

Forging A Community – Not: Experiences
On Establishing An Open Source Project

Juha Järvensivu1 and Tommi Mikkonen1

Korkeakoulunkatu 1, FI-33720 Tampere, Finland
{juha.jarvensivu, tommi.mikkonen}@tut.fi

Abstract. Open source has recently become a practical and advocated fashion
to develop, integrate, and license software. As a consequence, open source
communities that commonly perform the development work are becoming im-
portant in the practice of software engineering. A community that is lively can
often produce high-quality systems that continuously grow in terms of fea-
tures, whereas communities that do not gain interest will inevitably perish. De-
spite their newly established central role, creation, organization, and manage-
ment of such communities have not yet been widely studied from the
viewpoint of software engineering practices. In this paper, we discuss experi-

tions that run in Linux based mobile devices.

1 Introduction

Open source development has recently become a practical fashion to develop dif-
ferent types of software systems. This also affects commercial systems, where open
source code can be used in tools, platforms, and general-purpose libraries, for in-
stance. Also commercial systems that are largely based on open source components
exist, as contrary to the common misbelief these are not contradicting concepts. A
good example of such a system is Nokia 770 Internet Tablet, which is based on
popular open source components.

Open source software development takes place in communities that developers
participate to compose, maintain and further develop associated software. Then, the
fashion such communities operate and how they are composed of becomes an impor-
tant aspect for the future of the system as well as for its users.

Some the differences of open source and proprietary software have already been
addressed (e.g. [6], [14]). However, there are little practical research results on sev-

Please use the following format when citing this chapter:

Source Development, Communities and Quality; Barbara Russo, Ernesto Damiani, Scott Hissam, Björn Lundell,
Giancarlo Succi; (Boston: Springer), pp. 15–27.

Keywords: Software engineering, open source community establishment

 Institute of Software Systems, Tampere University of Technology 1

develop an integrated software development environment for developing applica-
ences gained in the scope of Laika, an open source project established to

eral key questions related to communities as software developing entities. Such include

Järvensivu, G. and Mikkonen, T., 2008, in IFIP International Federation for Information Processing, Volume 275; Open

16 Juha Järvensivu and Tommi Mikkonen

how to organize a community in a meaningful and long-lasting fashion,
how to identify a community that is the most promising from others developing

similar systems,
how to ensure that the results that a community has produced will be maintained

and remain readily available in the future, even if it seems that like software devel-
opment in general, also communities can be very person-dependent [1].

Moreover, life cycles of open source systems and communities maintaining them
are rarely documented explicitly, although a lot of practical knowledge definitely ex-
ists among practitioners and the history of high-profile communities is definitely
widely and well known.

The first step towards understanding community driven software development
practices is to document and share experiences from establishing and maintaining an
open source community. In this paper, we provide an overview to project Laika,
which has developed an integrated development environment (IDE) based on Eclipse
for Nokia Internet Tablet type of devices (N770, N800) running Linux. In the begin-
ning, we were counting on the interest among developers working with the platform,
as facilities that readily existed in this environment were not too sophisticated. At
first, things looked promising. We were able to compose a fully functional version of
the system, and gained a lot of outside interest and publicity. At present, we however
face difficulties in supporting the new versions of both the platform and other pro-
grams that act as components in our system. The community has simply not been at-
tractive enough for other developers to join, something we took for granted for long
time during the project.

The rest of this paper presents our experiences structured as follows. Section 2
discusses our motivation and the target environment we had in mind when we started
the project. Section 3 discusses the history of the project, and describes the phases
that we have been able to identify in the progress. Section 4 forms the core of the pa-
per by describing our experiences on the creation and maintenance of an open source
community. Section 5 draws some final conclusions.

2 Target Environment

The open source project addressed in this paper, Laika, aims at the creation of an
integrated development environment (IDE) for developing applications for embed-
ded Linux devices. The particular devices we had in mind, Nokia N770 and N800
Internet Tablets, are based on the Maemo platform [15], and provide Internet brows-
ing capabilities with a relatively large high-resolution touch screen.

The goal of our project was to integrate the work of several open source devel-
opment projects into a single tool that is sophisticated enough for industry scale
software development. When doing so, we planned to implement the necessary glue
code ourselves, but rely on the effort of other communities for everything else.

In the beginning, we could readily find several open source projects whose out-
put was valuable for Laika. Most importantly, we decided to build our project on

Forging A Community – Not: Experiences On Establishing An Open Source Project 17

Maemo [15], Scratchbox [18], and Eclipse [4], which will be addressed in more de-
tail in the following. In addition, we have used other components as well, although
their role can be considered less important than that of the above projects. All open
source components that are currently included in Laika are listed in Table 1.

Table 1. Component communities of Laika

Component Description
CDT C/C++ development environment for Eclipse, which served as a starting point

for our development effort.
Eclipse Vendor-neutral open development platform, whose plugin Laika is.
Glade/Gazpacho Graphical user interface builder for GTK+.
Maemo Development platform to create applications for the Nokia 770.
PyDev Python development environment for the Eclipse platform.
Scratchbox A cross-compilation toolkit used by the Maemo platform.

Maemo. Maemo, which acts as the software platform for Nokia’s N770 and
N800 Internet Tablet, is composed of a set of popular open source software compo-
nents that are widely deployed in today’s leading desktop Linux distributions [15].
Maemo consists of precompiled Linux kernel, platform libraries, and Hildon user in-
terface framework. The Hildon UI framework in turn is based on GTK+, and as a
whole the platform is binary compatible with GTK+ binaries [7]. The structure of the
system is illustrated in Fig. 1, and illustrated components are introduced in more de-
tail in Table 2.

Scratchbox. Currently available mobile devices based on Maemo run on ARM
processor, whereas most developers prefer using an Intel-based computer like a PC
as their development environment. The creation of ARM binaries with such devel-
opment setup requires cross-compilation, where a host computer is used to compile
software for a target that uses a different instruction set. In our case, we have per-
formed cross-compilation using a PC running Scratchbox, which is a toolkit de-
signed to ease embedded Linux application development [18]. The target platform is
ARM, the hardware environment of our devices.

18 Juha Järvensivu and Tommi Mikkonen

GTK

X

Pango

Glib D-Bus

Matchbox GConf Gnome VFS

GDK

Component Description
Matchbox A light-weight window manager that is responsible for managing X11 client window

geometry, stacking, and decorations in our target device.
GConf A generic system for storing application preferences.
Gnome VFS Gnome virtual file system, provides an abstraction layer for accessing files in both lo-

cal file systems and the web.
GTK+ The Gimp toolkit, a toolkit for creating windowing applications. The kit also provides

an extensive set of readily available widgets.
Pango A library for text layout, rendering, and internationalization.
GDK Gimp drawing kit, a graphics library that wraps routines providing low-level access to

a display.
X X Window System, a networking and display protocol for building windowing sys-

tems.
Glib A low-level library that contains commonly needed generic routines for wrappers and

runtime routines including event handling, dynamic loading, and threading.
D-Bux Light-weight inter-process communication system.

Eclipse. The Eclipse platform is a vendor-neutral open development platform that

provides tools for managing workspaces and building, debugging, and launching ap-
plications for building integrated development environments (IDEs) [4]. In essence,
the Eclipse platform is a framework and toolkit that provides a foundation for run-
ning third-party development tools. The basic mechanism of extensibility in Eclipse
is adding new plugins, which can also add new processing elements to plugins that
already exist. In accordance to this architecture, the Laika plugin is based on the
C/C++ development tools (CDT) plugin [3], which in turn is a subproject of the Ec-
lipse community [4].

Table 2. Maemo’s main software components

Fig. 1. Maemo’s main software components

Forging A Community – Not: Experiences On Establishing An Open Source Project 19

3 Short History of Project Laika

In this section, we describe the history of project Laika. The goal is to give an
overview to the main events that the project has experienced, and how we have
ended up in the current situation.

3.1 Becoming of Age

The origins of Laika are in meetings between Institute of Software Systems at
Tampere University of Technology (TUT) and Nokia Multimedia (Nokia) during the
Fall 2004, when the first Maemo based device was nearing completion. A common
goal was set by both parties to aim at the development of an industry-strength inte-
grated development environment that would encapsulate facilities necessary for
Maemo development. The plan was that in the first phase, we would only implement
minimal functionality, which could later be extended. The extensions would be made
by either the original developers that were responsible for the first release, or by oth-
er parties that we would be able to attract to participate in the community. A related
plan was that the experiment would also give the university first-hand information on
how open source communities work.

As already documented in [9], the development was initiated by establishing a
co-located team of students working as summer-time trainees within the premises
provided by the university. Moreover, university already had existing server infra-
structure that could be used for hosting the community and enabling download of
Laika software. Thus, the initial investment was small, and the actual work could be
started within a short period of time from the actual decision.

At the university, the project was supervised by a graduate student and a profes-
sor who had participated in meetings with Nokia. As a practical starting point, some
code was provided to the community by Nokia Research Center, which had already
investigated an opportunity to develop such an IDE [19]. This code then formed the
baseline for further development that was carried out by the Laika community.

The first actual release of Laika was made towards the end of the summer of
2005, with the majority, if not all, the work performed by the summer trainees. At
this point, the system simply comprised Eclipse, CDT, and Scratchbox, as well as
some compilation and debugging capabilities that we felt were important for the pro-
ject. The system is illustrated in Fig. 2.

The 1st release proved that there indeed was a need for an IDE for Maemo, and
that Laika was really something that people found useful, at least based on the num-
ber of download and the feedback received from people installing and using the sys-
tem. A total of 603 downloads were made during the time version 1.0 (and bug fix
version 1.1 that was released a week later) was available for download. A number of
downloads were from private companies that were doing industrial-scale develop-
ment in Maemo environment.

20 Juha Järvensivu and Tommi Mikkonen

Scratchbox Laika

Maemo

Compilation Debugger

CDT

Eclipse

Debugger UI

Editor

TCP/IP

Fig. 2. Laika Release 1 components

During this development period, the main challenge of the project was to be able
to create the first running version of the system, because the component systems ori-
ginating from different communities were not straightforward to integrate. A part of
the success is due to the technical skills of people who had already started the devel-
opment work at Nokia. However, the effort invested in the development by the stu-
dents should not be underestimated.

3.2 Peak of Fame

Upon completing the first public release of Laika, further interested stakeholders
were identified. To begin with, a local company wanted to participate in the devel-
opment of the system, and they agreed to integrate a user interface editor to the sys-
tem, a task that the community happily welcomed them to perform. Secondly, project
funding was provided to the community both from companies and by the university
hosting the project in exchange for using the project as a guinea pig for open source
related research. Funding from both sources was gladly accepted by the project, and
used for further development of the system. In practice, the three students who had
already worked on the system were now all hired to maintain and further develop the
system by the university.

The additional funding and support described above kept the project running
from September 2005 to January 2007. During this time period, a number of im-
provements were added to the system, including the above-mentioned UI editor,
which was added by the company, as well as support for Python, a dynamic scripting
language with which it is easy to compose small applications. The resulting system,
illustrated in Fig. 3, required some changes in the tool architecture, as available open
source components were based on different designs. In addition, a number of smaller
enhancements were made, that in general eased application development.

Forging A Community – Not: Experiences On Establishing An Open Source Project 21

Scratchbox Laika

Maemo

Compilation Debugger

CDT

Python
environment

Eclipse

PyDev

Python
debugger

Editor

Debugger
UI

Fig. 3. Laika Release 3 components

At this point of the development, the downside of using a collection of existing
components started to manifest. Creating a new configuration where some versions
of component subsystems were supported often required additional coding and test-
ing, which seemed to offer little reward for developers.

In general, a lot of external interest was paid to the community at this point, in-
cluding a number of accepted papers [9][10] as well as a presentation regarding the
project at one of the collocated sessions at GNOME User and Developer European
Conference (GUADEC) 2006 [16].

In this phase, the main challenge of the community was to cope with ever-
increasing number of updates in subsystems that comprise Laika. As already de-
scribed in [10], new releases of other systems forced the community to perform re-
gression testing of Laika repeatedly. Another issue that can be considered important
is user support, which was found a difficult task to perform well. The reason is that
most of the issues were related to component subsystems, not Laika as such, and we
felt that to some extent this task was beyond our community’s scope. In fact, in some
occasions, the community ended up supporting people in installing and using Eclipse
for instance in order to allow them to use Laika.

3.3 Decline

By January 2007, project Laika and the related community started running out of
steam. To begin with, one of the three students that were originally participating in
the development had left the project, and the other two were just about to complete
their thesis about the experiences with Laika [11]. Generous funding from different
sources was terminating. Moreover, also the project manager and the responsible
professor had assumed other tasks and responsibilities, and it was not an option for

22 Juha Järvensivu and Tommi Mikkonen

them to take a leading role in code-level activities in Laika. A lead developer, on the
other hand, was considered a necessity for the project to remain vital.

Despite the fact that the future of the community started looking weary, a number
of positive things was happening. The community still gained a lot of interest, and
there have been active negotiations on receiving support from involved companies,
either in the form of funding or developers. Recently, Laika’s code base was moved
from university’s server to a new location in Maemo Garage [12], a high-visibility
web site hosting Maemo related material.

The essential question was how to continue with the development and to estab-
lish a real community instead of simply maintaining the project as long as continuous
funding exists, and terminate it when the funding ends. At present, there still is inter-
est in Laika, and attracting companies or institutions to participate in development is
a reasonable goal. It may even be possible to integrate our system with another simi-
lar system, like Esbox [5] for instance, which builds on the same main components
as Laika, which in turn would strengthen development. Even more importantly, we
need to find a suitable long-term lead for the community – preferably one of the peo-
ple who have already participated in the development. Motivating the lead, however,
might require external attention or in the best case secured funding over some period
of time.

3.4 Epilogue

Around the same time the first complete version of this paper was composed, we
decided that due to resource restrictions joining forces with Esbox would be best for
the Maemo developers. As a result, a new project was established in Maemo Garage
under the name Esbox, which in the end will hopefully put together the best parts of
Laika and Esbox. At present, however, core developers of Laika are yet to participate
in this activity, and no major role has been assumed by us.

4 Lessons Learned

Obviously, there are numerous issues that could have been implemented differ-
ently in the course of our project. However, we trust that the reasons why we were
unable to attract other people onboard – the real reason for not becoming a lively
community – are few. Matters related to this creation of an active developer commu-
nity are addressed in the following.

Focused mission which remained undocumented. One of the particularities of
open source development is the mission of the community. In our case the mission
was to “implement an industry-scale integrated toolset for composing Maemo appli-
cations”, which also sets the scope for the community. For instance, it overrules ex-
tending the community to systems other than Maemo. In addition, we decided to
base our work to existing, readily available open source subsystems. With this as the
starting point, we were able to establish the first running system relatively rapidly,

Forging A Community – Not: Experiences On Establishing An Open Source Project 23

which in turn gave us instant credibility. Not documenting the mission can be con-
sidered a mistake, however. Without manifesting the mission, it has been difficult for
other developers to grasp what Laika really is about.

Too much a debugging, integration, and testing project and too little a real de-
velopment project. Another mistake regarding the mission is that we defined it in
terms of what the community would provide, not what the community would imple-
ment in the technical sense. This led to two-fold development focus. One part was
about developing support in terms of code that was composed by us, whereas another
part was selecting and integrating suitable components that readily existed. To sat-
isfy the latter, it was necessary to perform a lot of straightforward debugging and bug
fixing when new versions were released. After a while, constant debugging, integra-
tion, and testing started to overrule the project. In an ideal world, we could have
geared our own implementation into a direction where maintenance and building
new releases would have been eased. This never happened, though.

Developers interested in SDK development, not that much in Maemo program-
ming. Almost from the beginning of the project it became obvious that all developers
were focused to developing SDK, and that developing Maemo applications was not
an important issue. As a result, the development effort started from SDK and features
that would be interesting from SDK point of view, not from the development of
Maemo applications and easing it except indirectly. The effect of this lack of “eating
our own dogfood”, advocated by Spolsky in [20], to the community is hard to esti-
mate. However, as we had another team, working in a neighboring office that was
performing development using also our tools, we feel that this shortcoming is not too
severe.

Relying on agile principles that are not necessarily ideal for community building.
We organized our development following the spirit and principles of agile software
development and extreme programming, like pair programming, collective code
ownership, and a common development room [2][13]. In addition, the mindset we
adopted was to go for a development mode, where code would be the main artifact,
and other items would only be written when absolutely necessary. While the ap-
proach has worked well in our own development, there were some problematic is-
sues. In particular, as we were busy developing the system ourselves, we were not
too open for other potential participants. This resulted in entry barriers for new con-
tributors, which in turn made our community closed. As the main activity of the
community was focused in a single office, where all the developers and the project
manager were co-located, this office quickly became the mental home of the com-
munity. Therefore, in order for others to participate, barriers existed already in the
physical environment. A better alternative, at least from the viewpoint of community
creation, would have been to rely on practices and processes that have already been
documented explicitly in the scope of open source software [17].

ject manager, a number of students were performing the actual tasks. This unfortu-
nate setting has resulted in a situation where the students had the real technical

responsibilities in the community can also be considered. Led by a professor and a pro-
Steep allocation of responsibilities but minimal staffing. The allocation of

24 Juha Järvensivu and Tommi Mikkonen

control, while the professor and the project manager were mainly focused to obtain-
ing funding, users, and partners. When the students had their theses completed and
they moved to different positions around the same time, the project was left without
a lead who singlehandedly could manage both technical aspects and external rela-
tions.

Subcontracting for money instead of community building for free. While in gen-
eral considered positive – and probably a major reason for the possibility to establish
a community in the first place – the generous funding we obtained also has some
downsides. As our plan was to create a self-sustaining community, the development
was soon driven by feature requests associated with funding, not with our own plans.
This in turn strengthened an attitude that we are actually performing feature-based
subcontracting, not establishing a community.

Lack of active marketing, user support, and other related supporting facilities.
As pointed out in [8], open source systems require marketing, similarly to any other
software whose use is being advocated. Corresponding arguments can be made for
other supporting facilities, including user support for instance. This aspect of the
community building remained overlooked in Laika. As a consequence, only people
that we were able to relate to had the potential to become participants in the commu-
nity. Moreover, even using the system built in the community required considerable
technical skills.

Single client community. In many cases, open source projects can be taken as
common solutions for recurring problems encountered by several organizations. In
our case, however, we were only aiming at easing the development of Maemo appli-
cations, something that only associates with one other actor. While there were sev-

No experience on establishing an open source project. An issue that we did not
consider important when we started was experience on community work. Looking
back now, it would have been essential to involve someone with experience on

5 Discussion

Considering Laika now, we feel that we got the development technology right,
although one can argue that for instance versioning support could be drastically im-
proved. In addition, we were able to create pull from users of our system. They ac-
cepted our system as their development environment and in fact approached us with

ously, we owe a great deal of our success to other open source communities, as with-
out using existing components this would have been impossible. However, we were

to obey to a great extent.
believed was the best for Maemo community was something that we in practice had
eral companies that had interest in developing applications, in practice what we

paper, achieving this in practice might have been difficult.
ramping up an open source project in the community. However, while simple on

satisfy – and in many cases exceeded – the requirements we initially set to it. Obvi-
future development ideas. Moreover, we were able to compose a system that did

Forging A Community – Not: Experiences On Establishing An Open Source Project 25

still unable to attract more developers to help us with our effort, which in the end has
led to a decline.

During the development of Laika, we encountered a number of properties that
have larger significance for community-based development. Our main observations
are listed in the following:

• Community-based development worked well when developing new features. In
contrast it was hard to motivate developers volunteering in the project when tasks
like integration and testing was repeatedly requested. Building a toolset that
would have eased the latter would have been an essential element for the con-
tinuation of the community.

• Distributing responsibilities in a fashion that resembled a small project, where
managers were focusing on funding rather than coding, led to a community where
no lead developer existed. As a result, there is no single actor that could (or
would) singlehandedly continue maintaining the project.

• Agile practices that emphasize the importance of collocated development teams
were harmful when trying to attract new developers to join the community. In-
stead, we should have embraced new developers by offering easy ways to practi-
cally participate in the development.

• Using the system ourselves might have helped in solving some of the problems
associated with our development effort, especially when considering the priorities
of different features. As a result, people using the system might have benefited
more.

• Allowing supporters – especially those who provide funding – to overly control a
community was fruitful in the beginning, as it gave us confidence on our mission.
In the long run, however, this led to subcontracting mode, where funding was as-
sociated with individual features instead of supporting the community in general.

• It is easy to overextend the development effort, as the number of readily available
open source components that can be integrated in the system is so large. However,
in order to keep the system manageable in the long run, it is essential to focus on a
relatively small number of key features at least in the initial phases when the
community is small.

Still, to our knowledge there was no single community at the time aiming at sup-
porting industrial IDE in Maemo environment that would be considerably stronger
than our attempt. Moreover, we have received frequent requests for new features and
updates, but have been unable to comply with the requests due to resource con-
straints in community personnel. This exhaustion of resources, more than anything
else, can be taken as an indication that we have failed in forging a lively community.

26 Juha Järvensivu and Tommi Mikkonen

Acknowledgments

The authors are grateful to the whole Laika community as well as all the partners
who have participated in our work. In addition, we wish to thank also the users of
Laika for their choice of a development system.

References

[1] Aaltonen, Timo, Järvensivu, J., and Mikkonen, T. OSS architecture and implications. 67-
77, Empirical Insights on Open Source Software Business (Eds. Nina Helander and
Maria Mäntymäki), eBRC Research Reports 34, Tampere, Finland, 2006.

[2] Beck, K. Extreme Programming Explained – Embrace Change. Addison-Wesley, 1999.
[3] CDT homepage. Available on the Internet at http://www.eclipse.org/cdt/.
[4] Eclipse homepage. Available on the Internet at http://www.eclipse.org.

[6] Feller, J., Fitzgerald, B., Hissam, S., Lakhani, K. Perspectives on Free and Open Source
Software Development. MIT Press, Cambridge, MA, USA. 2005.

[7] GTK+ homepage. Available on the Internet at http://www.gtk.org.
[8] Henttonen, K. Stylebase for Eclipse. An Open Source Tool to Support the Modeling of

Quality-Driven Software Architecture. VTT Research Notes 2387, Espoo, Finland,
2007.

[9] Järvensivu, J., Helander, N. and Mikkonen, T. Dependencies, Networks, and Priorities in
an Open Source Project. 116-125, Handbook of Research on Open Source Software:
Technological, Economic and Social Perspectives (Eds. Kirk St.Amant and Brian Still),
IGI Global, 2007.

[10] Järvensivu, J., Kosola, M., Kuusipalo, M., Reijula, P. and Mikkonen, T. Developing an
Open Source Integrated Development Environment for a Mobile Device. International
Conference on Software Engineering Advances, Tahiti, French Polynesia, Oct. 29.-
Nov.3., 2006.

[11] Kuusipalo, M. and Reijula, P. Implementing a Visual Development Environment for
Maemo Compatible Devices. MSc. thesis, Tampere University of Technology, 2007. In
Finnish.

[12] Laika homepage. Available on the Internet at http://garage.maemo.org/projects/laika.
[13] Larman, G. Agile and Iterative Development. Addison-Wesley, 2003.
[14] MacCormack, A., Rusnak, J., Baldwin, C. Exploring the structure of complex software

designs: An empirical study of open source and proprietary code. 1015-1030, Manage-
ment Science. Vol. 52, No. 7, July 2006.

[15] Maemo homepage. Available on the Internet at http://www.maemo.org.
[16] Reijula, P. Integrating Maemo Development Environment with Eclipse. GNOME User

and Developer European Conference (Guadec) 2006 warmup weekend, Barcelona,
Spain, Jun 24, 2006.

[17] Scacchi, W., Feller, J., Fitzgerald. B., Hissam, S., and Lakhani, K. Understanding
free/open source software development processes. Software Process Improvement and
Practice, 92-105, No. 11, 2006.

[18] Scratchbox homepage. Available on the Internet at http://www.scratchbox.org/.

[5] Esbox homepage. Available on the Internet at http://wiki.embeddedacademy.org/index.php/
ESbox_Plug-in.

Forging A Community – Not: Experiences On Establishing An Open Source Project 27

[19] Sillanpää, M. Extending Eclipse and CDT for embedded systems development.

EclipseCon 2006, Santa Clara Convention Center, Santa Clara, CA, USA. March 20-23,
2006.

[20] Spolsky, J. Joel on Software: And on Diverse and Occasionally Related Matters That Will
Prove of Interest to Software Developers, Designers, and Managers, and to Those Who,
Whether by Good Fortune or Ill Luck, Work with Them in Some Capacity. Apress, 2004.

http://www.springer.com/978-0-387-09683-4

