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Abstract In component-based Grid environments, we analyse the problem of formal spec-
ification of their behaviour by introducing an automata-based model. We show
how to construct this new framework from the analysis of states of components
and how to apply it to a reconfiguration scenario in a dynamic distributed system
environment. We aim at building a framework for future integration of these
developments in a software tool for runtime automated specification and verifi-
cation, ensuring a reliable dynamically reconfigurable component model.
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1. Introduction

Component models enable modular design of software applications that can
be easily reused and combined, ensuring greater reliability. This is important in
distributed systems where asynchronous components must be taken into consid-
eration, especially when there is need for reliable dynamic reconfiguration. In
these models, components interact together by being bound through interfaces,
however, there is a further need for a method which ensures correct composition
and behaviour of components and their interaction with the environment.

Fractal [9] is amodular and extensible component model. The Fractal specifi-
cation defines the Life Cycle controller interface as [8]: “A component interface
to control the lifecycle of the component to which it belongs. The lifecycle of
a component is supposed to be an automaton, whose states represent execution
states of the component. This interface corresponds to an automaton with two
states called STARTED and STOPPED, where all the four possible transitions
are allowed. It is however possible to define completely different lifecycle con-
troller Java interfaces to use completely different automatons, or to define sub
interfaces of this interface to define automatons based on this one, but with
more states and more transitions. A great number of component models in fact
consider by default a number of substates to the most generic STARTED state,
allowing for a deeper introspection on the behaviour of states of components
(initialized, suspended, failed...).

The Grid Component model (GCM) [13] is an extension of Fractal built to
accommodate requirements in distributed systems, in particular, those devel-
oped within and following the CoreGRID [12] project. The GCM specification
defines a set of notions characterising this model, an API (Application Program
Interface), and an ADL (Architecture Description Language) [4]. In Fractal,
when changing the bindings of a component, this component must be stopped (in
other words, to avoid disruption to the system, when unplugging a component,
such component must be stopped before severing its connections to other com-
ponents); at the same time, invocation on controller interfaces must be enabled
when a component is stopped (in order to send the stop signal to the component),
making de facto impossible to reconfigure the component controller. In GCM
section 8.1 of [13], the life-cycle controller is extended allowing to separate
partially the life-cycle states of the controller and of the content. When a com-
ponent is functionally stopped (which corresponds to the stopped state of the
Fractal specification), invocation on controller interfaces are enabled and the
content of the component can be reconfigured. When a component is stopped,
only the controllers necessary for configuration are still active (mainly binding,
content, and lifecycle controllers), and the other components in the membrane
can be reconfigured. We can make use of this extended capabilities and monitor
the changes in states of components.
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The recent development of a Grid Integrated Development Environment
(GIDE) based on the GCM specification [3] opens new possibilities for the
dynamic reconfiguration scenario in large distributed systems. We are able to
take advantage of pre-built components in the GIDE (namely the component’s
hierarchical composition, their API, and the monitoring of both components
and resources) to form a basis for a reconfiguration framework which exploits
the underlying properties of the specification language and deductive reasoning
verification methods used in our research. We consider the monitoring specifi-
cation of [10] and the state information that can be retrieved through calls to the
LifeCycleController interface (getFcState operation) for components, as
well as other monitoring techniques for the environment.

The rest of this paper is organised as follows. In §2 we give some basic
information on behaviour of stateful components/resources (§2.1), analyze the
limitations of ADLs (§2.2) and the environment monitoring techniques which
we utilize (§2.3). Further, in §3 we introduce the automaton model used for
formal specification, detailing the component level automata in (§3.1) and the
environment level one in (§3.2). In (§4.1) we outline the Specification process
and its usage for reconfiguration purposes is introduced in (§4.2). Finally, we
give some concluding remarks and identify future work in §5.

2.  Background
2.1  Behaviour of stateful components/resources

The basic lifecycle of components, and thus the resources being managed,
can be retrieved at runtime by the use of the Component Monitoring and Re-
sources Monitoring systems, built in the GIDE, through: components state
calls (implemented by all component objects), specialised parameters monitor-
ing for some specific components, resources availability monitors and others.
This state system is often restricted, in that it supports the deployment processes
used by the framework and models only the deployment state of the system, not
its operational characteristics. Each deployment component independently rep-
resents the state of the deployed resource which it is managing. The system as
a whole must also represent a reasonable depiction of the overall state of many
components. The core lifecycle is defined by the states, allowed transitions and
operations shown in Figure 1.

As a component is such that it conforms to a set of defined states, and to the
GCM, we can therefore consider composite components as components that
inherit the same properties and conform to state composition. The analysis of
the components’ instances becomes now crucial. When a component is in the
instance state, this component (and all its requirements) will be deployed to
the appropriate system, and any operations will be performed that are part of
the components instantiation process. This state also presumes that whatever
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Figure 1: Component’s Lifecycle States
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activation is required in order for the resource handler of the component to
be valid has been performed (we will leave the detailed requirements for the
resource monitoring system after more research into the effect of distributed
properties at resource level). As shown in the diagram, the initialize and destroy
state change commands are supported in this state. The component will then
move to initialization, where it will wait until a call is made to run; passing on
to the runtime state, which indicates that the services provided by the resources
that are being deployed are available for use. This state does not indicate any
information regarding the operational capabilities of the service, only that it
has completed initialization and not failed. At any time, state actions may not
complete correctly or the service itself may fail. Inresponse to these failures, the
component will transition to the fail state. The component may remain active in
the system, but its managed resource is presumed to no longer be operational.
Once the component is running or has failed it should either eventually or
immediately terminated to stop its services. The terminated state represents
a state where a component is no longer running and cannot be returned to the
running state without redeployment. This state, however, does not eliminate
the resource from the system. Upon invocation of the destroy command, the
component’s corresponding resource will be freed. In a system with multiple
components, the lifecycle of the whole system is defined by the relationships
between the individual component lifecycles. The state of each component
is bound to the state of the components it relies on. The hierarchy of the



Behavioural Model of Component-based Grid Environments 23

system defines relationships where related components lifecycles are linked.
The component model and the ADL specification help define explicit semantics
for guiding lifecycle transitions.

2.1.1  Suspended state. Further analysis should be considered into the
runtime state above. We consider a special state in which the components
my be transitioning to and from the running state. In this particular state,
called the suspended state, special attention has to be made to the states of
the resources relative to the component in question (ie. the resources may
be released while a component is a suspended state). These properties help
refine the way components and relative resources are handled in respect to their
stateful behaviour.

2.1.2  Waitstate. The case of the wait state is a very particular one. This
particular case is often referred to when a component is ready to receive the
input required for continuing its process (although some other special cases
could arise depending on the specific component). This state is often fallen
back into the more generic runtime state, since resources are not released by
the component although they may not even be “used” (ex. the component may
be deployed on a node but not utilizing the processing power). We are currently
forced to consider this state as a particular case of runtime state as there are
no implemented ways to monitor this situation through the lifecycle controller.

2.2 The ADL limitations

It is well known that Architecture Description Languages (ADLs) generally
cannot provide sufficient insight into the post-deployment / runtime reconfigu-
ration [14]; although they can be used to describe components, connectors and
configurations as well as the hierarchical structure of the system. We have to
therefore rely on specific characteristics about the states of instantiated com-
ponents (also known as “live components”) using standard runtime monitoring
tools. We can retrieve the specific state information (described in the previous
section) as messages passed to the system thus describing the runtime behaviour
of states of the component. Similarly, the overall view of behaviour of states of
the components’ system and resources, describes the runtime behaviour of the
environment. We use “finite state on finite strings automata” for the former and
“infinite state automata” for the latter, for our runtime behaviour specification.

2.3  Environment Monitoring

When considering the state of components and resources in a GCM model,
and the runtime monitoring of the environment, we analyse the following in-
trospections.
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m  For components, by accessing the LifeCycleController interface we

are able to know the state of the requested component (namely Started
and Stopped).

For resources, we can monitor their availability status as long as these
resources are specified during composition by some deployment descrip-
tor, or at runtime some metadata provider. As the former is mandatory
when using some specific components [1], it is not mandatory for all. We
will assume that if the developer is interested in using this formal spec-
ification for safe reconfiguration of components, he will provide some
accessibility to metadata information on runtime availability (as well as
list of required resources for the corresponding components), which can
be monitored at runtime.

Automata Based Model

In building our specification protocol, we follow well known automata con-

structions. We take a simple finite state automaton on finite strings, for the
components specification, and a more complex infinite state on finite strings
automata to define the environment. The automata at component level are used
for the creation of labels defining the various states in which the considered
component is, and are then fed upon request on to the various states of the
automata at environment level (Figure 2).

Figure 2: Automata Based Model
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3.1  Component level automata

For a component level automaton we suggest to use a finite automaton on
finite words. Let X be a finite alphabet. A finite word over 3 is an element of
.

DEFINITION 1 (FINITE WORD AUTOMATON) A finite word automaton, A,
is atuple A = (3,Q,Q;,Qf,A) where ¥ is a finite alphabet, Q) is a set of
states, Q; C Q is a set of initial states, Qy C Q is a set of accepting states,
and A : Q x ¥ — 2% is a transition function.

Arun, R,of Aoverawordw = aq, aq,...,a,—1, w € X* is abbreviated as
R,, and it is a sequence of states s1, So, ..., S, such that for any i, (0 < 7 < n),
Si+1 € A(sj,a;). Arun, R = $1,89,...,8n, is successful if s; € @; and

sp € Q. We say that an automaton A accepts a word w if it has a successful
run R,,. In this case we also say that an automaton A is not empty.

When we construct such an automaton at the component level, we would
call it A, and we assume the following:

m Initial states, (;, are either "running / waiting” or none of the previous;

m  The set of states, (), corresponds to the states of the component as defined
in the previous section;

m  The acceptance condition is defined as reaching of one of the following
states: terminated, suspended state or fail. These states are in the set ()
and the acceptance condition is to reach one of these states in Q) s

m The transition conditions are determined by the state change calls of the
component.

When the assumed automaton A, (non-)emptiness procedure establishes that
the automaton is not empty, it returns a successful run of A.. Thus, for any
component cycle, when the corresponding automaton has an accepting run, it
means that a component is in the one of the accepting states. We would define
a simple function Lab(A.) which returns the following parameters:

®m < a; >-whenacomponent has met the acceptance condition “terminate”

m < a; > - when a component a has met the acceptance condition “sus-
pended”

m < ay >-whenacomponent has met the acceptance condition “terminate
after going through fail state”

m < —a > - when component a has not met any acceptance condition
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These parameters generated by the function Lab(A.) will be subsequently
passed to the environmental level automata which is described in the next sec-
tion.

32 Environment level automata

For the environment level we consider automata on infinite trees. Namely,
we consider Buchi tree automata [16]which is an extension of the standard tree
automaton accepting infinite trees.

DEFINITION 2 (INFINITE TREE AUTOMATON) A Buchi Tree automaton
Ar =< ¥,D,5 M, s0,Qs >, where ¥ is an alphabet, D C N is a finite
set of branching degrees, M : S x ¥ x D — 25" is a transition function
satisfying M (s,o,d) € S9, for every s € S,, € ¥, and d € D, sq is an initial
state, and QQy C S is an acceptance condition.

A run, R, of Ap over a tree 7 abbreviated as R, is an infinite tree. A run,
R, is successful if there is a state s € Q ¢ such that R, hits s infinitely often.
We say that an automaton A7 accepts a tree 7 if it has a successful run R,. In
this case we also say that an automaton A7 is not empty.

In the construction of this tree automaton, every state is labelled according
to state of components (passed over from the component level automaton) and
resources. In this case the transition function is not only related to the state
transition of components, but is also tightly bound to the deontic logic accessi-
bility relation. Here we expect that we would be able to specify the automaton
in the normal form for CTL, SNFcTy,, developed in our previous papers [5].
Although we do not have a rigorous proof of this, we can anticipate that the
situation here would be similar to the one in the linear-time case. Namely, in
[6], it was shown that a Buchi word automaton can be represented in terms of
SNFpr11,, @ normal form for PLTL. Similarly, we expect that we will be able
to represent a Buchi tree automaton in terms of SNFcTy,. Subsequently, we
enrich this representation of the automaton by deontic constraints [2] and apply
a resolution based verification technique as a verification procedure.

4. Runtime Reconfiguration
4.1  Systems States

Each deployment component must expose a state resource property which
implements the Component’s Monitoring capability. To satisfy this require-
ment, a deployment component must contain States and State Transition cl-
ements. Additionally, a deployment component may include additional infor-
mation as an opaque quantity that an external consumer may be able to process.
The Component Status property will be exposed by every component object
of a system.

We can define these properties in the XML based system architecture as:
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<ComponentStatus>
<State>InstanceState|InitializationState|RuntimeState]
SuspendedState|FailedState|TerminatedState</State>
<LifecycleTransition>StateTransition</LifecycleTransition>
</ComponentStatus>

where:
Element Description
InstanceState State representing the presence of a component instance.
InitializationState State in which a component has been properly initialized.
RuntimeState Operational state.
SuspendedState Operational state (in suspension).
FailedState State in which the component has failed either a lifecycle
operation or its operation has failed.
TerminatedState State in which a component instance has been terminated.

As the failed state may have been arrived at due to failures during many parts
of the lifecycle, it is recommended that the component take action to ensure
the services of the resources are not available while in this state, particularly if
the transition occurred from the running state.

Similarly, we can map the state of resources and monitor changes through
state change notifications fired by resource monitoring software implemented
in the GIDE.

4.2  Formal Specification

We refer to reconfiguration as to the process through which a system halts
operation under its current source specification and begins operation under a
different target specification [15], and more precisely, after the deployment has
taken place (dynamic reconfiguration). Some examples include the replace-
ment of a software component by the user, or an automated healing process
activated by the system itself. In either of these cases we consider the dynamic
reconfiguration process as an unforeseen action at development time (known as
ad-hoc reconfiguration [7]). When the system is deployed, the verification pro-
cess should run continuously and the system will report back the current states
for model mapping; if a reconfiguration procedure is requested or inconsistency
detected, the healing process is triggered. The dynamic reconfiguration process
works in a recursive way, constantly checking for update requests to the model
and taking actions accordingly, enabling us to achieve an automated runtime
reconfiguration through cycling deductive verification. The approach here is to
specify general invariants for the infrastructure and to accept any change to the
system, as long as these invariants hold. We assume that the infrastructure has
some pre-defined set of norms which define the constraints for the system, in or-
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der to ensure system safety, mission success, or other crucial system properties
which are critical to the system.

Application scenario. We could use this type of specification to construct
a normative framework for reconfiguration where a model is requested to be
updated. Once an automaton at the bottom level is constructed, it feeds the
upper layer automaton with the labels for the states. Then this upper layer au-
tomaton can be checked by given its presentation in the normal form with the
subsequent application of the resolution procedure to the derived specification.
Once this process has been carried out, we could use it for reconfiguration;
when a request for reconfiguration is received, we can consider it as an update
to the model, which is carried out by verifying the new specification against the
system one, stopping the components in question (in essence modifying their
state) and updating the model. The reconfiguration process is then left in the
hands of the resource handler and the components can be started again to carry
on their task with the updated model.

5. Conclusions

The need for a safe and reliable way to dynamically reconfigure systems
at runtime, especially distributed, resource-depending and long-running, has
led to the need for a formal way to describe and verify them before risking to
take some action. In this paper we have given a novel approach to the formal
specification of behaviour in GCM environments. Furthermore, by defining
our automata-based approach, we have laid the grounds for a solid prototyping
of such a specification system. The method introduced will be used to prevent
inconsistency and suggest corrections to the system in a static and/or dynamic
environment during reconfiguration procedures. Indeed, if the verification tech-
nique discovers inconsistencies in the configuration then the “healing” process
is triggered: the process of “reconfiguring” of the computation tree model that
conforms the protocol. As a next step, we are planning to embed all these
features in a prototype plug-in for the GridComp GIDE and test it on case stud-
ies proposed by industry partners. While we have applied this framework to
a GCM system, such procedure could be applied to other systems, giving the
deductive reasoning a chance to assist other verification methods such as model
checking by filling the gaps in those areas where these other well established
methods cannot be used.
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