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Abstract A key aspect of decision-making in a disaster response scenario is the
capability to evaluate multiple and simultaneously perceived goals. Current com-
peting approaches to build decision-making agents are either mental-state based as
BDI, or founded on decision-theoretic models as MDP. The BDI chooses heuristi-
cally among several goals and the MDP searches for a policy to achieve a specific
goal. In this paper we develop a preferences model to decide among multiple simul-
taneous goals. We propose a pattern, which follows a decision-theoretic approach,
to evaluate the expected causal effects of the observable and non-observable aspects
that inform each decision. We focus on yes-or-no (i.e., pursue or ignore a goal) deci-
sions and illustrate the proposal using the RoboCupRescue simulation environment.

1 Introduction

The mitigation of a large-scale disaster, caused either by a natural or a technological
phenomenon (e.g., an earthquake or a terrorist incident), gives rise to multiple si-
multaneous goals that demand the immediate response of a finite set of specialized
agents. In order to act rationally the agent must evaluate multiple and simultaneous
perceived damages, account for the chance of mitigating each damage and establish
a preferences relation among goals. The belief-desire-intention (BDI) mental-state
architecture [7] is widely used to build reasoning agents, equipped with a set of
beliefs about the state of the world and a set of desires which, broadly speaking,
identify those states that the agent has as goals. From its beliefs and desires, and via
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deliberation, the agent formulates an intention that can be seen as the goal, or de-
sire, the agent commits to bring about. Although one side of rational behavior is the
capability to establish preferences among simultaneous goals, current BDI theory
and systems do not provide a theoretical or architectural framework for deciding
how goals interact and how an agent decides which goals to pursue. When faced
with multiple simultaneous goals, the intention selection (decision) follows a heu-
ristic approach, usually coded by a human designer [4]. Additionally, BDI models
find it difficult to deal with uncertainty, hence hybrid models have been proposed
combining BDI and Markov decision process (MDP) approaches [5, 6]; however,
hybrid models usually assume that the goal has already been chosen and tackle the
stochastic planning problem (in order to achieve the chosen goal).

In this paper we take the decision-theoretic notion of rationality to estimate the
importance of goals and to establish a preferences relation among multiple goals.
We propose a preferences model that allows agent developers to design the relation-
ships between perceived (certain) and uncertain aspects of the world in an easy and
intuitive manner. The design is founded on the influence diagram [2] (ID) frame-
work that combines uncertain beliefs and the expected gain of decisions. The pro-
posal’s practical usefulness is experimentally explored in a fire fighting scenario in
the RoboCupRescue [3] domain. The decision model incorporates general fire fight-
ing principles in a way that considerably simplifies the specification of a preferences
relation among goals. Despite such simplification, the attained results are consistent
with the initial fire fighting principles.

The next section describes the preferences model, which is instantiated and eval-
uated in section 3; the section 4 presents our conclusions and future goals.

2 The preferences model

The premisse of the preferences model is that the relation among simultaneous goals
follows from the expected utility of the available decisions. The expected utility of a
decision combines two elements: i) the value of the state under observation, and ii)
the likelihood of success of that decision. Given a set of available decisions, D , a set
of states, S , an utility function, u : S →R, and the probability, P(s | d ), to achieve
s ∈S after decision d ∈D , the expected utility, eu : D →R, of decision-making is
described by: eu(D = d ) = ∑s∈S P(s |D = d ) u(s), where D is a variable that holds
an available decision. Given any goal there are always two available decisions: i)
pursue the goal, or ii) ignore the goal. Thus, D = {yes, no}, is such that Dg =yes
and Dg = no represent, respectively, the decision to pursue or to ignore goal g ∈ G .

The utility of a goal, g, measures the importance, assigned by the agent, to the
goal g. The “importance” is a criterion related to a valuation in terms of benefits and
costs an agent has of a mental state situation [1]. The mental state is materialized by
the agent beliefs regarding the perceived states and the desire to pursue, or ignore,
each goal. Also, the goal achievement payoff is estimated by the difference between
the expected utility on pursuing and ignoring that goal. Thus, the goal utility func-
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tion, uG , for each g ∈ G , is defined by,

uG (g) = eu(Dg = yes)− eu(Dg = no) (1)

The utility function, uG , is used to establish the preferences about the set of goals
G . The preferences, ∀ g1,g2 ∈ G , are: i) g1 � g2, if the agent prefers g1 to g2, or ii)
g1 ∼ g2, if the agent is indifferent between g1 and g2. The rules, used to establish
the preferences’ total order among goals, are described by,

g1 � g2

 uG (g1 ) > uG (g2 )
∨
uG (g1 ) = uG (g2 ) ∧ eu(Dg1 = yes) > eu(Dg2 = yes)

(2)

g1 ∼ g2
{

uG (g1 ) = uG (g2 ) ∧ eu(Dg1 = yes) = eu(Dg2 = yes) (3)

From expression 2 the agent prefers goals with higher payoff and when even,
prefers goals that, when achieved, give higher expected advantage (i.e., higher
eu(Dg = yes) value); the expression 3 indicates that in sight of equality the agent
is indifferent between goals, thus taking, for instance, a random decision.

2.1 The causal effect pattern

The causal effects (consequences) of each decision are unknown, therefore our aim
is to choose the decision alternative (goal) that minimizes the eventual disadvanta-
geous consequences of such decision. The ID framework combines uncertain beliefs
to compute the expected utility of decisions, thus rationality is a matter of choos-
ing the alternative that leads to the highest expected utility, given the evidence of
available information. The ID extends the, Bayesian network, chance nodes with
two additional nodes: decisions and utilities, and two additional arcs: influences and
informational. As in belief networks, chance nodes represent random variables, i.e.,
the agent’s uncertain beliefs about the world. A decision node holds the available
choices, i.e., the possible actions to take. An utility node represents the agent’s pre-
ferences. The links between the nodes summarize their dependency relations.

We propose the following guidelines, to structure the multiple and simultaneous
goals decision problem, using the ID framework:

i. the current state is characterized by a set of variables that are observable at the
decision-making time instant,

ii. the decision outcome is characterized by a set of variables that are non-observable
at the decision-making time instant,

iii. the observable variables inform the decision nodes and the decision nodes influ-
ence the non-observable variables,

iv. the observable variables condition the non-observable variables,
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vii. the set of non-observable variables influences a set of utility nodes,

Figure 1 illustrates the above guidelines using the regular ID symbols; circle is a
chance node, rectangle is a decision node and the lozenge is an utility node.

Fig. 1 The influence diagram
(ID) pattern (sets are repre-
sented by dotted rectangles;
gray elements refer to obser-
vable information; dotted arcs
are informational and the
other are conditional arcs).

non-observable variables

(probability nodes)

observable variables

(probability nodes)

utility nodesdecision nodes

The gray filling (cf. figure 1) has special meaning: i) the gray chance node indi-
cates information availability, i.e., an observable variable (cf. item i above), and ii)
the gray utility node indicates a dependency from a gray chance node, i.e., the uti-
lity of some observable variables (cf. item vi above). The sets of nodes with similar
characteristics are aggregated by a dotted rectangle. The arcs connect sets of nodes
(instead of individual nodes), therefore attaining an ID pattern, i.e., a template from
which to build several different instances with the same overall structure.

2.2 The ID pattern usage

The ID pattern (cf. figure 1) is used to support the construction of the goal utility
function, uG (cf. equation 1). Therefore, we propose the following method to specify
the decision nodes:

i. identify the largest subsets of goals, Gi ⊆ G such that ∪iGi = G and all the goals
g ∈ Gi are characterized by the same set of observable variables,

ix. a decision influences both sets of utility nodes (cf. items vi vii).
viii. the two sets of utility nodes (cf. items vi vii) are disjoint, and

vi. the set of observable variables influences a set of utility nodes,
are valid (whilst not generating any dependency loop),

v. all dependencies among observable variables, or among non-observable variables
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ii. for each Gi (cf. item i) specify a decision node labeled “Di” and add the corre-
sponding information arcs (from observable variables to “Di”),

iii. for each decision node, “Di”, set its domain to “yes” and “no” values to rep-
resent, respectively, the decision to pursue, or ignore, a goal g ∈ Gi; the goal, g,
occurs after the observation of the variables that inform “Di”.

For concreteness and to illustrate the design of the decision problem, the next
section materializes the preferences model in a simulated scenario.

3 Experimental setup

We used the RoboCupRescue environment to devised a disaster scenario that
evolves at the Nagata ward in Kobe, Japan. Two buildings, B1 and B2, not far from
each other (about 90 meters) catch a fire. The B1 is relatively small and is located
near Kobe’s harbor, in a low density neighborhood. The B2 is of medium size and it
is highly surrounded by other buildings. As time passes, the fires’ intensity increase
so a close neighbor is also liable to catch a fire.

Figure 2 shows the disaster scenario; each opaque rectangle is a building and
a small circle is positioned over B1 and B2. The two larger filmy squares define
the neighborhood border of B1 and B2 within a d distance (in meters). The ground
neighborhood area of a building is given by ngb(d ) = (2× d )2, for a distance d,
and the set of buildings contained within such area is denoted as NBi,d ; we set
d = 250 m, thus a ground neighborhood area of 250.000 m2.

Fig. 2 Fire scenario in the
buildings labeled B1 and B2
(the set of buildings con-
tained within each building’s
neighborhood, ngb(d ), is
represented by NBi,d).

B1

B2

�B1 , d

d

d = 250 m
ngb(d) = 250.000 m2

�B2 , d

To simplify we assume that: i) buildings use identical construction materials, ii)
buildings are residential (neither offices nor industries inside the buildings), and iii)
there are no civilians, caught by fires, inside the buildings. We also assume that
agents get informed about the fires the moment it starts; we are not concerned on
how (through which communication channel) the agent gets such information. We
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now carry on with the design of the multiple simultaneous goal decision problem,
in the context of this illustrative domain.

3.1 The ID pattern instance

In order to apply the ID pattern (cf. figure 1) to the illustrative scenario (cf. figure 2)
we considered, for each building, the following observable variables:

•
perceived by the agent with three values: i) 1, an early fire, ii) 2, an increasing
intensity fire, and iii) 3, a high intensity fire.

• The building’s total area, allFloorsArea, given by the building’s ground area
times the number of floors, with three values: i) low, ii) medium, and iii) high.
Each value is 1

3 of the normalized total area, i.e., the building’s total area divided
by the maximum total area of the buildings in the scenario ; e.g. for B1 we have
7.668

57.866 = 0,13 (low) and for B2 we have 19.454
57.866 = 0,34 (medium).

• The building’s neighborhood density, neighbourhoodDensity, computed as the
ratio between the summation of the ground area, floorArea( b ), of each build-
ing within distance d of Bi neighborhood (i.e., each b ∈NBi,d), and the total area

of that neighborhood (i.e., ngb(d )); the ratio is thus given by,
∑b∈NBi,d

floorArea(b)

ngb(d ) ),

and iii) high. Each value is 1
3 of that ratio; e.g. for B1 we have 39.900

250.000 = 0,16
(low) and for B2 we have 138.500

250.000 = 0,55 (medium).

The non-observable variable, destruction, describes the destruction inflicted by
the fire with three values, low, medium, and high, each representing, respectively,
the intervals ]0;0,2], ]0,2;0,7] and ]0,7;1] of the destruction percentage.

The goals are extinguished(B) ∈ G ′ ⊆ G , where B is a building in fire. For read-
ability, the subset G ′ will be named as extinguish. Hence, we specify a decision
variable, extinguish (cf. section 2.2), that evaluates each goal, extinguished(B),
whereas all the aspects that influence the decision (extinguish or ignore the fire
in B), are represented through the observable variables: fireIntensity, allFloorsArea
and neighbourhoodDensity.

To specify the utility nodes we follow three general fire attack strategies that,
although intuitive, were acquired after the RoboCupRescue experimentation:

• the earlier a fire is attacked, the easier it is to extinguish the fire,
• the smaller the building, the less time it takes to extinguish the fire, and
• the higher the neighborhood density, the higher the need to extinguish the fire.

The above strategies are used to specify the utility nodes: U1 and U2. The utility
node U1 is influenced by the observable variables and represents the agent’s evalua-
tion of the fire intensity impact on the neighbor building. For example, a fire may
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cause higher damages in a high density than in a low density neighborhood (given an
identical fire intensity); thus, the higher utility values are ascribed to high intensity
fires that occur in high density neighborhoods. The utility node U2 is influenced by
the non-observable variable and represents the agent’s evaluation of the building’s
expected final destruction. For example, an early fire is expected to cause a lower
destruction than a high intensity fire (given equivalent total areas and neighborhood
density); thus, higher utility values are ascribed to early low intensity fires.

Figure 3 presents the ID that assembles all the above analysis: observable and
non-observable variables, decision and utility nodes.

Fig. 3 Influence diagram for
the extinguish set of goals (the
construction follows the ID
pattern, depicted in figure 1,
thus adopting the terminology
thereby defined).

extinguish

U1

U2

destruction

neighborhoodDensity

fireIntensity

allFloorsArea

The ID (cf. figure 3) is an instance of the proposed causal effect pattern (cf.
figure 1) and digests the analysis of the illustrative scenario (cf. figure 2). The figure
3 intelligibility stresses that the ID is very handy in revealing the structure (the
influence among the decision constituents) of the decision problem.

3.2 The preferences relation

After the ID structure we built the conditional probability and utility tables (CPT
and UT) attached, respectively, to each chance and utility node. The CPT represents
the probabilistic knowledge about the causal relations among the state variables.
The UT specifies a decision-making strategy.

Our strategy follows the three general fire attack strategies. Figure 4 shows the
extinguish expected utility, and each situation is represented by a vector,

v ≡ 〈neighbourhoodDensity,allFloorsArea,fireIntensity〉 ,

of perceived values (of the observable variables), for each building with a fire.
Each v variable is graphically discriminated as: i) the neighbourhoodDensity is

a circle that becomes larger as the neighborhood density increases, ii) circles in
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vertical lines follow the allFloorsArea value, upper circles having lower areas, and
iii) the clustering of fireIntensity is marked in the graphic. For example, the B1 and
B2 vectors are, respectively, 〈low,low,1〉 and 〈medium,medium,1〉.

Fig. 4 Decision extinguish,
given the observation of
v (neighbourhoodDensity,
allFloorsArea e fireIntensity);
the buildings B1 and B2 are
labeled in the graphic.
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The expected extinguish utility, given v observation, is depicted in the abscissa
and ordinate axis (cf. figure 4), respectively, by eu(extinguishg = no | v) and
eu(extinguishg = yes | v), where subscript, g, is the goal of extinguishing the fire
in the building where v was perceived, i.e., g represents the desired situation for the
building (for readability symbol g is not plotted in figure 4).

Figure 4 shows that as the fire intensity increases the utility to extinguish de-
creases and the utility to ignore the fire increases although being interleaved with
the various neighborhood densities (thus accounting the fire spreading effect). The
highest utility (to extinguish) is assigned to lower area buildings (given equal values
for other variables) as they are simpler and faster to control.

Figure 5 plots the agent preferences (given by expressions 2 and 3); a small dia-
mond represents each previously shown v instance (cf. figure 4); a line goes through
all diamonds in a course that links two adjacent priority situations (the darker seg-
ment highlights the B2 to B1 path). The highest preference is 〈high,low,1〉, i.e.,
an early fire in a small building in a high density neighborhood; the lowest prefe-
rence is 〈low,high,3〉, i.e., a high intensity fire in a big building in a low density
neighborhood. Table 1 details B2 to B1 preferences and shows that the three early
fires are interleaved with higher intensity fires located in increasing density neigh-
borhoods or decreasing area buildings. It is also interesting to note that the 2nd and
5th buildings only differ in their dimension (allFloorsArea) and the two buildings
between them (3rd and 4th) have increasing neighborhood density and fire intensity
and decreasing total area.

The interleaving of situations (shown in figure 5 and detailed in table 1), repre-
sents the trade-off, obtained from applying the expression 2, among our three ge-
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Fig. 5 A preference relation
for the decision extinguish.
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Table 1 Preferences detail (from B2 to B1); the first column identifies the buildings and the last
column shows the utility value uG ∈ [0,1 ]; the first line represents B2.

Order neighbourhoodDensity allFloorsArea fireIntensity uG−minuG
maxuG−minuG

B2 1st medium medium 1 0,73
. . . 2nd high low 2 0,69

3rd medium high 1 0,66
4th high medium 2 0,65

. . . 5th high high 2 0,62
B1 6th low low 1 0,53

neral fire attack strategies. The rationality of those strategic guidelines may be dis-
puted by a domain specialist for their verisimilitude with the real-world fire brigade
strategies. Such dispute is a relevant contribution to adjust and mature the ID design
but it is not the central discussion of this paper.

3.3 The decision design complexity

To apply the three general fire attack strategies (or any strategy set) a human de-
signer would traduce its rationality into a total order relation among the state space.
However, building a total order quickly becomes too complex. For example, our
illustrative scenario has 4 variables, each with 3 values, thus a total of 34 = 81 sit-
uations. To establish a total order, the human must compare each situation with all
the others; in the worst case ∑

81−1
i=1 i = 80×81

2 = 3240 comparisons; in the best case
(if able to apply a divide-and-conquer method), 81× log2 81 = 514 comparisons. It
is not likely that a human designer fulfils all those comparisons to establish a total
order among all possible situations.
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Our proposed ID design is much simpler. Assign, to each decision, the utility of
observable and non-observable variables: 32×2+3×2 = 24 assignments. This is an
important complexity reduction: about 95% (from 514 to 24) in the above best case
and about 99% (from 3240 to 24) in the above worst case. Despite that reduction
the results (cf. figure 5 and table 1) exhibit a plausible translation of the general
strategies used to guide the decision model design.

4 Conclusions and future work

This paper addresses a shortcoming, of current work, in the design of agents that act
in complex domains: the evaluation of multiple simultaneous goals with observable
and non-observable world state aspects. We propose a pattern, based on the influ-
ence diagram framework, to specify both the uncertainty of causal effects and the
expected gain with regard to the decision of whether to pursue or ignore each goal.
Practical experiences indicate that the ID pattern considerably simplifies the specifi-
cation of a decision model (in RoboCupRescue domain) and enabled to established a
preferences order among goals that is consistent with the initial, domain expert, very
general strategies. This work represents the ongoing steps in a line of research that
aims to develop decision-making agents that inhabit complex environments (e.g.,
the RoboCupRescue). Future work will apply the preferences model to the problem
of coordinating teamwork (re)formation [6] from a centralized perspective.
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