICDE, April 2-6, 2001, Heidelberg, Ger-
many, pages 465—472. IEEE Computer Society, 2001.

[21] Sayal, M., Casati, F., Dayal, U., Shan, M-S.: Integrating workflow manage-
ment systems with business-to-business interaction standards. In Proceedings
of the 18th International Conference on Data Engineering (ICDE’02), page
287. IEEE Computer Society, 2002.

[22] Siekierski, M., Wojnowska, A.: Xforms workflow engine. Technical report,
University of Klagenfurt, 2004.

[23] Selvberg, A., Kung, C.H.: Activity modelling and behaviour modelling. In
Information Systems Design Methodologies: Improving the Practice, 1986.
[24] Selvberg, A., Kung, C.H.: On structural and behaviour modelling of reality.

In Database Semantics, 1986.

[25] Thakkar, S., Knoblock, C.A., Ambite, J-L.: A view integration approach to
dynamic composition of web services. In Proceedings of 2003 ICAPS Work-
shop on Planning Web Services, 2003.

[26] WIMC. Workflow process definition interface - xml process definition lan-
guage (xpdl). Technical Report WFMC-TC-1025, Workflow Management
Coalition, 2002.

2 Springer
http://www.springer.com/978-3-540-72676-0

Conceptual Modelling in Information Systems
Engineering

Krogstie,).; Opdahl, A.L.; Brinkkemper, S. (Eds.)
2007, XMV, 346 p., Hardcover

ISBEN: @78-3-540-72676-0

