1 Ruby

1.1 Introduction

Ruby is an interpreted scripting language for object-oriented programming.
Interpretive implies that a ruby application is run without first compiling
the application. Variables in Ruby do not have a type; a Ruby variable may
contain data of any type. Variables in Ruby may be used without any
variable declarations. Ruby being an object oriented language has features
such as classes, inheritance and methods. Everything in Ruby is an object
including methods, strings, floats and integers. A ruby script is stored in a
file with the . rb extension and run with the ruby command. First, we
need to install Ruby.

1.2 Installing Ruby

In this section we shall install Ruby, and RubyGems. RubyGems is the
standard Ruby package manager used with Ruby applications and libraries.
To install Ruby, and RubyGems the procedure is as follows. Download
the Ruby Windows Installer!' application. Double-click on ruby184-19.exe
application. Ruby Setup Wizard gets started. Click on Next.

! Ruby Window Installer- http://rubyforge.org/frs/?group _id=167

2 1Ruby

 Ruby-185-21 Setup N = [m] 3

Welcome to the Ruby-185-21 Setup
Wizard

This wizard will guide you through the installation of
Ruby-185-21.

It is recommended that vou close all other applications
before starting Setup. This will make it possible to update
relevant system files without having to reboot your
computer,

Click Next to continue,

Fig. 1.1 Ruby Setup Wizard

Accept the license agreement and click on Next. Select the default
components to install, which include the RubyGems package manager,
and SciTE, a Scintilla based Text Editor, and click on Next.

§ Ruby-185-21 Setup s o] 59
Choose Components —
Choose which features of Ruby-185-21 you want to install. ,")

Check the components you want to install and uncheck the components you don't want to
install, Click Next to continue.

Select components to install; [FEescrtion

SiTE

FreeRIDE

Enable RubyGems
[] European Keyboard

< Back Iﬁ{n I Cancel

]

Fig. 1.2 Selecting Components to install

1.3 Creating a Ruby Application 3

Specify a directory to install Ruby (default is c¢:/ruby) and click on
Next.

Ruby-185-21 Setup i = =] B |
Choose Install Location —
Choose the folder in which to install Ruby-185-21, (‘)

Setup will install Ruby-185-21 in the Following folder. To install in a different Folder, click
Browse and select another folder, Click Next to continue,

< Back I Neft > I Cancel

g

Fig. 1.3 Specifying Installation Folder

Specify a start folder and click on Install. Ruby and RubyGems gets
installed. Click on Finish to close the Ruby Setup wizard. Ruby gets
installed. Directory path c:/ruby/bin gets added to System environment
variable PATH. System environment variable RUBYOPT with value —
rubygems gets added.

1.3 Creating a Ruby Application

Next, we shall create a Ruby application. For example, create a Ruby
script helloruby.rb with the following Ruby code.

puts "Hello Ruby"
Run the Ruby script with the following command.
C:/>ruby helloruby.rb

The output from the Ruby script is as follows.
Hello Ruby

4 1Ruby

The puts function is used to print text. The puts function adds a
newline after each text string. For example, modify the Ruby script to the
following script, which includes a string separator.

puts “Hello”, “Ruby”

The output from the Ruby script is as follows.

Hello
Ruby

If the string separator is not specified as in the following script, the
strings are concatenated.

puts "Hello" "Ruby"

The output from the script is as follows.
HelloRuby

Print is another command to print a string. The difference between
the print function and the puts function is that the print function does not
add a newline after a string unless a newline is specified.

Ruby also provides the Ruby interactive shell to run ruby scripts. The
interactive shell may be started with i rb as shown in Figure 1.4.

[+]command Prompt - irb

=™ «h
irb{main) 0081 :8>

Fig. 1.4 Ruby Interactive Shell

The example Ruby scripts in this chapter are run in irb. A ruby script
may be run from the interactive shell as shown below.
irb(main) : 001:0> puts “Hello Ruby”

The output is as the same as for running a .rb script as shown in Figure
1.5.

[e7/command Prompt - irb

Fig. 1.5 Running a Ruby Script in irb

1.4 Identifiers and Comments 5

Ruby also provides the gets function to get a string input by a user. In
the Ruby interactive shell specify gets and press Enter.

irb(main) : 001:0>gets

Input a string, “Hello Ruby” for example, and press Enter. The string
specified gets output.

Fig. 1.6 The gets Function

1.4 Identifiers and Comments

Identifiers are names used to identify variables, methods and classes in a
Ruby script. A Ruby identifier begins with a letter [a-zA-Z] or a * ’ and
consists of alphanumeric characters and underscores. A class name is
required to begin with an uppercase letter. An identifier may not be a
reserved word. Reserved words are listed below.

=begin =end alias and begin BEGIN
break case class def defined? do
else elsif END end ensure false
for if in module next nil
not or redo rescue retry return
self super then true undef unless
until when while yield

A comment begins with a # and a comment is defined upto the end of
the line.

Example of a comment

Documentation may be embedded in a script with =begin =end. The
following listing defines documentation.

=begin

Example Of

Embedded Documentation
=end

6 1 Ruby

1.5 Strings

A string may be specified using single quotes or double quotes. In single
quotes a single quote may be escaped using \’ and a backslash may be
escaped using \\. In double quotes a double quote is escaped using \” and a
backslash is escaped using \\. In double quotes, other characters may also
be escaped such as backspace (\b), carriage return (\r), newline (\n), space
(\s) and tab (\t). Double quotes also has the provision to evaluate
embedded expressions using interpolation with #{}. For example, run the
following ruby script.

puts "#{"Hello"+"Ruby"}"
The output is as follows.
HelloRuby

Variables referenced in #{} are required to be pre-defined. In the
previous example the + operator is used to concatenate strings. The * may
be used to repeat strings as in the following script.

puts "Hello Ruby" *3

The output from the script is as follows.

Hello RubyHello RubyHello Ruby

Characters are integers in Ruby. Characters may be extracted from
strings as shown in the following script.

hello= "Hello Ruby"
puts hello[8]

The character index is 0 based. The output from the script is the ASCII
code for character ‘b’, 98.

Substrings may also be extracted by specifying a start index and an end
index as in the following script.

hello= "Hello Ruby"
puts hellol[6,10]

The output from the script is shown below.
Ruby

Character index offsets may be specified from the end of the string with
—ve indices. Offsets from the end of the string are 1 based and the second
parameter represents the number of characters in the substring, as in the
following script.

1.5 Strings

7

hello= "Hello Ruby"
puts hello[-4,4]

The output from the script is as follows.

Ruby

If more number of characters are specified than available in the string,
the substring is created including upto the end of the string. Strings may be
compared using the == operator as in the following script.

puts "Hello Ruby"=="Hello Ruby"

The output from the script is as follows.

true

Regular expressions may be used in a string. A regular expression is
specified using character patterns. Some of the character patterns are

discussed in Table 1.1.

Table 1.1 Character Patterns

Pattern Description

il Specifies a range. For example,
[a-c] specifies a character in the
range of a-c.

\w Specifies a letter or a digit.

\W Specifies that neither a letter nor
digit should be specified.

\s Specifies a space character.

\S Specifies a non-space character.

\d Specifies a digit character.

\D Specifies a non digit character.

\b Specifies a backspace if in a
range specification. Also
specifies a word boundary if not
in a range specification.

\f Form feed

\t Horizontal tab

\v Vertical tab

\B Specifies a non-word boundary.

8 1 Ruby

Table 1.1 (continued)

Pattern

Description

*®

Specifies 0 or more repetitions
of the preceding.

J’_

Specifies 1 or more repetitions
of the preceding.

{m,n}

Specifies at least m and at most
n repetitions of the preceding.

Specifies at most 1 repetition of
the preceding.

Specifies that either the
preceding or the next expression
may match.

0

Specifies a grouping.

The % notation may be used to create string variables. The % notation is
used with delimiting characters to create a string. For example, all of the

following create the string “Hello Ruby”.

oe

[Hello Ruby]
{Hello Ruby}
(Hello Ruby)
!Hello Ruby!
@Hello Ruby@

o° o° o?°

0P

The % notation is useful if a string contains quotes; with the % notation
quotes may not be escaped. For example the following strings are

equivalent.

“Hello \ “Ruby\" "
% [Hello “Ruby”]

1.6 Arrays Hashes and Ranges

Arrays are created in Ruby by listing items in [] and separating the items

witha ‘,’.

hello =["Hello", "Ruby"]

1.6 Arrays Hashes and Ranges 9

Arrays may be concatenated. For example, create an array, hello_array,

by concatenating another array. Run the following script in irb.

hello =["Hello", "Ruby"]
hello array=hello+["ruby", "RUBY"]

The output is the following array.
=>["Hello", "Ruby", “ruby”, “RUBY”]

An array may be referenced using indices, which are 0 based. For

example the following array reference produces output “RUBY”.

hello array[3]

An array may be created from another array by specifying the start

index and the number of items in the array as in the following script.

hello arrayl[0,2]

The output from the script in irb is as follows.
=>[“Hello”, "Ruby”]

An array may be created from another array by specifying a range of

indices. For example, create an array from hello_array, which consists of
items at indices 0, 1, and 2.

hello arrayl[0..2]
The output is the array shown below.
=> [“Hello" , "Ruby" s \\ruby"]

Negative indices indicate offsets from the end of the array and are 1

based. For example, create an array from the hello_array with the last two
elements.

hello arrayl[-2, 2]
The following array gets produced.
=> [A\Y rubyn , ” RUBY"]

An array may be converted to a string using the join function. For

example, create a string by joining the members of the hello_array using a

(3R]

hello array.join(",")
The following string gets output.
“Hello Ruby, ruby, RUBY”

10 1 Ruby

A string may be converted to an array using split (). The following
script produces the array [“Hello”, “Ruby”,”’ruby”,”RUBY”].

"Hello Ruby,ruby,RUBY".split(",")

A Hash is an associative array consisting of key-value pairs in {}
brackets.

hello={1=>"hello", 2=>"Ruby", 3=>"ruby", 4=>"RUBY"}

A hash item is accessed using a key. For example, access the value of
the hash entry with key 3.

hello[3]

A hash entry may be added to a hash. For example, add a hash entry
with key 5.

hello[5] ="RUby"
hello

The resulting hash has the new entry appended in the beginning of the
hash.

{5=>"RUby",1=>"hello", 2=>"Ruby", 3=>"ruby",
4=>"RUBY" }

A hash entry may be deleted using delete. The following command in
irb deletes the hash entry with key 5.

hello.delete 5

Each key may occur only once in a hash. Commonly symbols are used
as hash keys. The following hash is declared without using symbols.

hello:{“a”=>"hellO", “b”=>"Ruby", “c"=>“ruby",
“d"=>"RUBY”}

If symbols are used, the hash is declared as follows.

hello:{:a=>"hello", :b=>"Ruby", :c=>"ruby",
:d=>"RUBY" }

A range represents a range of values. A range is specified with a start
value and an end value and with 2 or three ‘.” between. Two ‘.’ specify that
the end value is included in the range. Three .” specify that the end value
is not included in the range. For example, create a range of integers
between 0 and 10, excluding 10.

0..10

1.7 Variables Constants and Operators 11

As another example, define a range of characters between ‘a’ and d’
including ‘d’.

‘tal. . rd’

Ranges represent increasing sequences. The following range would
create an empty sequence.

‘ar..ra’

To determine if a value is within a range use the === method. For

example, create a range between ‘a’ and ‘d’ and determine if ‘¢’ is in the
range and if ‘e’ is in the range.

r = 'a'..'d'
puts r === 'c¢'
puts r === 'e'

The output is true for ‘c’ and false for ‘e’.

1.7 Variables Constants and Operators

Variables in Ruby are dynamically typed, therefore, variable declarations
are not used. Ruby provides four types of variables.

1. Local Variables
2. Instance Variables
3. Global Variables
4. Class Variables

The prefix of an identifier specifies the type of the variable Different
variable types are discussed in Table 1.2.

Table 1.2 Variable Types

Variable Type Notation Example
Local Variable First character [a-z] var
or
Instance Variable First character @ @var
Global Variable First character $ $var
Class Variables Prefix @@ @@var

Instance and global variables have the value nil before being
initialized. Local variables are required to be initialized before being used.
Class variables are available since Ruby 1.5.3 and also required to be

12 1 Ruby

initialized before being used. Ruby also provides some psuedo variables:
self, nil, true and false. Self is a global variable and refers to the
current object. Nil is a constant and is the value assigned to uninitialized
global and instance variables. The scope of a local variable is the loop,
method, class, procedure object, or module in which it is defined. If the
local variable is not defined in any of these constructs, the scope is the
complete script. The defined? operator is used to check if a variable is
defined as in the following script.

hello="Hello Ruby"
puts defined? (hello)

The output from the script is “local-variable”. Local variables defined
in a method are not available in another method. For example, in the
following script local variable hello is defined in the helloRuby method,
but not in the sello_Ruby method.

class HelloRuby
def helloRuby

hello= "Hello Ruby"
return defined? (hello)
end

def hello Ruby
return defined? (hello)
end
end
helloRubyInstance=HelloRuby.new
helloRubyInstance.helloRuby
helloRubyInstance.hello Ruby

The output is local-variable for the helloRuby method and nil for the
helloRuby method.

Instance variables are defined in the scope of an object and have the
initial value nil if uninitialized. For example define a class and define a
method in the class. Define an instance variable @#ello in the method.

class HelloRuby
def hello (name)
@hello=name
return "Hello" + @hello
end

end

1.7 Variables Constants and Operators 13

The instance variable @hello is only available to instances of the
HelloRuby class. For example, create a class instance and invoke the Aello
method.

helloRuby=HelloRuby.new
helloRuby.hello ("Ruby")

Create another class instance and invoke the hello method with a
different value.

hello Ruby=HelloRuby.new
hello Ruby.hello("ruby")

Run the following script in irb.

irb(main) : 001:0>class HelloRuby
def hello(name)
@hello=name

return "Hello" + @hello
end

end
helloRuby=HelloRuby.new
helloRuby.hello ("Ruby")

hello Ruby=HelloRuby.new
hello Ruby.hello("ruby")

The output is “HelloRuby” for the first class instance method invocation
and “Helloruby” for the second class instance. The instance variable has
the value “Ruby” for the first class instance method invocation and “ruby”
for the second class instance method invocation.

Global variables are available throughout a ruby script. For example,
declare a global variable $iello and output its value by invoking a method.
Modify the variable’s value in another method and output the variable’s
value as shown in the following script.

Shello="Ruby"
class HelloRuby
def hello
Shello= "Hello" +Shello
end

def varValue
return Shello
end
end

14 1 Ruby

helloRuby=HelloRuby.new
helloRuby.varValue
helloRuby.hello
helloRuby.varValue

The $hello variable’s value is “Ruby” before being modified by
invoking the hello method and “HelloRuby” after being modified.

Class variables are associated with a class and all instances of a class
have the same class variable copy. The difference between class variables
and global variables is that class variables are required to be initialized
before being used and do not have the default value nil. As an example,
create a class variable @@hello and modify the value of the variable by
invoking a method of the class. The value of the variable changes for all
instances of the class. The following script returns the @@hello variable
value for class instance hello Ruby as “HelloRuby”, because another class
instance has modified the variable value.

@@hello="Ruby"
class HelloRuby
def hello
@@hello= "Hello" + @@hello
end

def varValue
return @@hello
end
end
helloRuby=HelloRuby.new
helloRuby.varValue
helloRuby.hello

hello Ruby=HelloRuby.new
hello Ruby.varValue

Some pre-defined system variables are defined that consist of $ as the
first character and these may not be defined as global variables. Some of
these system variables are discussed in Table 1.3.

Table 1.3 System Variables

System Variable Description

$! Specifies latest error message.
S@ Specifies error location.

$ Specifies string last read by gets

1.7 Variables Constants and Operators 15

Table 1.3 (continued)

System Variable Description

$. Specifies line number last read
by interpreter.

$/ Specifies input record separator.

$\ Specifies output record
separator.

$0 Specifies name of ruby script
file.

$* Specifies the command line
arguments.

$. Specifies line number last read
by interpreter.

A constant is an identifier with a constant value and starts with an
uppercase letter. Constants may be defined within classes and modules and
are accessible outside the class or module. For example, define a constant
Hello in a class and access the constant outside the class. Run the
following ruby script in irb.

irb(main) : 001:0>class HelloRuby
Hello="Hello Ruby"
end

HelloRuby: :Hello

The output is as follows.

=>"Hello Ruby”

Constants may be reassigned value, but a warning gets generated that
the constant has already been initialized.

Ruby handles all operators by converting them to methods. The method
name is the same as the operator name. The ‘=" operator is used for
assignment in following Ruby. example.

var=1
strvar="String Variable”
hello=Hello.new

Ruby supports the +=, -=, *=, /=, **= operators. Ruby also supports
multiple assignments as shown below.

x,y,z="'Hello', 'Ruby', 'ruby'

16 1 Ruby

puts x
puts y
puts z

The output is as follows.

Hello
Ruby
Ruby

Arrays may be created using %w() or %{}. For example, the following
script outputs “Ruby”.

array=%w (Hello Ruby ruby)
puts array[1]

The ||= operator is used for conditional assignment. If a variable value is
nil the value specified with ||= is assigned to the variable. For example, the
following script outputs “default value”.

var=nil
var| |="default value"
puts var

Ruby also provides symbols. A symbol is a variable prefixed with a
colon (:), which is stored with a unique id, for example :varl. Symbols are
like constants and are used for comparison in Rails as they require less
processing than strings.

1.8 Classes

Ruby is an object oriented language and a class represents the template
from which objects may be created. An object is an instance of a class. A
class consists of variables and methods. A class definition starts with
class and ends with end. A class name is required to begin with a
capital letter. The following script defines a class Hello, which consists of
a method Aello.

class Hello

def hello
return “Hello Ruby”
end
end

1.8 Classes 17

A class is instantiated with the new method. For example, create an
instance of the class Hello.

hello=Hello.new

Using the class object invoke the method hello.
hello.hello

The output from the method invocation is “Hello Ruby”. Classes in
Ruby support inheritance. For example create another class Msg, which
extends class Hello. Extending a class is denoted with ‘<’. Define a
method msg in class Msg that return a string. Create an instance of class
Msg and invoke the msg method. As the Msg class extends the Hello class,
an instance of class Msg is also an instance of class Hello. Invoke the hello
method of class Hello with an instance of class Msg. Run the following
script .

class Hello

def hello
return "Hello Ruby"
end
end

class Msg <Hello
def msg
return "Hello ruby"
end

end

msg=Msg.new
msg.msg
msg.hello

The output from invoking the msg method is “Hello ruby” and the
output from invoking the hello method is “Hello Ruby”. Ruby does not
support multiple inheritance, therefore, a class may extend only one other
class.

A initialize function may be defined to initialize a class. The
initialize function is invoked after a class instance is created. For example,
define a class with the initialize function. Initialize an instance variable
@hello in the initialize function. Output the value of the instance variable
by invoking another method of a class instance.

class Hello
@hello

18 1 Ruby

def initialize (hello)
@hello=hello

end

def hello
return @hello
end
end

hello=Hello.new("Hello Ruby")
hello.hello

The output from the Ruby script is “Hello Ruby”.

1.9 Methods

Methods in Ruby begin with def and end with end. The following
method takes a name parameter and returns a string.

class Hello

def hello (name)
return “Hello” +name
end

end

A method is invoked with an instance of the class in which the method
is defined. The hello method of class Hello may be invoked as follows.

helloObj=Hello.new
helloObj.hello (“Deepak”)

The output from the method invocation is “HelloDeepak”. Method
names in Ruby should begin with a lowercase letter. By default, methods
return the last statement in the method. Therefore, the following method,
which does not have a return statement, would also return a “Hello ...”
string.

def hello(name)

“Hello” +name
end

Method parameters may be assigned default values. For example, in the
following method definition parameter name is assigned a default value.

1.9 Methods 19

def hello(name="John”)
return “Hello” +name
end

If the method is invoked without an argument, the default value is used.
The following script outputs “HelloRuby”.

class Hello
def hello (name="Ruby")

return "Hello" +name
end

end

helloObj=Hello.new
helloObj.hello

Ruby has the provision to define methods with a variable number of
arguments by preceding the last parameter of a method with an asterisk
(*). For example, define method hello to take a variable number of
arguments. The following script outputs “Hello Ruby,ruby, RUBY™.

class Hello

def hello (*name)
return "Hello " +name.join(',')
end

end

helloObj=Hello.new
helloObj.hello ("Ruby", "ruby", "RUBY")

The asterisk operator may also precede an Array argument in a method
invocation. In the following script the hello method is invoked with an
array using the * operator.

class Hello

def hello(namel,name2,name3’)

return "Hello " +namel+", "+name2+", "+name3
end

end

helloObj=Hello.new

array=["Ruby", "ruby", "RUBY"]

helloObj.hello (*array)

20 1 Ruby

The output from the script is “Hello Ruby, ruby, RUBY”. The
parentheses in method invocation may be omitted. The hello method may
be invoked with arguments as follows.

helloObj.hello "Ruby", "ruby", "RUBY"

Parentheses are required if another method is to be invoked on the
method invocation result. For example if a method returns an array and the
order of the elements in the array is to be reversed, parentheses are
required as shown below.

array= helloObj.hello ("Ruby", "ruby", "RUBY").reverse

A hash may be used as an argument to a method. For example, define a
method hello and invoke the method with a hash as shown below.

class Hello

def hello (name)
return "Hello " +name[:c]
end

end

helloObj=Hello.new
helloObj.hello :a=>"Ruby", :b=>"ruby", :c=>"RUBY"

The output from the method invocation is “Hello RUBY”.Methods in
Ruby are public, by default. The access may be restricted by public,
private and protected methods, Public, private, and protected are
not keywords, but methods that operate on a class.

For example, in the following class/method definition hello is declared
as a private method.

class Hello
def hello (name)
return "Hello " +name
end
private :hello
end

If private is invoked without arguments, all methods following private
are set to private, as in the following example.

class Hello
private

def methodA
end

1.9 Methods 21

def methodB
end
end

Methods methodA and methodB are set to private. A method may also
be set to private with the method private class method.

private class_method :hello

Private methods may only be accessed within the class they are
declared or a subclass of the class. . For example, if class Hello defines a
private method #ello, and helloObjl is an instance of class Hello,
helloObj1 may only access non-private methods of class Hello eventhough
helloObj1 is an instance of class Hello. In the following script, method
hello is private to class Hello, and may only be invoked within the class.

class Hello

def hello (name)
return "Hello " +name
end

private :hello

def helloRuby
hello "Ruby"
end
end

helloObjl=Hello.new
helloObjl.helloRuby
helloObjl.hello "Ruby"

The output from the script is the string “Hello Ruby” for the helloRuby
method invocation, which invokes private method hello. When the hello
method is invoked directly by an instance of class Hello an error gets
output: “NoMethodError: private method ‘hello’ called...”.

Protected methods also may be accessed within the defining class and
subclasses of the class. The difference between private methods and
protected methods is that a protected method may be invoked with an
explicit receiver while a private method may be invoked with only self
as the receiver, which implies that a protected method may be invoked by
an instance of the defining class and by an instance of a subclass of the
defining class while a private method may only be invoked within the
context of the defining class or a subclass of the defining class. In the
preceding example, method hello may be invoked with an instance of class

22 1 Ruby

Hello, as shown below, or an instance of a sub-class of Hello, if method
hello is protected.

class Hello

def hello (name)
return "Hello " +name
end
protected :hello
helloObjl=Hello.new

helloObjl.hello "Ruby"

end

Ruby provides accessor methods for instance variables. Without the
accessor methods getter/setter methods would have to be used. For

example, getter/setter methods are used in the following listing to access
an instance variable.

class Catalog

def initialize(catalogid)
@catalogid=catalogid
end

def getCatalogid
@catalogid
end

def setCatalogid(catalogid)
@catalogid=catalogid
end

end
catalog=Catalog.new("catalogl")
catalog.getCatalogid
catalog.setCatalogid("catalog2")
catalog.getCatalogid

The output from the Ruby script is as follows.

“catalogl”
“catalog2”
“catalog2”

1.9 Methods 23

The attr accessor function provides the getter/setter functionality.
In the following script, the attr accessor method is used on the catalogid
instance variable.

class Catalog

def initialize(catalogid)
@catalogid=catalogid
end

attr accessor :catalogid

end

catalog=Catalog.new("catalogl")
catalog.catalogid
catalog.catalogid="catalog2"
catalog.catalogid

More than one instance variables may be specified in an attr_accessor
function.

attr_accessor :varl, :var2

If only getter functionality is required use function attr reader, and
if only setter functionality is required use the attr writer function.

Ruby provides Singleton methods, which are defined only for an object
of a class. For example, define a class Hello with a method hello. Create an
instance of the class and define a singleton method for the instance of the
class.

class Hello

def hello

return "Hello Ruby"
end

end

helloObj=Hello.new
helloObj.hello

def helloObj.hello (name)
"Hello"+ name

end
helloObj.hello("ruby")

24 1 Ruby

The script returns “Hello Ruby” for the invocation of the hello method
and “Helloruby” for the invocation of the singleton method hello(name),
which is defined for the helloObj object.

1.10 Procs and Blocks

Proc objects are blocks of code bound to a set of local variables. A block:
{ I1x] ...}
is equivalent to:
do |x|

A Proc object is created using the Proc.new method. Create a proc
that outputs a Hello message.

hello=Proc.new{|name| puts "Hello "+name}
hello.call ("Ruby")

The output from the script in irb is “Hello Ruby”.

If a local variable specified in a Proc object is previously specified, and
the Proc object is invoked with a variable value, the previously specified
variable value gets changed. In the following script variable x value gets
changed to 10 after invoking the Proc object.

x=1

proc = Proc.new {|x| puts x }
proc.call (10)

puts x

The parameters of a Proc object are specified in the || in the beginning of
the block. The code following the parameters is run when the Proc is
invoked. A Proc is invoked with the call method, which takes the
arguments to the Proc object and returns the last expression evaluated in
the block. More than one parameters may be specified in a Proc object.
The following script, which invokes a Proc object with 3 parameters,
outputs the message “Hello Ruby, ruby, RUBY™.

hello=Proc.new{ |namel, name2, name3| puts "Hello

"+namel+", "+name2+", "+name3}
hello.call ("Ruby", "ruby", "RUBY")

1.10 Procs and Blocks 25

The parameters may be omitted from a Proc object as in the following
script, which outputs “Hello Ruby”.

hello=Proc.new{ puts "Hello Ruby"}
hello.call()

A method may be invoked with a Proc object argument. For example,
create a class Hello and a method helloMthd, which takes 2 parameters.
Create a Proc object, create an instance of the class and invoke the method
with the Proc object as shown in following listing.

class Hello

def helloMthd (paraml, param?2)
return paraml.call (param2)

end

end

helloProc=Proc.new{ |name| puts "Hello "+name}
helloObj=Hello.new
helloObj.helloMthd (helloProc, "Ruby")

The output from invoking the helloMthd method with a Proc object is
“Hello Ruby”. If a Proc.new object in a method contains a return
statement, invoking the Proc object returns from the enclosing method. In
the following script, a method creates a Proc object with Proc.new. In the
Proc object a return statement is specified. The Proc object is invoked in
the method. When the method is invoked, the Proc object gets invoked,
and the method invocation returns.

class Hello
def hello()

helloProc=Proc.new{return "Return from Proc"}
helloProc.call ()

puts "Hello Ruby"

end

end

helloObj=Hello.new
helloObj.hello()

The output from the script is “Return from Proc”. The “Hello Ruby”
string is not output. The Kernel module provides a method called proc or

26 1 Ruby

lambda, which is equivalent to Proc.new, but which does not return from
the enclosing method. If the preceding script is run with the proc method,
instead of Proc.new, the output is “Hello Ruby”. Another difference
between Proc.new and the proc method is that the proc method checks for
the number of arguments, while Proc.new doesn’t. For example, a
Proc.new block, which defines 2 parameters, may be invoked with 3
arguments as in the following script.

hello=Proc.new{|namel, name2| puts "Hello "+namel}
hello.call ("Ruby", "ruby","RUBY")

The output is “Hello Ruby”.

In contrast, if the proc method is used to create a Proc object and the
Proc object is invoked with a different number of arguments than
specified, an error gets generated. For example, the following script creates
a Proc object with the proc method that defines 2 parameters, and when the
Proc object is invoked with 3 arguments an error gets generated:
“ArgumentError: wrong number of arguments (3 for 2)”.

hello=proc{|namel, name2| puts "Hello "+namel}
hello.call ("Ruby", "ruby", "RUBY")

The Proc.new method may be used without a block, if invoked in a
method and the method has an attached block, as in the following script.

def hello
Proc.new
end
helloProc = hello { "hello ruby" }
helloProc.call

A block of code may be used with a method without using Proc.new to
create a Proc object. When a block is appended to a method call, Ruby
converts the block of code to a Proc object without a name. The Proc
object may be invoked in the method using the yield method, which is
equivalent to an explicit call to an explicit Proc object. In the following
listing method hello is invoked with a block. Ruby converts the block to a
Proc object, which may be called using the yield method.

def hello
yield

1.10 Procs and Blocks 27

yield
end

hello {puts "Hello Ruby"}

The output from the script is as follows.

Hello Ruby
Hello Ruby

The ampersand operator (&) may be used to explicitly convert between
a block and a Proc object. If an & is prepended to the last parameter of a
method and a block attached with the method, the block gets converted to
a Proc object and gets assigned to the last argument. In the following
example, the last argument of the hello method is prepended with an &.
When the method invocation is attached with a block, the block gets
converted to a Proc object and gets assigned to the last argument of the
method. The call method may be invoked on the Proc object ‘name’ in the
method definition. The yield method may still be used to invoke the Proc
object.

def hello (msg, &name)

name.call (msg)
yield (msg)
end

hello ("Ruby") {|name| puts "Hello " +name}
The output from the Ruby script is as follows.

Hello Ruby
Hello Ruby

The argument prepended with & isn’t really an argument, but meant to
convert a block of code to a Proc object. A method may not be invoked
with a Proc object where a block is expected. For example, if the hello
method in the preceding script is invoked with a Proc object instead of a
block, as in the following listing, an ArgumentError gets generated.

28 1 Ruby

def hello(msg, &name)
name.call (msg)

yield (msg)

end

hello ("Ruby", proc {|name| puts "Hello " +name})

But, a Proc object may be converted to a block and a method that
expects a block invoked with the converted block. A Proc object is
converted to a block by prepending the Proc object with an &. In the
following script, the procObj Proc object is prepended with a & in the
hello method invocation.

def hello(msg, &name)

name.call (msg)
yield (msg)
end

procObj=proc {|name| puts "Hello " +name}
hello ("Ruby", &procObj)

The output is the same as invoking the method with a block.

1.11 Control Structures and Iterators

Ruby provides control structures to run code conditionally. A conditional
branch evaluates a test expression and evaluates code in a block depending
on whether the expression evaluates to true or false. The if control
structure is used evaluate a block of code if the expression following if
evaluates to true as shown in the following example.

varl=nil

if varl==nil

varl="Nil Variable"
end

The output is "Nil Variable". The test expression and code block may be
put on the same line using then.

varl=nil
if varl==nil then varl="Nil Variable" end

The if expression may also be used as follows.

1.11 Control Structures and Iterators 29

varl=nil
varl="Nil Variable" if varl==nil

The unless expression evaluates a block of code if an expression
evaluates to false.

varl=nil

unless varl!=nil
"Variable is Nil"
end

The output is "Nil Variable". The if-elsif-else expression
evaluates a series of expressions. For example, the following if-elsif-else
script outputs “Varl is nil”.

varl=nil

if varl==
"Varl is 1"

elsif varl==
"Varl is 2"

elsif varl==
"Varl is 5"

else

"WVarl is nil"

end

The short-if statement is used to evaluate one expression if a Boolean
expression is true and another expression if the Boolean expression is
false.

varl=5
(varl==nil)? nil : "Varl is not nil"

The preceding Ruby script outputs “Varl is not nil”. The case
statement is used to test a sequence of conditions. The following script
tests name with different strings and outputs “Ruby”.

name="Ruby"
case name
when "RUBY"
puts "RUBY"
when "ruby"
puts "ruby"
when "Ruby"
puts "Ruby"
end

30 1 Ruby

The while statement runs a block of code while a specified condition
is true. The following script outputs an integer and increments the integer
while the integer is not 10.

var=1

while var!=10
puts var
var +=1

end

The until statement is a negated while. The following script outputs
an integer and increments an integer until the integer is 10.

var=1

until var==10
puts var
var +=1

end

Ruby provides four methods to exit a while/until loop: break, next,
redo, and return. The break exits the loop. In the following script,
integers are output only upto 7.

var=1
while var!=10
if var==
break
end
puts var
var +=1
end

The next statement invokes the next iteration of a loop. In the
following script, which has a next statement, integers 2 to 10 are output
except integer 8, because the next iteration is invoked if var value is 8.

var=1

while var!=10
var +=1
if var==
next
end
puts var

end

1.11 Control Structures and Iterators 31

The redo statement restarts the current iteration again. The following
script restarts current iteration if var value is 8. The output is integers 1 to
9.

var=1

while var!=10
puts var
var +=1
if var==
redo
end

end

A return statement in a loop exits the loop and also the method that
contains the loop. The following script iterates the while loop twice.

class Hello

def hello

var=1

while var!=10

puts "Hello Ruby"
var+=1

if var==3

return "Hello Ruby"
end

end

end

end
hello=Hello.new
hello.hello

The for statement iterates over a collection without using indices. The
collection may be a hash, an array, a range or any other collection. The
following script iterates over an array and outputs a Hello message for
each element in the collection.

array =["Ruby", "ruby", "RUBY"]
for name in array

puts "Hello"+ name
end

The output is as follows.

32 1 Ruby

“Hello Ruby”
“Hello ruby”
Hello RUBY”

A collection may also be iterated using the each method. The
following script also produces the same output as the preceding script.

array =["Ruby", "ruby", "RUBY"]

array.each do |name|
puts "Hello "+ name
end

A string type provides a method each byte, which iterates over each
character in the string. The following snippet outputs ASCII character
codes for the characters in the “RUBY” string.

str="RUBY"

str.each byte do |c|
puts c
end

Ruby provides another iterator for string type, each line, which
iterates over each line in a string.

Str="RUBY\nRuby\nruby"

str.each line do |1|
puts 1
end

The output from the code snippet is as follows.

RUBY
Ruby
Ruby

The each method for a string type is the same as the each_line method.
The retry statement restarts the iteration from the beginning. The
following script, outputs “Hello Ruby” twice.

array =["Ruby", "ruby", "RUBY"]
c=0

array.each do |name|

if name=="ruby" and c==

retry

end

puts "Hello "+ name

1.12 Exception Handling 33

c +=1
end

The redo statement is used to restart the current iteration. The
following script does not output a string if ¢ is 1.

array =["Ruby", "ruby", "RUBY"]

c=0

array.each do |name|

if c==

c +=1

redo

end

puts c

puts "Hello "+ name

c +=1

end

Ruby provides the n.times do iterator for n iterations. For example,
the following iteration outputs 0, 1, 2, 3.

4.times do |num|
puts num

end

1.12 Exception Handling

Exceptions are conditions in the running of code that prevent the code
from running. An Exception is an instance of class Exception or a sub-
class of Exception. In the section on methods, we discussed that if a
private method of a class is invoked with an instance of the class, a
NoMethodError gets generated. NoMethodError is a sub-class of
NameError class, which is a sub-class of StandardError class, which is a
sub-class of the Exception class. Ruby provides exception handling
mechanism with begin/end block. If an exception is raised in a
begin/end block Ruby provides the rescue clause to handle the
exception. Multiple rescue clauses may be specified in a begin/end block
to handle different error conditions. An ensure clause may also be
specified that consists of statements that are run whether an exception
occurs or not. The format of a begin/end block is as follows.

34 1Ruby

begin

rescue Exceptionl
Statements to run when an exception of type
Exceptionl occurs

rescue Exception2
Statements to run when exception of type
Exception2 occurs.

ensure
Statements to run whether an exception occurs or
not.

end

A reference to the exception object associated with the latest exception
is available in the global variable $!. In the following script, a
NoMethodError gets generated when a private method a class is invoked.
An error message is output in the rescue statement.

class Hello

def hello (name)
return "Hello " +name
end

private :hello
end

begin

helloObjl=Hello.new

helloObjl.hello "Ruby"

rescue NoMethodError

$stderr.print "The NoMethodError has been generated:
Il+$!

end

The output from the script is as follows.

The NoMethodError has been generated: private method
hello called for #<Hello:>

If no exception class is specified in the rescue clause, the StandardError
exception is the default. Multiple exception classes may be specified in a
rescue class, and a local variable may be specified to receive the matched
exception. For example, in the following script multiple exception classes
have been assigned to a rescue clause and also a local variable has been
assigned to the rescue class.

1.12 Exception Handling 35

class Hello

def hello (name)
return "Hello " +name
end

private :hello

end

begin

helloObjl=Hello.new

helloObjl.hello "Ruby"

rescue NoMethodError, SyntaxError =>error
Sstderr.print error

end

The output from the script is as follows.

private method hello called for #<Hello:>

Parameters to the rescue clause may be expressions that return an
Exception class. Exceptions may also be raised explicitly using the raise
method. The raise method has one of the following syntaxes.

raise
raise(aString)
raise(anException [, aString [anArray 1])

With no arguments, raise raises the exception in !$ or raises a
RuntimeError if !$ is nil. With a single argument, raise raises a
RuntimeError with the string message. With the third syntax, the first
parameter is the Exception class or a sub-class of the Exception class. The
optional second parameter is string message associated with the exception.
The optional third parameter is an array of callback information. In the
following script, an exception of type Exception is raised in the hello
method and the rescue clause outputs the error message.

class Hello

def hello (name)
raise Exception, "An exception has been generated
in the hello method"
return "Hello " +name
end

end

36 1 Ruby

begin

helloObjl=Hello.new

helloObjl.hello "Ruby"

rescue NoMethodError, Exception =>error
Sstderr.print error

end

The output from the script is as follows.

"An exception has been generated in the hello
method" .

The raise method is available in the kernel module.

1.13 Modules

A module is a collection of classes, methods, variables, and constants. A
module is defined with the following syntax.

module

end

A module is similar to a class in that it is a collection of methods,
variables, and constants. But, a module is different from a class, because a
module may not be instantiated or sub-classed. Members of a module are
referenced with the :: notation. For example, if class Class1 is in module
Modulel, the class is referenced as Modulel::Classl. Modules provide
multiple inheritance with mixins. A module may be included in a class,
thus, the members of the module become the members of the class. A
module is included in a class with the include statement. If the module
is another file, first import the module with a require statement.

require Modulel
include Modulel

1.14 Comparing Ruby with PHP

Both PHP and Ruby are interpreted scripting languages. Both PHP and
Ruby are object-oriented and provide classes, methods, and class
inheritance. Ruby is more object-oriented than PHP; in Ruby everything is
an object. In both Ruby and PHP, a class may extend one other class;
single inheritance. In both Ruby and PHP access to classes and methods

1.15 Comparing Ruby with Java 37

may be public, protected or private. The PHP script runs on the web server
and output may be viewed in a web browser. For server-side-scripting
three components are required; PHP Installation, Web Server, and a Web
Browser. PHP is dynamically typed; variables are not declared, just as in
Ruby. Ruby provides the constant nil corresponding to PHP type NULL.
Both Ruby and PHP provide the constants TRUE and FALSE. Both Ruby
and PHP support expression interpolation for double-quoted strings using
#{}; expressions enclosed in #{} in a double quoted string are evaluated
and replaced with the result. Both Ruby and PHP support exception
handling. Both Ruby and PHP may be embedded in HTML, the syntax
though is different. PHP code is embedded using <? 7> and Ruby code is
embedded using <% %>, or <%= %> to output to a browser. Ruby and
PHP are different in some other aspects too. Ruby is a strongly typed
language, which means that explicit conversions have to be performed
between data types, unlike PHP, which performs the type conversions
automatically. Strings, numbers, arrays, and hashes are objects in Ruby
unlike in PHP. Integers in Ruby may contain underscores as markers,
which are not evaluated by the parser. Ruby provides symbols, which
PHP doesn’t. In Ruby parentheses are optional in method invocation,
unlike in PHP. Ruby provides control structures if, else and elsif
corresponding to PHP’s control structures if, else and elseif.
Corresponding to PHP’s while, do-while, for and foreach, Ruby provides
n.times do, while, begin-end-until, for and .each do. Ruby does not
support abstract classes or interfaces, which PHP does. Almost everything
in Ruby gets converted to a method call.

1.15 Comparing Ruby with Java

Ruby is similar to Java in that both are object-oriented languages and are
strongly typed. But, Ruby is dynamically typed, whereas Java is statically
typed; in Ruby type declarations are not used while in Java type
declarations are required. Both Java and Ruby provide inheritance and
have public, private and protected methods. Ruby is simpler than Java and
faster than Java too. Ruby is different from Java in a number of features.
The differences between Java and Ruby are discussed in Table 1.4.

38

1 Ruby

Table 1.4 Comparing Ruby with Java

Feature Ruby Java
Interpreted/Compiled Ruby is an interpreted | Java
scripting language | applications are
and is run directly. required to be
compiled
before running.
Defining Blocks Ruby defines a | Java uses
class/method block | braces to define
using the end | a class/method
keyword. block.
Importing The require statement | The import
packages/modules is used to import a | statement is

class or a module.

used to import
a package or a
class.

Multiple Inheritance.

Uses mixins for
multiple inheritance.

Uses interfaces
for multiple

inheritance.
Typed Variables Variables do not have | Variables have
an explicit type | an explicit
associated. type.
Constructor Constructor is the | Constructor is

initialize method.

the name of the
class.

Class Instantiation. A class Classl 1is | A class Classl
instantiated as | is instantiated
follows: as follows:

class1=Class1.new classl=new
Class1()

Configuration file YAML files are used. | XML files

Null value nil null

Casting No casting. Casting is used.

Type declarations. No type declarations. | Variables are
Variables are | statically typed.

dynamically typed.

1.16 Summary 39

Table 1.4 (continued)

Feature Ruby Java
Objects Everything is an | Objects
object including
numbers.
Parentheses in | Parentheses in | Parentheses in

method invocation. method invocation | method invocation.
are optional.
Member variables. All member | Member variables.
variables are private.

1.16 Summary

In this chapter we installed Ruby. We discussed the Ruby syntax. We
compared Ruby with PHP another commonly used scripting language. We
also compared Ruby with Java.

2 Springer
http://www.springer.com/978-3-540-73144-3

Ruby on Rails for PHP and Java Developers
Vohra, D,

2007, ¥V, 394 p. 202 illus., Softcover
ISBN: 278-3-540-73144-3

