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Introduction

After the great scientific revolutions of Special Relativity and of Quantum
Mechanics in the first half of the twentieth century, Relativistic Quantum
Field Theory (QFT) was introduced to provide a synthesis of these two new
paradigms (in Kuhn’s words). As such, QFT is one of the major advances for
theoretical physics in the second half of the last century. The main reason for
emphasizing the importance of QFT lies in the impressive effort that it repre-
sents towards a unified understanding of the structure of matter at subatomic
scales, as it emerges in the collision phenomena of particle physics in the range
of energies presently explored in particle accelerators. But another reason is
the extraordinary mathematical wealth of this theoretical framework, which
makes it a fascinating domain of research for mathematical physics and may
also stimulate the interest of mathematicians.

Foreseen by Dirac in 1933 and finaly established discovered by Feynman
around 1949 for the treatment of quantum electrodynamics, the so-called
“path-integral formalism” of quantum field theory is also now considered as
a powerful tool for providing perturbative methods of computation in many
problems of theoretical physics, namely in statistical mechanics and in string
theory. However, the use of relativistic quantum fields as a basic concept of
mathematical physics underlying all the phenomena of particle physics in a
very large range of energies represents a much more ambitious program.

This program was indeed stimulated by the success of the quantum elec-
trodynamics (QED) formalism for computing the electron-photon, electron-
electron and electron-positron scattering amplitudes. Even today, it is by no
means understood why the perturbative expansion of QED in powers of the
coupling parameter, that is the electric charge of the electron, provides such
a spectacular agreement with experimental data, although in practice it is
reduced to the computation of the very first terms of the series (the only ones
which are computable). This is even more surprising since we now know that
the series cannot be convergent, so that, paraphrasing Wigner’s words, one
may wonder about the “unreasonable effectiveness” of perturbation theory in
four-dimensional QED.
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In the 1950s, however, the success of these computations was credited to
the smallness of the coupling parameter of QED, and this situation stimulated
research for other methods of investigation of QFT, which could apply to
quantum field models with large coupling: it was in fact the very concept of
a quantum field which appeared as the most powerful and promising one for
explaining the phenomena of strong nuclear interaction of particle physics.
During all that period the study of phenomena of weak nuclear interaction
also benefitted, like QED, from the success of a perturbative QFT formalism
reduced to very few terms.

The demand for a more general nonperturbative treatment of QFT mo-
tivated an important community of mathematical physicists to work out
a model-independent axiomatic approach to relativistic quantum field the-
ory [2,8,9,11,14]. Their first task was to provide a mathematically meaningful
concept of a relativistic quantum field in terms of “operator-valued distribu-
tion in the Hilbert space of quantum physical states”, in such a way that the
notion of ingoing and outgoing particle states could be introduced in terms of
appropriate asymptotic forms of the field operators.

The precise mathematical formulation of fundamental physical principles
of relativistic quantum theory in terms of field operators considered as ba-
sic entities of the system allowed the possibility to offer a general model-
independent framework, in which one could propose a theoretical treatment
of high-energy collision phenomena.

These phenomena involve not only the usual processes of “elastic scatter-
ing” preserving the number and nature of the particles, but also all possible
processes of creation and annihilation of particles permitted by the kinemat-
ical laws of special relativity and the conservation laws of basic quantum
numbers called “charges”. In this mathematical framework, all the collision
processes are encoded in a certain general unitary scattering operator S in
the Hilbert space of states, according to the concept originally introduced by
Heisenberg, and all the corresponding scattering kernels Sm,n of (m → n)-
particle collision processes are related to general N -point structure functions
of the quantum fields (with N = m+ n) via the so-called LSZ “reduction for-
mulae”. This formalism was fully justified at least for processes involving only
massive particles; the inclusion of massless particles, such as the photons of
QED, soon revealed the existence of hard mathematical problems of various
types.

This general approach of QFT was followed by a conceptually important
variant, in which the quantum fields are supposed to generate “algebras of
local observables” attached to arbitrary regions of Minkowski spacetime. This
is the algebraic approach to quantum field theory (Haag, Kastler 1964), whose
most important developments between 1960 and 1990 have been presented in
a book by Haag (1992) under the name of “local quantum physics” [6].

From both mathematical and physical viewpoints, the visionary works of
Von Neumann, which were contemporary to the birth of quantum mechanics,
are at the origin of all these developments; however, the algebraic structures
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involved in relativistic QFT refer to the most advanced developments of the
theory of Von Neumann algebras. Just as an example, it is worthwhile to re-
call that, in contrast with the case of nonrelativistic quantum mechanics, one
is necessarily confronted by factors of type III in the standard classification of
Von Neumann algebras. This occurs already in the simplest models of relativis-
tic QFT, namely the free-fields. Moreover, important conceptual progress was
made by the algebraic QFT viewpoint with respect to the primitive quantum-
mechanical notion of the Hilbert-space of states of a given physical system.
It consists in introducing algebras of local observables of the system as ab-
stract C∗−algebras (and even more general ∗-algebras) and then representing
all possible physical states of the system as linear functionals on such al-
gebras. In this more general viewpoint, various types of physically relevant
Hilbertian representations of the algebras may be introduced mathematically
via GNS-type (Gelfand-Naimark-Segal) [6] constructions. As a typical illus-
tration of this viewpoint, one can mention the Borchers-Uhlmann algebraic
presentation of the original Wightman axiomatic QFT [3].

In these various general approaches to relativistic QFT aiming to provide
a theoretical understanding of particle physics, a central role is played by a
certain field-theoretical formulation of Einstein causality together with the
relativistic principle of positivity of energy (also called spectral condition) and
an appropriate expression of the covariance of the system under the Poincaré
group.

The interplay of these postulates has generated rigorous proofs of impor-
tant physical properties, thanks to the discovery of very rich analyticity prop-
erties of the N -point structure functions of the fields (elaborated in successive
works by Ruelle, Steinmann, Araki, Bros, Epstein, Glaser, Stora). As a mat-
ter of fact, all these functions enjoy two associated analytic structures, which
coexist in the complexified spacetime variables z and in the Fourier-conjugate
complexified energy-momentum variables k; this double analytic structure is
equipped with a peculiar type of algebraic relations between boundary values
from tube domains and relevant (multiple) discontinuities, including various
interconnections by Fourier-Laplace transformations in several variables. In
both z-space and k-space, nontrivial problems of holomorphy envelopes of the
so-called “edge-of-the-wedge” type which emerge from this double analytic
structure have only been very partially solved. As typical illustrations of the
latter, one can say that on the one hand the exploitation of the z-space analytic
structure has provided proofs in general QFT of such important properties of
particle physics as the PCT-symmetry and the spin-statistics connection . On
the other hand, the exploitation of the k-space analytic structure has brought
a general justification in QFT of important analytic continuation properties
of the scattering kernels on the so-called complex mass shell manifold of var-
ious collision processes. As a typical example, let us mention the crossing
property between the “particle-particle” and “particle-antiparticle” scattering
processes, which can be geometrically expressed as the existence of a domain of
analyticity on the complex mass shell manifold relating two different “physical
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regions” on the real mass shell submanifold (Bros, Epstein and Glaser). Such
successful results, which were mostly obtained in the 1960s, correspond to
the “golden age” of the so-called dispersion relations in particle physics. It
is rather remarkable that such model-independent Cauchy-type integral rela-
tions were found to be in satisfactory agreement with the experimental data of
two-particle collision processes and that in this analytic framework, important
“high-energy bounds” could also be derived from general principles in basic
works by Froissart and Martin [10].

Of course, as a natural complement to this conceptual progress, there was
(and there is) the need to produce nontrivial models of relativistic quantum
fields: for that matter, a basic criterion of nontriviality is the requirement that
the associated scattering operator S be different from the identity operator.
This accounts for the occurrence of another school of mathematical physi-
cists, called “Constructive quantum field theory” and founded essentially by
Glimm and Jaffe in the late 1960s [5], whose purpose was to produce rigorous
existence proofs together with properties of the corresponding solutions for
models of relativistic QFT associated with Lagrangians of suitable type. Inge-
nious methods of “cluster expansions” were invented which allowed one to treat
successfully various classes of nontrivial models in two and three-dimensional
Minkowski spacetime, thus displaying that (at least for these dimensions)
the axiomatic framework was not a pure abstraction, but it contained a lot
of mathematically well-defined Lagrangian theories. It was even shown that,
for such models, the traditional perturbation expansion, defined as a formal
power series in terms of a small coupling parameter, had Borel-summability
properties which allowed one to reach the exact solution of the model [5, 7].

However, it became patent that all the models of interacting relativistic
quantum fields in the physical four-dimensional spacetime are afflicted by
very hard mathematical problems which have to do with unavoidable short-
distance as well as long-distance divergent behaviours of the structure func-
tions of the fields. These difficulties are closely related to the renormalization
problems in the standard perturbative approach of QFT. In the 1980s, in spite
of the fact that no completely rigorous proof of it could be produced, there
appeared a wide consensus among theoretical physicists that the QFT model
with quartic interaction, that is the “simplest” Lagrangian model of scalar
fields to be considered, probably did not exist in four-dimensional spacetime,
but only reduced to a pure formal series in the sense of the perturbative
approach.

The same consensual opinion also applies to QED, which therefore makes
it still more thrilling to have in mind the physical success of its perturbation
series. The additional intriguing aspect of QED is the fact that it incorporates
the fundamental physical notion of electric charge. As a matter of fact, the
horizons of QFT were considerably renewed in the 1970s by the generalization
of the notion of charge in particle physics and the associated concept of gauge
symmetry groups for the quantum field description of charged states. From
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this viewpoint, in comparison with all the models studied in constructive QFT,
the Lagrangian of QED appeared as the simplest one to incorporate a local
gauge symmetry group, namely the gauge group based on the abelian group
U(1). A very important event was then the discovery of more complicated La-
grangians of relativistic fields, symmetric under nonabelian gauge groups, in
particular the model called quantum chromodynamics (QCD). The successful
exploitation of the latter for the phenomenology of particle physics opened a
way that is still used nowadays in describing elementary particle interactions.
In fact, for theoreticians of particle physics, the early success of QED in per-
turbation theory was renewed in the 1970s and extended to all the phenomena
of weak and strong nuclear interactions: this was mainly due to the success of
the so-called “renormalization group” treatment of QCD for the understanding
of strong nuclear interactions, and of the standard model, whose fundamental
set of boson and fermion quantum fields are supposed to take into account
all the basic interactions of matter but gravitation, thus providing a unified
treatment of the electroweak and strong interactions together. In particular,
it is the discovery of the basic notion of asymptotic freedom which allowed
one to give a sense to expansions of the field-theoretical structure functions
in terms of a large coupling parameter, and therefore to renew to some extent
with QCD the old success of QED in the spirit of perturbation theory.

In that regard, however, the point of view of mathematical physicists re-
mained somewhat different and cultivated a still larger ambition in the line of
its tradition. As ingenious as they are, the computational techniques of QCD
and of the standard model treat the quantum fields of those models as very for-
mal objects. In these approaches, whose computational efficiency is the main
criterion to be fulfilled, the problem of the mathematical existence of fields
has not been really considered. A pragmatic attitude consists in being satisfied
with a certain type of approximate computations, whose recipes pertain to a
weakened conceptual framework of quantum field theory, which is sometimes
called “effective quantum field theory” by the tenants of these approaches.
However, the impressive adequacy of some of the results obtained with the
experimental data is stimulating for the mathematical physicist whose hope is
to obtain a fully coherent understanding of this fundamental branch of physics
in terms of mathematically well-defined objects. There are basic mathemati-
cal problems of the QFT framework which remain unsolved and whose solu-
tions might shed new light on deep conceptual aspects of high-energy particle
physics.

For a large part of the community of theoreticians of particle physics,
increasing evidence has been accumulated since the 1970s that nonabelian
gauge quantum field theory might be the only class of theories relevant
for elementary particle physics, and whose mathematical existence in four-
dimensional Minkowskian spacetime might hopefully be established some day.
As an abelian gauge theory, QED might have a less favourable mathematical
status as an isolated theory, and (according to certain arguments) should be
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more credibly thought as “embedded” in a larger nonabelian theory (such as
the “standard model”). During the last thirty years, these considerations have
been taken into account by the community of QFT mathematical physicists.

On the one hand, the problem of treating charged states in the case of a
global gauge symmetry group (namely an internal symmetry group indepen-
dent of spacetime localization) gave rise to deep conceptual progress in the
general approach of algebraic QFT. This was due to the analysis of charge
sectors in the Hilbert space of states by Doplicher, Haag and Roberts in the
1970s, and to the axiomatic introduction of nonlocal charge-carrying quantum
fields such as the “string-localized fields” of Buchholz-Fredenhagen (1982).
This contributed to enlarging considerably the concept of a quantum field
and its relationship with the concept of a particle and thereby to opening new
ways of research for QFT in the spirit of mathematical physics.

On the other hand, the mathematical study of QFTs involving a local gauge
group (like QED and QCD) remains a much harder task. Indeed the very exis-
tence of a local gauge symmetry renders the axioms incompatible and one has
to choose whether to work in local and covariant gauges and abandon Hilber-
tian positivity, and therefore a direct quantum mechanical interpretation, or
to work in positive gauges where all the standard wisdom of QFT fails (in
particular the expression of Einstein causality). A general approach to these
problems was introduced and developed in the papers by Strocchi and Wight-
man in the 1970s. Still harder problems concern the construction of charged
states for nonabelian gauge QFTs, the “confinement problem” being a partic-
ular instance of it [12] (see also further remarks below). The importance of
this stream of research may be symbolized by the inscription of the study of
Yang-Mills Quantum Field Theory (namely the “gluonic part” of QCD) in the
seven Millennium Prize Problems proposed by the Clay Mathematical Insti-
tute. We refer to the presentation of this subject by A. Jaffe and E. Witten
for a description of the type of hard mathematical problems to be solved in
that context.

In their spirit, all the articles presented in this book consider quantum
fields as genuine mathematical objects, whose various properties and relevant
physical interpretations have to be studied in a well-defined mathematical
framework. They therefore pertain to that tradition of “Rigorous Quantum
Field Theory”, which traces back to the basic axiomatic settings, supplemented
by relevant constructive approaches, that we have previously mentioned. In
this spirit, the most recent investigations of QFT may be characterized by
the conceptual needs of extending the general axiomatic framework at least
in two directions: i) taking into account the inclusion of internal (abelian and
nonabelian) gauge groups as basic structures suggested by particle physics; ii)
going beyond the Minkowskian spacetime of special relativity by incorporat-
ing more general notions concerning space and time. The latter investigations
include, on the one hand, the consideration of QFT on curved spacetime man-
ifolds, stimulated by various currents of research in general relativity, astro-
physics and cosmology; in this context, unexpected relationships with basic
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concepts of “thermal QFT”, namely field theory in a medium with a large
number of particles, have also been exhibited. They also include, on the other
hand, the recent development of QFT on noncommutative spacetimes, stim-
ulated by new insights on the very-short-range structure of space and time.
From these various viewpoints, it seems that one has now entered a new phase,
namely the genesis of a deep renewal of the fundamental structures of QFT,
in which the most advanced progress in pure mathematics may have its role
to play.

We shall end this introduction with a very brief overview of the different
topics which are represented in the various texts of this book. These topics can
be grossly regrouped under seven titles, whose order is by no means significant
and which do not exclude overlap:

1. Analytic Structures of QFT.
The analytic structures of QFT in complex energy-momentum space offer
microlocal aspects and global aspects. While the microlocal aspects con-
cern the analytic wave-fronts of N-point functions and of general multipar-
ticle collision amplitudes, the global aspects involve such general concepts
as holomorphy envelopes in Cn, Fredholm-type equations with floating
cycles in complex manifolds (i.e., the so-called Bethe-Salpeter-type equa-
tions), polar singularities in the space C2 of the complex energy and an-
gular momentum variables, interpreted as Regge particles in QFT.

2. Renormalization group methods.
A version of rigorous renormalization theory based on the flow equations of
the Wilson renormalization group is presented and illustrated in particular
by considering the case of the scalar field with quartic coupling. More
general results of the rigorous approach of renormalization group methods
are also described. Moreover a new look at the renormalization group
from the point of view of Algebraic Quantum Field Theory is proposed
which results in a consistent definition of local algebras of observables
and of interacting fields in renormalized perturbative QFT, involving an
appropriate use of the classical action of the models.

3. New investigations and results related to Gauge QFT.
Some basic unsolved problems of Quantum Electrodynamics which con-
cern the formulations of that theory in different gauges are investigated
from the viewpoint of the Wightman functions of the fields.
Yang-Mills field equations are the starting point of a far-reaching math-
ematical study on “Yang-Mills algebra”, “quadratic self-duality algebras”
and “super” versions of them as applications of the theory of homogeneous
algebras.
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4. New methods and results in Constructive QFT.
a) The invention of new procedures for constructing models of local rel-
ativistic quantum fields starting with a given scattering operator gives
successful results for the case of factorizing S-matrices in two-dimensional
spacetime. An intermediate step in the construction procedure makes use
of nonlocal fields, called “Polarization-Free Generators” whose affiliated
algebras are localized in wedge-shaped regions of spacetime rather than
in bounded regions. The hope of obtaining similar results when starting
from more general collision operators in four-dimensional spacetime by
also incorporating the concept of “lightfront holography” is also discussed.
In the same spirit, a general procedure for constructing stringly-localized
fields from Wigner representations of the Poincaré group in d-dimensional
spacetime is also presented.
b) Thermal Quantum Field Theory, whose axiomatic status has been im-
plemented in recent years on the basis of the KMS condition (starting from
the general analysis of Haag, Hugenholtz and Winnink), presents a char-
acteristic analytic structure in complex spacetime. This structure, which
involves a periodicity in imaginary times given by the inverse of the tem-
perature, is an alternative to the one prescribed by the spectral condition
for the usual theories with a ground state (or zero-energy “vacuum”), thus
appearing as the case of zero temperature. The construction of thermal
field models in two-dimensional spacetime, associated with polynomial
Lagrangians (of the type considered by the shool of constructive QFT in
the 1970s) has been performed very recently, and it is proven here that
they satisfy a relativistic form of the KMS-condition introduced earlier at
the axiomatic level by Bros and Buchholz.

5. Stability properties in QFT and extensions of the Axiomatic Framework
of QFT.
Apart from the standard postulates of QFT expressed respectively by
the spectral condition for theories with a ground state, and by the KMS-
condition for thermal QFT, have both been proved to result from a general
stability criterion called “passivity” (according to a basic work of Pusz and
Woronowicz). Another type of stability condition is presented here, which
is formulated in terms of “quantum energy inequalities” to be satisfied by
the energy-momentum tensor of the theory. The links between this type of
condition with the passivity condition are investigated, as also those with
the important concept of “nuclearity” introduced in QFT by Buchholz.
Another direction of research concerns the concepts of Anosov flows and
of Kolmogorov systems, the important point being that they can be trans-
lated from classical to quantum systems. With some modifications neces-
sary to keep the same clustering behavior as the typical one for classi-
cal Anosov systems, Anosov structure then appears rather naturally in a
typeIII1 algebra. Here Anosov structure and Kolmogorov structure with
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respect to modular evolution are even equivalent. The Rindler wedge of
quantum field theory offers a typical example.

6. QFT on Models of Curved Spacetimes.
Quantum field theory in curved spacetime is one important issue of mod-
ern theoretical physics, in that, while waiting for new high energy physics
experiments in terrestrial laboratories, most of the new data come from
observational cosmology. In particular, the evidence for a nonzero cos-
mological constant indicates that the de Sitter geometry plays and will
play in future an important role. The study of soluble models on the two-
dimensional de Sitter spacetime should be based on the two-dimensional
massless scalar field. An original study of that model is presented here,
that puts in evidence the anomaly of the equations of motion and fully
characterizes the charge structure of the model.
Anti-de Sitter Quantum Field theory is nowadays very popular because of
its appearence in the context of string theory with the so-called “AdS-CFT
correspondence”. Euclidean AdS QFT can also provide a covariant regu-
larization of flat QFT. The difficulty in studying AdS-QFT lies mainly in
the absence of global hyperbolicity, caused by the presence of a bound-
ary at spacelike infinity. A general rigorous approach to AdS QFT that
bypasses these problems is presented here together with a collection of
structural results that are implied by the chosen axioms.

7. QFT on Noncommutative Minkowski Spacetime.
One of the fundamental questions in field theory on noncommutative
spacetimes is how to find suitable generalizations of the local interaction
terms we know from ordinary field theory. By construction, the notion of
a point loses its meaning on such a spacetime and, not surprisingly, the
principle of locality has to be modified. Depending on how this is done,
various interaction terms are obtained. One can replace the idea of co-
inciding points in a way compatible with the uncertainty relations. The
resulting interaction term resembles a point-split regularized product of
fields and leads to an ultraviolet finite perturbation theory.
The Wick reduction of non-locally time-ordered products of Wick mono-
mials can be performed in a quantum field theory with a certain nonlocal
self–interaction as introduced by Doplicher, Fredenhagen and Roberts,
and simple Dyson diagrams are discussed.
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