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Test Statistics Null Distribution

2.1 Introduction

2.1.1 Motivation

A key feature of our proposed multiple testing procedures (MTP) is the test
statistics null distribution (rather than a data generating null distribution)
used to obtain rejection regions (i.e., cut-offs) for the test statistics, confi-
dence regions for the parameters of interest, and adjusted p-values. Indeed,
whether testing single or multiple hypotheses, one needs the (joint) distribu-
tion of the test statistics in order to derive a procedure that probabilistically
controls Type I errors. In practice, however, the true distribution of the test
statistics is unknown and replaced by a null distribution. The choice of a
proper null distribution is crucial in order to ensure that (finite sample or
asymptotic) control of the Type I error rate under the assumed null distribu-
tion does indeed provide the desired control under the true distribution. This
issue is particularly relevant for large-scale testing problems, such as those
encountered in biomedical and genomic research (Chapters 9–12), which con-
cern high-dimensional multivariate distributions, with complex and unknown
dependence structures among variables.

Common approaches use a data generating distribution, such as a per-
mutation distribution, that satisfies the complete null hypothesis that all null
hypotheses are true. Procedures based on such a data generating null distribu-
tion typically rely on the subset pivotality assumption, stated in Westfall and
Young (1993, p. 42–43), to ensure that Type I error control under the data
generating null distribution leads to the desired control under the true data
generating distribution. However, subset pivotality is violated in many impor-
tant testing problems, because a data generating null distribution may result
in a joint distribution for the test statistics that has a different dependence
structure than their true distribution. In fact, in most problems, there does
not exist a data generating null distribution that correctly specifies the joint
distribution of the test statistics corresponding to the true null hypotheses.



50 2 Test Statistics Null Distribution

Indeed, subset pivotality fails for two types of testing problems that are highly
relevant in biomedical and genomic data analysis: tests concerning correlation
coefficients and tests concerning regression coefficients (Chapter 8; Pollard
et al. (2005a); Pollard and van der Laan (2004)).

We have formulated a general characterization of a test statistics null
distribution for which the multiple testing procedures of Chapters 3–7 pro-
vide proper Type I error control. Our general characterization is based on
the intuitive notion of null domination, whereby the number of Type I errors
is stochastically greater under the test statistics’ null distribution than un-
der their true distribution. Null domination conditions lead us to the explicit
construction of two main types of test statistics null distributions. The first
original proposal of Dudoit et al. (2004b), van der Laan et al. (2004a), and
Pollard and van der Laan (2004), defines the null distribution as the asymp-
totic distribution of a vector of null shift and scale-transformed test statistics,
based on user-supplied upper bounds for the means and variances of the test
statistics for the true null hypotheses. The second and most recent proposal
of van der Laan and Hubbard (2006) defines the null distribution as the as-
ymptotic distribution of a vector of null quantile-transformed test statistics,
based on user-supplied marginal test statistics null distributions. Resampling
procedures (e.g., non-parametric or model-based bootstrap) are provided to
conveniently obtain consistent estimators of the null distribution and of the
corresponding test statistic cut-offs, parameter confidence regions, and ad-
justed p-values.

We stress the generality of these two test statistics null distributions: Type
I error control does not rely on restrictive assumptions such as subset piv-
otality and holds for general data generating distributions (with arbitrary
dependence structures among variables), null hypotheses (defined in terms
of submodels for the data generating distribution), and test statistics (e.g.,
t-statistics, χ2-statistics, F -statistics). In particular, the proposed null dis-
tributions allow one to address testing problems that cannot be handled by
existing approaches, such as tests concerning correlation coefficients and pa-
rameters in general regression models (e.g., linear regression models where
the covariates and error terms are allowed to be dependent, logistic regression
models, Cox proportional hazards models; Chapter 8; Pollard et al. (2005a)).
The latest proposal of van der Laan and Hubbard (2006) has the additional
advantage that the marginal test statistics null distributions may be set to
the optimal (i.e., most powerful) null distributions one would use in single
hypothesis testing (e.g., permutation marginal null distributions, Gaussian or
other parametric marginal null distributions).

As illustrated in the simulation studies of Chapter 8 and articles by van der
Laan and Hubbard (2006), Pollard et al. (2005a), and Pollard and van der
Laan (2004), the choice of null distribution can have a substantial impact on
the Type I error and power properties of a given multiple testing procedure.
In particular, Pollard et al. (2005a) show that procedures based on our general
non-parametric bootstrap null shift and scale-transformed test statistics null
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distribution typically control the Type I error rate “on target” at the nom-
inal level. In contrast, comparable procedures, based on parameter-specific
bootstrap data generating null distributions, can be severely anti-conservative
(bootstrapping residuals for testing regression coefficients) or conservative
(independent bootstrap for testing correlation coefficients). van der Laan
and Hubbard (2006) further illustrate that, for finite samples, the new null
quantile-transformed test statistics null distribution provides more accurate
Type I error control and is more powerful than the original null shift and
scale-transformed null distribution.

Finally, note that the null shift and scale-transformed and null quantile-
transformed test statistics null distributions are only two among a family of
null distributions that satisfy null domination conditions for a given testing
problem. The explicit construction of null distributions with good Type I error
control and power properties still represents an open and important research
avenue.

2.1.2 Outline

Section 2.2 outlines the main features of our approach to Type I error control
and the key choice of a test statistics null distribution based on the notion
of null domination. Section 2.3 discusses in detail our first proposal of a null
shift and scale-transformed test statistics null distribution. Section 2.4 intro-
duces our most recent null quantile-transformed test statistics null distribu-
tion. Section 2.5 considers the choice of a null distribution for transformations
of the test statistics, such as the absolute value transformation. Sections 2.6
and 2.7 focus on two particular examples of testing problems covered by our
framework: the test of single-parameter null hypotheses using t-statistics (e.g.,
tests of means, correlation coefficients, regression coefficients in linear and
non-linear models) and the test of multiple-parameter null hypotheses using
F -statistics. The last two sections are devoted to contrasting our proposed
methodology with existing approaches. Specifically, Section 2.8 revisits the
notions of weak and strong control of a Type I error rate and the related
assumption of subset pivotality. We stress that such conditions are made ir-
relevant by our general approach, which is only concerned with control of the
Type I error rate under the true data generating distribution and is based on
a test statistics null distribution rather than a data generating null distribu-
tion. Finally, Section 2.9 examines test statistics null distributions based on
bootstrap and permutation data generating distributions.
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2.2 Type I error control and choice of a test statistics
null distribution

2.2.1 Type I error control

As in Section 1.2, consider the simultaneous test of M null hypotheses H0(m),
m = 1, . . . ,M , based on test statistics Tn = (Tn(m) : m = 1, . . . ,M),
with finite sample joint distribution Qn = Qn(P ), under the data generat-
ing distribution P . We wish to derive rejection regions for the test statistics
Tn(m), such that Type I errors are probabilistically controlled at a user-
supplied level α (see Section 1.2.9 for definitions of Type I error rates). In
practice, however, the true distribution Qn(P ) of the test statistics is unknown
and replaced by a null distribution Q0 (or estimator thereof, Q0n). As in Sec-
tion 1.2.6, let Cn(m) = C(m;Tn, Q0, α), m = 1, . . . , M , and Rn = R(Tn, Q0, α)
denote, respectively, the M rejection regions and corresponding set of rejected
null hypotheses, for a MTP with nominal Type I error level α. That is,

R(Tn, Q0, α) = {m : Tn(m) ∈ C(m;Tn, Q0, α)} . (2.1)

Given a random M -vector Z = (Z(m) : m = 1, . . . , M), with joint distri-
bution Q, and a collection of M rejection regions C = {C(m) : m = 1, . . . ,M}1,
denote the numbers of rejected hypotheses and Type I errors by

R(C|Q) ≡
M∑

m=1

I (Z(m) ∈ C(m)) (2.2)

and

V (C|Q) ≡
∑

m∈H0

I (Z(m) ∈ C(m)) ,

respectively. For given rejection regions C, adopt the following shorthand no-
tation for the special cases where Q corresponds to the test statistics true
distribution Qn and null distribution Q0,

Rn ≡ R(C|Qn), R0 ≡ R(C|Q0), (2.3)
Vn ≡ V (C|Qn), V0 ≡ V (C|Q0).

For one-sided rejection regions of the form C(m) = (c(m),+∞), based on
an M -vector of cut-offs c = (c(m) : m = 1, . . . ,M) ∈ IRM , further denote
the numbers of rejected hypotheses and Type I errors by R(c|Q) and V (c|Q),
respectively.

Rejection regions are typically derived so that the Type I error rate
Θ(FV0,R0), under the test statistics null distribution Q0, is controlled at nom-
inal level α ∈ (0, 1)2, that is,
1 N.B. In stepwise procedures, the rejection regions C may be random, i.e., may

depend on Z.
2 N.B. Without loss of generality, we focus for simplicity on Type I error rates

Θ(FVn,Rn) ∈ [0, 1].



2.2 Type I error control and choice of a test statistics null distribution 53

Θ(FV0,R0) ≤ α. (2.4)

The multiple testing procedure Rn is said to control the Type I error
rate Θ(FVn,Rn

), under the test statistics true distribution Qn, at actual level
α ∈ (0, 1), if

Θ(FVn,Rn
) ≤ α [finite sample control]

(2.5)
lim sup

n→∞
Θ(FVn,Rn

) ≤ α [asymptotic control].

Note that the actual Type I error rate Θ(FVn,Rn
) of a multiple testing

procedure typically differs from its nominal level α, i.e., the level at which
it claims to control Type I errors. Discrepancies between actual and nominal
Type I error levels can be attributed to a number of factors, including the
choice of a test statistics null distribution Q0 and the type of rejection regions
for a given choice of Q0. A testing procedure is said to be conservative if the
nominal Type I error level α is greater than the actual Type I error rate and
anti-conservative if the nominal Type I error level α is less than the actual
Type I error rate, that is,

Conservative Θ(FVn,Rn
) < α

Anti-conservative Θ(FVn,Rn
) > α.

(2.6)

The choice of a suitable test statistics null distribution Q0 is crucial in
order to ensure that (finite sample or asymptotic) control of the Type I error
rate under this assumed null distribution does indeed provide the desired
control under the true distribution Qn. For proper control, the Type I error
rate under the null distribution Q0 must dominate the Type I error rate under
the true distribution Qn. That is, the null distribution Q0 must satisfy

Θ(FVn,Rn
) ≤ Θ(FV0,R0) [finite sample control]

(2.7)
lim sup

n→∞
Θ(FVn,Rn

) ≤ Θ(FV0,R0) [asymptotic control].

Chapter 8 and articles by van der Laan and Hubbard (2006), Pollard et al.
(2005a), and Pollard and van der Laan (2004), present simulation studies
investigating the impact of the null distribution on the Type I error control
and power properties of a MTP.

2.2.2 Sketch of proposed approach to Type I error control

The following discussion motivates our general approach to the problem of
Type I error control and highlights important considerations in choosing a
test statistics null distribution. We focus on Type I error rates defined as
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arbitrary parameters Θ(FVn
) of the distribution of the number of Type I

errors Vn (Section 1.2.9).
Recall that the distribution FVn

, for the number of Type I errors Vn =
|Rn ∩ H0| = |R(Tn, Q0, α) ∩ H0(P )|, depends on the following: the true dis-
tribution Qn = Qn(P ) of the test statistics Tn; the test statistics null distri-
bution Q0, used to derive the rejection regions Cn(m) = C(m;Tn, Q0, α); the
nominal Type I error level α of the MTP; and the set H0 = H0(P ) of true
null hypotheses. Type I error control is therefore a statement about the true,
unknown data generating distribution P , via Qn(P ) and H0(P ).

Control of Type I error rates of the form Θ(FVn
) can be achieved by the

three-step road map of Procedure 2.1, below. This road map provides intuition
behind the general characterization (Section 2.2.3) and explicit construction
(Sections 2.3 and 2.4) of a proper test statistics null distribution Q0. It also
provides a template for Θ-controlling joint single-step common-quantile Pro-
cedure 4.1 and common-cut-off Procedure 4.2. The main idea is to substitute
control of the unknown parameter Θ(FVn

), for the true distribution FVn
of the

number of Type I errors, by control of the corresponding known parameter
Θ(FR0), for the null distribution FR0 of the number of rejected hypotheses.

Procedure 2.1. [Three-step road map for controlling Type I error
rates Θ(FV n )]

1. Null domination conditions for the Type I error rates Θ(FV n )
and Θ(FV 0 ). Select a test statistics null distribution Q0 such that the
Type I error rate Θ(FV0), under this null distribution Q0, dominates
the Type I error rate Θ(FVn

), under the true distribution Qn. That is,
the following null domination assumption for the Type I error rates is
satisfied.

Θ(FVn
) ≤ Θ(FV0) [finite sample control]

lim supn→∞ Θ(FVn
) ≤ Θ(FV0) [asymptotic control].

(NDΘ)

2. Monotonicity of the Type I error rate mapping Θ. Note that the
number of Type I errors is always less than or equal to the total number
of rejected hypotheses (i.e., V0 ≤ R0), so that FV0 ≥ FR0 . Hence, under
monotonicity Assumption MΘ for the Type I error rate mapping Θ, one
has

Θ(FV0) ≤ Θ(FR0). (2.8)

3. Control of Θ(FR0 ). Select rejection regions Cn(m) = C(m;Tn, Q0, α)
so that the following Type I error constraint is satisfied,

Θ(FR0) ≤ α. (2.9)
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That is, control the known parameter Θ(FR0), corresponding to the num-
ber of rejected hypotheses R0 =

∑M
m=1 I (Tn(m) ∈ Cn(m)), under the

null distribution Q0, i.e., assuming Tn ∼ Q0.

Combining Steps 1–3 provides the desired control of the actual Type I error
rate Θ(FVn

) at level α ∈ (0, 1), that is,

Θ(FVn
) ≤ Θ(FV0) ≤ Θ(FR0) ≤ α [finite sample control]

(2.10)
lim sup

n→∞
Θ(FVn

) ≤ Θ(FV0) ≤ Θ(FR0) ≤ α [asymptotic control].

Note that the road map of Procedure 2.1 is conservative in two ways:
(i) from the null domination of the Type I error rate in Step 1, Θ(FVn

) ≤
Θ(FV0); (ii) from controlling Θ(FR0) ≥ Θ(FV0) in Step 3. Step 1 is often the
most problematic and requires a judicious choice for the test statistics null
distribution Q0.

2.2.3 Characterization of test statistics null distribution in terms
of null domination conditions

For certain families of Type I error rate mappings Θ and rejection regions Cn,
Θ-specific Type I error rate null domination Assumption NDΘ, in Step 1 of
the road map, can be shown to hold under the following alternate forms of
null domination.

• Null domination for the distributions FVn
and FV0 of the number of Type

I errors.
• Null domination for the joint distributions Qn,H0 and Q0,H0 of the H0-

specific subvector (Tn(m) : m ∈ H0) of test statistics for the true null
hypotheses H0.

Null domination conditions for the numbers of Type I errors Vn

and V0

One can specify null domination conditions in terms of the distributions of
the numbers of Type I errors Vn and V0, as follows. For each x ∈ {0, . . . , M},

FVn
(x) ≥ FV0(x) [finite sample control]

lim infn→∞ FVn
(x) ≥ FV0(x) [asymptotic control].

(NDV)

That is, the number of Type I errors V0, under the null distribution Q0, is
stochastically greater than the number of Type I errors Vn, under the true
distribution Qn for the test statistics Tn.
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For Type I error rate mappings Θ that satisfy monotonicity Assumption
MΘ and continuity Assumption CΘ at FV0 , null domination Assumption NDV
for the number of Type I errors implies null domination Assumption NDΘ for
the Type I error rate.

Joint null domination conditions for the H0-specific test statistics
(Tn(m) : m ∈ H0)

One can also specify multivariate null domination conditions in terms of the
joint distribution of the test statistics (Tn(m) : m ∈ H0) for the true null
hypotheses H0, based on the notion of multivariate stochastic order (Kamae
et al., 1977, p. 899). Below are three equivalent joint null domination condi-
tions for the H0-specific test statistics (Tn(m) : m ∈ H0).

The null distribution Q0,H0 , of the H0-specific subvector of test statistics
(Tn(m) : m ∈ H0), is said to be stochastically greater than the correspond-
ing true distribution Qn,H0 = Qn,H0(P ), if, for all bounded componentwise
increasing functions � : IRh0 → IR,

EQn,H0
[�((Tn(m) : m ∈ H0))] ≤ EQ0,H0

[�((Z(m) : m ∈ H0))]
(2.11)

lim sup
n→∞

EQn,H0
[�((Tn(m) : m ∈ H0))] ≤ EQ0,H0

[�((Z(m) : m ∈ H0))] ,

where, for the asymptotic statement, the null distribution Q0,H0 is further
required to be continuous.

An alternate formulation of joint null domination is that, for all Borel sets
B ⊆ IRh0 with componentwise increasing indicator function IB : z ∈ IRh0 →
I (z ∈ B) ∈ {0, 1},

PrQn,H0
((Tn(m) : m ∈ H0) ∈ B) ≤ PrQ0,H0

((Z(m) : m ∈ H0) ∈ B)
(2.12)

lim sup
n→∞

PrQn,H0
((Tn(m) : m ∈ H0) ∈ B) ≤ PrQ0,H0

((Z(m) : m ∈ H0) ∈ B) ,

where, for the asymptotic statement, the null distribution Q0,H0 is further
required to be continuous.

A third, more compact formulation of joint null domination, in terms of the
joint cumulative distribution functions of the test statistics (Tn(m) : m ∈ H0),
is that, for all z ∈ IRh0 ,

Qn,H0(z) ≥ Q0,H0(z) [finite sample control]

lim infn→∞ Qn,H0(z) ≥ Q0,H0(z) [asymptotic control],
(jtNDT)

where, for the asymptotic statement, the null distribution Q0,H0 is further
required to be continuous. Note that Assumption jtNDT corresponds to Equa-
tion (2.12), with sets B = (−∞, z]c defined in terms of h0-dimensional rectan-
gles (−∞, z] =

∏h0
m=1(−∞, z(m)] ⊆ IRh0 .
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For ease of notation, we may simply refer to the finite sample and asymp-
totic joint null domination conditions as Qn,H0 ≥ Q0,H0 and lim infn Qn,H0 ≥
Q0,H0 , respectively.

Relationships between null domination Assumptions jtNDT, NDV,
and NDΘ

For one-sided rejection regions of the form C(m) = (c(m),+∞), joint null
domination Assumption jtNDT for the test statistics implies null domination
Assumption NDV for the number of Type I errors. Indeed, for given c = (c(m) :
m = 1, . . . , M) ∈ IRM and x ∈ {0, . . . , M}, one may apply Equation (2.11),
with the bounded componentwise increasing function � : IRh0 → IR defined
such that

�((Z(m) : m ∈ H0)) = I

(
∑

m∈H0

I (Z(m) > c(m)) > x

)
= I (V (c|Q) > x) ,

where Z = (Z(m) : m = 1, . . . , M) ∼ Q. Then,

Pr (V (c|Qn) > x) ≤ Pr (V (c|Q0) > x)
lim sup

n→∞
Pr (V (c|Qn) > x) ≤ Pr (V (c|Q0) > x) .

Noting that Pr(V (c|Qn) > x) = 1−FVn
(x) and Pr(V (c|Q0) > x) = 1−FV0(x)

yields Assumption NDV.
Monotonicity Assumption MΘ and continuity Assumption CΘ at FV0 then

imply null domination Assumption NDΘ for the Type I error rate.
Note that, for the asymptotic versions of null domination in Equa-

tions (2.11), (2.12), and (jtNDT), one could relax the continuity assumption
on Q0, by requiring, for example, that the cut-offs c be continuity points of Q0.

To summarize, one has the following relationships among the three types
of null domination assumptions introduced thus far. Under these assumptions,
the road map of Procedure 2.1 provides (finite sample or asymptotic) control
of general Type I error rates of the form Θ(FVn

).

Assumption jtNDT: Joint null domination for H0-specific test statistics

Qn,H0 ≥ Q0,H0 .

⇓
Assumption NDV: Null domination for number of Type I errors, for one-
sided rejection regions of the form C(m) = (c(m),+∞),

FVn
≥ FV0 .

⇓
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Assumption NDΘ: Null domination for Type I error rate, under Assump-
tions MΘ and CΘ,

Θ(FVn
) ≤ Θ(FV0).

Note that null domination is only a statement about the joint distribu-
tion of the subvector of test statistics (Tn(m) : m ∈ H0) for the true null
hypotheses H0.

More specific (i.e., less stringent) forms of null domination may be derived
for given definitions of the Type I error rate mapping Θ and rejection regions
(e.g., null domination conditions for FWER-controlling step-down common-
cut-off and common-quantile MTPs in Chapter 5 and van der Laan et al.
(2004a)).

General joint null domination Assumption jtNDT, for the H0-specific test
statistics, provides a template for deriving test statistics null distributions
that lead to proper Type I error control: identify a collection of M functions,
�m : IR → IR, such that the joint distribution of the transformed test statistics
(�m(Tn(m)) : m ∈ H0) dominates the joint distribution of the original test sta-
tistics (Tn(m) : m ∈ H0). Based on this general characterization, Sections 2.3
and 2.4, below, provide two explicit constructions for a proper test statistics
null distribution Q0: the asymptotic distribution of a vector of null shift and
scale-transformed test statistics, based on user-supplied upper bounds for the
means and variances of the H0-specific test statistics (Section 2.3; Dudoit et al.
(2004b); van der Laan et al. (2004a); Pollard and van der Laan (2004)) and the
asymptotic distribution of a vector of null quantile-transformed test statistics,
based on user-supplied marginal test statistics null distributions (Section 2.4;
van der Laan and Hubbard (2006)).

Either test statistics null distribution may be used in any of the multi-
ple testing procedures proposed in Chapters 3–7 of this book, as they both
satisfy the key property of joint null domination for the H0-specific test sta-
tistics (Assumption jtNDT). Specifically, the null shift and scale-transformed
null distribution (or a consistent estimator thereof) provides Type I error
control for: Θ(FVn

)-controlling joint single-step common-cut-off and common-
quantile procedures (Chapter 4; Dudoit et al. (2004b)); FWER-controlling
joint step-down common-cut-off (maxT) and common-quantile (minP) pro-
cedures (Chapter 5; van der Laan et al. (2004a)); gTP-controlling (mar-
ginal/joint single-step/stepwise) augmentation multiple testing procedures
(Chapter 6; Dudoit et al. (2004a); van der Laan et al. (2004b)); gTP-
controlling joint resampling-based empirical Bayes procedures (Chapter 7;
van der Laan et al. (2005)). van der Laan and Hubbard (2006) argue that
the above results also hold for the new null quantile-transformed test statis-
tics null distribution.
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2.2.4 Contrast with other approaches

One of our main contributions is the general characterization (Section 2.2.3)
and explicit construction (Sections 2.3 and 2.4) of proper null distributions Q0

(or estimators thereof, Q0n) for the test statistics Tn. As detailed in Section
2.8, the following two main points distinguish our approach from existing
approaches to Type I error control and the choice of a test statistics null
distribution (e.g., Hochberg and Tamhane (1987) and Westfall and Young
(1993)).

Type I error control under the true data generating distribution

Firstly, we are only concerned with control of the Type I error rate under the
true data generating distribution P , i.e., under the joint distribution Qn =
Qn(P ), implied by P , for the test statistics Tn. The concepts of weak and
strong control of a Type I error rate are therefore irrelevant in our context.

In particular, our null domination Assumptions jtNDT, NDV, and NDΘ,
introduced in Section 2.2.3, differ from the standard subset pivotality assump-
tion of Westfall and Young (1993, p. 42–43), in the following senses: (i) null
domination is only concerned with the true data generating distribution P ,
i.e., the subset H0(P ) of true null hypotheses and not all possible 2M sub-
sets J0 ⊆ {1, . . . , M} of null hypotheses; (ii) null domination does not require
equality of the joint distributions Q0,H0 and Qn,H0(P ), for the H0-specific
test statistics (Tn(m) : m ∈ H0), but the weaker domination of Qn,H0(P ) by
Q0,H0 .

Null distribution for the test statistics

Secondly, we propose a null distribution for the test statistics (Tn ∼ Q0)
rather than a data generating null distribution (X ∼ P0). A common choice
of data generating null distribution P0 is one that satisfies the complete
null hypothesis, HC

0 =
∏M

m=1 H0(m) =
∏M

m=1 I(P ∈ M(m)) = I(P ∈
∩M

m=1M(m)), that all M null hypotheses are true, i.e., P0 ∈ ∩M
m=1M(m). The

data generating null distribution P0 then implies a null distribution Qn(P0)
for the test statistics.

As discussed in Pollard et al. (2005a) and Pollard and van der Laan (2004),
procedures based on Qn(P0) do not necessarily provide proper Type I error
control under the true distribution P . Indeed, the assumed null distribution
Qn,H0(P0) and the true distribution Qn,H0(P ), of the H0-specific test statis-
tics (Tn(m) : m ∈ H0), may have different dependence structures and, as a
result, may violate the required null domination condition for the Type I error
rate (Assumption NDΘ, in Step 1 of the road map of Procedure 2.1). For in-
stance, for test statistics with Gaussian asymptotic distributions (Section 2.6),
the asymptotic covariance matrix of the H0-specific test statistics ΣH0(P ),
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under the true distribution P , may be different from the corresponding co-
variance matrix ΣH0(P0), under the complete null distribution P0. For the
two-sample test of means, based on difference statistics and the commonly-
used permutation data generating null distribution P0, Pollard and van der
Laan (2004) show that ΣH0(P ) = ΣH0(P0) if and only if (i) the two popula-
tions have the same covariance matrices or (ii) the population frequencies are
equal (Section 2.9).

Consequently, approaches based on permutation or other data generating
null distributions P0 (e.g., Korn et al. (2004), Troendle (1995, 1996), and
Westfall and Young (1993)) are only valid under certain assumptions for the
true data generating distribution P . In fact, in most testing problems, there
does not exist a data generating null distribution P0 ∈ ∩M

m=1M(m) that
correctly specifies a joint null distribution for the H0-specific test statistics
(Tn(m) : m ∈ H0), i.e., such that the required null domination condition for
the Type I error rate is satisfied (Assumption NDΘ).

In summary, unlike current methods that can only be applied to a limited
set of multiple testing problems, the general constructions of Sections 2.3 and
2.4 lead to joint single-step and stepwise procedures that provide the desired
Type I error control for general data generating distributions, null hypotheses,
and test statistics. Our proposed test statistics null distributions can be used in
testing problems that cannot be handled by traditional approaches based on a
data generating null distribution and the associated assumption of subset piv-
otality. Such problems include tests for correlation coefficients and regression
coefficients in linear and non-linear models where covariates and error terms
are allowed to be dependent (Chapter 8; Pollard et al. (2005a)).

2.3 Null shift and scale-transformed test statistics null
distribution

2.3.1 Explicit construction for the test statistics null distribution

Following Dudoit et al. (2004b), van der Laan et al. (2004a), and Pollard and
van der Laan (2004), our first proposal for a test statistics null distribution is
the asymptotic distribution of a vector of null shift and scale-transformed test
statistics, based on user-supplied upper bounds for the means and variances
of the H0-specific test statistics.

Theorem 2.2. [Null shift and scale-transformed test statistics null
distribution]
Asymptotic test statistics null distribution. Suppose there exist known
M -vectors λ0 ∈ IRM and τ0 ∈ IR+M of null values, so that, for each m ∈ H0,

lim sup
n→∞

E[Tn(m)] ≤ λ0(m) (2.13)
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and
lim sup

n→∞
Var[Tn(m)] ≤ τ0(m).

Let

ν0,n(m) ≡
√

min
{

1,
τ0(m)

Var[Tn(m)]

}
(2.14)

and define an M -vector of null shift and scale-transformed test statistics Zn =
(Zn(m) : m = 1, . . . ,M) by

Zn(m) ≡ ν0,n(m) (Tn(m) − E[Tn(m)]) + λ0(m), m = 1, . . . ,M. (2.15)

Suppose that the random M -vector Zn converges weakly to a random M -vector
Z, with continuous joint distribution Q0 = Q0(P ),

Zn
L⇒ Z ∼ Q0(P ). (2.16)

Then, the asymptotic joint distribution Q0 satisfies asymptotic joint null
domination Assumption jtNDT for the H0-specific subvector of test statistics
(Tn(m) : m ∈ H0). That is, for all z ∈ IRh0 ,

lim inf
n→∞

Qn,H0(z) ≥ Q0,H0(z).

In addition, for all c = (c(m) : m = 1, . . . , M) ∈ IRM and x ∈ {0, . . . , M},

lim inf
n→∞

PrQn

(
∑

m∈H0

I (Tn(m) > c(m)) ≤ x

)

≥ PrQ0

(
∑

m∈H0

I (Z(m) > c(m)) ≤ x

)
.

Thus, for one-sided rejection regions of the form Cn(m) = (cn(m),+∞), the
null distribution Q0 satisfies asymptotic null domination Assumption NDV for
the number of Type I errors,

lim inf
n→∞

FVn
(x) ≥ FV0(x), ∀ x ∈ {0, . . . ,M}.

If one further assumes that the Type I error rate mapping Θ meets monotonic-
ity Assumption MΘ and continuity Assumption CΘ at FV0 , then the null dis-
tribution Q0 also satisfies asymptotic null domination Assumption NDΘ for
the Type I error rate,

lim sup
n→∞

Θ(FVn
) ≤ Θ(FV0).

Finite sample test statistics null distribution. Suppose there exists a
known M -vector λ0,n ∈ IRM of null values, so that, for each m ∈ H0,
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E[Tn(m)] ≤ λ0,n(m). (2.17)

Define an M -vector of null shift-transformed test statistics Zn = (Zn(m): m =
1, . . . ,M) by

Zn(m) ≡ Tn(m) − E[Tn(m)] + λ0,n(m), m = 1, . . . ,M. (2.18)

Then, the finite sample joint distribution Q0,n = Q0,n(P ) of Zn satisfies the fi-
nite sample versions of null domination Assumptions jtNDT, NDV, and NDΘ.

The asymptotic distribution Q0, of the null shift and scale-transformed
test statistics Zn, generalizes the null distribution proposed in Pollard and
van der Laan (2004) for the test of single-parameter null hypotheses based
on t-statistics. In this special case, the null distribution Q0 turns out to be a
Gaussian distribution with mean vector zero (Section 2.6).

Dudoit et al. (2004b) and van der Laan et al. (2004a) prove that joint
single-step and step-down procedures based on the null distribution of The-
orem 2.2 (or a consistent estimator thereof) do indeed provide the desired
asymptotic control of the Type I error rate Θ(FVn

), for general data gener-
ating distributions (with arbitrary dependence structures among variables),
null hypotheses (defined in terms of submodels for the data generating distri-
bution), and test statistics (e.g., t-statistics, χ2-statistics, F -statistics).

As seen in Sections 2.6 and 2.7, the null distribution Q0 is continuous for
a broad class of testing problems. Otherwise, one could relax the continuity
assumption on Q0, by requiring, for example, that the cut-offs c be continuity
points of Q0.

Proof of Theorem 2.2.
Asymptotic test statistics null distribution. The proof is straightforward
and is based on an intermediate random vector Z̃n = (Z̃n(m) : m = 1, . . . ,M),
defined as

Z̃n(m) = Tn(m) + max {0, λ0(m) − E[Tn(m)]} , m = 1, . . . , M. (2.19)

First, note that Tn(m)≤ Z̃n(m) for each m = 1, . . . , M . Next, for m∈H0,
since lim supn E[Tn(m)] ≤ λ0(m) and lim supn Var[Tn(m)] ≤ τ0(m), then
limn ν0,n(m) = 1 and the H0-specific subvectors (Z̃n(m) : m ∈ H0) and
(Zn(m) : m ∈ H0) have the same asymptotic joint distribution. That is,

(Z̃n(m) : m ∈ H0)
L⇒ (Z(m) : m ∈ H0) ∼ Q0,H0 .

Thus, asymptotic joint null domination Assumption jtNDT follows from the
definition of weak convergence to a continuous limit distribution Q0 (Equa-
tion (B.7)). That is, for each z ∈ IRh0 and corresponding h0-dimensional
rectangle (−∞, z] ⊆ IRh0 ,
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lim inf
n→∞

Qn,H0(z) = lim inf
n→∞

Pr ((Tn(m) : m ∈ H0) ∈ (−∞, z])

≥ lim inf
n→∞

Pr
(
(Z̃n(m) : m ∈ H0) ∈ (−∞, z]

)

= Pr ((Z(m) : m ∈ H0) ∈ (−∞, z])
= Q0,H0(z).

In addition, for all c = (c(m) : m = 1, . . . , M) ∈ IRM , the Continuous Mapping
Theorem (Theorem B.3), applied to the function �((z(m) : m ∈ H0)) =∑

m∈H0
I (z(m) > c(m)), implies that

�((Z̃n(m) : m ∈ H0)) =
∑

m∈H0

I
(
Z̃n(m) > c(m)

)

L⇒
∑

m∈H0

I (Z(m) > c(m)) = �((Z(m) : m ∈ H0)).

Asymptotic null domination Assumption NDV then follows from Proposi-
tion B.2. That is, for all c = (c(m) : m = 1, . . . ,M) ∈ IRM and x ∈
{0, . . . , M},

lim inf
n→∞

FVn
(x) = lim inf

n→∞
Pr

(
∑

m∈H0

I (Tn(m) > c(m)) ≤ x

)

≥ lim inf
n→∞

Pr

(
∑

m∈H0

I
(
Z̃n(m) > c(m)

)
≤ x

)

= Pr

(
∑

m∈H0

I (Z(m) > c(m)) ≤ x

)

= FV0(x).

Finite sample test statistics null distribution. The finite sample results
follow immediately by noting that, under Equation (2.17), Zn(m) ≥ Tn(m)
for m ∈ H0.


�

Remarks

1. Role of null shift values λ0. The construction of the null distribution
Q0 in Theorem 2.2 is inspired by joint null domination Assumption jtNDT,
for the H0-specific subvector of test statistics (Tn(m) : m ∈ H0). The pur-
pose of the null shift values λ0(m) is to generate H0-specific statistics
(Zn(m) : m ∈ H0) that are asymptotically stochastically greater than
the original test statistics (Tn(m) : m ∈ H0). Thus, for one-sided rejec-
tion regions of the form Cn(m) = (cn(m),+∞), the number of Type I
errors V0, under the null distribution Q0, is asymptotically stochastically
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greater than the number of Type I errors Vn, under the true distribution
Qn. The null distribution Q0 therefore satisfies asymptotic null domina-
tion Assumption NDV, for the number of Type I errors, and also Θ-specific
asymptotic null domination Assumption NDΘ, for any Type I error rate
mapping Θ that meets monotonicity Assumption MΘ and continuity As-
sumption CΘ at FV0 .

2. Role of null scale values τ 0 . In contrast, the null scale values τ0(m)
are not needed for Type I error control. The purpose of τ0(m) is to avoid
a degenerate null distribution and infinite cut-offs for the false null hy-
potheses (m ∈ H1), an important property for power considerations. This
scaling is needed, in particular, for F -statistics that have asymptotically
infinite means and variances for non-local alternative hypotheses (Section
2.7).

3. Estimation of null values λ0 and τ 0 . The null values λ0(m) and
τ0(m) only depend on the marginal distributions of the test statistics
Tn(m) for the true null hypotheses H0 and are generally known from
single hypothesis testing. For instance, for the test of single-parameter null
hypotheses using t-statistics, the null values are λ0(m) = 0 and τ0(m) =
1 (Section 2.6). For testing the equality of K population mean vectors
using F -statistics, the null values are λ0(m) = 1 and τ0(m) = 2/(K −
1), under the assumption of equal variances in the different populations
(Section 2.7). More generally, the null values λ0(m) and τ0(m) may depend
on the unknown data generating distribution P , as is the case for F -
statistics when population variances are unequal (Equation (2.54)). In
such a situation, one may replace the parameters λ0(m) and τ0(m) by
consistent estimators thereof.

4. t-statistics: Gaussian null distribution. For a broad class of test-
ing problems, such as the test of single-parameter null hypotheses using
t-statistics, the null distribution Q0 = Q0(P ) is an M -variate Gaussian
distribution, with mean vector zero and covariance matrix σ∗ = Σ∗(P ),
that is, Q0 = N(0, σ∗) (Section 2.6). For tests where the parameter of in-
terest is the M -dimensional mean vector Ψ(P ) = ψ = E[X], the estimator
ψn is simply the M -vector of empirical means and σ∗ = Σ∗(P ) = Cor[X]
is the correlation matrix of X ∼ P , that is, Q0(P ) = N(0,Cor[X]). More
generally, for an asymptotically linear estimator ψn, Σ∗(P ) is the correla-
tion matrix of the vector influence curve. This situation covers standard
one-sample and two-sample t-statistics for tests of means, but also test
statistics for correlation coefficients and regression coefficients in linear
and non-linear models.

5. F -statistics: Gaussian quadratic form null distribution. For test-
ing the equality of K population mean vectors using F -statistics, an F -
statistic-specific null distribution QF

0 may be defined as the joint distri-
bution of an M -vector of quadratic forms of Gaussian random variables
(Section 2.7).
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6. Estimation of the test statistics null distribution. In practice, the
test statistics null distribution Q0 = Q0(P ) is unknown, as it depends on
the unknown data generating distribution P . As detailed in Section 2.3.2,
below, resampling procedures, such as the bootstrap procedures proposed
in Dudoit et al. (2004b), van der Laan et al. (2004a), and Pollard and
van der Laan (2004), may be used to conveniently obtain consistent es-
timators Q0n of the null distribution Q0 and of the corresponding test
statistic cut-offs and adjusted p-values.

2.3.2 Bootstrap estimation of the test statistics null distribution

As noted above, the test statistics null distribution Q0 = Q0(P ) proposed
in Theorem 2.2 depends on the typically unknown data generating distribu-
tion P . Although in some cases marginal test statistics null distributions may
be known from single hypothesis testing, the dependence structure among the
test statistics is usually unknown. In practice, one therefore needs to estimate
the joint null distribution Q0.

Consistent estimators Q0n of the test statistics null distribution Q0 and
of the corresponding test statistic cut-offs and adjusted p-values may be ob-
tained according to the following three main approaches: (i) general direct
bootstrap estimation; (ii) test statistic-specific estimation (e.g., for t-statistics,
χ2-statistics, F -statistics); (iii) data generating null distribution estimation.

Given an estimator Q0n of the null distribution Q0, Procedures 4.20
and 4.21 provide algorithms for estimating cut-offs and adjusted p-values
for Θ(FVn

)-controlling joint single-step common-quantile Procedure 4.1 and
common-cut-off Procedure 4.2, respectively. Similar algorithms are proposed
in Procedure 5.15 for FWER-controlling joint step-down maxT Procedure 5.1
and minP Procedure 5.6.

General direct bootstrap estimation

As discussed below, bootstrap procedures provide a very general approach
for obtaining consistent estimators of the test statistics null distribution Q0

proposed in Theorem 2.2. The method may be summarized as follows and is
illustrated in Figure 2.1.

1. Given B bootstrap samples of the data Xn, obtain an M × B matrix of
test statistics, TB

n =
(
TB

n (m, b)
)
, with rows corresponding to the M null

hypotheses and columns to the B bootstrap samples.
2. Estimate the expected values, E[Tn(m)], and variances, Var[Tn(m)], of the

test statistics (under the true data generating distribution P ) by taking
row means and variances of the matrix TB

n .
3. Row-shift and scale the matrix of bootstrap test statistics TB

n , with the
user-supplied null values λ0(m) and τ0(m), to produce an M × B matrix
ZB

n =
(
ZB

n (m, b)
)
.
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4. Estimate the null distribution Q0 by the empirical distribution Q0n of the
B columns of matrix ZB

n .

The remainder of this section provides details on the (non-parametric or
model-based) bootstrap estimation of the null distribution Q0 of Theorem 2.2.
Specifically, let P �

n denote an estimator of the true data generating distribu-
tion P . For the non-parametric bootstrap, P �

n is simply the empirical distribu-
tion Pn, that is, samples of size n are drawn at random, with replacement from
the observed data Xn = {Xi : i = 1, . . . , n}. For the model-based bootstrap,
P �

n belongs to a model M for the data generating distribution P , such as a
family of multivariate Gaussian distributions.

A bootstrap sample consists of n IID copies, X#
n ≡ {X#

i : i = 1, . . . , n}, of
a random variable X# ∼ P �

n . Denote the M -vector of test statistics computed
from such a bootstrap sample by T#

n = (T#
n (m) : m = 1, . . . , M). The null

distribution Q0 proposed in Theorem 2.2 can be estimated by the distribution
of the null shift and scale-transformed bootstrap test statistics,

Z#
n (m) ≡

√

min
{

1,
τ0(m)

VarP �
n
[Tn

#(m)]

}(
T#

n (m) − EP �
n
[Tn

#(m)]
)

+ λ0(m).

(2.20)

In practice, one can only approximate the distribution of Z#
n = (Z#

n (m) :
m = 1, . . . ,M) by an empirical distribution over B bootstrap samples drawn
from P �

n , as described next in Procedure 2.3.

Procedure 2.3. [Bootstrap estimation of the null shift and scale-
transformed test statistics null distribution]

1. Generate B bootstrap samples, X b
n ≡ {Xb

i : i = 1, . . . , n}, b = 1, . . . , B.
For the bth sample, the Xb

i , i = 1, . . . , n, are n IID copies of a random
variable X# ∼ P �

n .
2. For each bootstrap sample X b

n, compute an M -vector of test statistics,
TB

n (·, b) = (TB
n (m, b) : m = 1, . . . ,M), that can be arranged in an

M × B matrix, TB
n =

(
TB

n (m, b) : m = 1, . . . , M ; b = 1, . . . , B
)
, with

rows corresponding to the M null hypotheses and columns to the B
bootstrap samples.

3. Compute row means and variances of the matrix TB
n , to yield estimators

of the means, E[Tn(m)], and variances, Var[Tn(m)], of the test statistics
under the true data generating distribution P . That is, compute
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E[TB
n (m, ·)] ≡ 1

B

B∑

b=1

TB
n (m, b), (2.21)

Var[TB
n (m, ·)] ≡ 1

B

B∑

b=1

(TB
n (m, b) − E[TB

n (m, ·)])2.

4. Obtain an M ×B matrix, ZB
n = (ZB

n (m, b) : m = 1, . . . ,M ; b = 1, . . . , B),
of null shift and scale-transformed bootstrap test statistics ZB

n (m, b), as
in Theorem 2.2, by row-shifting and scaling the matrix TB

n using the
bootstrap estimators of E[Tn(m)] and Var[Tn(m)] and the user-supplied
null values λ0(m) and τ0(m). That is, define

ZB
n (m, b) ≡

√

min
{

1,
τ0(m)

Var[TB
n (m, ·)]

}

×
(
TB

n (m, b) − E[TB
n (m, ·)]

)
+ λ0(m). (2.22)

5. The bootstrap estimator Q0n of the null distribution Q0 from Theo-
rem 2.2 is the empirical distribution of the B columns {ZB

n (·, b) : b =
1, . . . , B} of matrix ZB

n .

For one-sided rejection regions of the form Cn(m) = (cn(m),+∞), boot-
strap estimators of the unadjusted p-values P0n(m) may be obtained from the
matrix ZB

n =
(
ZB

n (m, b)
)

by recording, for each row m, the proportion of null
shift and scale-transformed bootstrap test statistics ZB

n (m, b) that are greater
than or equal to the observed test statistic Tn(m) (Section 1.2.12). That is,

P0n(m) =
1
B

B∑

b=1

I
(
ZB

n (m, b) ≥ Tn(m)
)
, m = 1, . . . , M. (2.23)

Figures 2.1 and 2.2 provide, respectively, graphical summaries of the boot-
strap estimation of the null distribution Q0 and of the corresponding unad-
justed p-values P0n(m).

There is no obvious general recommendation for the number of bootstrap
samples B. However, note that bootstrap unadjusted p-values are discrete tail
probabilities, with steps of size 1/B. Thus, for estimating very small p-values
(e.g., of the order of 10−9), one clearly needs a very large B in order to get
enough resolution in the tails. In addition, according to the definition in Equa-
tion (2.23), unadjusted p-values are often zero, even for moderate numbers of
bootstrap samples B. In order to deal with the discreteness of the bootstrap
distribution, the marginal null distributions Q0n,m obtained from the matrix
ZB

n may be replaced by Gaussian approximations or smoothed (e.g., using
kernel density estimation methods). Specific algorithms for accurate estima-
tion of tail probabilities are beyond the scope of this book. In general, the
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user needs to find a balance between estimation accuracy and computational
cost.

Test statistic-specific estimation: t-statistics and F -statistics

For certain types of test statistics Tn (e.g., t-statistics, χ2-statistics,
F -statistics) one may exploit the known parametric form of the null dis-
tribution Q0 of Theorem 2.2. An advantage of test statistic-specific para-
metric estimation approaches, such as those discussed in Sections 2.6 and
2.7, is that they yield continuous null distributions, which do not suffer from
the discreteness of the non-parametric bootstrap null distribution described
above.

t-statistics

As detailed in Section 2.6, for the test of single-parameter null hypotheses
using t-statistics, a t-statistic-specific null distribution Qt

0 = Qt
0(P ) is the

M -variate Gaussian distribution N(0, σ∗), where σ∗ = Σ∗(P ) is the cor-
relation matrix of the M -dimensional vector influence curve, IC(X|P ) =
(IC(X|P )(m) : m = 1, . . . , M), for an asymptotically linear estimator ψn

of the parameter M -vector ψ (Section 1.2.5).
In this case, one can estimate Qt

0 by Qt
0n = N(0, σ∗

n), where σ∗
n = Σ̂∗(Pn)

is a consistent estimator of the correlation matrix σ∗. For example, one could
use the correlation matrix σ∗

n corresponding to the following estimator of the
M × M influence curve covariance matrix,

σn = Σ̂(Pn) =
1
n

n∑

i=1

ICn(Xi)IC�
n (Xi), (2.24)

where ICn(X) = (ICn(X)(m) : m = 1, . . . ,M) is an estimator of the
M -vector influence curve IC(X|P ).

Influence curves can be derived straightforwardly for simple parameters
such as means. For example, when estimating the mean vector ψ = E[X],
for a random M -vector X ∼ P , using the corresponding empirical mean
vector ψn = X̄n, the influence curves are IC(X|P )(m) = X(m) − ψ(m)
and corresponding estimators are ICn(X)(m) = X(m) − ψn(m), where
ψn(m) = X̄n(m) =

∑
i Xi(m)/n, m = 1, . . . ,M . Then, σ∗

n is simply the
empirical correlation matrix. Influence curves for estimators of correlation co-
efficients and regression coefficients are given in Section 2.6.

In cases where the influence curves are not readily available, the correlation
matrix σ∗ may be estimated with the bootstrap.

F -statistics

As detailed in Section 2.7, for testing the equality of K population
mean vectors using F -statistics, an F -statistic-specific null distribution
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QF
0 = QF

0 (P1, . . . , PK) can be defined in terms of a simple quadratic function
of K independent Gaussian M -vectors, Yk ∼ N(0, σk), where σk = Σ(Pk)
denotes the covariance matrix for the kth population, k = 1, . . . ,K.

An estimator QF
0n of the null distribution QF

0 can be obtained by esti-
mating each population covariance matrix σk by the corresponding empirical
covariance matrix or by using the bootstrap.

Data generating null distribution estimation

In certain testing problems, one may define a test statistics null distribution
Qn(P0), in terms of a data generating distribution P0 that satisfies the com-
plete null hypothesis HC

0 =
∏M

m=1 H0(m) that all M null hypotheses are true.
Such a null distribution may be estimated by Q0n = Qn(P0n), where, for
example, P0n is a bootstrap- or permutation-based estimator of P0.

Test statistics null distributions based on bootstrap and permutation data
generating distributions are discussed in Section 2.9. Parameter-specific boot-
strap data generating null distributions are described in Chapter 8 for tests
concerning regression coefficients and correlation coefficients (Procedures 8.4
and 8.6, respectively).

However, as discussed in Pollard et al. (2005a) and Pollard and van der
Laan (2004), approaches based on a data generating null distribution can fail
in important testing problems, as the assumed null distribution Qn,H0(P0)
and the true distribution Qn,H0(P ), of the H0-specific test statistics (Tn(m) :
m ∈ H0), may have different dependence structures and, as a result, may
violate the required null domination condition for the Type I error rate (As-
sumption NDΘ, in Step 1 of the road map of Procedure 2.1).

Indeed, the simulation studies of Chapter 8 show that bootstrap data gen-
erating null distributions can lead to severely anti-conservative (bootstrapping
residuals for testing regression coefficients) or conservative (independent boot-
strap for testing correlation coefficients) procedures.

2.4 Null quantile-transformed test statistics null
distribution

Following van der Laan and Hubbard (2006), our second proposal for a test
statistics null distribution is the asymptotic distribution of a vector of null
quantile-transformed test statistics, based on user-supplied marginal test sta-
tistics null distributions. Because this promising approach represents a very
recent development in our ongoing research on multiple testing, this book
only introduces the main features of the null quantile-transformed null dis-
tribution. The reader is referred to van der Laan and Hubbard (2006) for
formal theorems and proofs, a detailed treatment of tests based on t-statistics
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and χ2-statistics, simulation studies, and an application to tests of associa-
tion between non-Hodgkin lymphoma (NHL) subclass and single nucleotide
polymorphisms (SNP) in the ghrelin (GHRL) and neuropeptide Y (NPY) genes.

This latest construction has the advantage that the marginal test statistics
null distributions may be set to the optimal (i.e., most powerful) null distrib-
utions one would use in single hypothesis testing (e.g., permutation marginal
null distributions, Gaussian or other parametric marginal null distributions).
The preliminary results in van der Laan and Hubbard (2006) indeed illustrate
that, for finite samples, the new null quantile-transformed null distribution
provides more accurate Type I error control and is more powerful than the
null shift and scale-transformed null distribution of Section 2.3.

2.4.1 Explicit construction for the test statistics null distribution

Marginal null domination conditions for the H0-specific test
statistics (Tn(m) : m ∈ H0)

The main ingredients of the new null quantile-transformed test statistics null
distribution are user-supplied marginal test statistics null distributions q0,m,
m = 1, . . . ,M , that satisfy the following marginal null domination condition3.
For each m ∈ H0 and z ∈ IR,

Qn,m(z) ≥ q0,m(z) [finite sample control]

lim infn→∞ Qn,m(z) ≥ q0,m(z) [asymptotic control].
(mgNDT)

That is, the test statistics (Tn(m) : m ∈ H0), for the true null hypotheses H0,
are marginally stochastically greater under the null distributions q0,m than
under the true distributions Qn,m. Note that the above marginal null domi-
nation Assumption mgNDT is implied by the stronger joint null domination
Assumption jtNDT.

Finite sample test statistics null distribution

Given marginal null distributions q0,m, m = 1, . . . , M , that satisfy marginal
null domination Assumption mgNDT, the proposed finite sample joint null dis-
tribution is based on the generalized quantile-quantile function transformation
of Yu and van der Laan (2002). Specifically, let Q̆0,n = Q̆0,n(P ) denote the
joint distribution of the M -vector of null quantile-transformed test statistics
Z̆n = (Z̆n(m) : m = 1, . . . , M) defined as

Z̆n(m) ≡ q−1
0,mQ∆

n,m(Tn(m)), m = 1, . . . ,M, (2.25)

3 N.B. In practice, user-supplied marginal null distributions, such as permutation
distributions, depend on the sample size n. However, for simplicity, references to
the sample size n are omitted from the notation q0,m.
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where Q∆
n,m(z) ≡ ∆Qn,m(z) + (1 − ∆)Qn,m(z−) and the random variable ∆

is uniformly distributed on the interval [0, 1], independently of the data Xn.
One can easily verify that the marginal distributions Q̆0,n,m, correspond-

ing to the proposed joint null distribution Q̆0,n, are indeed equal to the user-
supplied marginal null distributions q0,m. For continuous user-supplied mar-
ginal null distributions q0,m and continuous true marginal distributions Qn,m,
one has Q∆

n,m(z) = Qn,m(z) for each z ∈ IR and, hence,

Q̆0,n,m(z) = Pr
(
Z̆n(m) ≤ z

)

= Pr
(
q−1
0,mQn,m(Tn(m)) ≤ z

)

= Pr (Qn,m(Tn(m)) ≤ q0,m(z))
= q0,m(z),

where the last equality follows from Proposition 1.2.
In cases where the marginal distributions Qn,m and q0,m are not necessar-

ily continuous, Lemma 2.4 of Yu and van der Laan (2002) ensures that the
marginal distributions Q̆0,n,m are indeed equal to the user-supplied marginal
null distributions q0,m.

Result 1 in van der Laan and Hubbard (2006) establishes that the finite
sample joint null distribution Q̆0,n satisfies null domination Assumption NDV
for the number of Type I errors. That is, for each c = (c(m) : m = 1, . . . ,M) ∈
IRM and x ∈ {0, . . . ,M},

Pr
(
V (c|Q̆0,n) ≤ x

)
− Pr (V (c|Qn) ≤ x) ≤ 0 (2.26)

lim sup
n→∞

(
Pr
(
V (c|Q̆0,n) ≤ x

)
− Pr (V (c|Qn) ≤ x)

)
≤ 0.

In other words, the number of Type I errors V0,n = V (c|Q̆0,n) =
∑

m∈H0
I
(
Z̆n(m) > c(m)

)
, under the null distribution Q̆0,n, is stochas-

tically greater than the number of Type I errors Vn = V (c|Qn) =∑
m∈H0

I (Tn(m) > c(m)), under the true distribution Qn. Null domina-
tion Assumption NDΘ for the Type I error rate follows for mappings Θ that
satisfy monotonicity Assumption MΘ and uniform continuity Assumption
CΘ.

Asymptotic test statistics null distribution

As in van der Laan and Hubbard (2006), further assume that the finite sample
joint null distribution Q̆0,n = Q̆0,n(P ) converges weakly to an asymptotic joint
null distribution Q̆0 = Q̆0(P ).

Result 2 in van der Laan and Hubbard (2006) is an analogue for Q̆0 of
Result 1 for Q̆0,n. That is, the asymptotic joint null distribution Q̆0 satisfies
null domination Assumption NDV for the number of Type I errors.
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In general, proofs of null domination properties for the new null quantile-
transformed null distribution are similar to those for the original null shift
and scale-transformed null distribution (e.g., Theorem 2.2).

2.4.2 Bootstrap estimation of the test statistics null distribution

As for our original null shift and scale-transformed test statistics null distri-
bution Q0 = Q0(P ) (Section 2.3), neither the finite sample null distribution
Q̆0,n = Q̆0,n(P ) nor the asymptotic null distribution Q̆0 = Q̆0(P ) is known,
as they both depend on the true, unknown data generating distribution P .
van der Laan and Hubbard (2006) propose in their Section 2 a bootstrap
procedure, similar to Procedure 2.3, for estimating the asymptotic null distri-
bution Q̆0.

Procedure 2.4. [Bootstrap estimation of the null quantile-
transformed test statistics null distribution]

1. Generate B bootstrap samples, X b
n ≡ {Xb

i : i = 1, . . . , n}, b = 1, . . . , B.
For the bth sample, the Xb

i , i = 1, . . . , n, are n IID copies of a random
variable X# ∼ P �

n .
2. For each bootstrap sample X b

n, compute an M -vector of test statistics,
TB

n (·, b) = (TB
n (m, b) : m = 1, . . . ,M), that can be arranged in an

M × B matrix, TB
n =

(
TB

n (m, b) : m = 1, . . . , M ; b = 1, . . . , B
)
, with

rows corresponding to the M null hypotheses and columns to the B
bootstrap samples.

3. Define M bootstrap marginal cumulative distribution functions QB
n,m,

as the empirical CDFs of the rows of matrix TB
n , that is,

QB
n,m(z) ≡ 1

B

B∑

b=1

I
(
TB

n (m, b) ≤ z
)
. (2.27)

4. Obtain an M × B matrix, ZB
n =

(
ZB

n (m, b) : m = 1, . . . ,M ;
b = 1, . . . , B), of null quantile-transformed bootstrap test statistics
ZB

n (m, b), defined as

ZB
n (m, b) ≡ q−1

0,mQB,∆
n,m (TB

n (m, b)), (2.28)

where QB,∆
n,m (z) ≡ ∆QB

n,m(z)+(1−∆)QB
n,m(z−) and the random variable

∆ is uniformly distributed on the interval [0, 1], independently of the data
Xn.

5. The bootstrap estimator Q̆0n of the null distribution Q̆0 is the empirical
distribution of the B columns {ZB

n (·, b) : b = 1, . . . , B} of matrix ZB
n .
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From Lemma 2.4 in Yu and van der Laan (2002), the generalized quantile-
quantile function transformation q−1

0,mQB,∆
n,m (z) ensures that the margins

Q̆0n,m, of the estimator Q̆0n based on a finite number B of bootstrap sam-
ples, are equal to the user-supplied marginal null distributions q0,m.

As discussed in Section 2.3.2, in the context of the null shift and scale-
transformed null distribution, one could also envisage estimation approaches
that are test statistic-specific (e.g., for t-statistics, χ2-statistics, F -statistics)
or based on a data generating null distribution. The reader is referred to
Section 4 in van der Laan and Hubbard (2006) for a detailed treatment of
null distributions for tests based on t-statistics and χ2-statistics.

2.4.3 Comparison of null shift and scale-transformed and null
quantile-transformed null distributions

This section compares our two main constructions for a test statistics null
distribution. Recall from Section 2.3 that the first null distribution Q0 =
Q0(P ), proposed in Dudoit et al. (2004b) and van der Laan et al. (2004a), is
defined as the asymptotic distribution of the M -vector Zn = (Zn(m) : m =
1, . . . ,M) of null shift and scale-transformed test statistics. That is,

Zn(m) =

√

min
{

1,
τ0(m)

Var[Tn(m)]

}
(Tn(m) − E[Tn(m)]) + λ0(m),

where λ0(m) and τ0(m) are, respectively, user-supplied upper bounds for the
means and variances of the H0-specific test statistics.

In contrast, the new null distribution Q̆0 = Q̆0(P ) of van der Laan and
Hubbard (2006) is defined as the asymptotic distribution of the M -vector
Z̆n = (Z̆n(m) : m = 1, . . . , M) of null quantile-transformed test statistics.
That is,

Z̆n(m) = q−1
0,mQ∆

n,m(Tn(m)),

where q0,m are user-supplied marginal test statistics null distributions.

1. Main ingredients: Null shift and scale values and null quantiles.
While our first proposal requires M -vectors of null values λ0 ∈ IRM and
τ0 ∈ IR+M , so that lim supn E[Tn(m)] ≤ λ0(m) and lim supn Var[Tn(m)] ≤
τ0(m) for m ∈ H0, the new proposal of van der Laan and Hubbard (2006)
relies on marginal null distributions q0,m that dominate the true mar-
ginal distributions Qn,m, i.e., satisfy marginal null domination Assump-
tion mgNDT.

2. H0 -specific joint null distributions. If the true marginal distributions
Qn,m, of the test statistics Tn(m) for the true null hypotheses m ∈ H0,
converge weakly (up to a location shift) to the corresponding user-supplied
marginal null distributions q0,m, then the two H0-specific joint null dis-
tributions Q0,H0 and Q̆0,H0 coincide.
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3. H1 -specific joint null distributions. In general, for the false null hy-
potheses H1, the null-transformed test statistics Zn(m) and Z̆n(m) can
have very different finite sample and asymptotic marginal distributions.
In particular, whereas the marginal distributions of Q̆0 coincide with the
user-supplied marginal null distributions (i.e., Q̆0,m = q0,m), the marginal
distributions of Q0 do not necessarily have this property. Hence, the H1-
specific joint null distributions Q0,H1 and Q̆0,H1 could in principle be very
different and thus lead to procedures with different power properties.

4. Estimation of the test statistics null distributions. In practice,
both test statistics null distributions Q0 = Q0(P ) and Q̆0 = Q̆0(P ) are
unknown, as they depend on the unknown data generating distribution P .
Similar bootstrap procedures may be used to obtain consistent estimators
Q0n and Q̆0n, of Q0 and Q̆0, respectively (Procedures 2.3 and 2.4). How-
ever, bootstrap estimators Q̆0n of the null quantile-transformed null dis-
tribution Q̆0 are expected to be more efficient than bootstrap estimators
Q0n of the null shift and scale-transformed null distribution Q0. To see
this, suppose that the two H0-specific joint null distributions Q0,H0 and
Q̆0,H0 coincide. The bootstrap estimator of Q̆0 is based on a model where
all marginal distributions are given, whereas the bootstrap estimator of
Q0 ignores this information and considers a larger model with unspecified
marginal distributions. As a result, the bootstrap marginal distributions
Q0n,m are subject to finite sample variability and typically differ from the
user-supplied marginal distributions q0,m.

5. Known optimal marginal null distributions. The new null quantile-
transformed null distribution is particularly appealing when one has avail-
able optimal marginal null distributions q0,m for single hypothesis testing.
For example, consider a data structure X = (X(m) : m = 1, . . . ,M + 1),
where (X(m) : m = 1, . . . , M) is an M -dimensional covariate/genotype
vector and Y = X(M + 1) is a univariate outcome/phenotype. The
covariates/genotypes could correspond to M microarray gene expres-
sion measures and the outcome/phenotype to a (censored) survival time
or a tumor class. Suppose one wishes to test the M null hypotheses
H0(m) of independence between the covariates X(m) and the outcome
Y = X(M + 1), m = 1, . . . ,M , based on an M -vector of arbitrary test
statistics Tn = (Tn(m) : m = 1, . . . ,M). Then, one can set the marginal
null distributions q0,m equal to the permutation distributions of the corre-
sponding test statistics Tn(m). One knows from single hypothesis testing
that if the null hypothesis H0(m) is true, then the permutation distri-
bution of Tn(m) is (exactly) equal to the true conditional distribution of
Tn(m), given the marginal empirical distributions of X(m) and Y . In the
special case of the test of single-parameter null hypotheses based on t-
statistics, one could use standard normal marginal null distributions, that
is, set q0,m = Φ, where Φ is the N(0, 1) CDF.
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van der Laan and Hubbard (2006) argue in their Section 3 that Type I
error control results proved in our earlier articles for the original null shift
and scale-transformed test statistics null distribution Q0 and its bootstrap
estimators Q0n also hold for the new null quantile-transformed test statis-
tics null distribution. Specifically, the null quantile-transformed test statistics
null distribution Q̆0 and its bootstrap estimators Q̆0n provide Type I error
control for: Θ(FVn

)-controlling joint single-step common-cut-off and common-
quantile procedures (Chapter 4); FWER-controlling joint step-down common-
cut-off (maxT) and common-quantile (minP) procedures (Chapter 5); gTP-
controlling (marginal/joint single-step/stepwise) augmentation multiple test-
ing procedures (Chapter 6); gTP-controlling joint resampling-based empirical
Bayes procedures (Chapter 7). The main point is that both test statistics
null distributions satisfy joint null domination Assumption jtNDT for the H0-
specific test statistics.

Section 4 in van der Laan and Hubbard (2006) is analogous to Sections 2.6
and 2.7, below, in that it examines properties of the null quantile-transformed
null distribution for two types of testing problems: the test of single-parameter
null hypotheses using t-statistics (e.g., tests of means, correlation coefficients,
regression coefficients) and the test of multiple-parameter null hypotheses
using χ2-statistics.

In summary, either test statistics null distribution Q0 or Q̆0 (or consistent
estimators thereof) may be used in any of the multiple testing procedures pro-
posed in Chapters 3–7 of this book, as they both satisfy the key property of
joint null domination for the H0-specific test statistics (Assumption jtNDT).
In particular, Type I error control does not rely on restrictive assumptions
such as subset pivotality and holds for general data generating distributions
(with arbitrary dependence structures among variables), null hypotheses (de-
fined in terms of submodels for the data generating distribution), and test
statistics (e.g., t-statistics, χ2-statistics, F -statistics). The newly proposed
null quantile-transformed null distribution has the additional advantage that
it allows the user to select optimal marginal null distributions and hence tends
to outperform the original null shift and scale-transformed null distribution.
Unless stated otherwise, the simpler notation Q0 and Q0n refers to either null
distribution.

2.5 Null distribution for transformations of the test
statistics

2.5.1 Null distribution for transformed test statistics

Suppose one is interested in deriving rejection regions for an M -vector of test
statistics T �

n = (T �
n(m) : m = 1, . . . , M), defined as transformations of the
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original test statistics Tn = (Tn(m) : m = 1, . . . ,M), by T �
n(m) ≡ �m(Tn(m)),

in terms of a collection of M functions �m : IR → IR.
The special case of the absolute value function (�(z) = |z|) is discussed

in general terms in Section 2.5.2 and also in Section 4.5, in the context of
single-step common-cut-off and common-quantile procedures.

As in Equation (2.2), given a random M -vector Z = (Z(m) : m =
1, . . . ,M), with joint distribution Q, and a collection of M rejection regions
C = {C(m) : m = 1, . . . ,M}, denote the numbers of rejected hypotheses and
Type I errors for the transformed test statistics �m(Z(m)) by

R�(C|Q) ≡
M∑

m=1

I (�m(Z(m)) ∈ C(m)) (2.29)

and
V �(C|Q) ≡

∑

m∈H0

I (�m(Z(m)) ∈ C(m)) ,

respectively. Also adopt the shorthand notation of Equation (2.3), for the
special cases where Q corresponds to the true distribution Qn and null distri-
bution Q0 for the original test statistics Tn,

R�
n ≡ R�(C|Qn), R�

0 ≡ R�(C|Q0), (2.30)
V �

n ≡ V �(C|Qn), V �
0 ≡ V �(C|Q0).

The proposition below specifies conditions under which deriving rejection
regions for the transformed test statistics T �

n, based on a null distribution Q0

for the original test statistics Tn, leads to proper Type I error control.

Proposition 2.5. [Null distribution for transformed test statistics]
Consider the simultaneous test of M null hypotheses H0(m), m = 1, . . . , M ,
based on an M -vector of test statistics T �

n = (T �
n(m) : m = 1, . . . , M), defined

as transformations of the original test statistics Tn = (Tn(m) : m = 1, . . . ,M),
by T �

n(m) = �m(Tn(m)), in terms of a collection of M functions �m : IR → IR.
Let Qn = Qn(P ) and Q0 denote, respectively, the true finite sample joint
distribution of Tn and a null distribution that satisfies joint null domination
Assumption jtNDT for the H0-specific subvector of test statistics (Tn(m) :
m∈H0).

Scenario 1. If the functions �m are continuous and non-decreasing, then
joint null domination Assumption jtNDT for the original test statistics
(Tn(m) : m ∈ H0) implies joint null domination Assumption jtNDT for
the transformed test statistics (T �

n(m) : m ∈ H0). Hence, for one-sided
rejection regions of the form C(m) = (c(m),+∞) for the transformed
test statistics T �

n(m), null domination Assumption NDV is satisfied by the
numbers of Type I errors V �

n and V �
0 . If one further assumes that the Type

I error rate mapping Θ meets monotonicity Assumption MΘ and conti-
nuity Assumption CΘ at FV �

0
, then null domination Assumption NDΘ is



2.5 Null distribution for transformations of the test statistics 77

satisfied by the Type I error rates Θ(FV �
0
) and Θ(FV �

n
). This means that

one-sided rejection regions for the transformed test statistics T �
n may be

derived based on the null distribution Q0 for the original test statistics Tn.
Scenario 2. If joint null domination Assumption jtNDT holds with equality

for the original test statistics (Tn(m) : m ∈ H0), then it also holds with
equality for the transformed test statistics (T �

n(m) : m ∈ H0), for any con-
tinuous functions �m. Hence, for any type of rejection regions C(m) for
the transformed test statistics T �

n(m), null domination Assumption NDV
is satisfied with equality by the numbers of Type I errors V �

n and V �
0 . If one

further assumes that the Type I error rate mapping Θ meets monotonicity
Assumption MΘ and continuity Assumption CΘ at FV �

0
, then null domi-

nation Assumption NDΘ is satisfied with equality by the Type I error rates
Θ(FV �

0
) and Θ(FV �

n
). This means that any type of rejection regions for the

transformed test statistics T �
n may be derived based on the null distribution

Q0 for the original test statistics Tn.

The proof of this proposition is straightforward and is therefore omitted.

An alternative and more general approach for obtaining rejection regions
for transformed test statistics T �

n would be to derive a null distribution Q�
0

directly for T �
n, using the general constructions of Sections 2.3 and 2.4.

There is, however, a trade-off between generality and simplicity. For in-
stance, consider the test of single-parameter null hypotheses using t-statistics
Tn (Section 2.6). For the null shift and scale-transformed approach of Sec-
tion 2.3, the null values are λ0(m) = 0 and τ0(m) = 1 and the null distribu-
tion Q0 for Tn is an M -variate Gaussian distribution, with mean vector zero
and covariance matrix σ∗ = Σ∗(P ) equal to the correlation matrix of the vec-
tor influence curve. For the transformed test statistics T �

n, the null shift and
scale values are no longer 0 and 1 and the null distribution Q�

0 is no longer
Gaussian.

2.5.2 Example: Absolute value transformation

A special case of interest is the absolute value function, �(z) = |z|, which corre-
sponds to symmetric two-sided rejection regions for the original test statistics
Tn(m): Cn(m;α) = (−∞,−cn(m;α)) ∪ (cn(m;α),+∞), for an M -vector of
non-negative cut-offs cn(α) = (cn(m;α) : m = 1, . . . ,M) ∈ IR+M . That is, for
a MTP with nominal Type I error level α, the set of rejected null hypotheses
is given by

R||(Tn, Q0, α) = {m : Tn(m) < −cn(m;α) or Tn(m) > cn(m;α)} (2.31)
= {m : |Tn(m)| > cn(m;α)} .

Specifically, consider the two-sided test of single-parameter null hypothe-
ses H0(m) = I (ψ(m) = ψ0(m)) against alternative hypotheses H1(m) =
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I (ψ(m) �= ψ0(m)), based on an M -vector of t-statistics, defined as in Sec-
tion 2.6 by

Tn(m) =
√

n
ψn(m) − ψ0(m)

σn(m)
,

where ψn is an asymptotically linear estimator of the parameter ψ.
A similar argument as in the proof of Theorem 2.6 shows that

(Tn(m) : m ∈ H0)
L⇒ Q0,H0 = N(0, σ∗

H0
).

Hence, asymptotic joint null domination Assumption jtNDT is satisfied with
equality for the H0-specific absolute t-statistics (|Tn(m)| : m ∈ H0) and
the null distribution Q0 = N(0, σ∗) of Theorem 2.6. It follows from Proposi-
tion 2.5, Scenario 2, that asymptotic null domination Assumptions NDV and
NDΘ, for the number of Type I errors and Type I error rate, are also satisfied
with equality for any type of rejection regions for |Tn(m)|. Hence, as dictated
by the three-step road map of Procedure 2.1, one has

lim
n→∞

Θ(F
V

||
n

) = Θ(F
V

||
0

) ≤ Θ(F
R

||
0
) ≤ α. (2.32)

Thus, multiple testing procedures based on absolute t-statistics |Tn(m)|
and any type of rejection regions Cn(m) = C(m;Tn, Q0, α), derived under the
Gaussian null distribution Q0 = N(0, σ∗) of Theorem 2.6, do indeed provide
the desired Type I error control. The special cases of single-step common-
quantile Procedure 4.1 and common-cut-off Procedure 4.2 are discussed in
detail in Section 4.5.

Note that, for the absolute value function and two-sided rejection regions,
the stronger requirement of asymptotic equality of the test statistics true dis-
tribution Qn,H0 and null distribution Q0,H0 is essential, as the weaker dom-
ination property would only guarantee Type I error control for one of the
tails.

2.5.3 Example: Null shift and scale and null quantile
transformations

The random M -vectors of null-transformed test statistics Zn and Z̆n (Equa-
tions (2.15) and (2.25)), defining the null distributions proposed in Sections 2.3
and 2.4, correspond, respectively, to the following transformations,

�0,m(z) ≡ ν0,n(m) (z − E[Tn(m)]) + λ0(m) (2.33)
and

�̆0,m(z) ≡ q−1
0,mQ∆

n,m(z).

The null shift and scale functions �0,m are continuous and non-decreasing.
For continuous marginal distributions Qn,m and q0,m, the null quantile func-
tions �̆0,m are also continuous and non-decreasing. Thus, Scenario 1 in Propo-
sition 2.5 applies to a broad range of testing problems.
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2.5.4 Bootstrap estimation of the null distribution for transformed
test statistics

Regarding the bootstrap estimation of rejection regions and adjusted p-values
for MTPs based on transformed test statistics T �

n, one could first use general
Procedure 2.3 or 2.4 (or a related procedure from Section 2.6 or 2.7) to de-
rive a matrix ZB

n =
(
ZB

n (m, b)
)
, of null-transformed bootstrap test statistics

ZB
n (m, b), based on the original test statistics Tn. The null distribution Q0,

for the original test statistics Tn, is estimated by the empirical distribution
Q0n of the columns of matrix ZB

n . An estimated null distribution Q�
0n, for the

transformed test statistics T �
n, is given by the empirical distribution of the

columns of the transformed matrix �(ZB
n ) =

(
�m(ZB

n (m, b))
)
.

Using Q�
0n to obtain rejection regions for the transformed test statistics

T �
n leads to procedures that control the Type I error rate Θ(FV �

n
) under the

two scenarios considered in Proposition 2.5.
For instance, bootstrap versions of single-step common-quantile Proce-

dure 4.1 and common-cut-off Procedure 4.2 may be implemented as in Proce-
dures 4.20 and 4.21, respectively, using transformed test statistics T �

n and the
estimated null distribution Q�

0n.

2.6 Testing single-parameter null hypotheses based
on t-statistics

2.6.1 Set-up and assumptions

In this section, we consider the one-sided test of M single-parameter null hy-
potheses H0(m) = I (ψ(m) ≤ ψ0(m)) against alternative hypotheses H1(m) =
I (ψ(m) > ψ0(m)), where Ψ(P ) = ψ = (ψ(m) : m = 1, . . . ,M) is an M -vector
of real-valued parameters Ψ(P )(m) = ψ(m).

The null hypotheses can be tested using t-statistics, defined as in Sec-
tion 1.2.5 by

Tn(m) ≡
√

n
ψn(m) − ψ0(m)

σn(m)
, (2.34)

where Ψ̂(Pn) = ψn = (ψn(m) : m = 1, . . . ,M) is an asymptotically linear
estimator of the parameter M -vector Ψ(P ) = ψ, with M -dimensional vector
influence curve (IC) IC(X|P ) = (IC(X|P )(m) : m = 1, . . . ,M), such that

ψn(m) − ψ(m) =
1
n

n∑

i=1

IC(Xi|P )(m) + oP (1/
√

n), (2.35)

and σ2
n(m) are consistent estimators of the variances σ2(m) = σ(m,m) =

E[IC2(X|P )(m)], m = 1, . . . ,M . Let Qn = Qn(P ) denote the finite sample
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joint distribution of Tn, under the true, unknown data generating distribu-
tion P . Large values of the t-statistic Tn(m) are assumed to provide evi-
dence against the corresponding null hypothesis H0(m) = I (ψ(m) ≤ ψ0(m)),
that is, tests are based on one-sided rejection regions of the form Cn(m) =
(cn(m),+∞).

Next, we propose a t-statistic-specific null distribution Qt
0 that leads to as-

ymptotic control of Type I error rates Θ(FVn
), defined as arbitrary parameters

of the distribution of the number of Type I errors Vn.

2.6.2 Test statistics null distribution

Theorem 2.6. [t-statistic-specific null distribution] Consider t-
statistics Tn = (Tn(m) : m = 1, . . . , M), defined as in Equation (2.34),
and a test statistics null distribution Qt

0 = Qt
0(P ) ≡ N(0, Σ∗(P )), defined

as the M -variate Gaussian distribution with covariance matrix σ∗ = Σ∗(P )
equal to the correlation matrix of the vector influence curve IC(X|P ) of
Equation (2.35). Then, asymptotic null domination Assumption NDV, for
the number of Type I errors, is satisfied by the t-statistics Tn and the null
distribution Qt

0. That is, for all c = (c(m) : m = 1, . . . , M) ∈ IRM and
x ∈ {0, . . . , M},

lim inf
n→∞

PrQn

(
∑

m∈H0

I (Tn(m) > c(m)) ≤ x

)

≥ PrQt
0

(
∑

m∈H0

I
(
Zt(m) > c(m)

)
≤ x

)
.

Thus, according to the three-step road map of Procedure 2.1, multiple testing
procedures based on t-statistics Tn and the t-statistic-specific null distribution
Qt

0 provide asymptotic control of general Type I error rates Θ(FVn
), for the

one-sided test of single-parameter null hypotheses H0(m) = I (ψ(m) ≤ ψ0(m))
against alternative hypotheses H1(m) = I (ψ(m) > ψ0(m)).

Proof of Theorem 2.6. Let us verify asymptotic null domination Assump-
tion NDV for the t-statistics Tn of Equation (2.34) and the null distribution
Qt

0 = N(0, σ∗). Firstly, note that the t-statistics Tn(m) can be rewritten as

Tn(m) =
√

n
ψn(m) − ψ(m)

σn(m)
+

σ(m)
σn(m)

√
n

ψ(m) − ψ0(m)
σ(m)

(2.36)

= Zt
n(m) +

σ(m)
σn(m)

dn(m),

in terms of deterministic shifts, dn(m) ≡ √
n(ψ(m)−ψ0(m))/σ(m), and stan-

dardized statistics, Zt
n(m) ≡ √

n(ψn(m)− ψ(m))/σn(m). By Equation (2.35)
and the Central Limit Theorem (Theorem B.4), one has
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Zt
n

L⇒ Zt ∼ Qt
0(P ) = N(0, Σ∗(P )), (2.37)

where σ∗ = Σ∗(P ) = Cov[Zt] is the correlation matrix of the M -vector influ-
ence curve IC(X|P ). For m ∈ H0, dn(m) ≤ 0, so that Tn(m) ≤ Zt

n(m). Thus,
from the Continuous Mapping Theorem (Theorem B.3) and Proposition B.2,

lim inf
n→∞

Pr

(
∑

m∈H0

I (Tn(m) > c(m)) ≤ x

)

≥ lim inf
n→∞

Pr

(
∑

m∈H0

I
(
Zt

n(m) > c(m)
)
≤ x

)

= Pr

(
∑

m∈H0

I
(
Zt(m) > c(m)

)
≤ x

)
,

for all c = (c(m) : m = 1, . . . ,M) ∈ IRM and x ∈ {0, . . . ,M}.

�

The above theorem proposes a test statistics null distribution Qt
0 derived

specifically in terms of the t-statistics Tn of Equations (2.34) and (2.35). As
described below, it turns out that this null distribution Qt

0 corresponds to the
general proposals Q0 and Q̆0 of Sections 2.3 and 2.4, respectively.

Comparison to null shift and scale-transformed null distribution

One can show, under mild regularity conditions, that the t-statistic-specific
null distribution Qt

0 = N(0, σ∗) of Theorem 2.6 corresponds to the general
null shift and scale-transformed null distribution Q0 of Theorem 2.2, with
null values λ0(m) = 0 and τ0(m) = 1.

To see this, consider the simple known variance case, where σn(m) = σ(m).
Then, E[Tn] = dn and Cov[Tn] = Cor[Tn] = σ∗. Hence, Tn(m) = Zt

n(m) +
E[Tn(m)]. In addition, for null values λ0(m) = 0 and τ0(m) = 1, the M -vector
Zn, defining the general null distribution Q0 in Theorem 2.2, reduces to Zt

n.
Hence, Q0 = Qt

0 = N(0, σ∗).

Comparison to null quantile-transformed null distribution

A similar equivalence result is provided for the null quantile-transformed null
distribution in Section 4.1 of van der Laan and Hubbard (2006). Specifically,
for standard normal marginal null distributions q0,m = Φ, it is argued that
the asymptotic null quantile-transformed null distribution Q̆0 is equal to the
t-statistic-specific null distribution Qt

0 = N(0, σ∗) of Theorem 2.6. That is,

Z̆n = (Φ−1Q∆
n,m(Tn(m)) : m = 1, . . . ,M) L⇒ Qt

0.

Theorem 2 of van der Laan and Hubbard (2006) further shows that the boot-
strap estimator Q̆0n of Procedure 2.4 converges weakly to Qt

0.
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2.6.3 Estimation of the test statistics null distribution

One can exploit the specific form of the t-statistics defined in Equations (2.34)
and (2.35), to derive consistent estimators of the null distribution Qt

0 =
N(0, σ∗) of Theorem 2.6.

First, consider the case where one knows the form of the M -vector in-
fluence curve, IC(X|P ) = (IC(X|P )(m) : m = 1, . . . ,M), for the estima-
tor ψn = Ψ̂(Pn) (e.g., tests for means, correlation coefficients, and regres-
sion coefficients, treated in Sections 2.6.4–2.6.6, below). Given an estimator
ICn(X) = (ICn(X)(m) : m = 1, . . . ,M) of IC(X|P ), one can obtain the fol-
lowing estimator of the M × M influence curve covariance matrix σ = Σ(P ),

σn = Σ̂(Pn) =
1
n

n∑

i=1

ICn(Xi)IC�
n (Xi). (2.38)

An estimator of Qt
0 is then given by the M -variate Gaussian distribution

Qt
0n = N(0, σ∗

n), where σ∗
n = Σ̂∗(Pn) is the correlation matrix corresponding

to the estimated covariance matrix σn.
When the influence curve is not readily available, σ∗ = Σ∗(P ) can be

estimated with the bootstrap as follows. Given an estimator P �
n of the true

data generating distribution P , let X#
n = {X#

i : i = 1, . . . , n} denote a
random sample of n IID copies of a random variable X# ∼ P �

n . For each
bootstrap sample X#

n , with empirical distribution P#
n , compute the estima-

tor ψ#
n = Ψ̂(P#

n ). A bootstrap estimator of the covariance (and correlation)
matrix σ∗ = CovP [Zt] is given by the covariance (and correlation) matrix
σ∗

n = CovP �
n
[Zt,#

n ], of standardized bootstrap test statistics Zt,#
n defined as

either

Zt,#
n (m) =

(ψ#
n (m) − EP �

n
[ψn

#(m)])
√

VarP �
n
[ψn

#(m)]
(2.39)

or

Zt,#
n (m) =

(ψ#
n (m) − ψn(m))√
VarP �

n
[ψn

#(m)]
, m = 1, . . . , M.

A parametric bootstrap estimator of the null distribution Qt
0 is then given by

Qt
0n = N(0, σ∗

n); a non-parametric bootstrap estimator is also provided by the
joint distribution of the M -vector of standardized statistics Zt,#

n .
Note that, when an estimator of the influence curve is available, using

the bootstrap to estimate σ∗ does not necessarily pay off over direct estima-
tion based on the original sample Xn. When the correlation matrix is sparse,
shrinkage estimation methods may be beneficial.

Alternately, a consistent estimator of the null distribution Qt
0 can be ob-

tained using general bootstrap Procedure 2.3, for the null shift and scale-
transformed null distribution, with null values λ0(m) = 0 and τ0(m) = 1. Like-
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wise, one could apply general bootstrap Procedure 2.4, for the null quantile-
transformed null distribution, with standard normal marginal null distribu-
tions q0,m = Φ.

As mentioned in Section 2.3.2, above, one of the main advantages of a para-
metric estimator Qt

0n = N(0, σ∗
n) is that it is continuous and hence does not

suffer from the discreteness of non-parametric bootstrap estimators. Similar
issues arise for F -statistics, as discussed in Section 2.7, below.

2.6.4 Example: Tests for means

A familiar testing problem, that falls within our single-parameter hypothesis
testing framework, is that where X ∼ P is a random J-vector and the param-
eter of interest is the mean vector of X, Ψ(P ) = ψ = (ψ(j) : j = 1, . . . , J) =
E[X], with elements ψ(j) = Ψ(P )(j) = E[X(j)]. The M = J null hypotheses,
H0(m) = I (ψ(m) ≤ ψ0(m)), then refer to individual elements of the mean
vector ψ.

Given a random sample Xn = {Xi : i = 1, . . . , n}, from the data generating
distribution P , the test statistics Tn(m) of Equation (2.34) are the usual one-
sample t-statistics, where ψn(m) = Ψ̂(Pn)(m) = X̄n(m) =

∑
i Xi(m)/n and

σ2
n(m) =

∑
i(Xi(m) − X̄n(m))2/n are the empirical means and variances of

the M elements of X, respectively.
In this simple case, the elements of the M -vector influence curve are

IC(X|P )(m) = X(m) − ψ(m) and can be estimated by ICn(X)(m) =
X(m)−X̄n(m). Thus, a consistent estimator of the test statistics null distribu-
tion Qt

0 of Theorem 2.6 is the M -variate Gaussian distribution Qt
0n = N(0, σ∗

n),
where σ∗

n = Σ̂∗(Pn) is the M × M empirical correlation matrix CorPn
[X].

2.6.5 Example: Tests for correlation coefficients

Another common testing problem covered by Theorem 2.6 is that where the
parameter of interest is the J×J correlation matrix for a random J-vector X ∼
P , that is, Ψ(P ) = ψ = (ψ(j, j′) : j, j′ = 1, . . . , J) = Cor[X], with elements
ψ(j, j′) = Ψ(P )(j, j′) = Cor[X(j),X(j′)]. Suppose one is interested in testing
the M = J(J−1)/2 null hypotheses that the J elements of X are uncorrelated,
that is, null hypotheses H0(j, j′) = I (ψ(j, j′) = 0), j = 1, . . . , J − 1, j′ =
j + 1, . . . , J .

Commonly-used test statistics for this problem are Tn(j, j′) =
√

nψn(j, j′),
where ψn(j, j′) = Ψ̂(Pn)(j, j′) are the empirical correlation coefficients. As
discussed in Westfall and Young (1993, Example 2.2, p. 43), subset pivotal-
ity fails for this testing problem. To see this, consider the simple case where
J = 3 (and M = 3) and assume that H0(1, 2) and H0(1, 3) are true, so that
ψ(1, 2) = ψ(1, 3) = 0. Then, the joint distribution of (Tn(1, 2), Tn(1, 3)) is as-
ymptotically Gaussian, with mean vector zero, unit variances, and correlation
of ψ(2, 3), and thus depends on the truth or falsity of the third hypothesis
H0(2, 3). In other words, the covariance matrix of the vector influence curve
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for the empirical correlation coefficients differs under the true data generat-
ing distribution P and under a data generating null distribution P0 for which
ψ(j, j′) = 0, ∀ j �= j′. Tests for correlation coefficients thus provide an example
where standard procedures based on subset pivotality fail, whereas procedures
based on the t-statistic-specific null distribution of Theorem 2.6 or the gen-
eral null distributions of Sections 2.3 and 2.4 achieve the desired Type I error
control (Pollard et al., 2005a; Pollard and van der Laan, 2004).

The influence curves for the empirical correlation coefficients ψn(j, j′) can
be obtained by applying the Delta-method with the function

f(ξ(j, j′)) = ψ(j, j′) =
γ(j, j′) − γ(j)γ(j′)√

γ(j, j) − γ2(j)
√

γ(j′, j′) − γ2(j′)
, (2.40)

defined in terms of a 5 × 1 parameter column vector ξ(j, j′) = Ξ(P )(j, j′) =
[γ(j), γ(j′), γ(j, j), γ(j′, j′), γ(j, j′)]�, with elements γ(j) = Γ (P )(j) =
E[X(j)] and γ(j, j′) = Γ (P )(j, j′) = E[X(j)X(j′)], j, j′ = 1, . . . , J . Let
f ′(ξ) denote the 1 × 5 gradient row vector of f(ξ). Then,

ψn(j, j′) − ψ(j, j′) = f ′(ξ(j, j′)) (ξn(j, j′) − ξ(j, j′)) + oP (1/
√

n), (2.41)

where ξn(j, j′) = Ξ̂(Pn)(j, j′) = [γn(j), γn(j′), γn(j, j), γn(j′, j′), γn(j, j′)]� is
a 5× 1 estimator column vector for ξ(j, j′), based on the empirical moments.
Hence, the influence curve for the estimator ψn(j, j′) is

IC(X|P )(j, j′) = f ′(ξ(j, j′))(ξ1(j, j′) − ξ(j, j′)) (2.42)

=
1√

σ(j, j)
√

σ(j′, j′)

⎡

⎢⎢⎢⎢⎢⎢⎣

γ(j)σ(j,j′)
σ(j,j) − γ(j′)

γ(j′) σ(j,j′)
σ(j′,j′) − γ(j)

− 1
2

σ(j,j′)
σ(j,j)

− 1
2

σ(j,j′)
σ(j′,j′)

1

⎤

⎥⎥⎥⎥⎥⎥⎦

� ⎡

⎢⎢⎢⎢⎣

X(j) − γ(j)
X(j′) − γ(j′)

X2(j) − γ(j, j)
X2(j′) − γ(j′, j′)

X(j)X(j′) − γ(j, j′)

⎤

⎥⎥⎥⎥⎦
,

where covariances are denoted by σ(j, j′) = γ(j, j′) − γ(j)γ(j′).

Section 8.4 examines the choice of a test statistics null distribution in
testing problems concerning correlation coefficients. Section 9.3 considers the
identification of co-expressed miRNAs based on tests for correlations coeffi-
cients.

2.6.6 Example: Tests for regression coefficients

Consider a random J = (M + 1)-vector X ∼ P , from a data generating
distribution P , where (X(m) : m = 1, . . . ,M) is an M -dimensional covari-
ate/genotype vector and Y = X(M + 1) is a univariate outcome/phenotype.
For instance, the covariates/genotypes could correspond to M microarray gene
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expression measures and the outcome/phenotype to a (censored) survival time
or a tumor class.

Assume the following model for the conditional expected value of the out-
come Y given individual covariates X(m),

E[Y |X(m)] = g(X(m); γm) = h(γm(1) + γm(2)X(m)), m = 1, . . . ,M,
(2.43)

where Γm(P ) = γm = (γm(1), γm(2)) are regression coefficients for the mth
covariate X(m). The parameter of interest is the M -vector of slope parameters,
Ψ(P ) = ψ = (ψ(m) = γm(2) : m = 1, . . . , M).

Given a random sample Xn = {Xi : i = 1, . . . , n}, from the data gener-
ating distribution P , one can estimate the regression parameters γm for each
covariate X(m) using the method of least squares, that is, by seeking γm

that minimizes the sum of squared residuals,
∑

i(Yi − g(Xi(m); γm))2. The
least squares estimator, Γ̂m(Pn) = γm,n = (γm,n(1), γm,n(2)), is obtained by
solving the following equation for γ,

0 =
∂

∂γ

n∑

i=1

(Yi − g(Xi(m); γ))2 ,

that is,

0 =
n∑

i=1

(
∂

∂γ
g(Xi(m); γ)

)
(Yi − g(Xi(m); γ)) .

Let ICm(X|P ) = (ICm(X|P )(1), ICm(X|P )(2)) denote the two-
dimensional vector influence curve for the least squares estimator γm,n of
the regression parameters γm corresponding to covariate X(m). Under mild
regularity conditions (Lemma 2.1, p. 105, van der Laan and Robins (2003)),
one can show that

γm,n − γm =
1
n

n∑

i=1

c−1
m (γm)

(
∂

∂γ
g(Xi(m); γ)

)∣∣∣∣
γ=γm

(Yi − g(Xi(m); γm))

+ oP (1/
√

n), (2.44)

where, for a given γ ∈ IR2,

cm(γ) = E

⎡

⎢⎢⎢⎢⎢⎢⎣

(
∂

∂γ(1)g(X(m); γ)
)2 (

∂
∂γ(1)g(X(m); γ)

)

×
(

∂
∂γ(2)g(X(m); γ)

)

(
∂

∂γ(1)g(X(m); γ)
) (

∂
∂γ(2)g(X(m); γ)

)2

×
(

∂
∂γ(2)g(X(m); γ)

)

⎤

⎥⎥⎥⎥⎥⎥⎦
.

From the above expression, the influence curves are
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ICm(X|P ) = c−1
m (γm)

(
∂

∂γ
g(X(m); γ)

)∣∣∣∣
γ=γm

(Y − g(X(m); γm)) . (2.45)

The M -dimensional vector influence curve for the least squares estimators
Ψ̂(Pn) = ψn = (ψn(m) = γm,n(2) : m = 1, . . . ,M), of the M slope parameters
ψ, is

IC(X|P ) = (ICm(X|P )(2) : m = 1, . . . , M).

The covariance matrix of the vector influence curve IC(X|P ) is

σ = Σ(P ) = E
[
IC(X|P )IC�(X|P )

]
,

and can be estimated as in Equation (2.38), using the empirical covariance
matrix for an estimator ICn(X) of the vector influence curve.

Linear regression

A common model for a continuous outcome Y ∈ IR is the linear model, corre-
sponding to the identity function h(z) = z. That is,

E[Y |X(m)] = g(X(m); γm) = γm(1) + γm(2)X(m). (2.46)

In this case, the influence curves for the least squares estimators γm,n of the
regression coefficients γm are given by

ICm(X|P ) =
1

Var[X(m)]

[
E[X2(m)] −E[X(m)]
−E[X(m)] 1

] [
1

X(m)

]
(2.47)

× (Y − γm(1) − γm(2)X(m)) .

Logistic regression

A common model for a binary outcome Y ∈ {0, 1} is the logistic model, corre-
sponding to the softmax or inverse logit function h(z) = exp(z)/(1 + exp(z)).
That is,

Pr (Y = 1|X(m)) = g(X(m); γm) =
exp(γm(1) + γm(2)X(m))

1 + exp(γm(1) + γm(2)X(m))
. (2.48)

Here,
(

∂

∂γ
g(X(m); γ)

)∣∣∣∣
γ=γm

=
exp(γm(1) + γm(2)X(m))

(1 + exp(γm(1) + γm(2)X(m)))2

[
1

X(m)

]
,

(2.49)

and the influence curves for the least squares estimators γm,n of the regres-
sion coefficients γm can be derived by substituting for ∂g(X(m); γ)/∂γ in
Equation (2.45), above.
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Section 8.3 examines the choice of a test statistics null distribution in
testing problems concerning regression coefficients in linear models where the
covariates and error terms are allowed to be dependent. Section 9.3 considers
tests for regression coefficients in logistic models relating cancer status to
miRNA expression measures and tissue type (Pollard et al., 2005a).

2.7 Testing multiple-parameter null hypotheses based
on F -statistics

2.7.1 Set-up and assumptions

Consider random M -vectors Xk = (Xk(m) : m = 1, . . . ,M) ∼ Pk, from K
different populations, with respective data generating distributions Pk, k =
1, . . . ,K. Let ψk = Ψ(Pk) = E[Xk] and σk = Σ(Pk) = Cov[Xk] denote,
respectively, the mean vector and covariance matrix for Population k. Denote
the elements of the covariance matrix σk by σk(m,m′) = Cov[Xk(m),Xk(m′)]
and adopt the shorter notation σ2

k(m) = σk(m,m) for the diagonal elements
of σk, i.e., the variances. Consider testing the M null hypotheses H0(m) =
I (ψ1(m) = ψ2(m) = · · · = ψK(m)), that the elements of the mean vectors are
constant across the K populations.

Suppose one observes a random sample Xk,nk
= {Xk,i : i = 1, . . . , nk}, of

size nk, from Population k, k = 1, . . . ,K4. Let n =
∑

k nk denote the total
sample size and ηk,n = nk/n the empirical frequency for Population k. Assume
that limn ηk,n = ηk > 0, ∀ k = 1, . . . , K. The null hypotheses can be tested
using F -statistics,

Tn(m) ≡
1

K−1

∑K
k=1 nk(X̄k,nk

(m) − X̄n(m))2

1
n−K

∑K
k=1

∑nk

i=1(Xk,i(m) − X̄k,nk
(m))2

, m = 1, . . . ,M,

(2.50)

where X̄k,nk
=
∑

i Xk,i/nk denotes the empirical mean vector for the sample
Xk,nk

from Population k and X̄n =
∑

k ηk,nX̄k,nk
=
∑

k

∑
i Xk,i/n denotes

the empirical mean vector for the pooled sample of size n. Large values of the
F -statistic Tn(m) are assumed to provide evidence against the corresponding
null hypothesis H0(m) = I (ψ1(m) = ψ2(m) = · · · = ψK(m)), that is, tests are
based on one-sided rejection regions of the form Cn(m) = (cn(m),+∞).

Next, we propose an F -statistic-specific null distribution QF
0 that leads to

asymptotic control of Type I error rates Θ(FVn
), defined as arbitrary para-

meters of the distribution of the number of Type I errors Vn.

4 N.B. With proper care, one could allow random sample sizes nk.
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2.7.2 Test statistics null distribution

Theorem 2.7. [F -statistic-specific null distribution] Consider F -
statistics Tn = (Tn(m) : m = 1, . . . , M), defined as in Equation (2.50),
and a test statistics null distribution QF

0 = QF
0 (P1, . . . , PK), defined as the

joint distribution of a random M -vector ZF = (ZF (m) : m = 1, . . . , M) of
quadratic forms

ZF (m) ≡ 1

(K − 1)
∑K

k=1 ηkσ2
k(m)

(2.51)

×

⎛

⎜⎜⎝
K∑

k=1

(1 − ηk)Y 2
k (m) −

K∑

k=1

K∑

k′=1
k �=k′

√
ηkηk′Yk(m)Yk′(m)

⎞

⎟⎟⎠ ,

based on K independent Gaussian M -vectors Yk = (Yk(m) : m = 1, . . . ,M) ∼
N(0, σk). In matrix notation, the quadratic forms are defined by

ZF (m) ≡ Ỹ �
m AmỸm, (2.52)

based on M dependent Gaussian K-vectors Ỹm = (Yk(m) : k = 1, . . . , K) ∼
N(0, σ̃m), with diagonal covariance matrices σ̃m such that σ̃m(k, k) = σ2

k(m),
and M symmetric K × K matrices Am with elements

Am(k, k′) ≡ 1

(K − 1)
∑K

k=1 ηkσ2
k(m)

{
(1 − ηk), if k = k′

−√
ηkηk′ , if k �= k′ . (2.53)

Then, the F -statistics (Tn(m) : m ∈ H0) for the true null hypotheses converge
weakly to the H0-specific quadratic forms (ZF (m) : m ∈ H0), that is,

(Tn(m) : m ∈ H0)
L⇒ (ZF (m) : m ∈ H0) ∼ QF

0,H0
.

It follows that asymptotic null domination Assumption NDV, for the number
of Type I errors, is satisfied with equality by the F -statistics Tn and the null
distribution QF

0 . That is, for all c = (c(m) : m = 1, . . . , M) ∈ IR+M and
x ∈ {0, . . . , M},

lim
n→∞

PrQn

(
∑

m∈H0

I (Tn(m) > c(m)) ≤ x

)

= PrQF
0

(
∑

m∈H0

I
(
ZF (m) > c(m)

)
≤ x

)
.

Thus, according to the three-step road map of Procedure 2.1, multiple testing
procedures based on F -statistics Tn and the F -statistic-specific null distribu-
tion QF

0 provide asymptotic control of general Type I error rates Θ(FVn
),
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for the test of multiple-parameter null hypotheses of the form H0(m) =
I (ψ1(m) = ψ2(m) = · · · = ψK(m)).

Furthermore, the quadratic forms ZF (m) have means and variances given,
respectively, by

E[ZF (m)] =
1

(K − 1)
∑K

k=1 ηkσ2
k(m)

K∑

k=1

(1 − ηk)σ2
k(m) (2.54)

and

Var[ZF (m)] =
2

(K − 1)2(
∑K

k=1 ηkσ2
k(m))2

×

⎛

⎝
(

K∑

k=1

(1 − 2ηk)σ4
k(m)

)
+

(
K∑

k=1

ηkσ2
k(m)

)2
⎞

⎠ .

In the special case of constant variances across populations, i.e., σ2
k(m) =

σ2(m), then E[ZF (m)] = 1, Var[ZF (m)] = 2/(K − 1), and the quadratic
forms have marginal χ2-distributions with (K − 1) degrees of freedom, that is,

(K − 1)ZF (m) ∼ χ2(K − 1). (2.55)

Proof of Theorem 2.7. Firstly, note that the denominators of the F -
statistics can be rewritten as

Dn(m) ≡ n

n − K

K∑

k=1

ηk,nσ2
k,nk

(m), (2.56)

where the empirical frequencies ηk,n = nk/n converge to the population
frequencies ηk and the empirical variances σ2

k,nk
(m) =

∑
i(Xk,i(m) −

X̄k,nk
(m))2/nk are consistent estimators of the population variances σ2

k(m),

i.e., ηk,n → ηk > 0 and σ2
k,nk

(m) P→ σ2
k(m), k = 1, . . . , K. Thus, as n → ∞,

Dn(m) P→ D(m) ≡
K∑

k=1

ηkσ2
k(m). (2.57)

The numerators of the F -statistics can be rewritten as quadratic forms
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Nn(m) ≡ 1
K − 1

K∑

k=1

(
Yk,nk

(m) −√
ηk,n

K∑

k′=1

√
ηk′,nYk′,nk′ (m)

)2

(2.58)

=
1

K − 1

⎛

⎝
K∑

k=1

Y 2
k,nk

(m)

− 2

(
K∑

k=1

√
ηk,nYk,nk

(m)

)(
K∑

k′=1

√
ηk′,nYk′,nk′ (m)

)

+
K∑

k=1

ηk,n

(
K∑

k′=1

√
ηk′,nYk′,nk′ (m)

)2
⎞

⎠

=
1

K − 1

⎛

⎝
K∑

k=1

Y 2
k,nk

(m) −
(

K∑

k=1

√
ηk,nYk,nk

(m)

)2
⎞

⎠

=
1

K − 1

⎛

⎜⎜⎝
K∑

k=1

(1 − ηk,n)Y 2
k,nk

(m)

−
K∑

k=1

K∑

k′=1
k �=k′

√
ηk,nηk′,nYk,nk

(m)Yk′,nk′ (m)

⎞

⎟⎟⎠ ,

where Yk,nk
= (Yk,nk

(m) : m = 1, . . . ,M) are K independent M -vectors
defined by Yk,nk

(m) =
√

nk(X̄k,nk
(m) − ψ̄(m)) and ψ̄(m) =

∑
k ηkψk(m),

k = 1, . . . , K.
Thus, asymptotically, one can approximate the F -statistics Tn = (Tn(m) :

m = 1, . . . ,M) by a random M -vector ZF
n = (ZF

n (m) : m = 1, . . . ,M) of
quadratic forms, as follows,

Tn(m) �
Nn(m)
D(m)

(2.59)

�
1

(K − 1)
∑K

k=1 ηkσ2
k(m)

×

⎛

⎜⎜⎝
K∑

k=1

(1 − ηk)Y 2
k,nk

(m) −
K∑

k=1

K∑

k′=1
k �=k′

√
ηkηk′Yk,nk

(m)Yk′,nk′ (m)

⎞

⎟⎟⎠

≡ ZF
n (m).

That is, the mth element ZF
n (m) of the random M -vector ZF

n is a simple
quadratic function fm(Y1,n1 , . . . , YK,nK

) of the mth elements Yk,nk
(m) of the
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K random M -vectors Yk,nk
, k = 1, . . . ,K. The M -vector ZF

n may be expressed
as ZF

n = f(Y1,n1 , . . . , YK,nK
) = (fm(Y1,n1 , . . . , YK,nK

) : m = 1, . . . ,M).
By the Central Limit Theorem (Theorem B.4),

(Yk,nk
(m) : m ∈ H0)

L⇒ (Yk(m) : m ∈ H0),

for independent Gaussian M -vectors Yk = (Yk(m) : m = 1, . . . , M) ∼
N(0, σk), k = 1, . . . , K. By the Continuous Mapping Theorem (Theorem B.3),
it then follows that

(Tn(m) : m ∈ H0)
L⇒ (ZF (m) : m ∈ H0) ∼ QF

0,H0
,

where ZF = f(Y1, . . . , YK) is the random M -vector of quadratic forms with
joint distribution QF

0 , defined as in Equations (2.51)–(2.53).
Hence, asymptotic null domination Assumption NDV, for the number of

Type I errors, is satisfied with equality by the F -statistics Tn and the null
distribution QF

0 .
Note that the F -statistics (Tn(m) : m ∈ H1) for the false null hypothe-

ses have infinite limits. Indeed, for m ∈ H1, Yk,nk
(m) =

√
nk(X̄k,nk

(m) −
ψk(m)) +

√
nk(ψk(m) − ψ̄(m)) converges to either +∞ or −∞ for some k,

hence limn Tn(m) = +∞.
The moments of ZF (m) are obtained from standard results on quadratic

forms (Theorem 1, p. 55, and Corollary 1.3, p. 57, Searle (1971)). In the spe-
cial case of constant variances across populations, i.e., Diag(σk) = (σ2(m) :
m = 1, . . . , M), the matrices (K − 1)Am Cov[Ỹm] are idempotent; hence, the
quadratic forms (K − 1)ZF (m) have marginal χ2(K − 1)-distributions (The-
orem 2, p. 57, Searle (1971)).


�

The above theorem proposes a test statistics null distribution QF
0 derived

specifically in terms of the F -statistics Tn of Equation (2.50). This null distri-
bution is the joint distribution of an M -vector of quadratic forms of Gaussian
random variables and is entirely specified by the population covariance ma-
trices σk and frequencies ηk (via the matrices Am and the random M -vectors
Yk ∼ N(0, σk), defining the quadratic forms ZF in Equations (2.51)–(2.53)).
Although properties of the marginal distributions of the F -statistics follow
from standard univariate results on quadratic forms, Theorem 2.7 provides
as a main contribution a joint null distribution QF

0 that takes into account
the dependence structure of these test statistics. Specifically, the dependence
structure of the null distribution QF

0 is implied by the dependence structure
of the data generating distributions Pk, as indicated by the presence of the
covariance matrices σk in the definition of the quadratic forms ZF .

Note that the F -statistics (Tn(m) : m ∈ H0) for the true null hypotheses
converge weakly to the H0-specific joint null distribution QF

0,H0
. Asymptotic

joint null domination Assumption jtNDT for the test statistics (Tn(m) : m ∈
H0) is therefore satisfied with equality. In contrast, the F -statistics (Tn(m) :
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m ∈ H1) for the false null hypotheses have infinite limits, i.e., limn Tn(m) =
+∞, for m ∈ H1. Key Assumption NDV of asymptotic null domination for
the number of Type I errors is nonetheless satisfied, as it only concerns the
test statistics (Tn(m) : m ∈ H0) corresponding to the true null hypotheses.
In other words, neither convergence to nor the weaker domination by QF

0 is
needed for the false null hypotheses.

Gaussian data generating distributions with constant variances
across populations

In the special case of Gaussian data generating distributions Pk = N(ψk, σk),
with constant variances across populations, i.e., Diag(σk) = (σ2(m) : m =
1, . . . ,M), the test statistics Tn have marginal non-central F -distributions
(Section 2.4, Searle (1971)). Specifically, Tn(m) ∼ F(ν1, ν2, υn(m)), where the
degrees of freedom are ν1 = (K − 1) and ν2 = (n−K) and the non-centrality
parameter is

υn(m) =
1

σ2(m)

K∑

k=1

nk(ψk(m) − ψ̄(m))2, ψ̄(m) =
K∑

k=1

ηkψk(m). (2.60)

For the true null hypotheses (i.e., for m ∈ H0), υn(m) = 0. For the false
null hypotheses (i.e., for m ∈ H1) and non-local alternative mean parameters
ψk(m), limn υn(m) = +∞. In addition, limn ν2 = +∞.

The means and variances of the F -statistics are given by, respectively,

E[Tn(m)] =
(ν1 + υn(m))ν2

ν1(ν2 − 2)
→
{

1, if m ∈ H0

+∞, if m ∈ H1

(2.61)

and

Var[Tn(m)] =
2ν2

2

(
ν2
1 + (2υn(m) + ν2 − 2)ν1 + υn(m)(υn(m) + 2ν2 − 4)

)

ν2
1(ν2 − 4)(ν2 − 2)2

→
{

2/(K − 1), if m ∈ H0

+∞, if m ∈ H1

. (2.62)

Furthermore, the F -statistics Tn(m) have asymptotic marginal non-central
χ2-distributions, with (K−1) degrees of freedom and non-centrality parameter
υn(m). That is,

(K − 1)Tn(m) L⇒ χ2(K − 1, υn(m)). (2.63)

Comparison to null shift and scale-transformed null distribution

Instead of the F -statistic-specific null distribution QF
0 proposed in Theo-

rem 2.7, one could apply the general construction of Theorem 2.2, whereby
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the null distribution Q0 is defined as the asymptotic distribution of the M -
vector Zn = (Zn(m) : m = 1, . . . ,M) of null shift and scale-transformed test
statistics,

Zn(m) =

√

min
{

1,
τ0(m)

Var[Tn(m)]

}
(Tn(m) − E[Tn(m)]) + λ0(m).

For F -statistics, the null values λ0(m) and τ0(m) are based on, respectively,
the means and variances of the quadratic forms ZF (Equation (2.54)). In
the special case of constant variances across populations, i.e., Diag(σk) =
(σ2(m) : m = 1, . . . , M), the null values do not depend on the unknown
data generating distributions Pk and are given by λ0(m) = 1 and τ0(m) =
2/(K − 1). Otherwise, one needs to estimate the population frequencies ηk

and variances σ2
k(m) in order to use Equation (2.54).

Note that, in the construction of Zn(m), it is important to scale the
test statistics Tn(m) by ν0,n(m) =

√
min {1, τ0(m)/Var[Tn(m)]}, as these

F -statistics converge to infinity for non-local alternative hypotheses. Without
this scaling, one could have asymptotically infinite test statistic cut-offs and
hence no power against the alternative hypotheses.

The F -statistic-specific null distribution QF
0 of Theorem 2.7 and the gen-

eral null distribution Q0 of Theorem 2.2 are the same for the true null hy-
potheses (m ∈ H0), but may differ for the false null hypotheses (m ∈ H1).
Thus, in choosing between QF

0 and Q0, the main issue is power.

Comparison to null quantile-transformed null distribution

Section 4.2 of van der Laan and Hubbard (2006) addresses a similar testing
problem using the new null quantile-transformed null distribution introduced
in Section 2.4. Specifically, for χ2-statistics Tn and marginal null distributions
q0,m = χ2(K − 1), Theorem 3 proves that the null quantile-transformed test
statistics (Z̆n(m) : m ∈ H0) for the true null hypotheses converge weakly
to the H0-specific subdistribution Qχ

0,H0
, of a joint null distribution Qχ

0 with
marginal χ2(K−1)-distributions. Theorem 3 further provides conditions under
which estimators of Qχ

0 lead to proper Type I error control.
As previously discussed, the ability to control marginal null distributions

should confer greater power to this new approach.

2.7.3 Estimation of the test statistics null distribution

A consistent estimator Q0n, of the general null shift and scale-transformed
null distribution Q0 of Theorem 2.2, can be obtained using bootstrap Pro-
cedure 2.3, with null values λ0(m) and τ0(m) defined as in Equation (2.54).
In the special case of constant variances across populations, the null values
are λ0(m) = 1 and τ0(m) = 2/(K − 1). Otherwise, one needs to estimate the
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null values, as they depend on the unknown population frequencies ηk and
variances σ2

k(m).
Estimation approaches for the general null quantile-transformed null dis-

tribution of Section 2.4 are discussed in Section 4.2 of van der Laan and
Hubbard (2006).

Alternately, one can exploit properties of F -statistics to derive a consistent
estimator QF

0n of the F -statistic-specific null distribution QF
0 of Theorem 2.7.

Recall that this null distribution is the joint distribution of an M -vector of
quadratic forms of Gaussian random variables and is entirely specified by
the population covariance matrices σk and frequencies ηk (Equations (2.51)–
(2.53)). The main task is therefore to derive estimators σk,n and ηk,n of these
population covariance matrices and frequencies, based on the K random sam-
ples Xk,nk

= {Xk,i : i = 1, . . . , nk}, k = 1, . . . , K. The null distribution QF
0

may then simply be estimated by the joint distribution QF
0n of an M -vector of

quadratic forms, defined using the empirical analogues of Equations (2.51)–
(2.53), in terms of independent Gaussian M -vectors Yk ∼ N(0, σk,n). Unlike
the general non-parametric bootstrap estimator of Procedure 2.3, for the null
distribution Q0 of Theorem 2.2, this F -statistic-specific estimator has the ad-
vantage of being continuous.

Finally, another F -statistic-specific approach involves bootstrapping the
centered observations Xk,i−X̄k,nk

and estimating the null distribution QF
0 by

the bootstrap distribution of the corresponding F -statistics. In this method,
the estimated null distribution of the test statistics is based on a data gener-
ating null distribution.

The last two approaches both provide consistent estimators of the
F -statistic-specific null distribution QF

0 of Theorem 2.7.

2.8 Weak and strong Type I error control and subset
pivotality

As mentioned in Section 2.2.4, the multiple testing methodology developed in
this book differs in a number of fundamental aspects from existing approaches
to Type I error control and the choice of a test statistics null distribution. Our
proposed multiple testing procedures are: (i) only concerned with controlling
the Type I error rate under the true data generating distribution P , i.e., under
the joint distribution Qn = Qn(P ) of the test statistics Tn implied by P ; (ii)
based on a test statistics null distribution rather than a data generating null
distribution.

In this regard, one of our main contributions is the general characteriza-
tion (Section 2.2.3) and explicit construction (Sections 2.3 and 2.4) of proper
null distributions Q0 (and estimators thereof, Q0n) for the test statistics Tn.
Procedures based on the proposed null distributions provide Type I error
control for general data generating distributions (with arbitrary dependence
structures among variables), null hypotheses, and test statistics.
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In our framework, the notions of weak and strong control of a Type I error
rate become irrelevant and Type I error control does not involve associated
restrictive assumptions such as subset pivotality. The present section attempts
nonetheless to formalize these concepts and discusses how they relate to the
approach introduced in Section 2.2.

2.8.1 Weak and strong control of a Type I error rate

Usual definitions of weak and strong Type I error control

As discussed in Hochberg and Tamhane (1987, p. 3) and Westfall and Young
(1993, p. 9–10), the multiple testing literature commonly distinguishes be-
tween weak and strong control of a Type I error rate.

Weak control refers to control of the Type I error rate under a data gen-
erating distribution P0 that satisfies the complete null hypothesis, HC

0 =∏M
m=1 H0(m) =

∏M
m=1 I (P ∈ M(m)) = I

(
P ∈ ∩M

m=1M(m)
)
, that all M null

hypotheses are true, i.e., under a distribution P0 that belongs to the intersec-
tion ∩M

m=1M(m) of all M submodels.
In contrast, strong control, as defined in Westfall and Young (1993),

considers all 2M possible subsets of null hypotheses, J0 ⊆ {1, . . . , M}, and
refers to control of the Type I error rate under each of 2M distributions
PJ0 ∈ ∩m∈J0M(m) that satisfy subsets of null hypotheses J0. In particu-
lar, strong control implies weak control for J0 = {1, . . . ,M}.

As detailed below, the definitions of weak and strong control implicitly as-
sume the existence of a mapping J0 → PJ0 , from subsets J0 of null hypotheses
to data generating distributions PJ0 ∈ ∩m∈J0M(m) that satisfy each of the
null hypotheses in J0.

It is important to recognize that, although strong control does consider the
subset H0 = H0(P ) of true null hypotheses corresponding to the true data
generating distribution P , Type I error control under P is not guaranteed by
strong control, unless the mapping J0 → PJ0 results in PH0 = P .

Defining a data generating distribution that satisfies a given
subset of null hypotheses

In much of the multiple testing literature, Type I error rates are defined loosely
in terms of probabilities given subsets of null hypotheses, rather than proba-
bilities under distributions that satisfy subsets of null hypotheses, i.e., under
distributions that belong to intersections of submodels. For example, Westfall
and Young (1993, p. 9) refer to the FWEP as the family-wise error rate “com-
puted under the partial null hypothesis (meaning that some subcollection of
nulls, say Hj1 , . . . , Hjt

, is true)” and provide the following definition in their
Equation (1.2),

FWEP = Pr(Reject at least one Hi, i = j1, . . . , jt|Hj1 , . . . , Hjt
are true).



96 2 Test Statistics Null Distribution

As discussed in Dudoit et al. (2004b) and Pollard and van der Laan (2004),
such a quantity is not well-defined, because Type I error rates are parameters
of a distribution for the number of Type I errors (and possibly the number
of rejected hypotheses, as for the FDR) and can only be defined meaningfully
with respect to such a distribution (Section 1.2.9). A more precise definition
would be that FWEP is the family-wise error rate under a data generating
distribution PJ0 that satisfies a certain subset J0 = {j1, . . . , jt} of null hy-
potheses, i.e., defined such that PJ0 ∈ ∩m∈J0M(m).

This immediately raises the issue of how to map from a subset J0 of null
hypotheses to a well-defined data generating distribution PJ0 ∈ ∩m∈J0M(m).
Except in very simple situations (e.g., null hypotheses concerning the mean
vector of a multivariate Gaussian data generating distribution), each subset
J0 of null hypotheses corresponds to a family of possible distributions. One
approach is to define the distribution PJ0 as a projection of the true data gen-
erating distribution P onto the submodel ∩m∈J0M(m), selecting, for exam-
ple, the distribution PJ0 ∈ ∩m∈J0M(m) with the smallest Kullback-Leibler
divergence with P . That is,

PJ0 = ΠKL(P | ∩m∈J0 M(m)) (2.64)

≡ arg maxP ′∈∩m∈J0M(m)

∫
log
(

dP ′(x)
dµ(x)

)
dP (x),

for a dominating measure µ. Another possibility is to select the distribution
PJ0 on the conservative boundary of the submodel ∩m∈J0M(m). The reader
is referred to Pollard and van der Laan (2004) for a discussion of multivari-
ate data generating null distributions and proposals for specifying such joint
distributions based on projections of the true data generating distribution P
onto submodels satisfying subsets of null hypotheses.

However, as discussed by these authors, in many testing problems of in-
terest, one simply cannot identify a data generating null distribution P0 ∈
∩M

m=1M(m) that provides proper control of the Type I error rate under the
true data generating distribution P . That is, in many cases, the assumed
null distribution Qn,H0(P0) and the true distribution Qn,H0(P ) of the H0-
specific subvector (Tn(m) : m ∈ H0) of test statistics have different limits and
thus violate null domination Assumption NDΘ for the Type I error rate, i.e.,
limn Θ(FVn

) > Θ(FV0) = α. Instead, for the test of single-parameter null hy-
potheses using t-statistics (Section 2.6), Pollard and van der Laan (2004) rec-
ommend using a test statistics null distribution such as the Kullback-Leibler
projection of Qn = Qn(P ) onto the space of multivariate Gaussian distribu-
tions with mean vector zero. The projection null distribution corresponds to
the null distribution Qt

0(P ) = N(0, Σ∗(P )) proposed in Theorem 2.6.

Revised definitions of weak and strong Type I error control

As usual, consider the simultaneous test of M null hypotheses H0(m), m =
1, . . . ,M , based on test statistics Tn = (Tn(m) : m = 1, . . . ,M), with true



2.8 Weak and strong Type I error control and subset pivotality 97

finite sample joint distribution Qn = Qn(P ) and null distribution Q0. Let
Cn(m) = C(m;Tn, Q0, α), m = 1, . . . ,M , and Rn = R(Tn, Q0, α) denote,
respectively, the M rejection regions and corresponding set of rejected null
hypotheses, for a MTP with nominal Type I error level α. That is,

R(Tn, Q0, α) = {m : Tn(m) ∈ C(m;Tn, Q0, α)} .

Given a subset of null hypotheses J0 ⊆ {1, . . . , M}, define a data gen-
erating distribution PJ0 ∈ ∩m∈J0M(m) and let Qn(PJ0) denote the corre-
sponding joint distribution for the test statistics Tn. Following the notation
introduced in Equations (2.2) and (2.3), denote the numbers of rejected hy-
potheses and Type I errors by

Rn(J0) ≡ R(Cn|Qn(PJ0)) =
M∑

m=1

I (Tn(m) ∈ Cn(m)) (2.65)

and
Vn(J0) ≡ V (Cn|Qn(PJ0)) =

∑

m∈J0

I (Tn(m) ∈ Cn(m)) ,

respectively, under the assumption that Tn ∼ Qn(PJ0).
Strong control of a Type I error rate at level α requires that

max
J0⊆{1,...,M}

Θ(FVn(J0),Rn(J0)) ≤ α [finite sample strong control]

(2.66)
lim sup

n→∞
max

J0⊆{1,...,M}
Θ(FVn(J0),Rn(J0)) ≤ α [asymptotic strong control].

Thus, strong control involves considering 2M distributions PJ0 , each cor-
responding to a subset J0 of null hypotheses. Note also that this definition of
strong control is completely dependent upon the choice of mapping J0 → PJ0 .

Weak control corresponds to J0 = {1, . . . ,M} and P0 = P{1,...,M}.
Type I error control under the true data generating distribution P does not

necessarily follow from strong control, unless the mapping J0 → PJ0 results
in PH0 = P for J0 = H0. In other words, control under the true P could fail
under strong control when an improper mapping is used to define PH0 .

In contrast, as discussed in Section 2.2, the methodology proposed in this
book is only concerned with Type I error control under the true data generat-
ing distribution P . That is, we only require that Equation (2.66) hold in the
special case where J0 = H0 and PH0 = P .

2.8.2 Subset pivotality

In practice, it is not feasible to consider all 2M possible subsets of null hy-
potheses and commonly-used single-step and stepwise multiple testing proce-
dures are typically based on cut-offs derived under a data generating distribu-
tion P0 that satisfies the complete null hypothesis HC

0 =
∏M

m=1 H0(m), i.e.,
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P0 ∈ ∩M
m=1M(m). Strong control of a Type I error rate, and in particular

control under the true data generating distribution P , are then claimed to
follow from weak control under conditions such as subset pivotality.

As stated in Condition 2.1, p. 42, in Westfall and Young (1993), “The
distribution of P has the subset pivotality property if the joint distribution of
the subvector {Pi : i ∈ K} is identical under the restrictions ∩i∈KH0i and
HC

0 , for all subsets K = {i1, . . . , ij} of true null hypotheses”. In our notation,
K is a subset J0 ⊆ {1, . . . , M} of null hypotheses and P refers to the vector
(P0n(m) : m = 1, . . . , M) of unadjusted p-values (Section 1.2.12).

As for the definitions of weak and strong control, subset pivotality implic-
itly assumes the existence of a mapping J0 → PJ0 , from subsets J0 of null
hypotheses to data generating distributions PJ0 ∈ ∩m∈J0M(m) that satisfy
each of the null hypotheses in J0. A (finite sample) subset pivotality condition
for test statistics can then be stated as

Qn,J0(PJ0) = Qn,J0(P0), ∀ J0 ⊆ {1, . . . , M}, (2.67)

in terms of distributions PJ0 corresponding to subsets J0 of null hypotheses
and where P0 = P{1,...,M}.

Note that the subset pivotality condition considers all 2M possible subsets
of null hypotheses, and not simply the subset J0 = H0(P ) corresponding to
the true data generating distribution P . In this sense, and provided PH0 = P ,
the assumption is stronger than needed, because it is only of interest to control
Type I error rates under the true P , that is, the only relevant condition is
Qn,H0(P ) = Qn,H0(P0) for J0 = H0. In general, however, subset pivotality
does not guarantee control under the true P , if an improper mapping J0 →
PJ0 is used and PH0 �= P .

Finally, as discussed in Section 2.2.4, the subset pivotality assumption in
Equation (2.67) differs from our (finite sample) joint null domination Assump-
tion jtNDT which: (i) only considers the subset J0 = H0; (ii) does not require
the test statistics null distribution Q0,n or Q0 to be defined in terms of a data
generating null distribution P0, i.e., Q0,n = Qn(P0); (iii) does not require
equality of the true and null test statistics distributions, but the weaker null
domination, i.e., Qn,H0(P ) ≥ Qn,H0(P0).

2.9 Test statistics null distributions based on bootstrap
and permutation data generating distributions

Permutation procedures are widely-used in multiple testing to obtain data
generating null distributions P0 and corresponding test statistics null distrib-
utions Qn(P0) (Westfall and Young, 1993). This section builds on Pollard and
van der Laan (2004) and compares bootstrap- and permutation-based test
statistics null distributions.
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2.9.1 The two-sample test of means problem

Consider a two-sample test of means problem, with data structure (X,Y ) ∼
P ∈ M, where X = (X(m) : m = 1, . . . ,M) is a random M -vector and
Y ∈ {1, 2} a binary population label. For Population k, k = 1, 2, let ηk =
Pr(Y = k) denote the population frequency, let PX|k denote the conditional
data generating distribution of X given Y = k (i.e., X|Y = k ∼ PX|k), and
let ψk = (ψk(m) : m = 1, . . . , M) = E[X|Y = k] and σk = Cov[X|Y = k]
denote, respectively, the conditional M -dimensional mean vector and M ×M
covariance matrix of X. Consider testing the following M null hypotheses
concerning the differences ψ(m) = ψ1(m) − ψ2(m) in conditional means,

H0(m) = I (ψ(m) = 0) , m = 1, . . . ,M. (2.68)

Suppose one has a random sample XYn = {(Xi, Yi) : i = 1, . . . , n}, of n
IID copies of the pair (X,Y ) ∼ P ∈ M. Denote the (random) sample size for
Population k by nk =

∑
i I (Yi = k) and estimate the conditional mean vector

ψk by the corresponding empirical mean vector ψk,nk
= X̄k,nk

, with elements
ψk,nk

(m) = X̄k,nk
(m) =

∑
i I (Yi = k) Xi(m)/nk. The null hypotheses can be

tested using (unstandardized) difference statistics,

Dn(m) ≡
√

n(ψ2,n2(m) − ψ1,n1(m)) (2.69)

=
√

n

n∑

i=1

(
I (Yi = 2) Xi(m)

n2
− I (Yi = 1) Xi(m)

n1

)
, m = 1, . . . ,M.

Consider the following two models, M and M= ⊆ M, corresponding,
respectively, to general non-parametric and location-shifted conditional data
generating distributions PX|1 and PX|2.

Non-parametric model, M. For the non-parametric model (X,Y ) ∼ P ∈
M, X|Y = 1 ∼ PX|1 and X|Y = 2 ∼ PX|2, where PX|1 and PX|2 are
arbitrary conditional data generating distributions for Populations 1 and
2, respectively.

Location shift model, M=. For the location shift model (X,Y ) ∼ P= ∈
M=, X|Y = 1 ∼ PX|1 = PX(· − ψ1) and X|Y = 2 ∼ PX|2 = PX(· − ψ2),
where PX is a common M -dimensional distribution with mean vector zero.
That is, PX|1 and PX|2 are identical except for a location shift.

The implications of each model are investigated in terms of the choice
of an appropriate null distribution for the test statistics Dn. Model M= ⊆
M makes the strong assumption that, under the complete null hypothesis
HC

0 =
∏M

m=1 H0(m) = I (ψ1 = ψ2), the random vector X has the same con-
ditional distribution in the two populations (PX|1 = PX|2), that is, X and
Y are independent. If one were testing the null hypothesis I

(
PX|1 = PX|2

)

that the conditional data generating distributions are identical for the two
populations, then M= would clearly be a good choice of model from which to



100 2 Test Statistics Null Distribution

select a data generating null distribution. However, model M= may be a poor
choice for testing the null hypotheses in Equation (2.68), which only concern
differences in means between the two populations and allow, in particular,
different covariance structures σk in each population.

2.9.2 Distribution of the test statistics under two different data
generating distributions

By the Central Limit Theorem (Theorem B.4), the difference statistics Dn

have a Gaussian asymptotic distribution. This distribution is fully specified
by its mean vector (with elements equal to zero for the true null hypotheses)
and its covariance matrix. In what follows, we therefore focus on properties
and estimation of the covariance matrix of the test statistics.

For simplicity, and without loss of generality, consider only M = 2 null
hypotheses, i.e., a bivariate random vector X.

Proposition 2.8, below, provides asymptotic variances and covariances for
the difference statistics Dn under two different data generating distributions
for (X,Y ).

Proposition 2.8. [Asymptotic variances and covariances of difference
statistics for two-sample test of means, under two different data
generating distributions] Consider a data structure (X,Y ) ∼ P ∈ M,
where X = (X(1),X(2)) is a bivariate random vector and Y ∈ {1, 2} is a
binary population label, with ηk = Pr(Y = k), k = 1, 2. Let PX|k denote a
bivariate distribution, with mean vector ψk = [ψk(1), ψk(2)]� and covariance
matrix σk = (σk(m,m′) : m, m′ = 1, 2), k = 1, 2. Specifically, consider the
following two data generating distributions for (X,Y ).
Non-parametric data generating distribution, P . For (X,Y ) ∼ P , the
conditional distribution of X given Y = k is PX|k, that is, X|Y = k ∼ PX|k,
k = 1, 2.
Independence data generating distribution, P⊥. For (X,Y ) ∼ P⊥, X
and Y are independent and X has the mixture distribution X ∼ η1PX|1 +
η2PX|2.

Then, for a random sample XYn = {(Xi, Yi) : i = 1, . . . , n}, of n IID
copies of the pair (X,Y ) ∼ P , the asymptotic covariance matrix of the differ-
ence statistics Dn = (Dn(1),Dn(2)) of Equation (2.69) is given by

ς ≡ lim
n→∞

CovP [Dn] =

[
σ1(1,1)

η1
+ σ2(1,1)

η2

σ1(1,2)
η1

+ σ2(1,2)
η2

σ1(1,2)
η1

+ σ2(1,2)
η2

σ1(2,2)
η1

+ σ2(2,2)
η2

]
. (2.70)

For (X,Y ) ∼ P⊥,

ς⊥ ≡ lim
n→∞

CovP⊥ [Dn] =

[
σ1(1,1)

η2
+ σ2(1,1)

η1

σ1(1,2)
η2

+ σ2(1,2)
η1

σ1(1,2)
η2

+ σ2(1,2)
η1

σ1(2,2)
η2

+ σ2(2,2)
η1

]
. (2.71)
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It is interesting to note that the asymptotic covariance matrices ς and ς⊥
of the difference statistics Dn are identical, except for the roles of population
frequencies η1 and η2 being reversed.

The expressions for ς and ς⊥ illustrate that, for most values of the para-
meters σk and ηk, k = 1, 2, the difference statistics have different asymptotic
distributions for data generating distributions P and P⊥. If, however, either
(i) η1 = η2 or (ii) σ1 = σ2, then the asymptotic distributions are the same for
both scenarios, i.e., ς = ς⊥.

As discussed below, the bootstrap estimator of the distribution of the test
statistics Dn converges to the asymptotic distribution of Dn under P , while
the permutation estimator of the distribution of Dn converges to the asymp-
totic distribution of Dn under P⊥. Thus, under the reduced location shift
model M=, for which σ1 = σ2, a permutation data generating distribution
yields a sensible test statistics null distribution.

It is somewhat surprising that, even when the data generating distribution
P is not an element of the reduced model M= (e.g., σ1 �= σ2), one still has
ς = ς⊥ when η1 = η2. Thus, in the case of equal population frequencies (i.e.,
η1 = η2), permutation distributions, corresponding to the independence data
generating distribution P⊥, yield valid test statistics null distributions.

In summary, Proposition 2.8 suggests that, unless either (i) η1 = η2 or (ii)
σ1 = σ2, one should use the bootstrap (rather than permutation) to estimate
the null distribution of the test statistics Dn, since the bootstrap preserves the
covariance structure ς of these test statistics. However, for equal population
frequencies (i.e., η1 = η2) or covariance structures (i.e., σ1 = σ2, as in model
M=), one could use permutation estimators, because the asymptotic covari-
ance matrix of the test statistics Dn is the same for both data generating
distributions P and P⊥ (i.e., ς = ς⊥). Furthermore, permutation estimators of
the covariance matrix tend to be more efficient than non-parametric bootstrap
estimators, because they correspond to a smaller model and make use of all
n observations (Pollard and van der Laan, 2004).

Similar conclusions apply to the usual (standardized) two-sample Welch
t-statistics,

Tn(m) ≡ ψ2,n2(m) − ψ1,n1(m)√
σ2
1,n1

(m)

n1
+

σ2
2,n2

(m)

n2

, (2.72)

where nk, ψk,nk
(m), and σ2

k,nk
(m) denote, respectively, the sample size, em-

pirical means, and empirical variances, for Population k, k = 1, 2.

Proof of Proposition 2.8. The derivations of variances and covariances
for the difference statistics Dn = (Dn(1),Dn(2)) are similar for the two
data generating distributions P and P⊥ and make use of the Double
Expectation Theorem. For simplicity, and without loss of generality, as-
sume that both null hypotheses H0(1) and H0(2) are true and that the
mean vectors for PX|1 and PX|2 are zero, i.e., ψ1 = ψ2 = [0, 0]�. Then,
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E[Dn] = [0, 0]� and Cov[Dn] = E[DnD�
n ] under both distributions P and

P⊥. Let Yn = {Yi : i = 1, . . . , n}.

Variances. First, derive the asymptotic variances of the difference statistics
Dn(m).

lim
n→∞

Var[Dn(m)] = lim
n→∞

E[D2
n(m)]

= lim
n→∞

nE

⎡

⎣ E

⎡

⎣
(

n∑

i=1

(
I (Yi = 2) Xi(m)

n2
− I (Yi = 1) Xi(m)

n1

))2
∣∣∣∣∣∣
Yn

⎤

⎦

⎤

⎦

= lim
n→∞

nE

[
E

[
n∑

i=1

(
I (Yi = 2) Xi(m)

n2
− I (Yi = 1) Xi(m)

n1

)2
∣∣∣∣∣Yn

]]

= lim
n→∞

nE

[
E

[
n∑

i=1

(
I (Yi = 2) X2

i (m)
n2

2

+
I (Yi = 1) X2

i (m)
n2

1

)∣∣∣∣∣Yn

]]

= lim
n→∞

nE

[
n∑

i=1

(
I (Yi = 2) E[X2

i (m)|Yi = 2]
n2

2

+
I (Yi = 1) E[X2

i (m)|Yi = 1]
n2

1

)]

= E[X2(m)|Y = 2] lim
n→∞

E
[

n

n2

]
+ E[X2(m)|Y = 1] lim

n→∞
E
[

n

n1

]

=
E[X2(m)|Y = 2]

η2
+

E[X2(m)|Y = 1]
η1

.

The third equality follows by noting that the (Xi, Yi) are independent,
with E[Xi(m)|Yi = k] = 0, m = 1, 2, k = 1, 2; the fourth from
I (Yi = 1) I (Yi = 2) = 0; the sixth from the fact that the (Xi, Yi) are identi-
cally distributed; and the seventh from limn nk/n = ηk a.s., k = 1, 2.

When (X,Y ) ∼ P ,

lim
n→∞

Var[Dn(m)] =
E[X2(m)|Y = 1]

η1
+

E[X2(m)|Y = 2]
η2

=
σ1(m,m)

η1
+

σ2(m,m)
η2

, m = 1, 2.

Similarly, when (X,Y ) ∼ P⊥, the asymptotic variance of the difference
statistic Dn(m) is as follows.
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lim
n→∞

Var[Dn(m)] =
E[X2(m)|Y = 1]

η1
+

E[X2(m)|Y = 2]
η2

=
E[X2(m)]

η1
+

E[X2(m)]
η2

=
(

1
η1

+
1
η2

)
(η1σ1(m,m) + η2σ2(m,m))

=
σ1(m,m)

η2
+

σ2(m,m)
η1

, m = 1, 2.

The second and third equalities follow by noting that X and Y are inde-
pendent, with X having the mixture distribution X ∼ η1PX|1 + η2PX|2,
so that Var[X(m)] = E[X2(m)] = E[X2(m)|Y = 1] = E[X2(m)|Y = 2] =
η1σ1(m,m) + η2σ2(m,m), m = 1, 2.

Covariances. Now consider the asymptotic covariance between the difference
statistics Dn(1) and Dn(2).

lim
n→∞

Cov[Dn(1),Dn(2)] = lim
n→∞

E[Dn(1)Dn(2)]

= lim
n→∞

nE

[
E

[
n∑

i=1

(
I (Yi = 2) Xi(1)

n2
− I (Yi = 1) Xi(1)

n1

)

×
n∑

i=1

(
I (Yi = 2) Xi(2)

n2
− I (Yi = 1) Xi(2)

n1

)∣∣∣∣∣Yn

]]

= lim
n→∞

nE

[
E

[
n∑

i=1

(
I (Yi = 2) Xi(1)

n2
− I (Yi = 1) Xi(1)

n1

)

×
(

I (Yi = 2) Xi(2)
n2

− I (Yi = 1) Xi(2)
n1

)∣∣∣∣∣Yn

]]

= lim
n→∞

nE

[
E

[
n∑

i=1

(
I (Yi = 2) Xi(1)Xi(2)

n2
2

+
I (Yi = 1) Xi(1)Xi(2)

n2
1

)∣∣∣∣∣Yn

]]

= lim
n→∞

nE

[
n∑

i=1

(
I (Yi = 2) E[Xi(1)Xi(2)|Yi = 2]

n2
2

+
I (Yi = 1) E[Xi(1)Xi(2)|Yi = 1]

n2
1

)]

= E[X(1)X(2)|Y = 2] lim
n→∞

E
[

n

n2

]
+ E[X(1)X(2)|Y = 1] lim

n→∞
E
[

n

n1

]

=
E[X(1)X(2)|Y = 2]

η2
+

E[X(1)X(2)|Y = 1]
η1

.
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The third equality follows by noting that the (Xi, Yi) are independent,
with E[Xi(m)|Yi = k] = 0, m = 1, 2, k = 1, 2; the fourth from
I (Yi = 1) I (Yi = 2) = 0; the sixth from the fact that the (Xi, Yi) are identi-
cally distributed; and the seventh from limn nk/n = ηk a.s., k = 1, 2.

When (X,Y ) ∼ P ,

lim
n→∞

Cov[Dn(1),Dn(2)] =
E[X(1)X(2)|Y = 1]

η1
+

E[X(1)X(2)|Y = 2]
η2

=
σ1(1, 2)

η1
+

σ2(1, 2)
η2

.

Similarly, when (X,Y ) ∼ P⊥, the asymptotic covariance of the difference
statistics Dn(1) and Dn(2) is as follows.

lim
n→∞

Cov[Dn(1),Dn(2)] =
E[X(1)X(2)|Y = 1]

η1
+

E[X(1)X(2)|Y = 2]
η2

=
E[X(1)X(2)]

η1
+

E[X(1)X(2)]
η2

=
(

1
η1

+
1
η2

)
(η1σ1(1, 2) + η2σ2(1, 2))

=
σ1(1, 2)

η2
+

σ2(1, 2)
η1

.

The second and third equalities follow by noting that X and Y are indepen-
dent, with X having the mixture distribution X ∼ η1PX|1 + η2PX|2, so that
Cov[X(1),X(2)] = E[X(1)X(2)] = E[X(1)X(2)|Y = 1] = E[X(1)X(2)|Y =
2] = η1σ1(1, 2) + η2σ2(1, 2).


�

2.9.3 Bootstrap and permutation test statistics null distributions

As suggested by Proposition 2.8, the non-parametric model M and the smaller
location shift model M= imply different bootstrap sampling distributions
for estimating the distribution of the test statistics Dn = (Dn(m) : m =
1, . . . ,M). In particular, each model implies different data generating and
test statistics null distributions. For non-parametric model M, one samples
from the joint empirical distribution of the pair (X,Y ), whereas for reduced
model M=, one samples from a model-based estimator of the data generating
distribution.

Bootstrap test statistics null distribution for model M

For the non-parametric model M, the bootstrap estimator of the joint data
generating distribution P of the pair (X,Y ) is the joint empirical distribution
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Pn of the n = n1 + n2 pairs of (X,Y )-observations, {(Xi, Yi) : i = 1, . . . , n}.
One resamples n pairs of (X,Y )-observations at random, with replacement
from Pn, to form a bootstrap sample {(X#

i , Y #
i ) : i = 1, . . . , n}. The boot-

strap test statistics null distribution Q0n is the empirical distribution of the
M -vectors of centered difference statistics, Z#

n =
√

n((ψ#
2,n2

−ψ#
1,n1

)−(ψ2,n2−
ψ1,n1)), where ψ#

k,nk
denotes the bootstrap empirical mean vector for Popu-

lation k, that is, ψ#
k,nk

=
∑

i I
(
Y #

i = k
)

X#
i /
∑

i I
(
Y #

i = k
)
, k = 1, 2.

Note that an asymptotically equivalent estimator could be obtained by
sampling n1 observations at random, with replacement from the Population 1
sample, {(Xi, Yi) : Yi = 1, i = 1, . . . , n}, and n2 observations at random, with
replacement from the Population 2 sample, {(Xi, Yi) : Yi = 2, i = 1, . . . , n}.

Bootstrap test statistics null distribution for model M=

For the reduced location shift model M=, the bootstrap estimator of the
common mean-zero marginal data generating distribution PX of X is the cen-
tered marginal empirical distribution PX,n of the n = n1 + n2 centered X-
observations, {X=,i : i = 1, . . . , n}, where X=,i = Xi − I (Yi = 1) ψ1,n1 −
I (Yi = 2) ψ2,n2 . One resamples n centered X-observations, {X#

=,i : i =
1, . . . , n}, at random, with replacement from PX,n, and sets X#

i = X#
=,i+ψk,nk

and Y #
i = k for a random subset of nk such observations, k = 1, 2, to form

a bootstrap sample {(X#
i , Y #

i ) : i = 1, . . . , n}. Again, the bootstrap test sta-
tistics null distribution Q0n is the empirical distribution of the M -vectors of
centered difference statistics, Z#

n =
√

n((ψ#
2,n2

− ψ#
1,n1

) − (ψ2,n2 − ψ1,n1)).
Note that the above bootstrap procedure for model M= is equivalent to

the following approach: form the mixture marginal empirical distribution PX,n

of the n = n1 +n2 (uncentered) X-observations, {Xi : i = 1, . . . , n}; resample
n X-observations, {X#

i : i = 1, . . . , n}, at random, with replacement from
PX,n; set Y #

i = k for a random subset of nk such observations, k = 1, 2;
and define Q0n as the empirical distribution of the M -vectors of (uncentered)
difference statistics, D#

n =
√

n(ψ#
2,n2

−ψ#
1,n1

). This yields the non-parametric
bootstrap (sampling with replacement) analogue of the commonly-used per-
mutation (sampling without replacement) test, corresponding to the indepen-
dence data generating distribution P⊥ in Proposition 2.8.

Permutation test statistics null distribution

Permutation tests are known to be exact (up to the discreteness of the permu-
tation distribution) under the location shift model M= and the complete null
hypothesis (Theorem 6, p. 231, Lehmann (1986); Puri and Sen (1971)). In-
deed, if X and Y are independent, then the permutation distribution is equal
to the conditional joint distribution of the pair (X,Y ), given the marginal
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empirical distributions of X and Y . In contrast, bootstrap procedures corre-
sponding to non-parametric model M are only approximate. In other words,
model M= ⊆ M implies a stronger null model restriction than M, as needed
for an exact test.

As remarked in Section 2.9.2, above, when the permutation approach is
appropriate, it tends to provide less variable estimators of the test statistics
null distribution than the non-parametric bootstrap. Indeed, it should come
as no surprise that, for small sample sizes, one typically obtains more accurate
test results using a model-based (permutation or other suitable) estimator of
the null distribution than a non-parametric estimator.

In general, estimation of the test statistics null distribution involves a bias-
variance trade-off and raises the interesting open question of model selection.

The reader is referred to Pollard et al. (2005a) and Pollard and van der
Laan (2004) for a more detailed discussion of the relative merits of bootstrap-
and permutation-based multiple testing procedures.
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Bootstrap estimator of 
test statistics 

null distribution 
 =

empirical distribution of 
columns of Z

n
B.

Figure 2.1. Bootstrap estimation of the null shift and scale-transformed test sta-
tistics null distribution Q0 (Procedure 2.3). The bootstrap test statistics are stored
in the M × B matrix TB

n =
(
T B

n (m, b)
)
, with rows corresponding to the M null

hypotheses and columns to the B bootstrap samples. Expected values, E[Tn(m)],
and variances, Var[Tn(m)], of the test statistics are estimated by taking, respec-
tively, row means and variances of TB

n . The matrix of test statistics TB
n can then be

row-shifted and scaled using the null values λ0(m) and τ0(m), to produce an M ×B
matrix ZB

n =
(
ZB

n (m, b)
)
. The null distribution Q0 is estimated by the empirical

distribution Q0n of the columns of ZB
n .
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M hypotheses

B bootstrap samples

Null-transformed bootstrap 
test statistics

Z
n
B(m,b) T

n
(m)

M
observed 

test 
statistics

P
0n

(m)
M

unadjusted
p-values

For each row m, the unadjusted p-value P
0n

(m) 
is the proportion of the B null-transformed 
bootstrap test statistics Z

n
B(m,b) 

that exceed the observed test statistic T
n
(m).

Z
n

B(m,b)

P
0n

(m)

Tn(m)

Figure 2.2. Bootstrap estimation of the unadjusted p-values P0n(m). Bootstrap
estimators of the unadjusted p-values P0n(m) are obtained from the matrix ZB

n =(
ZB

n (m, b)
)
, of null-transformed bootstrap test statistics, by recording, for each row

m, the proportion of ZB
n (m, b) that are greater than or equal to the observed test

statistic Tn(m).
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