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Test Statistics Null Distribution

2.1 Introduction

2.1.1 Motivation

A key feature of our proposed multiple testing procedures (MTP) is the test
statistics null distribution (rather than a data generating null distribution)
used to obtain rejection regions (i.e., cut-offs) for the test statistics, confi-
dence regions for the parameters of interest, and adjusted p-values. Indeed,
whether testing single or multiple hypotheses, one needs the (joint) distribu-
tion of the test statistics in order to derive a procedure that probabilistically
controls Type I errors. In practice, however, the true distribution of the test
statistics is unknown and replaced by a null distribution. The choice of a
proper null distribution is crucial in order to ensure that (finite sample or
asymptotic) control of the Type I error rate under the assumed null distribu-
tion does indeed provide the desired control under the true distribution. This
issue is particularly relevant for large-scale testing problems, such as those
encountered in biomedical and genomic research (Chapters 9-12), which con-
cern high-dimensional multivariate distributions, with complex and unknown
dependence structures among variables.

Common approaches use a data generating distribution, such as a per-
mutation distribution, that satisfies the complete null hypothesis that all null
hypotheses are true. Procedures based on such a data generating null distribu-
tion typically rely on the subset pivotality assumption, stated in Westfall and
Young (1993, p. 42-43), to ensure that Type I error control under the data
generating null distribution leads to the desired control under the true data
generating distribution. However, subset pivotality is violated in many impor-
tant testing problems, because a data generating null distribution may result
in a joint distribution for the test statistics that has a different dependence
structure than their true distribution. In fact, in most problems, there does
not exist a data generating null distribution that correctly specifies the joint
distribution of the test statistics corresponding to the true null hypotheses.



50 2 Test Statistics Null Distribution

Indeed, subset pivotality fails for two types of testing problems that are highly
relevant in biomedical and genomic data analysis: tests concerning correlation
coefficients and tests concerning regression coefficients (Chapter 8; Pollard
et al. (2005a); Pollard and van der Laan (2004)).

We have formulated a general characterization of a test statistics null
distribution for which the multiple testing procedures of Chapters 3-7 pro-
vide proper Type I error control. OQur general characterization is based on
the intuitive notion of null domination, whereby the number of Type I errors
is stochastically greater under the test statistics’ null distribution than un-
der their true distribution. Null domination conditions lead us to the explicit
construction of two main types of test statistics null distributions. The first
original proposal of Dudoit et al. (2004b), van der Laan et al. (2004a), and
Pollard and van der Laan (2004), defines the null distribution as the asymp-
totic distribution of a vector of null shift and scale-transformed test statistics,
based on user-supplied upper bounds for the means and variances of the test
statistics for the true null hypotheses. The second and most recent proposal
of van der Laan and Hubbard (2006) defines the null distribution as the as-
ymptotic distribution of a vector of null quantile-transformed test statistics,
based on user-supplied marginal test statistics null distributions. Resampling
procedures (e.g., non-parametric or model-based bootstrap) are provided to
conveniently obtain consistent estimators of the null distribution and of the
corresponding test statistic cut-offs, parameter confidence regions, and ad-
justed p-values.

We stress the generality of these two test statistics null distributions: Type
I error control does not rely on restrictive assumptions such as subset piv-
otality and holds for general data generating distributions (with arbitrary
dependence structures among variables), null hypotheses (defined in terms
of submodels for the data generating distribution), and test statistics (e.g.,
t-statistics, yZ-statistics, F-statistics). In particular, the proposed null dis-
tributions allow one to address testing problems that cannot be handled by
existing approaches, such as tests concerning correlation coefficients and pa-
rameters in general regression models (e.g., linear regression models where
the covariates and error terms are allowed to be dependent, logistic regression
models, Cox proportional hazards models; Chapter 8; Pollard et al. (2005a)).
The latest proposal of van der Laan and Hubbard (2006) has the additional
advantage that the marginal test statistics null distributions may be set to
the optimal (i.e., most powerful) null distributions one would use in single
hypothesis testing (e.g., permutation marginal null distributions, Gaussian or
other parametric marginal null distributions).

As illustrated in the simulation studies of Chapter 8 and articles by van der
Laan and Hubbard (2006), Pollard et al. (2005a), and Pollard and van der
Laan (2004), the choice of null distribution can have a substantial impact on
the Type I error and power properties of a given multiple testing procedure.
In particular, Pollard et al. (2005a) show that procedures based on our general
non-parametric bootstrap null shift and scale-transformed test statistics null
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distribution typically control the Type I error rate “on target” at the nom-
inal level. In contrast, comparable procedures, based on parameter-specific
bootstrap data generating null distributions, can be severely anti-conservative
(bootstrapping residuals for testing regression coefficients) or conservative
(independent bootstrap for testing correlation coefficients). van der Laan
and Hubbard (2006) further illustrate that, for finite samples, the new null
quantile-transformed test statistics null distribution provides more accurate
Type I error control and is more powerful than the original null shift and
scale-transformed null distribution.

Finally, note that the null shift and scale-transformed and null quantile-
transformed test statistics null distributions are only two among a family of
null distributions that satisfy null domination conditions for a given testing
problem. The explicit construction of null distributions with good Type I error
control and power properties still represents an open and important research
avenue.

2.1.2 Outline

Section 2.2 outlines the main features of our approach to Type I error control
and the key choice of a test statistics null distribution based on the notion
of null domination. Section 2.3 discusses in detail our first proposal of a null
shift and scale-transformed test statistics null distribution. Section 2.4 intro-
duces our most recent null quantile-transformed test statistics null distribu-
tion. Section 2.5 considers the choice of a null distribution for transformations
of the test statistics, such as the absolute value transformation. Sections 2.6
and 2.7 focus on two particular examples of testing problems covered by our
framework: the test of single-parameter null hypotheses using ¢-statistics (e.g.,
tests of means, correlation coefficients, regression coefficients in linear and
non-linear models) and the test of multiple-parameter null hypotheses using
F-statistics. The last two sections are devoted to contrasting our proposed
methodology with existing approaches. Specifically, Section 2.8 revisits the
notions of weak and strong control of a Type I error rate and the related
assumption of subset pivotality. We stress that such conditions are made ir-
relevant by our general approach, which is only concerned with control of the
Type I error rate under the true data generating distribution and is based on
a test statistics null distribution rather than a data generating null distribu-
tion. Finally, Section 2.9 examines test statistics null distributions based on
bootstrap and permutation data generating distributions.
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2.2 Type I error control and choice of a test statistics
null distribution

2.2.1 Type I error control

As in Section 1.2, consider the simultaneous test of M null hypotheses Hy(m),
m = 1,...,M, based on test statistics T,, = (T,,(m) : m = 1,..., M),
with finite sample joint distribution @, = @, (P), under the data generat-
ing distribution P. We wish to derive rejection regions for the test statistics
T,(m), such that Type I errors are probabilistically controlled at a user-
supplied level « (see Section 1.2.9 for definitions of Type I error rates). In
practice, however, the true distribution @,,(P) of the test statistics is unknown
and replaced by a null distribution Qo (or estimator thereof, Qo). As in Sec-
tion 1.2.6, let C,,(m) = C(m; Ty, Qo, ), m =1,..., M, and R,, = R(T},, Qo, @)
denote, respectively, the M rejection regions and corresponding set of rejected
null hypotheses, for a MTP with nominal Type I error level a.. That is,

R(T,, Qo,) = {m : T,(m) € C(m; Ty, Qo, ) } . (2.1)
Given a random M-vector Z = (Z(m): m =1,..., M), with joint distri-

bution @, and a collection of M rejection regions C = {C(m) :m =1,..., M},
denote the numbers of rejected hypotheses and Type I errors by

M

R(C|Q) 1(Z(m) € C(m)) (2.2)

m=1

and

Vel = S 1(Zm) e cm)),
meHo
respectively. For given rejection regions C, adopt the following shorthand no-
tation for the special cases where ) corresponds to the test statistics true
distribution @,, and null distribution Qg,

R, = R(C|Qn), Ry = R(C|Qo), (2.3)
For one-sided rejection regions of the form C(m) = (¢(m),+o0), based on

an M-vector of cut-offs ¢ = (¢(m) : m = 1,..., M) € R further denote
the numbers of rejected hypotheses and Type I errors by R(c|Q) and V (c|Q),
respectively.

Rejection regions are typically derived so that the Type I error rate
O(Fv, R, ), under the test statistics null distribution Q)o, is controlled at nom-
inal level a € (0,1)2, that is,

1 N.B. In stepwise procedures, the rejection regions C may be random, i.e., may
depend on Z.

2 N.B. Without loss of generality, we focus for simplicity on Type I error rates
O(Fv, r,) € [0,1].
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Q(FVO,RO) <. (24)

The multiple testing procedure R, is said to control the Type I error

rate O(Fy, g, ), under the test statistics true distribution Q.,,, at actual level
€ (0,1), if
O(Fv, r,) <« [finite sample control]
(2.5)
limsup O(Fy, r,) < a [asymptotic control].

n—oo

Note that the actual Type I error rate O(Fy, g,) of a multiple testing
procedure typically differs from its nominal level «, i.e., the level at which
it claims to control Type I errors. Discrepancies between actual and nominal
Type I error levels can be attributed to a number of factors, including the
choice of a test statistics null distribution Qg and the type of rejection regions
for a given choice of Qg. A testing procedure is said to be conservative if the
nominal Type I error level « is greater than the actual Type I error rate and
anti-conservative if the nominal Type I error level « is less than the actual
Type I error rate, that is,

Conservative O(Fv, r,) <«

Anti-conservative O(Fv, r,) > o. (2:6)

The choice of a suitable test statistics null distribution Qg is crucial in
order to ensure that (finite sample or asymptotic) control of the Type I error
rate under this assumed null distribution does indeed provide the desired
control under the true distribution @,,. For proper control, the Type I error
rate under the null distribution Q¢ must dominate the Type I error rate under
the true distribution @,. That is, the null distribution Q)¢ must satisfy

O(Fv, r,) < O(Fy,.Rr,) [finite sample control]
(2.7)
limsup ©(Fy, r,) < O(Fy, r,) [asymptotic control].

n—00

Chapter 8 and articles by van der Laan and Hubbard (2006), Pollard et al.
(2005a), and Pollard and van der Laan (2004), present simulation studies
investigating the impact of the null distribution on the Type I error control
and power properties of a MTP.

2.2.2 Sketch of proposed approach to Type I error control

The following discussion motivates our general approach to the problem of
Type I error control and highlights important considerations in choosing a
test statistics null distribution. We focus on Type I error rates defined as
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arbitrary parameters O(Fy, ) of the distribution of the number of Type I
errors V,, (Section 1.2.9).

Recall that the distribution Fy, , for the number of Type I errors V,, =
Ry, N Ho| = |R(Th, Qo, ) N Ho(P)|, depends on the following: the true dis-
tribution @,, = @, (P) of the test statistics T),; the test statistics null distri-
bution Qq, used to derive the rejection regions C,(m) = C(m; Ty, Qo, @); the
nominal Type I error level « of the MTP; and the set Hy = Ho(P) of true
null hypotheses. Type I error control is therefore a statement about the true,
unknown data generating distribution P, via Q.,,(P) and Ho(P).

Control of Type I error rates of the form ©(Fy, ) can be achieved by the
three-step road map of Procedure 2.1, below. This road map provides intuition
behind the general characterization (Section 2.2.3) and explicit construction
(Sections 2.3 and 2.4) of a proper test statistics null distribution Qq. It also
provides a template for ©-controlling joint single-step common-quantile Pro-
cedure 4.1 and common-cut-off Procedure 4.2. The main idea is to substitute
control of the unknown parameter ©(Fy, ), for the true distribution Fy, of the
number of Type I errors, by control of the corresponding known parameter
O(FR,), for the null distribution Fg, of the number of rejected hypotheses.

Procedure 2.1. [Three-step road map for controlling Type I error
rates O(Fvy,)]

1. Null domination conditions for the Type I error rates O(Fy )
and O(Fy,). Select a test statistics null distribution Qo such that the
Type I error rate O(Fy,), under this null distribution @y, dominates
the Type I error rate ©(FYy, ), under the true distribution @,,. That is,
the following null domination assumption for the Type I error rates is
satisfied.

O(Fy,) < O(Fy,) [finite sample control]
(NDO®)
limsup,,_,., O(Fy, ) < O(Fy,) [asymptotic control].

2. Monotonicity of the Type I error rate mapping @. Note that the
number of Type I errors is always less than or equal to the total number
of rejected hypotheses (i.e., Vo < Ryp), so that Fy, > Fg,. Hence, under
monotonicity Assumption M@ for the Type I error rate mapping @, one
has

O(Fv,) < O(FRg,)- (2.8)

3. Control of @(Fg,). Select rejection regions C,(m) = C(m; Ty, Qo, @)
so that the following Type I error constraint is satisfied,

O(FR,) < o (2.9)
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That is, control the known parameter ©(Fp, ), corresponding to the num-
ber of rejected hypotheses Ry = S.M_ I(T,,(m) € C,(m)), under the

m=1
null distribution Qy, i.e., assuming T}, ~ Q.

Combining Steps 1-3 provides the desired control of the actual Type I error
rate O(Fy,) at level a € (0,1), that is,

O(Fy,) <O(Fy,) < O(Fgr,) < « [finite sample control]
(2.10)
limsup O(Fy, ) < O(Fy,) < O(FR,) < « [asymptotic control].

n—oo

Note that the road map of Procedure 2.1 is conservative in two ways:
(i) from the null domination of the Type I error rate in Step 1, O(Fy,) <
O(Fy,); (ii) from controlling O(Fg,) > O(Fy,) in Step 3. Step 1 is often the
most problematic and requires a judicious choice for the test statistics null
distribution Q.

2.2.3 Characterization of test statistics null distribution in terms
of null domination conditions

For certain families of Type I error rate mappings © and rejection regions C,,,
O-specific Type I error rate null domination Assumption ND@®, in Step 1 of
the road map, can be shown to hold under the following alternate forms of
null domination.

e Null domination for the distributions Fy, and Fy, of the number of Type
I errors.

e Null domination for the joint distributions @ », and Qo n, of the Ho-
specific subvector (T,,(m) : m € Hp) of test statistics for the true null
hypotheses Hp.

Null domination conditions for the numbers of Type I errors V,,
and Vj

One can specify null domination conditions in terms of the distributions of
the numbers of Type I errors V,, and Vp, as follows. For each = € {0,..., M},

Fy, (z) > Fy,(x) [finite sample control]
(NDV)
liminf, . Fy, () > Fy,(z) [asymptotic control].

That is, the number of Type I errors Vj, under the null distribution Qy, is
stochastically greater than the number of Type I errors V,,, under the true
distribution @,, for the test statistics T,.
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For Type I error rate mappings © that satisfy monotonicity Assumption
M@ and continuity Assumption CO at Fy,, null domination Assumption NDV
for the number of Type I errors implies null domination Assumption ND@ for
the Type I error rate.

Joint null domination conditions for the Hg-specific test statistics
(T, (m) : m € Hop)

One can also specify multivariate null domination conditions in terms of the
joint distribution of the test statistics (T,,(m) : m € Hp) for the true null
hypotheses Hy, based on the notion of multivariate stochastic order (Kamae
et al., 1977, p. 899). Below are three equivalent joint null domination condi-
tions for the Ho-specific test statistics (T,,(m) : m € Hy).

The null distribution Q. %, , of the Hy-specific subvector of test statistics
(Th,(m) : m € Hyp), is said to be stochastically greater than the correspond-
ing true distribution Q, 1, = Qn x, (P), if, for all bounded componentwise
increasing functions ¢ : R — IR,

EQ.. 3, [E((Tn(m) : m € Ho))] < Eq, 4, [€((Z(m) : m € Ho))]
(2.11)
limsup Eq, ,,, [(((Tn(m) : m € Ho))] < Eqq ,,, [L((Z(m) : m € Ho))],
where, for the asymptotic statement, the null distribution Qg #, is further
required to be continuous.
An alternate formulation of joint null domination is that, for all Borel sets

B C R" with componentwise increasing indicator function Iz : z € RM —
I(z € B) € {0,1},

Prq, », (Tn(m) : m € Ho) € B) < Prq,,,, (Z(m):m € Hy) € B)
(2.12)
limsup Prq,, ,,, (Tn(m) : m € Ho) € B) < Prq, ,,, (Z(m) : m € Ho) € B),
where, for the asymptotic statement, the null distribution Qg », is further
required to be continuous.
A third, more compact formulation of joint null domination, in terms of the
joint cumulative distribution functions of the test statistics (T, (m) : m € Hp),
is that, for all z € IR",

Qnr, (2) = Qo (2) [finite sample control]
(jtNDT)
liminf,, o Qn 1, (2) > Qo,m, (2) [asymptotic control],

where, for the asymptotic statement, the null distribution Qg 3, is further
required to be continuous. Note that Assumption jtNDT corresponds to Equa-
tion (2.12), with sets B = (—o0, 2]¢ defined in terms of ho-dimensional rectan-

gles (—o00, 2] = [["_, (—00, 2(m)] C IR™.

m=1
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For ease of notation, we may simply refer to the finite sample and asymp-
totic joint null domination conditions as Qn 3, > Qo 3, and liminf, Q, », >
Qo,1,, respectively.

Relationships between null domination Assumptions jtNDT, NDV,
and ND®

For one-sided rejection regions of the form C(m) = (¢(m),+o0), joint null
domination Assumption jtNDT for the test statistics implies null domination
Assumption NDV for the number of Type I errors. Indeed, for given ¢ = (¢(m) :
m=1,...,M) e R™ and = € {0,..., M}, one may apply Equation (2.11),
with the bounded componentwise increasing function ¢ : IR" — IR defined
such that

L((Z(m):m € Hp)) =1 < Z I1(Z(m) > ¢(m)) > a:) =1(V(cQ) > x),

meHo
where Z = (Z(m) :m=1,...,M) ~ Q. Then,

Pr(V(c|Qn) > z) < Pr(V(c|Qo) > x)
limsup Pr (V(¢|@Qy) > z) < Pr(V(c|Qo) > z).
Noting that Pr(V (c|Q,) > x) = 1—Fy, (z) and Pr(V(c|Qo) > =) = 1— Fy, (x)
yields Assumption NDV.

Monotonicity Assumption MO and continuity Assumption CO at Fy, then
imply null domination Assumption ND@ for the Type I error rate.

Note that, for the asymptotic versions of null domination in Equa-
tions (2.11), (2.12), and (jtNDT), one could relax the continuity assumption
on g, by requiring, for example, that the cut-offs ¢ be continuity points of Q.

To summarize, one has the following relationships among the three types
of null domination assumptions introduced thus far. Under these assumptions,
the road map of Procedure 2.1 provides (finite sample or asymptotic) control
of general Type I error rates of the form O(Fy, ).

Assumption jtNDT: Joint null domination for Hy-specific test statistics
Qn, 1o = QoMo

¢

Assumption NDV: Null domination for number of Type I errors, for one-
sided rejection regions of the form C(m) = (¢(m), +o0),

Fy, > Fy,.

¢
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Assumption ND@®: Null domination for Type I error rate, under Assump-
tions M@ and CO,
O(Fv,) < O(Fy,).

Note that null domination is only a statement about the joint distribu-
tion of the subvector of test statistics (7,,(m) : m € Hyp) for the true null
hypotheses Hj.

More specific (i.e., less stringent) forms of null domination may be derived
for given definitions of the Type I error rate mapping @ and rejection regions
(e.g., null domination conditions for FWER-controlling step-down common-
cut-off and common-quantile MTPs in Chapter 5 and van der Laan et al.
(2004a)).

General joint null domination Assumption jtNDT, for the H-specific test
statistics, provides a template for deriving test statistics null distributions
that lead to proper Type I error control: identify a collection of M functions,
Ly ¢ IR — IR, such that the joint distribution of the transformed test statistics
(b (T, (m)) : m € Hp) dominates the joint distribution of the original test sta-
tistics (7}, (m) : m € Hp). Based on this general characterization, Sections 2.3
and 2.4, below, provide two explicit constructions for a proper test statistics
null distribution Qg: the asymptotic distribution of a vector of null shift and
scale-transformed test statistics, based on user-supplied upper bounds for the
means and variances of the Ho-specific test statistics (Section 2.3; Dudoit et al.
(2004b); van der Laan et al. (2004a); Pollard and van der Laan (2004)) and the
asymptotic distribution of a vector of null quantile-transformed test statistics,
based on user-supplied marginal test statistics null distributions (Section 2.4;
van der Laan and Hubbard (2006)).

Either test statistics null distribution may be used in any of the multi-
ple testing procedures proposed in Chapters 3—7 of this book, as they both
satisfy the key property of joint null domination for the Hy-specific test sta-
tistics (Assumption jtNDT). Specifically, the null shift and scale-transformed
null distribution (or a consistent estimator thereof) provides Type I error
control for: ©(Fy, )-controlling joint single-step common-cut-off and common-
quantile procedures (Chapter 4; Dudoit et al. (2004b)); FWER-controlling
joint step-down common-cut-off (maxT) and common-quantile (minP) pro-
cedures (Chapter 5; van der Laan et al. (2004a)); gTP-controlling (mar-
ginal/joint single-step/stepwise) augmentation multiple testing procedures
(Chapter 6; Dudoit et al. (2004a); van der Laan et al. (2004b)); gTP-
controlling joint resampling-based empirical Bayes procedures (Chapter 7;
van der Laan et al. (2005)). van der Laan and Hubbard (2006) argue that
the above results also hold for the new null quantile-transformed test statis-
tics null distribution.
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2.2.4 Contrast with other approaches

One of our main contributions is the general characterization (Section 2.2.3)
and explicit construction (Sections 2.3 and 2.4) of proper null distributions Qg
(or estimators thereof, Qo) for the test statistics T),. As detailed in Section
2.8, the following two main points distinguish our approach from existing
approaches to Type I error control and the choice of a test statistics null
distribution (e.g., Hochberg and Tamhane (1987) and Westfall and Young
(1993)).

Type I error control under the true data generating distribution

Firstly, we are only concerned with control of the Type I error rate under the
true data generating distribution P, i.e., under the joint distribution @, =
Qn(P), implied by P, for the test statistics T),,. The concepts of weak and
strong control of a Type I error rate are therefore irrelevant in our context.

In particular, our null domination Assumptions jtNDT, NDV, and ND®,
introduced in Section 2.2.3, differ from the standard subset pivotality assump-
tion of Westfall and Young (1993, p. 42-43), in the following senses: (i) null
domination is only concerned with the true data generating distribution P,
i.e., the subset Ho(P) of true null hypotheses and not all possible 2M sub-
sets Jop € {1,..., M} of null hypotheses; (ii) null domination does not require
equality of the joint distributions Qo w, and Q, ,(P), for the Hy-specific
test statistics (T, (m) : m € Hy), but the weaker domination of @, #,(P) by
Qo,H, -

Null distribution for the test statistics

Secondly, we propose a null distribution for the test statistics (T,, ~ Qo)
rather than a data generating null distribution (X ~ Py). A common choice
of data generating null distribution Fp is one that satisfies the complete
null hypothesis, HS = [IM_, Ho(m) = T[Y_,1(P € M(m)) = (P €
NM_, M(m)), that all M null hypotheses are true, i.e., Py € NM_; M(m). The
data generating null distribution Py then implies a null distribution @, (FP)
for the test statistics.

As discussed in Pollard et al. (2005a) and Pollard and van der Laan (2004),
procedures based on @,,(Py) do not necessarily provide proper Type I error
control under the true distribution P. Indeed, the assumed null distribution
Qn 1, (Py) and the true distribution @, 3, (P), of the Ho-specific test statis-
tics (T, (m) : m € Hop), may have different dependence structures and, as a
result, may violate the required null domination condition for the Type I error
rate (Assumption ND®, in Step 1 of the road map of Procedure 2.1). For in-
stance, for test statistics with Gaussian asymptotic distributions (Section 2.6),
the asymptotic covariance matrix of the Ho-specific test statistics Xy, (P),
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under the true distribution P, may be different from the corresponding co-
variance matrix Xy, (Fp), under the complete null distribution Py. For the
two-sample test of means, based on difference statistics and the commonly-
used permutation data generating null distribution Py, Pollard and van der
Laan (2004) show that Xy (P) = Y3, (Pp) if and only if (i) the two popula-
tions have the same covariance matrices or (ii) the population frequencies are
equal (Section 2.9).

Consequently, approaches based on permutation or other data generating
null distributions Py (e.g., Korn et al. (2004), Troendle (1995, 1996), and
Westfall and Young (1993)) are only valid under certain assumptions for the
true data generating distribution P. In fact, in most testing problems, there
does not exist a data generating null distribution Py € N_, M(m) that
correctly specifies a joint null distribution for the Hy-specific test statistics
(To,(m) : m € Hy), i.e., such that the required null domination condition for
the Type I error rate is satisfied (Assumption ND®).

In summary, unlike current methods that can only be applied to a limited
set of multiple testing problems, the general constructions of Sections 2.3 and
2.4 lead to joint single-step and stepwise procedures that provide the desired
Type I error control for general data generating distributions, null hypotheses,
and test statistics. Our proposed test statistics null distributions can be used in
testing problems that cannot be handled by traditional approaches based on a
data generating null distribution and the associated assumption of subset piv-
otality. Such problems include tests for correlation coefficients and regression
coefficients in linear and non-linear models where covariates and error terms
are allowed to be dependent (Chapter 8; Pollard et al. (2005a)).

2.3 Null shift and scale-transformed test statistics null
distribution

2.3.1 Explicit construction for the test statistics null distribution

Following Dudoit et al. (2004b), van der Laan et al. (2004a), and Pollard and
van der Laan (2004), our first proposal for a test statistics null distribution is
the asymptotic distribution of a vector of null shift and scale-transformed test
statistics, based on user-supplied upper bounds for the means and variances
of the Hy-specific test statistics.

Theorem 2.2. [Null shift and scale-transformed test statistics null
distribution]

Asymptotic test statistics null distribution. Suppose there exist known
M -vectors Ao € RM and 79 € IR™ of null values, so that, for each m € Hy,

lim sup E[T},(m)] < Xo(m) (2.13)

n—00
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and
lim sup Var[T,,(m)] < 7o(m).

n—oo

Let

Vou(m) = \/min {1, \%} (2.14)

and define an M -vector of null shift and scale-transformed test statistics Z,, =
(Zp(m) :m=1,...,M) by

Zn(m) = vy n(m) (T, (m) — E[T,,(m)]) + Xo(m), m=1,...,M. (2.15)

Suppose that the random M -vector Z,, converges weakly to a random M -vector
Z, with continuous joint distribution Qo = Qo(P),

Zn & 7 ~Qo(P). (2.16)

Then, the asymptotic joint distribution Qo satisfies asymptotic joint null
domination Assumption jtNDT for the Ho-specific subvector of test statistics
(T (m) : m € Hp). That is, for all z € R™,

liminf @, 2, (%) > Qo w1, (2).

n—o0

In addition, for all ¢ = (¢(m) :m=1,...,M) € R™ and z € {0,..., M},

lim inf Prg, ( > I(Tn(m) > c¢(m)) < x)

n—00
meHo

> Prg, < Z I(Z(m) > ¢(m)) < m) .

meHo

Thus, for one-sided rejection regions of the form C,(m) = (¢,(m), +00), the
null distribution Qq satisfies asymptotic null domination Assumption NDV for
the number of Type I errors,

liminf Fy, (z) > Fy,(x), Vzed{0,...,M}.

n—oo
If one further assumes that the Type I error rate mapping @ meets monotonic-
ity Assumption MO and continuity Assumption CO at Fy,, then the null dis-
tribution Qo also satisfies asymptotic null domination Assumption NDO for
the Type I error rate,

limsup O(Fy, ) < O(Fy,).

n—oo

Finite sample test statistics null distribution. Suppose there exists a
known M -vector Ao, € RM of null values, so that, for each m € Hy,
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E[T,,(m)] < Xon(m). (2.17)

Define an M -vector of null shift-transformed test statistics Z,, = (Z,,(m): m =
1,....M) by

Zn(m) =T, (m) — E[T,(m)] + Xo.n(m), m=1,..., M. (2.18)

Then, the finite sample joint distribution Qo., = Qo.n(P) of Z,, satisfies the fi-
nite sample versions of null domination Assumptions jtNDT, NDV, and ND@®.

The asymptotic distribution @q, of the null shift and scale-transformed
test statistics Z,,, generalizes the null distribution proposed in Pollard and
van der Laan (2004) for the test of single-parameter null hypotheses based
on t-statistics. In this special case, the null distribution @y turns out to be a
Gaussian distribution with mean vector zero (Section 2.6).

Dudoit et al. (2004b) and van der Laan et al. (2004a) prove that joint
single-step and step-down procedures based on the null distribution of The-
orem 2.2 (or a consistent estimator thereof) do indeed provide the desired
asymptotic control of the Type I error rate ©(Fy,, ), for general data gener-
ating distributions (with arbitrary dependence structures among variables),
null hypotheses (defined in terms of submodels for the data generating distri-
bution), and test statistics (e.g., t-statistics, x?-statistics, F-statistics).

As seen in Sections 2.6 and 2.7, the null distribution (g is continuous for
a broad class of testing problems. Otherwise, one could relax the continuity
assumption on Qq, by requiring, for example, that the cut-offs ¢ be continuity
points of Q.

Proof of Theorem 2.2.
Asymptotic test statistics null distribution. The proof is straightforward

and is based on an intermediate random vector Z,, = (Z,(m) :m=1,..., M),
defined as

Zy(m) = T, (m) + max {0, A\o(m) — E[T},(m)]}, m=1,...,M. (2.19)

First, note that T, (m) §Zn(m) for each m=1,..., M. Next, for m € Ho,
since limsup,, E[T,,(m)] < Ao(m) and limsup,, Var[T,,(m)] < 79(m), then

lim,, 19, (m) = 1 and the Hy-specific subvectors (Z,,(m) : m € Hy) and
(Zp(m) : m € Hp) have the same asymptotic joint distribution. That is,

(Zn(m) :m € Ho) = (Z(m) : m € Ho) ~ Qo

Thus, asymptotic joint null domination Assumption jtNDT follows from the
definition of weak convergence to a continuous limit distribution Qo (Equa-
tion (B.7)). That is, for each z € IR"™ and corresponding ho-dimensional
rectangle (—oo, 2] C IR",
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liminf @, 7, (2) = liminf Pr ((T,,(m) : m € Ho) € (—o0, 2])

n—oo

> liminf Pr ((Zn(m) :m € Ho) € (—o0, z])

n—0o0

=Pr((Z(m):m € Hyp) € (—0,2])
= Qo.w,(2)-

In addition, for all ¢ = (¢(m) : m =1,..., M) € IR™, the Continuous Mapping
Theorem (Theorem B.3), applied to the function ¢((z(m) : m € Hy)) =
Y omer, L(z(m) > ¢(m)), implies that

U(Za(m):meH)) = Y 1 (Zn(m) > c(m))
meHo
£ 3 1(Z(m) > e(m)) = L(Z(m) : m € Hy)).

meHo

Asymptotic null domination Assumption NDV then follows from Proposi-
tion B.2. That is, for all ¢ = (¢(m) : m = 1,...,M) € RM and z ¢
{0,..., M},

liminf Fy, () = liminf Pr < Z I(T,(m) > ¢(m)) < :E)

n— 00 n— 00
meHo

> linrriigf Pr ( Z I (Zn(m) > c(m)) < x)

meHo

= Pr( Z I(Z(m) > c¢(m)) < x)

meHo
= FVO (SC)

Finite sample test statistics null distribution. The finite sample results
follow immediately by noting that, under Equation (2.17), Z,(m) > T,,(m)
for m € Hy.

O

Remarks

1. Role of null shift values \g. The construction of the null distribution
Qo in Theorem 2.2 is inspired by joint null domination Assumption jtNDT,
for the Ho-specific subvector of test statistics (T,(m) : m € Hp). The pur-
pose of the null shift values Ag(m) is to generate Ho-specific statistics
(Zn(m) : m € Hp) that are asymptotically stochastically greater than
the original test statistics (T,,(m) : m € Hp). Thus, for one-sided rejec-
tion regions of the form C,(m) = (¢,(m),+00), the number of Type I
errors Vj, under the null distribution @, is asymptotically stochastically
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greater than the number of Type I errors V,,, under the true distribution
@r. The null distribution @y therefore satisfies asymptotic null domina-
tion Assumption NDV, for the number of Type I errors, and also ©-specific
asymptotic null domination Assumption ND@, for any Type I error rate
mapping @ that meets monotonicity Assumption M@ and continuity As-
sumption CO at Fy;.

Role of null scale values 7. In contrast, the null scale values 7(m)
are not needed for Type I error control. The purpose of 79(m) is to avoid
a degenerate null distribution and infinite cut-offs for the false null hy-
potheses (m € H1), an important property for power considerations. This
scaling is needed, in particular, for F-statistics that have asymptotically
infinite means and variances for non-local alternative hypotheses (Section
2.7).

Estimation of null values Ay and 7. The null values \o(m) and
To(m) only depend on the marginal distributions of the test statistics
T,,(m) for the true null hypotheses Hy and are generally known from
single hypothesis testing. For instance, for the test of single-parameter null
hypotheses using t-statistics, the null values are A\g(m) = 0 and m9(m) =
1 (Section 2.6). For testing the equality of K population mean vectors
using F-statistics, the null values are A\g(m) = 1 and mo(m) = 2/(K —
1), under the assumption of equal variances in the different populations
(Section 2.7). More generally, the null values Ag(m) and 79(m) may depend
on the unknown data generating distribution P, as is the case for F-
statistics when population variances are unequal (Equation (2.54)). In
such a situation, one may replace the parameters A\o(m) and 79(m) by
consistent estimators thereof.

. t-statistics: Gaussian null distribution. For a broad class of test-

ing problems, such as the test of single-parameter null hypotheses using
t-statistics, the null distribution Q¢ = Qo(P) is an M-variate Gaussian
distribution, with mean vector zero and covariance matrix o* = X*(P),
that is, Qo = N(0,0*) (Section 2.6). For tests where the parameter of in-
terest is the M-dimensional mean vector ¥ (P) = 1) = E[X], the estimator
by, is simply the M-vector of empirical means and o* = X*(P) = Cor[X]
is the correlation matrix of X ~ P, that is, Qo(P) = N(0, Cor[X]). More
generally, for an asymptotically linear estimator ,,, X*(P) is the correla-
tion matrix of the vector influence curve. This situation covers standard
one-sample and two-sample t-statistics for tests of means, but also test
statistics for correlation coefficients and regression coefficients in linear
and non-linear models.

. F-statistics: Gaussian quadratic form null distribution. For test-

ing the equality of K population mean vectors using F-statistics, an F-
statistic-specific null distribution Qf" may be defined as the joint distri-
bution of an M-vector of quadratic forms of Gaussian random variables
(Section 2.7).
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6. Estimation of the test statistics null distribution. In practice, the
test statistics null distribution Qo = Qo(P) is unknown, as it depends on
the unknown data generating distribution P. As detailed in Section 2.3.2,
below, resampling procedures, such as the bootstrap procedures proposed
in Dudoit et al. (2004b), van der Laan et al. (2004a), and Pollard and
van der Laan (2004), may be used to conveniently obtain consistent es-
timators Qg, of the null distribution @y and of the corresponding test
statistic cut-offs and adjusted p-values.

2.3.2 Bootstrap estimation of the test statistics null distribution

As noted above, the test statistics null distribution Qo = Qo(P) proposed
in Theorem 2.2 depends on the typically unknown data generating distribu-
tion P. Although in some cases marginal test statistics null distributions may
be known from single hypothesis testing, the dependence structure among the
test statistics is usually unknown. In practice, one therefore needs to estimate
the joint null distribution Q.

Consistent estimators Qg,, of the test statistics null distribution Qg and
of the corresponding test statistic cut-offs and adjusted p-values may be ob-
tained according to the following three main approaches: (i) general direct
bootstrap estimation; (ii) test statistic-specific estimation (e.g., for ¢-statistics,
x2-statistics, F-statistics); (iii) data generating null distribution estimation.

Given an estimator @Qq, of the null distribution @y, Procedures 4.20
and 4.21 provide algorithms for estimating cut-offs and adjusted p-values
for O(Fy, )-controlling joint single-step common-quantile Procedure 4.1 and
common-cut-off Procedure 4.2, respectively. Similar algorithms are proposed
in Procedure 5.15 for FWER-controlling joint step-down maxT Procedure 5.1
and minP Procedure 5.6.

General direct bootstrap estimation

As discussed below, bootstrap procedures provide a very general approach
for obtaining consistent estimators of the test statistics null distribution Qg
proposed in Theorem 2.2. The method may be summarized as follows and is
illustrated in Figure 2.1.

1. Given B bootstrap samples of the data A),, obtain an M x B matrix of
test statistics, T? = (Tf(m7 b)), with rows corresponding to the M null
hypotheses and columns to the B bootstrap samples.

2. Estimate the expected values, E[T},(m)], and variances, Var[T,, (m)], of the
test statistics (under the true data generating distribution P) by taking
row means and variances of the matrix TZ.

3. Row-shift and scale the matrix of bootstrap test statistics T2, with the
user-supplied null values A\o(m) and 79(m), to produce an M x B matrix
25 — (Z5(m.b)).
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4. Estimate the null distribution Q)¢ by the empirical distribution Qg,, of the
B columns of matrix Z5.

The remainder of this section provides details on the (non-parametric or
model-based) bootstrap estimation of the null distribution Qg of Theorem 2.2.
Specifically, let Pr denote an estimator of the true data generating distribu-
tion P. For the non-parametric bootstrap, P} is simply the empirical distribu-
tion P,, that is, samples of size n are drawn at random, with replacement from
the observed data X, = {X; : i = 1,...,n}. For the model-based bootstrap,
P’ belongs to a model M for the data generating distribution P, such as a
family of multivariate Gaussian distributions.

A bootstrap sample consists of n IID copies, X7 = {XZ# ci=1,...,n}, of
a random variable X# ~ P*. Denote the M-vector of test statistics computed
from such a bootstrap sample by T# = (T7#(m) : m = 1,..., M). The null
distribution Q¢ proposed in Theorem 2.2 can be estimated by the distribution
of the null shift and scale-transformed bootstrap test statistics,

- ] To(m
Z#(m) = \/mm {17 W} (T#(m) — Ep: [T,,#(m)]) + Xo(m).

(2.20)
In practice, one can only approximate the distribution of Z# = (Z#(m) :

m=1,..., M) by an empirical distribution over B bootstrap samples drawn
from P}, as described next in Procedure 2.3.

Procedure 2.3. [Bootstrap estimation of the null shift and scale-
transformed test statistics null distribution]

1. Generate B bootstrap samples, X’ = {X}:i=1,...,n},b=1,...,B.
For the bth sample, the X?, i = 1,...,n, are n IID copies of a random
variable X# ~ Pr.

2. For each bootstrap sample X, compute an M-vector of test statistics,
TB(.,b) = (TB(m,b) : m = 1,...,M), that can be arranged in an
M x B matrix, TB = (Tf(m,b) m=1,....M; b= 1,...,B), with
rows corresponding to the M null hypotheses and columns to the B
bootstrap samples.

3. Compute row means and variances of the matrix T2, to yield estimators
of the means, E[T,,(m)], and variances, Var[T},,(m)], of the test statistics
under the true data generating distribution P. That is, compute




2.3 Null shift and scale-transformed test statistics null distribution 67

B
E[T2 (m, )] = % ST (m, b), (2.21)
b=1
B
VarlTE (m, )] = 5 S (T2 (m,b) — BT (m, )%

S
Il
—

4. Obtain an M x B matrix, ZZ = (ZZ(m,b) :m=1,... , M;b=1,...,B),
of null shift and scale-transformed bootstrap test statistics Z2(m, b), as
in Theorem 2.2, by row-shifting and scaling the matrix T2 using the
bootstrap estimators of E[T,,(m)] and Var[T},(m)] and the user-supplied
null values \g(m) and 79(m). That is, define

B = {/min __Tom) (m)
Z“W®‘¢ {memmﬂ}
< (TP (m.b) BT (m,)]) + Ao(m).  (222)

5. The bootstrap estimator o, of the null distribution )¢ from Theo-
rem 2.2 is the empirical distribution of the B columns {ZZ(-,b) : b =
1,..., B} of matrix Z2.

For one-sided rejection regions of the form C,(m) = (c¢,(m), +00), boot-
strap estimators of the unadjusted p-values Py, (m) may be obtained from the
matrix ZZ = (Zf(m7 b)) by recording, for each row m, the proportion of null
shift and scale-transformed bootstrap test statistics Z2(m, b) that are greater
than or equal to the observed test statistic T),(m) (Section 1.2.12). That is,

B
Pyn(m) = %ZI (ZB(m,b) > T,(m)), m=1,...,M. (2.23)
b=1

Figures 2.1 and 2.2 provide, respectively, graphical summaries of the boot-
strap estimation of the null distribution @)y and of the corresponding unad-
justed p-values Py, (m).

There is no obvious general recommendation for the number of bootstrap
samples B. However, note that bootstrap unadjusted p-values are discrete tail
probabilities, with steps of size 1/B. Thus, for estimating very small p-values
(e.g., of the order of 107?), one clearly needs a very large B in order to get
enough resolution in the tails. In addition, according to the definition in Equa-
tion (2.23), unadjusted p-values are often zero, even for moderate numbers of
bootstrap samples B. In order to deal with the discreteness of the bootstrap
distribution, the marginal null distributions Qg obtained from the matrix
ZZ may be replaced by Gaussian approximations or smoothed (e.g., using
kernel density estimation methods). Specific algorithms for accurate estima-
tion of tail probabilities are beyond the scope of this book. In general, the
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user needs to find a balance between estimation accuracy and computational
cost.

Test statistic-specific estimation: t-statistics and F'-statistics

For certain types of test statistics T) (e.g., t-statistics, x2-statistics,
F-statistics) one may exploit the known parametric form of the null dis-
tribution Q¢ of Theorem 2.2. An advantage of test statistic-specific para-
metric estimation approaches, such as those discussed in Sections 2.6 and
2.7, is that they yield continuous null distributions, which do not suffer from
the discreteness of the non-parametric bootstrap null distribution described
above.

t-statistics

As detailed in Section 2.6, for the test of single-parameter null hypotheses
using t-statistics, a t-statistic-specific null distribution Qf = Q(P) is the
M-variate Gaussian distribution N(0,0*), where o* = X*(P) is the cor-
relation matrix of the M-dimensional vector influence curve, IC(X|P) =
(IC(X|P)(m) : m = 1,...,M), for an asymptotically linear estimator i,
of the parameter M-vector ¢ (Section 1.2.5).

In this case, one can estimate Qf, by Qf,, = N(0,0%), where o* = 3*(P,)
is a consistent estimator of the correlation matrix o*. For example, one could
use the correlation matrix o} corresponding to the following estimator of the
M x M influence curve covariance matrix,

where IC,(X) = (IC,(X)(m) : m = 1,...,M) is an estimator of the
M-vector influence curve IC(X|P).

Influence curves can be derived straightforwardly for simple parameters
such as means. For example, when estimating the mean vector ¥ = E[X],
for a random M-vector X ~ P, using the corresponding empirical mean
vector ¥, = X,, the influence curves are IC(X|P)(m) = X(m) — 1(m)
and corresponding estimators are IC,(X)(m) = X(m) — ¥,(m), where
Yn(m) = X, (m) = 3, X;(m)/n, m = 1,...,M. Then, o}, is simply the
empirical correlation matrix. Influence curves for estimators of correlation co-
efficients and regression coefficients are given in Section 2.6.

In cases where the influence curves are not readily available, the correlation
matrix ¢* may be estimated with the bootstrap.

F-statistics

As detailed in Section 2.7, for testing the equality of K population
mean vectors using F-statistics, an F-statistic-specific null distribution
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QY = QL (P1,..., Px) can be defined in terms of a simple quadratic function
of K independent Gaussian M-vectors, Yi ~ N(0,0%), where o = X(Py)
denotes the covariance matrix for the kth population, £k =1,..., K.

An estimator QF of the null distribution Q" can be obtained by esti-
mating each population covariance matrix o by the corresponding empirical
covariance matrix or by using the bootstrap.

Data generating null distribution estimation

In certain testing problems, one may define a test statistics null distribution
Qn(FPy), in terms of a data generating distribution Py that satisfies the com-
plete null hypothesis HS = Hnj\le Hy(m) that all M null hypotheses are true.
Such a null distribution may be estimated by Qo, = Qn(FPon), where, for
example, Py, is a bootstrap- or permutation-based estimator of F.

Test statistics null distributions based on bootstrap and permutation data
generating distributions are discussed in Section 2.9. Parameter-specific boot-
strap data generating null distributions are described in Chapter 8 for tests
concerning regression coefficients and correlation coefficients (Procedures 8.4
and 8.6, respectively).

However, as discussed in Pollard et al. (2005a) and Pollard and van der
Laan (2004), approaches based on a data generating null distribution can fail
in important testing problems, as the assumed null distribution Q, ¢, (Po)
and the true distribution @, #,(P), of the Ho-specific test statistics (T),(m) :
m € Hp), may have different dependence structures and, as a result, may
violate the required null domination condition for the Type I error rate (As-
sumption ND@, in Step 1 of the road map of Procedure 2.1).

Indeed, the simulation studies of Chapter 8 show that bootstrap data gen-
erating null distributions can lead to severely anti-conservative (bootstrapping
residuals for testing regression coefficients) or conservative (independent boot-
strap for testing correlation coefficients) procedures.

2.4 Null quantile-transformed test statistics null
distribution

Following van der Laan and Hubbard (2006), our second proposal for a test
statistics null distribution is the asymptotic distribution of a vector of null
quantile-transformed test statistics, based on user-supplied marginal test sta-
tistics null distributions. Because this promising approach represents a very
recent development in our ongoing research on multiple testing, this book
only introduces the main features of the null quantile-transformed null dis-
tribution. The reader is referred to van der Laan and Hubbard (2006) for
formal theorems and proofs, a detailed treatment of tests based on t-statistics
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and y2-statistics, simulation studies, and an application to tests of associa-
tion between non-Hodgkin lymphoma (NHL) subclass and single nucleotide
polymorphisms (SNP) in the ghrelin (GHRL) and neuropeptide Y (NPY) genes.

This latest construction has the advantage that the marginal test statistics
null distributions may be set to the optimal (i.e., most powerful) null distrib-
utions one would use in single hypothesis testing (e.g., permutation marginal
null distributions, Gaussian or other parametric marginal null distributions).
The preliminary results in van der Laan and Hubbard (2006) indeed illustrate
that, for finite samples, the new null quantile-transformed null distribution
provides more accurate Type I error control and is more powerful than the
null shift and scale-transformed null distribution of Section 2.3.

2.4.1 Explicit construction for the test statistics null distribution

Marginal null domination conditions for the Hy-specific test
statistics (T, (m) : m € Hgp)

The main ingredients of the new null quantile-transformed test statistics null
distribution are user-supplied marginal test statistics null distributions gg,m,
m = 1,..., M, that satisfy the following marginal null domination condition®.
For each m € Hg and z € IR,

Qnm(2) > Gom(2) [finite sample control]
(mgNDT)
liminf, o Qnm(z) > qo,m(2) [asymptotic control].

That is, the test statistics (T}, (m) : m € Hy), for the true null hypotheses Hy,
are marginally stochastically greater under the null distributions qg,,, than
under the true distributions @, ,,. Note that the above marginal null domi-
nation Assumption mgNDT is implied by the stronger joint null domination
Assumption jtNDT.

Finite sample test statistics null distribution

Given marginal null distributions qo ., m = 1,..., M, that satisfy marginal
null domination Assumption mgNDT, the proposed finite sample joint null dis-
tribution is based on the generalized quantile-quantile function transformation
of Yu and van der Laan (2002). Specifically, let Qo = Qo.n(P) denote the
joint distribution of the M-vector of null quantile-transformed test statistics
Zn = (Zny(m):m=1,..., M) defined as

Zn(m) = qg Q2 (Tu(m)),  m=1,...,M, (2.25)

n,m

3 N.B. In practice, user-supplied marginal null distributions, such as permutation
distributions, depend on the sample size n. However, for simplicity, references to
the sample size n are omitted from the notation go,m.
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where Q7,,,(2) = AQpnm(2) + (1 — A)Qn.m(z7) and the random variable A
is uniformly distributed on the interval [0, 1], independently of the data X,,.
One can easily verify that the marginal distributions QO,n,ma correspond-
ing to the proposed joint null distribution Qo,n, are indeed equal to the user-
supplied marginal null distributions gg ,. For continuous user-supplied mar-

ginal null distributions qg ,,, and continuous true marginal distributions @, ,
one has Q3 (2) = Qn,m(2) for each z € IR and, hence,

Qo,mm(z) =Pr (Zn(m) < z)

= Pr (g 1 @n.m(Tn(m)) < 2)
= Pr (Qn,m(Tn(m)) < qO»m(Z))
= qo,m (Z)a

where the last equality follows from Proposition 1.2.

In cases where the marginal distributions @, ,, and go,,, are not necessar-
ily continuous, Lemma 2.4 of Yu and van der Laan (2002) ensures that the
marginal distributions Qo,n,m are indeed equal to the user-supplied marginal
null distributions qg m,.

Result 1 in van der Laan and Hubbard (2006) establishes that the finite
sample joint null distribution Qo,n satisfies null domination Assumption NDV
for the number of Type I errors. That is, for each ¢ = (¢(m) :m=1,...,M) €
R and x € {0,..., M},

Pr (V(c@o,n) < x) CPr(V(Qn) <x) <0 (2.26)

timsup (Pr (V(clQon) < ) = Pr(V(clQn) < 2)) <0.

In other words, the number of Type I errors V5, = V(C|Q0,n) =
ZmGHOI(Zn(m) >c(m))7 under the null distribution Qg.,, is stochas-
tically greater than the number of Type I errors V,, = V(c|Q,) =

> meny L(Tn(m) > c(m)), under the true distribution @Q,. Null domina-
tion Assumption ND@® for the Type I error rate follows for mappings © that
satisfy monotonicity Assumption MO and uniform continuity Assumption

co.

Asymptotic test statistics null distribution

As in van der Laan and Hubbard (2006), further assume that the finite sample
joint null distribution QO,n = C?O,n(P) converges weakly to an asymptotic joint
null distribution Qo = Qo (P).

Result 2 in van der Laan and Hubbard (2006) is an analogue for Qo of
Result 1 for Qo n- That is, the asymptotic joint null distribution QO satisfies
null domination Assumption NDV for the number of Type I errors.
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In general, proofs of null domination properties for the new null quantile-
transformed null distribution are similar to those for the original null shift
and scale-transformed null distribution (e.g., Theorem 2.2).

2.4.2 Bootstrap estimation of the test statistics null distribution

As for our original null shift and scale-transformed test statistics null distri-
bution Qg = Qo(P) (Section 2.3), neither the finite sample null distribution
C?O,n = Cu)om(P) nor the asymptotic null distribution Qy = QO(P) is known,
as they both depend on the true, unknown data generating distribution P.
van der Laan and Hubbard (2006) propose in their Section 2 a bootstrap
procedure, similar to Procedure 2.3, for estimating the asymptotic null distri-
bution Qo.

Procedure 2.4. [Bootstrap estimation of the null quantile-
transformed test statistics null distribution]

1. Generate B bootstrap samples, X’ = {X?:i=1,....n},b=1,...,B.
For the bth sample, the Xf’, i=1,...,n, are n IID copies of a random
variable X# ~ Pr.

2. For each bootstrap sample X, compute an M-vector of test statistics,
TB(.,b) = (TB(m,b) : m = 1,..., M), that can be arranged in an
M x B matrix, TZ = (Tf(m,b) cm=1,...,M; b= 1,...,B), with
rows corresponding to the M null hypotheses and columns to the B
bootstrap samples.

3. Define M bootstrap marginal cumulative distribution functions QZ

n,m?

as the empirical CDFs of the rows of matrix T2, that is,

B
1
B _ B
nm(?) =35 > I(T2 (m,b) < 2). (2.27)
b=1
4. Obtain an M x B matrix, ZZ = (Zf(m,b):m =1,..., M,
b=1,...,B), of null quantile-transformed bootstrap test statistics

Z5(m,b), defined as

Z3(m,b) = gy, Qn (T (m, b)), (2.28)
where QF:2(2) = AQE . (2)+(1—-A)QF ,,(27) and the random variable
A is uniformly distributed on the interval [0, 1], independently of the data
X,

5. The bootstrap estimator Q(m of the null distribution QO is the empirical
distribution of the B columns {ZZ(-,b) : b=1,..., B} of matrix Z5.
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From Lemma 2.4 in Yu and van der Laan (2002), the generalized quantile-

quantile function transformation ¢, L 5:2(z) ensures that the margins

Qon,m, of the estimator Qon based on a finite number B of bootstrap sam-
ples, are equal to the user-supplied marginal null distributions gg, .

As discussed in Section 2.3.2, in the context of the null shift and scale-
transformed null distribution, one could also envisage estimation approaches
that are test statistic-specific (e.g., for t-statistics, x2-statistics, F-statistics)
or based on a data generating null distribution. The reader is referred to
Section 4 in van der Laan and Hubbard (2006) for a detailed treatment of
null distributions for tests based on t-statistics and y>2-statistics.

2.4.3 Comparison of null shift and scale-transformed and null
quantile-transformed null distributions

This section compares our two main constructions for a test statistics null
distribution. Recall from Section 2.3 that the first null distribution Qg =
Qo(P), proposed in Dudoit et al. (2004b) and van der Laan et al. (2004a), is
defined as the asymptotic distribution of the M-vector Z,, = (Z,(m) : m =
1,..., M) of null shift and scale-transformed test statistics. That is,

Z,(m) = \/min {1, Va:[)j(gzn)]} (T,,(m) — E[T,,(m)]) + Ao(m),

where A\g(m) and 79(m) are, respectively, user-supplied upper bounds for the
means and variances of the Hy-specific test statistics.

In contrast, the new null distribution Qo = Qo (P) of van der Laan and
Hubbard (2006) is defined as the asymptotic distribution of the M-vector
Zn = (Zn(m) : m = 1,..., M) of null quantile-transformed test statistics.
That is, 5

Zn(m) = g5Q2 (Tu(m)),

m¥n,m

where qo,,, are user-supplied marginal test statistics null distributions.

1. Main ingredients: Null shift and scale values and null quantiles.
While our first proposal requires M-vectors of null values Ay € IRM and
70 € IR™  so that lim sup,, E[T),(m)] < X\o(m) and limsup,, Var[T},(m)] <
To(m) for m € Hy, the new proposal of van der Laan and Hubbard (2006)
relies on marginal null distributions ¢g,, that dominate the true mar-
ginal distributions @, ., i.e., satisfy marginal null domination Assump-
tion mgNDT.

2. Hy-specific joint null distributions. If the true marginal distributions
Qn.m, of the test statistics T,,(m) for the true null hypotheses m € Hy,
converge weakly (up to a location shift) to the corresponding user-supplied
marginal null distributions ¢g ., then the two Hy-specific joint null dis-

tributions Qo 7, and Qo 3, coincide.
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H ;-specific joint null distributions. In general, for the false null hy-
potheses H;, the null-transformed test statistics Z,(m) and Z,(m) can
have very different finite sample and asymptotic marginal distributions.
In particular, whereas the marginal distributions of QO coincide with the
user-supplied marginal null distributions (i.e., Qo,m = qo,m ), the marginal
distributions of )y do not necessarily have this property. Hence, the H;-
specific joint null distributions Qg 7/, and QO,Hl could in principle be very
different and thus lead to procedures with different power properties.
Estimation of the test statistics null distributions. In practice,
both test statistics null distributions Qy = Qo(P) and Qo = Qo(P) are
unknown, as they depend on the unknown data generating distribution P.
Similar bootstrap procedures may be used to obtain consistent estimators
Qon and Qon, of Qo and Qo, respectively (Procedures 2.3 and 2.4). How-
ever, bootstrap estimators Q0n of the null quantile-transformed null dis-
tribution QO are expected to be more efficient than bootstrap estimators
Qon of the null shift and scale-transformed null distribution Q. To see
this, suppose that the two Hy-specific joint null distributions Qo 7, and
QO’HO coincide. The bootstrap estimator of C?O is based on a model where
all marginal distributions are given, whereas the bootstrap estimator of
Qo ignores this information and considers a larger model with unspecified
marginal distributions. As a result, the bootstrap marginal distributions
Qon,m are subject to finite sample variability and typically differ from the
user-supplied marginal distributions gg, .

. Known optimal marginal null distributions. The new null quantile-

transformed null distribution is particularly appealing when one has avail-
able optimal marginal null distributions qq ., for single hypothesis testing.
For example, consider a data structure X = (X(m):m=1,...,M + 1),
where (X(m) : m = 1,..., M) is an M-dimensional covariate/genotype
vector and Y = X(M + 1) is a univariate outcome/phenotype. The
covariates/genotypes could correspond to M microarray gene expres-
sion measures and the outcome/phenotype to a (censored) survival time
or a tumor class. Suppose one wishes to test the M null hypotheses
Hy(m) of independence between the covariates X (m) and the outcome
Y =X(M+1),m=1,...,M, based on an M-vector of arbitrary test
statistics T, = (T,(m) : m = 1,..., M). Then, one can set the marginal
null distributions o, equal to the permutation distributions of the corre-
sponding test statistics T}, (m). One knows from single hypothesis testing
that if the null hypothesis Hp(m) is true, then the permutation distri-
bution of T},(m) is (exactly) equal to the true conditional distribution of
T, (m), given the marginal empirical distributions of X (m) and Y. In the
special case of the test of single-parameter null hypotheses based on t¢-
statistics, one could use standard normal marginal null distributions, that
is, set go,m = @, where @ is the N(0,1) CDF.
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van der Laan and Hubbard (2006) argue in their Section 3 that Type I
error control results proved in our earlier articles for the original null shift
and scale-transformed test statistics null distribution Q¢ and its bootstrap
estimators Qq, also hold for the new null quantile-transformed test statis-
tics null distribution. Specifically, the null quantile-transformed test statistics
null distribution Qo and its bootstrap estimators QOn provide Type I error
control for: ©(Fy, )-controlling joint single-step common-cut-off and common-
quantile procedures (Chapter 4); FWER-controlling joint step-down common-
cut-off (maxT) and common-quantile (minP) procedures (Chapter 5); gTP-
controlling (marginal/joint single-step/stepwise) augmentation multiple test-
ing procedures (Chapter 6); gTP-controlling joint resampling-based empirical
Bayes procedures (Chapter 7). The main point is that both test statistics
null distributions satisfy joint null domination Assumption jtNDT for the Ho-
specific test statistics.

Section 4 in van der Laan and Hubbard (2006) is analogous to Sections 2.6
and 2.7, below, in that it examines properties of the null quantile-transformed
null distribution for two types of testing problems: the test of single-parameter
null hypotheses using ¢-statistics (e.g., tests of means, correlation coefficients,
regression coefficients) and the test of multiple-parameter null hypotheses
using y2-statistics.

In summary, either test statistics null distribution Qg or Qo (or consistent
estimators thereof) may be used in any of the multiple testing procedures pro-
posed in Chapters 3-7 of this book, as they both satisfy the key property of
joint null domination for the Hy-specific test statistics (Assumption jtNDT).
In particular, Type I error control does not rely on restrictive assumptions
such as subset pivotality and holds for general data generating distributions
(with arbitrary dependence structures among variables), null hypotheses (de-
fined in terms of submodels for the data generating distribution), and test
statistics (e.g., t-statistics, y2-statistics, F-statistics). The newly proposed
null quantile-transformed null distribution has the additional advantage that
it allows the user to select optimal marginal null distributions and hence tends
to outperform the original null shift and scale-transformed null distribution.
Unless stated otherwise, the simpler notation Qg and Q,, refers to either null
distribution.

2.5 Null distribution for transformations of the test
statistics

2.5.1 Null distribution for transformed test statistics

Suppose one is interested in deriving rejection regions for an M-vector of test
statistics 7Y = (TX(m) : m = 1,..., M), defined as transformations of the
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original test statistics T, = (T},(m) : m = 1,..., M), by T¢(m) = £,,(T,(m)),
in terms of a collection of M functions 4, : IR — IR.

The special case of the absolute value function (¢(z) = |z]) is discussed
in general terms in Section 2.5.2 and also in Section 4.5, in the context of
single-step common-cut-off and common-quantile procedures.

As in Equation (2.2), given a random M-vector Z = (Z(m) : m =
1,..., M), with joint distribution @, and a collection of M rejection regions
C={C(m):m=1,..., M}, denote the numbers of rejected hypotheses and
Type I errors for the transformed test statistics £,,,(Z(m)) by

M
RYCIQ) = 3 1(tm(Z(m)) € C(m)) (2.29)
and o
VICIQ) = D T(tm(Z(m)) € C(m)),
meHo

respectively. Also adopt the shorthand notation of Equation (2.3), for the
special cases where () corresponds to the true distribution @,, and null distri-
bution @)y for the original test statistics 7,,,

R, = R(C|Qn). R§ = RY(C|Qo), (2.30)
VEi=v4iC|Q,), Vi = VHC|Qo).

The proposition below specifies conditions under which deriving rejection
regions for the transformed test statistics 7, based on a null distribution Qg
for the original test statistics T, leads to proper Type I error control.

Proposition 2.5. [Null distribution for transformed test statistics]
Consider the simultaneous test of M null hypotheses Hy(m), m =1,..., M,
based on an M-vector of test statistics T = (TX(m) :m =1,..., M), defined
as transformations of the original test statistics T, = (T,(m) :m =1,..., M),
by TE(m) = £ (T (m)), in terms of a collection of M functions £,, : IR — IR.
Let Q, = Qn(P) and Qo denote, respectively, the true finite sample joint
distribution of Ty, and a null distribution that satisfies joint null domination
Assumption jtNDT for the Hy-specific subvector of test statistics (T, (m) :
me Ho)

Scenario 1. If the functions {,, are continuous and mon-decreasing, then
joint null domination Assumption jtNDT for the original test statistics
(T(m) : m € Ho) implies joint null domination Assumption jtNDT for
the transformed test statistics (T.(m) : m € Ho). Hence, for one-sided
rejection regions of the form C(m) = (c(m),+o0) for the transformed
test statistics T (m), null domination Assumption NDV is satisfied by the
numbers of Type I errors VX and Vi{. If one further assumes that the Type
I error rate mapping © meets monotonicity Assumption MO and conti-
nuity Assumption CO at FV(f’ then null domination Assumption ND@O is
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satisfied by the Type I error rates ©(Fy¢) and O(Fyy). This means that

one-sided rejection regions for the transformed test statistics T may be
derived based on the null distribution Qg for the original test statistics T, .

Scenario 2. If joint null domination Assumption jtNDT holds with equality
for the original test statistics (T,,(m) : m € Ho), then it also holds with
equality for the transformed test statistics (T)5(m) : m € Hy), for any con-
tinuous functions {,,. Hence, for any type of rejection regions C(m) for
the transformed test statistics T'(m), null domination Assumption NDV
is satisfied with equality by the numbers of Type I errors V.t and V. If one
further assumes that the Type I error rate mapping © meets monotonicity
Assumption MO and continuity Assumption CO at Fvoe, then null domi-
nation Assumption NDO is satisfied with equality by the Type I error rates
Q(FVO’-’) and O(Fy.e). This means that any type of rejection regions for the
transformed test statistics T may be derived based on the null distribution
Qo for the original test statistics T, .

The proof of this proposition is straightforward and is therefore omitted.

An alternative and more general approach for obtaining rejection regions
for transformed test statistics 7)) would be to derive a null distribution Q}
directly for T, using the general constructions of Sections 2.3 and 2.4.

There is, however, a trade-off between generality and simplicity. For in-
stance, consider the test of single-parameter null hypotheses using ¢-statistics
T, (Section 2.6). For the null shift and scale-transformed approach of Sec-
tion 2.3, the null values are Ag(m) = 0 and 79(m) = 1 and the null distribu-
tion Qg for T, is an M-variate Gaussian distribution, with mean vector zero
and covariance matrix o* = X*(P) equal to the correlation matrix of the vec-
tor influence curve. For the transformed test statistics 7Y, the null shift and
scale values are no longer 0 and 1 and the null distribution Q§ is no longer
Gaussian.

2.5.2 Example: Absolute value transformation

A special case of interest is the absolute value function, £(z) = |z|, which corre-
sponds to symmetric two-sided rejection regions for the original test statistics
Tn(m): Cp(m;a) = (=00, —cp(m;a)) U (cn(m; ), +00), for an M-vector of
non-negative cut-offs ¢, (o) = (c,(m;a) :m=1,...,M) € IR™™ . That is, for
a MTP with nominal Type I error level «, the set of rejected null hypotheses
is given by

RNTy, Qo, ) = {m : T,(m) < —cp(m; @) or Tp,(m) > cp(m;a)} (2.31)
={m :|T,(m)| > cp(m;a)}.

Specifically, consider the two-sided test of single-parameter null hypothe-
ses Ho(m) = I(¢(m) =1o(m)) against alternative hypotheses Hi(m) =
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I((m) # 1o(m)), based on an M-vector of t-statistics, defined as in Sec-
tion 2.6 by

7, m) = i)

where 1,, is an asymptotically linear estimator of the parameter .
A similar argument as in the proof of Theorem 2.6 shows that

)

(To(m) : m € Ho) = Qo = N(0, 0%, )-

Hence, asymptotic joint null domination Assumption jtNDT is satisfied with
equality for the Ho-specific absolute t-statistics (|T5,(m)| : m € Hy) and
the null distribution Qg = N(0,c*) of Theorem 2.6. It follows from Proposi-
tion 2.5, Scenario 2, that asymptotic null domination Assumptions NDV and
ND@®, for the number of Type I errors and Type I error rate, are also satisfied
with equality for any type of rejection regions for |T},(m)|. Hence, as dictated
by the three-step road map of Procedure 2.1, one has

lim @(FVJL‘) = Q(FVOH) S @(FR ) S . (232)

[l
n— 00 0

Thus, multiple testing procedures based on absolute t-statistics |T;,(m)]
and any type of rejection regions C,,(m) = C(m; T}, Qo, @), derived under the
Gaussian null distribution Q¢ = N(0,¢*) of Theorem 2.6, do indeed provide
the desired Type I error control. The special cases of single-step common-
quantile Procedure 4.1 and common-cut-off Procedure 4.2 are discussed in
detail in Section 4.5.

Note that, for the absolute value function and two-sided rejection regions,
the stronger requirement of asymptotic equality of the test statistics true dis-
tribution @, 3, and null distribution Qg 3, is essential, as the weaker dom-
ination property would only guarantee Type I error control for one of the
tails.

2.5.3 Example: Null shift and scale and null quantile
transformations

The random M-vectors of null-transformed test statistics Z, and Zn (Equa-
tions (2.15) and (2.25)), defining the null distributions proposed in Sections 2.3
and 2.4, correspond, respectively, to the following transformations,

Lo.m(2) = von(m) (z — E[T,(m)]) + Ao(m) (2.33)
and 5
lo.m(2) = 4o, Qrm (2)-
The null shift and scale functions ¢ ,,, are continuous and non-decreasing.
For continuous marginal distributions @y, ., and qg ., the null quantile func-

tions Zo’m are also continuous and non-decreasing. Thus, Scenario 1 in Propo-
sition 2.5 applies to a broad range of testing problems.
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2.5.4 Bootstrap estimation of the null distribution for transformed
test statistics

Regarding the bootstrap estimation of rejection regions and adjusted p-values
for MTPs based on transformed test statistics 7, one could first use general
Procedure 2.3 or 2.4 (or a related procedure from Section 2.6 or 2.7) to de-
rive a matrix Z2 = (Zf (m, b)), of null-transformed bootstrap test statistics
ZB(m,b), based on the original test statistics 7},. The null distribution Qy,
for the original test statistics T;,, is estimated by the empirical distribution
Qon of the columns of matrix ZZ. An estimated null distribution Qf,,, for the
transformed test statistics T, is given by the empirical distribution of the
columns of the transformed matrix ¢(Z2) = (£,,(ZE (m,b))).

Using Qf,, to obtain rejection regions for the transformed test statistics
T leads to procedures that control the Type I error rate O(Fy¢) under the
two scenarios considered in Proposition 2.5. /

For instance, bootstrap versions of single-step common-quantile Proce-
dure 4.1 and common-cut-off Procedure 4.2 may be implemented as in Proce-
dures 4.20 and 4.21, respectively, using transformed test statistics 7/ and the
estimated null distribution Q§,,.

2.6 Testing single-parameter null hypotheses based
on t-statistics

2.6.1 Set-up and assumptions

In this section, we consider the one-sided test of M single-parameter null hy-
potheses Hyo(m) =1 (1(m) < 1pp(m)) against alternative hypotheses Hy(m) =
I(xp(m) > 1o(m)), where U(P) = = (¢(m) :m =1,..., M) is an M-vector
of real-valued parameters ¥ (P)(m) = ¢(m).

The null hypotheses can be tested using t-statistics, defined as in Sec-
tion 1.2.5 by

T, (m) = \/gw’ (2.34)
on(m)

where @(Pn) =, = (Yp(m) : m = 1,..., M) is an asymptotically linear
estimator of the parameter M-vector ¥(P) = v, with M-dimensional vector
influence curve (IC) IC(X|P) = (IC(X|P)(m):m =1,..., M), such that

Unlm) — 6(m) =+ S ICCGIPY(m) + 0p(1/vi),  (235)

and o2(m) are consistent estimators of the variances o%(m) = o(m,m) =

E[IC*(X|P)(m)], m = 1,...,M. Let Q, = Q,(P) denote the finite sample
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joint distribution of T),, under the true, unknown data generating distribu-
tion P. Large values of the t-statistic T, (m) are assumed to provide evi-
dence against the corresponding null hypothesis Hy(m) = I (¢¥(m) < ¢o(m)),
that is, tests are based on one-sided rejection regions of the form C,(m) =
(cn(m), +00).

Next, we propose a t-statistic-specific null distribution Qf that leads to as-
ymptotic control of Type I error rates ©(Fy,, ), defined as arbitrary parameters
of the distribution of the number of Type I errors V,,.

2.6.2 Test statistics null distribution

Theorem 2.6. [t-statistic-specific null distribution] Consider t-
statistics T, = (T(m) : m = 1,..., M), defined as in Equation (2.34),
and a test statistics null distribution QY = QL(P) = N(0, X*(P)), defined
as the M-variate Gaussian distribution with covariance matrixz o* = X*(P)
equal to the correlation matriz of the vector influence curve IC(X|P) of
Equation (2.35). Then, asymptotic null domination Assumption NDV, for
the number of Type I errors, is satisfied by the t-statistics T,, and the null
distribution QY. That is, for all ¢ = (c(m) : m = 1,...,M) € R™ and
x€{0,...,M},

liminf Prq, < Z I(T,,(m) > ¢(m)) < x)

n—oo
meHo

> Prge ( Z I(Z*(m) > c(m)) < :c) )

meHo

Thus, according to the three-step road map of Procedure 2.1, multiple testing
procedures based on t-statistics T, and the t-statistic-specific null distribution
Q} provide asymptotic control of general Type I error rates O(Fy,), for the
one-sided test of single-parameter null hypotheses Hyo(m) =T (¢p(m) < 1g(m))
against alternative hypotheses Hy(m) =1 (¢p(m) > o(m)).

Proof of Theorem 2.6. Let us verify asymptotic null domination Assump-
tion NDV for the t-statistics T}, of Equation (2.34) and the null distribution
Qf = N(0,0*). Firstly, note that the t-statistics T, (m) can be rewritten as

L) — yrnm) =) olm) () —wom)

on(m) on(m) o(m)
— Zt(m o(m) m

in terms of deterministic shifts, d,,(m) = v/n(y¥(m) —1o(m))/o(m), and stan-
dardized statistics, Z! (m) = /n(,(m) — ¥ (m))/o,(m). By Equation (2.35)
and the Central Limit Theorem (Theorem B.4), one has
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7L & 7' ~ QL(P) = N(0, *(P)), (2.37)

where o* = X*(P) = Cov|[Z!] is the correlation matrix of the M-vector influ-
ence curve IC(X|P). For m € Hy, d,,(m) <0, so that T},(m) < Z! (m). Thus,
from the Continuous Mapping Theorem (Theorem B.3) and Proposition B.2,

lim inf Pr ( Z I(T,,(m) > ¢(m)) < :c)

n— 00
meHo

> liminf Pr ( Z I(Z}(m) > c(m)) < 9:)

n—oo
meHo

= Pr ( Z 1(Z"(m) > c(m)) < 3:) ,

meHo

forall c = (c(m) :m=1,...,M) € RM™ and z € {0,..., M}.
O

The above theorem proposes a test statistics null distribution Qf derived
specifically in terms of the t-statistics T, of Equations (2.34) and (2.35). As
described below, it turns out that this null distribution Qf corresponds to the
general proposals Qo and Qg of Sections 2.3 and 2.4, respectively.

Comparison to null shift and scale-transformed null distribution

One can show, under mild regularity conditions, that the ¢-statistic-specific
null distribution Qf = N(0,0*) of Theorem 2.6 corresponds to the general
null shift and scale-transformed null distribution @y of Theorem 2.2, with
null values A\g(m) = 0 and 79(m) = 1.

To see this, consider the simple known variance case, where o,,(m) = o(m).
Then, E[T},] = d,, and Cov[T}] = Cor[T,] = o*. Hence, T,,(m) = Z!(m) +
E[T,,(m)]. In addition, for null values Ag(m) = 0 and m9(m) = 1, the M-vector
Zp, defining the general null distribution Qo in Theorem 2.2, reduces to Z°.
Hence, Qo = Qf = N(0,0*).

Comparison to null quantile-transformed null distribution

A similar equivalence result is provided for the null quantile-transformed null
distribution in Section 4.1 of van der Laan and Hubbard (2006). Specifically,
for standard normal marginal null distributions qg ., = @, it is argued that

the asymptotic null quantile-transformed null distribution QO is equal to the
t-statistic-specific null distribution Qf = N(0,0*) of Theorem 2.6. That is,

Zn = (071QA, (T(m)) :m =1,..., M) = Q.

n,m

Theorem 2 of van der Laan and Hubbard (2006) further shows that the boot-
strap estimator Qo,, of Procedure 2.4 converges weakly to QF.
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2.6.3 Estimation of the test statistics null distribution

One can exploit the specific form of the t-statistics defined in Equations (2.34)
and (2.35), to derive consistent estimators of the null distribution Qf =
N(0,0*) of Theorem 2.6.

First, consider the case where one knows the form of the M-vector in-
fluence curve, IC(X|P) = (IC(X|P)(m) : m = 1,..., M), for the estima-
tor v, = @(Pn) (e.g., tests for means, correlation coefficients, and regres-
sion coefficients, treated in Sections 2.6.4-2.6.6, below). Given an estimator
IC,(X)=IC(X)(m):m=1,...,M) of IC(X|P), one can obtain the fol-
lowing estimator of the M x M influence curve covariance matrix o = X (P),

on=S(P) = %fjfcmi)mi (X))- (2.38)
i=1

An estimator of Qf is then given by the M-variate Gaussian distribution
Q5. = N(0,0%), where o = 3*(P,) is the correlation matrix corresponding
to the estimated covariance matrix o,,.

When the influence curve is not readily available, o* = X*(P) can be
estimated with the bootstrap as follows. Given an estimator P of the true
data generating distribution P, let X# = {X* : i = 1,...,n} denote a
random sample of n IID copies of a random variable X# ~ P*. For each
bootstrap sample X7, with empirical distribution P#, compute the estima-
tor ¢p# = W(P#). A bootstrap estimator of the covariance (and correlation)
matrix o* = Covp[Z!] is given by the covariance (and correlation) matrix
o = Covp:[ZE#], of standardized bootstrap test statistics ZL# defined as
either

(¥F (m) — Ep: [0, 7 (m)])
Varp: [1, # (m)]

Sty — WEE) —vum)

Varp, [thn#(m)]

ZE# (m) = (2.39)

or

A parametric bootstrap estimator of the null distribution @ is then given by
Qf,, = N(0,0}); a non-parametric bootstrap estimator is also provided by the
joint distribution of the M-vector of standardized statistics Z:#.

Note that, when an estimator of the influence curve is available, using
the bootstrap to estimate ¢* does not necessarily pay off over direct estima-
tion based on the original sample &,,. When the correlation matrix is sparse,
shrinkage estimation methods may be beneficial.

Alternately, a consistent estimator of the null distribution Qf can be ob-
tained using general bootstrap Procedure 2.3, for the null shift and scale-
transformed null distribution, with null values Ag(m) = 0 and 79(m) = 1. Like-
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wise, one could apply general bootstrap Procedure 2.4, for the null quantile-
transformed null distribution, with standard normal marginal null distribu-
tions qo,m = P.

As mentioned in Section 2.3.2, above, one of the main advantages of a para-
metric estimator Qf,, = N(0,07) is that it is continuous and hence does not
suffer from the discreteness of non-parametric bootstrap estimators. Similar
issues arise for F-statistics, as discussed in Section 2.7, below.

2.6.4 Example: Tests for means

A familiar testing problem, that falls within our single-parameter hypothesis
testing framework, is that where X ~ P is a random J-vector and the param-
eter of interest is the mean vector of X, W(P)=v¢ = (¢¥(j):j=1,...,J) =
E[X], with elements 1(j) = ¥(P)(j) = E[X(j)]. The M = J null hypotheses,
Hy(m) = I(¥(m) < 1g(m)), then refer to individual elements of the mean
vector 1.

Given arandom sample X,, = {X; : i = 1,...,n}, from the data generating
distribution P, the test statistics T, (m) of Equation (2.34) are the usual one-
sample t-statistics, where ¥, (m) = ¥(P,)(m) = Xn(m) = >; Xi(m)/n and
o2(m) = >,(X;(m) — X,,(m))?/n are the empirical means and variances of
the M elements of X, respectively.

In this simple case, the elements of the M-vector influence curve are
IC(X|P)(m) = X(m) — ¥(m) and can be estimated by IC,(X)(m) =
X (m)—X,,(m). Thus, a consistent estimator of the test statistics null distribu-
tion Qf of Theorem 2.6 is the M-variate Gaussian distribution Qf,, = N(0,07),

where o = 2*(P,) is the M x M empirical correlation matrix Corp_ [X].

2.6.5 Example: Tests for correlation coefficients

Another common testing problem covered by Theorem 2.6 is that where the
parameter of interest is the J xJ correlation matrix for a random J-vector X ~
P, that is, (P) =« = (¥(4,5') : j, 7/ =1,...,J) = Cor[X], with elements
¥(j,7) =¥(P)(4,5") = Cor[X(j), X (57)]. Suppose one is interested in testing
the M = J(J—1)/2 null hypotheses that the J elements of X are uncorrelated,
that is, null hypotheses Hy(j,7) = 1(¥(4,7)=0), j = 1,...,.J — 1, j/ =
j4+1,..,J.

Commonly-used test statistics for this problem are T,, (7, 7') = v/n¥n (4, 5),
where ,,(7,5") = @(Pn)(j,j’) are the empirical correlation coefficients. As
discussed in Westfall and Young (1993, Example 2.2, p. 43), subset pivotal-
ity fails for this testing problem. To see this, consider the simple case where
J =3 (and M = 3) and assume that Hy(1,2) and Hp(1,3) are true, so that
¥(1,2) = ¢(1,3) = 0. Then, the joint distribution of (T},(1,2),T,(1,3)) is as-
ymptotically Gaussian, with mean vector zero, unit variances, and correlation
of 1(2,3), and thus depends on the truth or falsity of the third hypothesis
Hy(2,3). In other words, the covariance matrix of the vector influence curve
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for the empirical correlation coefficients differs under the true data generat-
ing distribution P and under a data generating null distribution Py for which
U(j,7") =0,V j # j'. Tests for correlation coefficients thus provide an example
where standard procedures based on subset pivotality fail, whereas procedures
based on the t-statistic-specific null distribution of Theorem 2.6 or the gen-
eral null distributions of Sections 2.3 and 2.4 achieve the desired Type I error
control (Pollard et al., 2005a; Pollard and van der Laan, 2004).

The influence curves for the empirical correlation coefficients 1, (7, ') can
be obtained by applying the Delta-method with the function

JEI)=vi) VAU ) = POV ) =20 (240
defined in terms of a 5 x 1 parameter column vector £(j,5’) = Z(P)(4,5') =
V(). 7", 5), (5" 57), (5, 3)] T, with elements 4(j) = I'(P)(j) =
EX(5)] and 7(j,5") = I'(P)(5,J") = EX(G)XG)], 4,4 = 1,...,J. Let
/(&) denote the 1 x 5 gradient row vector of f(£). Then,

Un(d,5) =, 57) = £1(80,5) (€a (4. 5") = €(5,5") + op(1/v/n),  (2.41)
where &,(j, §") = Z(Pa) (G, 5') = D (), ¥ ()s ¥ (G )5 Y (574 37)s 1 (3, 47)] T s

a 5 x 1 estimator column vector for £(j, '), based on the empirical moments.
Hence, the influence curve for the estimator 1, (j,j’) is

IC(XIP)(j.") = f' (€0, ))& (4, 5") = €(5,57)) (2.42)
. T
1555~ X() = 0)
1 () ;<(f",]j/)> —70) X(5") (")
= — — —19.g) X2(j) =2G,5) |
VoG, )V (') 12 g((jj’j])) X203 = (5, §)
’ "{jl’j/) X(H)X(G") =~

where covariances are denoted by o (7, 5") = v(4,7") — v()v(").

Section 8.4 examines the choice of a test statistics null distribution in
testing problems concerning correlation coefficients. Section 9.3 considers the
identification of co-expressed miRNAs based on tests for correlations coeffi-
cients.

2.6.6 Example: Tests for regression coefficients

Consider a random J = (M + 1)-vector X ~ P, from a data generating
distribution P, where (X(m) : m = 1,..., M) is an M-dimensional covari-
ate/genotype vector and Y = X (M + 1) is a univariate outcome/phenotype.
For instance, the covariates/genotypes could correspond to M microarray gene
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expression measures and the outcome/phenotype to a (censored) survival time
or a tumor class.

Assume the following model for the conditional expected value of the out-
come Y given individual covariates X (m),

EY[X(m)] = g(X(m);m) = h(ym(1) + ym(2)X(m)),  m=1,.... M,

where I, (P) = v = (Y (1), vm(2)) are regression coefficients for the mth
covariate X (m). The parameter of interest is the M-vector of slope parameters,
B(P) = = ($(m) = 1m(2) :m =1,..., M).

Given a random sample X,, = {X; : ¢ = 1,...,n}, from the data gener-
ating distribution P, one can estimate the regression parameters =, for each
covariate X (m) using the method of least squares, that is, by seeking ~,,
that minimizes the sum of squared residuals, Y, (Y; — g(X;(m);vm))?. The
least squares estimator, fm(Pn) = Ymn = (Ymn (1), Ym.n(2)), is obtained by
solving the following equation for =,

0= 5 D (% gt )
that is,
0= 3 (5 atitmin) ) (% = g(Xi(m)i)
Let IC,(X|P) = ICnh(X|P)(1),IC,(X]|P)(2)) denote the two-

dimensional vector influence curve for the least squares estimator v, , of
the regression parameters =, corresponding to covariate X (m). Under mild
regularity conditions (Lemma 2.1, p. 105, van der Laan and Robins (2003)),
one can show that

Ymun = Y = % > et (vm) ((%g(Xi(m)wO (Y; — g(Xi(m); vm))

i=1 T=Tm

+op(1/V), (2.44)

where, for a given v € IR?,

%(DQ(X(m)Q’Y) i 87621)9(X<m>37)

(

em(7) = B % (590X (m): 7))
m (%Q(X(m)VY)) (E)V?Q)g(X(m)w))z

x (%@)Q(X(m)wﬁ

From the above expression, the influence curves are
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I1C(X|P) = ¢ () (gichOn»wo) (¥ — g(X(m)imm)) . (2.45)

The M-dimensional vector influence curve for the least squares estimators
U(P,) = s = (Wn(m) =Ymn(2) :m=1,...,M), of the M slope parameters
¥, is

IC(X|P)=(IC,(X|P)22):m=1,...,M).

The covariance matrix of the vector influence curve IC(X|P) is
o =X(P)=E[IC(X|P)ICT(X|P)],
and can be estimated as in Equation (2.38), using the empirical covariance
matrix for an estimator IC,,(X) of the vector influence curve.
Linear regression

A common model for a continuous outcome Y € IR is the linear model, corre-
sponding to the identity function h(z) = z. That is,

E[Y|X(m)] = g(X(m); vm) = (1) + 1m(2) X (m). (2.46)

In this case, the influence curves for the least squares estimators 7y, ,, of the
regression coefficients ~,, are given by

L[ ELX3(m) —ELX(m)]][ 1
IC,,(X|P) = VarX(m)] | - E[X(m)] 1 } {X(m)} (2.47)
X (Y = (1) = Y (2)X (m)

Logistic regression

A common model for a binary outcome Y € {0,1} is the logistic model, corre-
sponding to the softmaz or inverse logit function h(z) = exp(z)/(1 + exp(z)).
That is,

exp(Ym (1) + 9m (2) X (m))

Pr(Y =1[X(m) = g(X(m): ) = [ o0t S SIS (248)

Here,
(ig(X(m); 7))

and the influence curves for the least squares estimators +,, , of the regres-
sion coefficients 7,, can be derived by substituting for dg(X(m);v)/0v in
Equation (2.45), above.

exp(Ym (1) + vm (2) X (m)) [ 1 :|
X )

(L4 exp (3 (1) + 7m(2)X (m)))% [ X (m)
(2.49)
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Section 8.3 examines the choice of a test statistics null distribution in
testing problems concerning regression coefficients in linear models where the
covariates and error terms are allowed to be dependent. Section 9.3 considers
tests for regression coefficients in logistic models relating cancer status to
miRNA expression measures and tissue type (Pollard et al., 2005a).

2.7 Testing multiple-parameter null hypotheses based
on F'-statistics

2.7.1 Set-up and assumptions

Consider random M-vectors X, = (Xi(m) : m =1,...,M) ~ Py, from K
different populations, with respective data generating distributions Py, k =
1,...,K. Let ’l/)k = W(Pk) = E[Xk} and O = E(Pk) = COV[Xk] denote,
respectively, the mean vector and covariance matrix for Population k. Denote
the elements of the covariance matrix o, by or(m, m’') = Cov|[Xy(m), X (m')]
and adopt the shorter notation o3 (m) = o1 (m, m) for the diagonal elements
of oy, i.e., the variances. Consider testing the M null hypotheses Hy(m) =

I(¢1(m) = 2(m) = -+ = P (m)), that the elements of the mean vectors are
constant across the K populations.
Suppose one observes a random sample Xy, = {Xp;:i=1,...,n,}, of

size ny, from Population k, k = 1,..., K% Let n = > i denote the total
sample size and 1y, ,, = ni/n the empirical frequency for Population k. Assume
that lim, 9y, = nx > 0,V k = 1,..., K. The null hypotheses can be tested
using F'-statistics,

1 K e % 2
= g ( Xk, (M) — X(m
T,.(m) = 71 2=t (X () (m) , m=1,...,M,

e e S (X (m) — X, ()2

(2.50)

where X ke = 2_; Xk,i/7 denotes the empirical mean vector for the sample
X n, from Population k& and X,, = > Men Xk, = 2op 2 Xk,i/n denotes
the empirical mean vector for the pooled sample of size n. Large values of the
F-statistic T, (m) are assumed to provide evidence against the corresponding
null hypothesis Hy(m) = I (¢1(m) = o(m) = --- = (m)), that is, tests are
based on one-sided rejection regions of the form C,(m) = (c,(m), +0).

Next, we propose an F-statistic-specific null distribution Qf that leads to
asymptotic control of Type I error rates ©(FYy, ), defined as arbitrary para-
meters of the distribution of the number of Type I errors V,.

4 N.B. With proper care, one could allow random sample sizes ny.
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2.7.2 Test statistics null distribution

Theorem 2.7. [F-statistic-specific null distribution] Consider F-
statistics T, = (T(m) : m = 1,..., M), defined as in Equation (2.50),
and a test statistics null distribution QY = Q¥ (Py,..., Px), defined as the
joint distribution of a random M -vector Z¥ = (Z¥(m) :m =1,...,M) of
quadratic forms
zF(m) = 11( (2.51)
(K = 1) >y meoi(m)

K

K K
X Z(l—nk VY2 (m ZZ Ve Y (m) Y (m) |

k=1

}
based on K independent Gaussian M-vectors Yy, = (Yp(m) :m=1,..., M) ~
N(0, 01). In matriz notation, the quadratic forms are defined by

ZF(m) =Y, Ap Yo, (2.52)

based on M dependent Gaussian K-vectors Yy, = (Ye(m) : k=1,... K) ~
N(0,5y,), with diagonal covariance matrices &, such that o, (k, k) = o3 (m),

and M symmetric K x K matrices A,, with elements
1 1-— fk =k
A (k) 1 U=me), k=K o 53)
(K = 1) 2oy meoi(m) \ =V, ik #k

Then, the F-statistics (T, (m) : m € Ho) for the true null hypotheses converge
weakly to the Ho-specific quadratic forms (Z¥(m) : m € Ho), that is,

(T(m) : m € Hy) % (ZF(m) :m € Ho) ~ Qf 5,

It follows that asymptotic null domination Assumption NDV, for the number
of Type I errors, is salisfied with equality by the F-statistics T, and the null
distribution Qf. That is, for all ¢ = (¢c(m) : m = 1,..., M) € R™™ and
x€{0,...,M},

nlirr;o Prg, ( Z I(T,,(m) > ¢(m)) < x)

meHo

= Prgr ( Z 1(Z"(m) > c(m)) < ac) .

meHo

Thus, according to the three-step road map of Procedure 2.1, multiple testing
procedures based on F-statistics T,, and the F-statistic-specific null distribu-
tion QF provide asymptotic control of general Type I error rates O(Fy.,),
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for the test of multiple-parameter null hypotheses of the form Hy(m) =
L(¢1(m) = ¢po(m) = -+ =k (m)).

Furthermore, the quadratic forms Z¥ (m) have means and variances given,
respectively, by

E[Z" (m)] = T —1)Ek T ; 1—np)oz(m) (2.54)

and

2
(K — 12Xy mod(m))?

Var[ZF (m)] =

K K 2
X (Z(l - 2771@)0;3(771)) + (Zm@%("ﬂ)

k=1 k=1
In th jal tant j lati j 2 =
n € special case of consiant variances across poputations, 1i.e€., O'k m

o?(m), then E[ZF(m)] = 1, Var[ZF(m)] = 2/(K — 1), and the quadratic
forms have marginal x*-distributions with (K — 1) degrees of freedom, that is,

(K —1)ZF(m) ~ x*(K —1). (2.55)

Proof of Theorem 2.7. Firstly, note that the denominators of the F-
statistics can be rewritten as

Dy (m) = (2.56)
where the empirical frequencies 7, = ni/n converge to the population
frequencies 7, and the empirical variances o}, (m) = > . (Xpi(m) —
Xpony (m))?/ny are consistent estimators of the population variances o2 (m),
ie, ngn — nr >0 and szk (m) il o3(m), k=1,...,K. Thus, as n — oo,

- K
D,(m) = D(m) = ana,%(m). (2.57)
k=1

The numerators of the F-statistics can be rewritten as quadratic forms
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2
<Yk nk( —VMkn Z VI, nY g nk/( )) (258)

LK
Np(m) = -1 >
k= k=1

K K
—2 (Z mkank (m)> (Z vV 7Ik/,nYk/,nk/ (m)>

K

k=1

K K
- Z Z vV nk,nnk’,nYk,nk (m)Yk’,nk/ (m) ,

k=1k/=1
kK

where Yy, = (Yin,(m) : m = 1,...,M) are K independent M-vectors
defined by Y n, (m) = /1g(Xpn,(m) —(m)) and Y(m) = Y, neor(m),
k=1,..., K.

Thus, asymptotically, one can approximate the F-statistics T;, = (T,,(m) :
m = 1,...,M) by a random M-vector ZI = (ZF(m) : m = 1,..., M) of
quadratic forms, as follows,

(2.59)

K K K
< | Y (L= m) Y, (m ZZ Ve Ve, () Yir iy, ()

gt
= zF(m).

n

That is, the mth element ZI'(m) of the random M-vector ZI is a simple
quadratic function f,,(Y1,n,,..., Yk ng) of the mth elements Yy, (m) of the



2.7 Testing multiple-parameter null hypotheses based on F-statistics 91

K random M-vectors Yy, ,,, k =1,..., K. The M-vector ZF may be expressed
as Zf =fMins o Yeng) = (fnYings o Yng) m=1,....M).
By the Central Limit Theorem (Theorem B.4),

(Y, (m) : m € Ho) A (Yi(m) : m € Ho),

for independent Gaussian M-vectors Y, = (Yip(m) : m = 1,..., M) ~
N(0,0%), k =1,..., K. By the Continuous Mapping Theorem (Theorem B.3),
it then follows that

(T,(m) : m € Hy) A (ZF(m) :m € Hg) ~ inHo,

where ZI' = f(Y1,...,Yk) is the random M-vector of quadratic forms with
joint distribution QF', defined as in Equations (2.51)—(2.53).

Hence, asymptotic null domination Assumption NDV, for the number of
Type I errors, is satisfied with equality by the F-statistics T, and the null
distribution QF'.

Note that the F-statistics (T;,(m) : m € Hy) for the false null hypothe-
ses have infinite limits. Indeed, for m € Hy, Yy, (m) = \/ﬁ(X'knk (m) —
i (m)) + /nk(Yr(m) — (m)) converges to either 400 or —oco for some k,
hence lim,, T,,(m) = +o0.

The moments of Z¥ (m) are obtained from standard results on quadratic
forms (Theorem 1, p. 55, and Corollary 1.3, p. 57, Searle (1971)). In the spe-
cial case of constant variances across populations, i.e., Diag(or) = (0?(m) :
m =1,..., M), the matrices (K — 1)A,, Cov[Y,,] are idempotent; hence, the
quadratic forms (K — 1)Z¥ (m) have marginal x?(K — 1)-distributions (The-
orem 2, p. 57, Searle (1971)).

O

The above theorem proposes a test statistics null distribution Q" derived
specifically in terms of the F-statistics T}, of Equation (2.50). This null distri-
bution is the joint distribution of an M-vector of quadratic forms of Gaussian
random variables and is entirely specified by the population covariance ma-
trices oy, and frequencies ny (via the matrices A,, and the random M-vectors
Yi ~ N(0,0y), defining the quadratic forms Z" in Equations (2.51)—(2.53)).
Although properties of the marginal distributions of the F-statistics follow
from standard univariate results on quadratic forms, Theorem 2.7 provides
as a main contribution a joint null distribution QF that takes into account
the dependence structure of these test statistics. Specifically, the dependence
structure of the null distribution QF is implied by the dependence structure
of the data generating distributions Py, as indicated by the presence of the
covariance matrices oy, in the definition of the quadratic forms Z%.

Note that the F-statistics (T}, (m) : m € Hyp) for the true null hypotheses
converge weakly to the Hy-specific joint null distribution Qéi 7, Asymptotic
joint null domination Assumption jtNDT for the test statistics (T),(m) : m €
Hy) is therefore satisfied with equality. In contrast, the F-statistics (T),(m) :
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m € Hy) for the false null hypotheses have infinite limits, i.e., lim, T, (m) =
400, for m € H;. Key Assumption NDV of asymptotic null domination for
the number of Type I errors is nonetheless satisfied, as it only concerns the
test statistics (T),(m) : m € Hy) corresponding to the true null hypotheses.
In other words, neither convergence to nor the weaker domination by Qf is
needed for the false null hypotheses.

Gaussian data generating distributions with constant variances
across populations

In the special case of Gaussian data generating distributions Py = N(¢y, o),
with constant variances across populations, i.e., Diag(oy) = (02(m) : m =
1,..., M), the test statistics T, have marginal non-central F-distributions
(Section 2.4, Searle (1971)). Specifically, T;,(m) ~ F(v1, v, vy (m)), where the
degrees of freedom are vy = (K — 1) and v5 = (n — K) and the non-centrality
parameter is

0alm) = s S mel(m) = ) Bm) = S metam). (260)
k=1

=1

=

For the true null hypotheses (i.e., for m € Hy), v,(m) = 0. For the false
null hypotheses (i.e., for m € H;) and non-local alternative mean parameters
Yr(m), lim,, v,(m) = +oo. In addition, lim,, vs = +o0.

The means and variances of the F-statistics are given by, respectively,

= e - (L e e
and
Var[T,, (m)] = 203 (V7 + (20, (m) + va — 2)v1 + v, (M) (v, (M) + 209 — 4))

vi(vg —4) (v — 2)2

B {2/(K —1), ifmeH

. . (2.62)
+00, if m e H,

Furthermore, the F-statistics T},(m) have asymptotic marginal non-central
x2-distributions, with (K —1) degrees of freedom and non-centrality parameter
vp(m). That is,

(K — 1)T,(m) 2 x2(K — 1,v(m)). (2.63)
Comparison to null shift and scale-transformed null distribution

Instead of the F-statistic-specific null distribution Qf proposed in Theo-
rem 2.7, one could apply the general construction of Theorem 2.2, whereby
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the null distribution @ is defined as the asymptotic distribution of the M-
vector Z, = (Zp(m) :m =1,..., M) of null shift and scale-transformed test
statistics,

Zn(m) = \/mm {1, \/[7(“%} (T, (m) — E[Ta(m)]) + Ao(m).

For F-statistics, the null values A\g(m) and 79(m) are based on, respectively,
the means and variances of the quadratic forms Z¥ (Equation (2.54)). In
the special case of constant variances across populations, i.e., Diag(oy) =
(6%(m) : m = 1,..., M), the null values do not depend on the unknown
data generating distributions Py and are given by Ao(m) = 1 and 79(m) =
2/(K — 1). Otherwise, one needs to estimate the population frequencies 7y,
and variances o} (m) in order to use Equation (2.54).

Note that, in the construction of Z,(m), it is important to scale the
test statistics 7),(m) by vo.(m) = y/min {1, 70(m)/ Var[T,,(m)]}, as these
F-statistics converge to infinity for non-local alternative hypotheses. Without
this scaling, one could have asymptotically infinite test statistic cut-offs and
hence no power against the alternative hypotheses.

The F-statistic-specific null distribution Q" of Theorem 2.7 and the gen-
eral null distribution @y of Theorem 2.2 are the same for the true null hy-
potheses (m € Hp), but may differ for the false null hypotheses (m € Hy).
Thus, in choosing between Q{" and Qo, the main issue is power.

Comparison to null quantile-transformed null distribution

Section 4.2 of van der Laan and Hubbard (2006) addresses a similar testing
problem using the new null quantile-transformed null distribution introduced
in Section 2.4. Specifically, for y?-statistics T}, and marginal null distributions
qo,m = X*(K — 1), Theorem 3 proves that the null quantile-transformed test
statistics (Z,(m) : m € Hp) for the true null hypotheses converge weakly
to the Hy-specific subdistribution inm, of a joint null distribution QY with
marginal x?(K —1)-distributions. Theorem 3 further provides conditions under
which estimators of Qf lead to proper Type I error control.

As previously discussed, the ability to control marginal null distributions
should confer greater power to this new approach.

2.7.3 Estimation of the test statistics null distribution

A consistent estimator Qg,, of the general null shift and scale-transformed
null distribution Q)¢ of Theorem 2.2, can be obtained using bootstrap Pro-
cedure 2.3, with null values A\g(m) and 79(m) defined as in Equation (2.54).
In the special case of constant variances across populations, the null values
are A\o(m) =1 and 79(m) = 2/(K — 1). Otherwise, one needs to estimate the
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null values, as they depend on the unknown population frequencies 7 and
variances o7 (m).

Estimation approaches for the general null quantile-transformed null dis-
tribution of Section 2.4 are discussed in Section 4.2 of van der Laan and
Hubbard (2006).

Alternately, one can exploit properties of F-statistics to derive a consistent
estimator QF, of the F-statistic-specific null distribution QZ of Theorem 2.7.
Recall that this null distribution is the joint distribution of an M-vector of
quadratic forms of Gaussian random variables and is entirely specified by
the population covariance matrices oy, and frequencies 7, (Equations (2.51)—
(2.53)). The main task is therefore to derive estimators oy, ,, and 7y, of these
population covariance matrices and frequencies, based on the K random sam-
ples Xgp, = {Xpi:i=1,...,n5}, k = 1,..., K. The null distribution Q¥
may then simply be estimated by the joint distribution QF, of an M-vector of
quadratic forms, defined using the empirical analogues of Equations (2.51)—
(2.53), in terms of independent Gaussian M-vectors Yy, ~ N(0, 0 ,,). Unlike
the general non-parametric bootstrap estimator of Procedure 2.3, for the null
distribution Qg of Theorem 2.2, this F-statistic-specific estimator has the ad-
vantage of being continuous.

Finally, another F-statistic-specific approach involves bootstrapping the
centered observations Xy, ; — X k., and estimating the null distribution Q(If by
the bootstrap distribution of the corresponding F-statistics. In this method,
the estimated null distribution of the test statistics is based on a data gener-
ating null distribution.

The last two approaches both provide consistent estimators of the
F-statistic-specific null distribution Qf of Theorem 2.7.

2.8 Weak and strong Type I error control and subset
pivotality

As mentioned in Section 2.2.4, the multiple testing methodology developed in
this book differs in a number of fundamental aspects from existing approaches
to Type I error control and the choice of a test statistics null distribution. Our
proposed multiple testing procedures are: (i) only concerned with controlling
the Type I error rate under the true data generating distribution P, i.e., under
the joint distribution @, = @, (P) of the test statistics T,, implied by P; (ii)
based on a test statistics null distribution rather than a data generating null
distribution.

In this regard, one of our main contributions is the general characteriza-
tion (Section 2.2.3) and explicit construction (Sections 2.3 and 2.4) of proper
null distributions Qo (and estimators thereof, Qo) for the test statistics T,.
Procedures based on the proposed null distributions provide Type I error
control for general data generating distributions (with arbitrary dependence
structures among variables), null hypotheses, and test statistics.
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In our framework, the notions of weak and strong control of a Type I error
rate become irrelevant and Type I error control does not involve associated
restrictive assumptions such as subset pivotality. The present section attempts
nonetheless to formalize these concepts and discusses how they relate to the
approach introduced in Section 2.2.

2.8.1 Weak and strong control of a Type I error rate
Usual definitions of weak and strong Type I error control

As discussed in Hochberg and Tamhane (1987, p. 3) and Westfall and Young
(1993, p. 9-10), the multiple testing literature commonly distinguishes be-
tween weak and strong control of a Type I error rate.

Weak control refers to control of the Type I error rate under a data gen-
erating distribution Py that satisfies the complete null hypothesis, H§ =
[IY_, Ho(m) = TIY_, 1(P € M(m)) =1 (P € N¥_, M(m)), that all M null
hypotheses are true, i.e., under a distribution P, that belongs to the intersec-
tion NM_, M(m) of all M submodels.

In contrast, strong control, as defined in Westfall and Young (1993),
considers all 2M possible subsets of null hypotheses, Jo C {1,..., M}, and
refers to control of the Type I error rate under each of 2™ distributions
Pg, € Npeg,M(m) that satisfy subsets of null hypotheses Jy. In particu-
lar, strong control implies weak control for Jo = {1,..., M}.

As detailed below, the definitions of weak and strong control implicitly as-
sume the existence of a mapping Jy — Py, , from subsets Jy of null hypotheses
to data generating distributions Py, € Ny,egz, M(m) that satisfy each of the
null hypotheses in Jj.

It is important to recognize that, although strong control does consider the
subset Ho = Ho(P) of true null hypotheses corresponding to the true data
generating distribution P, Type I error control under P is not guaranteed by
strong control, unless the mapping Jy — Py, results in Py, = P.

Defining a data generating distribution that satisfies a given
subset of null hypotheses

In much of the multiple testing literature, Type I error rates are defined loosely
in terms of probabilities given subsets of null hypotheses, rather than proba-
bilities under distributions that satisfy subsets of null hypotheses, i.e., under
distributions that belong to intersections of submodels. For example, Westfall
and Young (1993, p. 9) refer to the FWEP as the family-wise error rate “com-
puted under the partial null hypothesis (meaning that some subcollection of
nulls, say Hj,,...,Hj,, is true)” and provide the following definition in their
Equation (1.2),

FWEP = Pr(Reject at least one H;, i = ji,..., ji|H;

.-, Hj, are true).
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As discussed in Dudoit et al. (2004b) and Pollard and van der Laan (2004),
such a quantity is not well-defined, because Type I error rates are parameters
of a distribution for the number of Type I errors (and possibly the number
of rejected hypotheses, as for the FDR) and can only be defined meaningfully
with respect to such a distribution (Section 1.2.9). A more precise definition
would be that FWEP is the family-wise error rate under a data generating
distribution Py, that satisfies a certain subset Jy = {j1,...,J+} of null hy-
potheses, i.e., defined such that Py, € Nyeq, M(m).

This immediately raises the issue of how to map from a subset Jy of null
hypotheses to a well-defined data generating distribution Py, € Ny,eq, M(m).
Except in very simple situations (e.g., null hypotheses concerning the mean
vector of a multivariate Gaussian data generating distribution), each subset
Jo of null hypotheses corresponds to a family of possible distributions. One
approach is to define the distribution Py, as a projection of the true data gen-
erating distribution P onto the submodel Ny,e 7, M(m), selecting, for exam-
ple, the distribution Py, € Nye7,M(m) with the smallest Kullback-Leibler
divergence with P. That is,

Pgy = Hkr(P| Nmeg, M(m)) (2.64)

dP'(z
= argmaXpicn, o M(m) /log ( du((x))> dP(z),

for a dominating measure pu. Another possibility is to select the distribution
Py, on the conservative boundary of the submodel Ny, e 7, M(m). The reader
is referred to Pollard and van der Laan (2004) for a discussion of multivari-
ate data generating null distributions and proposals for specifying such joint
distributions based on projections of the true data generating distribution P
onto submodels satisfying subsets of null hypotheses.

However, as discussed by these authors, in many testing problems of in-
terest, one simply cannot identify a data generating null distribution P, €
NM_, M(m) that provides proper control of the Type I error rate under the
true data generating distribution P. That is, in many cases, the assumed
null distribution Q. 1, (FPo) and the true distribution Qn 1, (P) of the Ho-
specific subvector (T,,(m) : m € Hy) of test statistics have different limits and
thus violate null domination Assumption ND@ for the Type I error rate, i.e.,
lim,, ©(Fy,) > O(Fy,) = «. Instead, for the test of single-parameter null hy-
potheses using ¢-statistics (Section 2.6), Pollard and van der Laan (2004) rec-
ommend using a test statistics null distribution such as the Kullback-Leibler
projection of @, = @Q,(P) onto the space of multivariate Gaussian distribu-
tions with mean vector zero. The projection null distribution corresponds to
the null distribution Q4(P) = N(0, ¥*(P)) proposed in Theorem 2.6.

Revised definitions of weak and strong Type I error control

As usual, consider the simultaneous test of M null hypotheses Hy(m), m =
1,..., M, based on test statistics T, = (T,(m) : m = 1,..., M), with true
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finite sample joint distribution @, = Q,(P) and null distribution Qq. Let
Cn(m) = C(m; Ty, Qo,x), m = 1,...,M, and R,, = R(T,,Qo,«) denote,
respectively, the M rejection regions and corresponding set of rejected null
hypotheses, for a MTP with nominal Type I error level «. That is,

R(Tnana) = {m : Tn(m) € C(m;Tnmea)} .

Given a subset of null hypotheses 7y C {1,..., M}, define a data gen-
erating distribution Py, € Ny,eq,M(m) and let @, (P7,) denote the corre-
sponding joint distribution for the test statistics 7;,. Following the notation
introduced in Equations (2.2) and (2.3), denote the numbers of rejected hy-
potheses and Type I errors by

M
R.(J) = R(CalQn(P7,)) = > T(Tu(m) € Cp(m)) (2.65)
and
Va(J0) = V(CalQu(Pz)) = Y T(Tu(m) € Cu(m)),

meJo

respectively, under the assumption that T;, ~ @, (Pz,).
Strong control of a Type I error rate at level « requires that

O(F < finit le st trol
jogr{ri?iM} (Fv,(70),Ra (7)) < @ [finite sample strong control]
(2.66)
limsup  max  O(Fy,(7,).R.(J) < @ [asymptotic strong control].

n—oo jﬂg{177M}

Thus, strong control involves considering 2M distributions Pz, each cor-
responding to a subset Jy of null hypotheses. Note also that this definition of
strong control is completely dependent upon the choice of mapping Jy — P,.

Weak control corresponds to Jo = {1,..., M} and Py = Py, )

Type I error control under the true data generating distribution P does not
necessarily follow from strong control, unless the mapping Jy — Py, results
in Py, = P for Jy = Ho. In other words, control under the true P could fail
under strong control when an improper mapping is used to define Py, .

In contrast, as discussed in Section 2.2, the methodology proposed in this
book is only concerned with Type I error control under the true data generat-
ing distribution P. That is, we only require that Equation (2.66) hold in the
special case where Jy = Ho and Py, = P.

2.8.2 Subset pivotality

In practice, it is not feasible to consider all 2™ possible subsets of null hy-
potheses and commonly-used single-step and stepwise multiple testing proce-
dures are typically based on cut-offs derived under a data generating distribu-
tion Py that satisfies the complete null hypothesis H§ = H%zl Hy(m), ie.,
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Py € NM_, M(m). Strong control of a Type I error rate, and in particular
control under the true data generating distribution P, are then claimed to
follow from weak control under conditions such as subset pivotality.

As stated in Condition 2.1, p. 42, in Westfall and Young (1993), “The
distribution of P has the subset pivotality property if the joint distribution of
the subvector {P; : ¢ € K} is identical under the restrictions N;ecx Ho; and
HE', for all subsets K = {i1,...,4;} of true null hypotheses”. In our notation,
K is a subset Jp C {1,..., M} of null hypotheses and P refers to the vector
(Pon(m):m=1,..., M) of unadjusted p-values (Section 1.2.12).

As for the definitions of weak and strong control, subset pivotality implic-
itly assumes the existence of a mapping Jy — Py,, from subsets Jy of null
hypotheses to data generating distributions Pz, € Ny,c7,M(m) that satisfy
each of the null hypotheses in Jy. A (finite sample) subset pivotality condition
for test statistics can then be stated as

Qn,jo(Pjo) :Qn,Jo(Po)v VI C {17"'7M}7 (267)

in terms of distributions Py, corresponding to subsets Jy of null hypotheses
and where Py = Ppy, -

Note that the subset pivotality condition considers all 2" possible subsets
of null hypotheses, and not simply the subset Jy = Ho(P) corresponding to
the true data generating distribution P. In this sense, and provided Py, = P,
the assumption is stronger than needed, because it is only of interest to control
Type 1 error rates under the true P, that is, the only relevant condition is
Qn. 1o (P) = Qnw,y(Po) for Jy = Ho. In general, however, subset pivotality
does not guarantee control under the true P, if an improper mapping Jy —
Py, is used and Py, # P.

Finally, as discussed in Section 2.2.4, the subset pivotality assumption in
Equation (2.67) differs from our (finite sample) joint null domination Assump-
tion jtNDT which: (i) only considers the subset Jy = Ho; (ii) does not require
the test statistics null distribution Qg or Qo to be defined in terms of a data
generating null distribution Py, i.e., Qon = Qn(Fo); (iii) does not require
equality of the true and null test statistics distributions, but the weaker null
domination, i.e., Qpn 1, (P) > Qn 1, (Fo)-

2.9 Test statistics null distributions based on bootstrap
and permutation data generating distributions

Permutation procedures are widely-used in multiple testing to obtain data
generating null distributions Py and corresponding test statistics null distrib-
utions @y, (FPp) (Westfall and Young, 1993). This section builds on Pollard and
van der Laan (2004) and compares bootstrap- and permutation-based test
statistics null distributions.
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2.9.1 The two-sample test of means problem

Consider a two-sample test of means problem, with data structure (X,Y) ~
P e M, where X = (X(m) : m = 1,..., M) is a random M-vector and
Y € {1,2} a binary population label. For Population k, k = 1, 2, let n; =
Pr(Y = k) denote the population frequency, let Px);, denote the conditional
data generating distribution of X given Y =k (i.e., X|Y =k ~ Px\;), and
let ¢, = (Yp(m) : m =1,....M) = E[X|Y = k] and o, = Cov[X|Y = k]
denote, respectively, the conditional M-dimensional mean vector and M x M
covariance matrix of X. Consider testing the following M null hypotheses
concerning the differences 1)(m) = 11 (m) — ¥(m) in conditional means,

Ho(m) =1(p(m) =0), m=1,...,M. (2.68)

Suppose one has a random sample XY, = {(X;,Y;) :i =1,...,n}, of n
IID copies of the pair (X,Y) ~ P € M. Denote the (random) sample size for
Population &k by ni = >, I(Y; = k) and estimate the conditional mean vector
1y, by the corresponding empirical mean vector vy ,, = X k,ny» With elements
Yk (M) = Xponp (M) =32, 1(Y; = k) X;(m)/ny. The null hypotheses can be
tested using (unstandardized) difference statistics,

Dp(m) = Vn(¥a,n, (M) =11, (m)) (2.69)
" 1Y =2)X:(m) 1Y, =1)X;(m
-y (MEDXl) IO DXONY o

Consider the following two models, M and M_ C M, corresponding,
respectively, to general non-parametric and location-shifted conditional data
generating distributions Py, and Px/s.

Non-parametric model, M. For the non-parametric model (X,Y) ~ P €
M, XY =1~ Pxjp and X|Y = 2 ~ Pxp, where Px|; and Py, are
arbitrary conditional data generating distributions for Populations 1 and
2, respectively.

Location shift model, M_. For the location shift model (X,Y) ~ P €
Mo, XY =1~ Pxjp = Px(- —¢1) and X[Y =2 ~ Py = Px(- — 2),
where Px is a common M-dimensional distribution with mean vector zero.
That is, Px|, and Px|s are identical except for a location shift.

The implications of each model are investigated in terms of the choice
of an appropriate null distribution for the test statistics D,,. Model M_ C
M makes the strong assumption that, under the complete null hypothesis
HS = H%:l Hy(m) = 1(¢1 = 19), the random vector X has the same con-
ditional distribution in the two populations (Px|; = Px|2), that is, X and
Y are independent. If one were testing the null hypothesis I(PX|1 = PX|2)
that the conditional data generating distributions are identical for the two
populations, then M_ would clearly be a good choice of model from which to
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select a data generating null distribution. However, model M_ may be a poor
choice for testing the null hypotheses in Equation (2.68), which only concern
differences in means between the two populations and allow, in particular,
different covariance structures o in each population.

2.9.2 Distribution of the test statistics under two different data
generating distributions

By the Central Limit Theorem (Theorem B.4), the difference statistics D,,
have a Gaussian asymptotic distribution. This distribution is fully specified
by its mean vector (with elements equal to zero for the true null hypotheses)
and its covariance matrix. In what follows, we therefore focus on properties
and estimation of the covariance matrix of the test statistics.

For simplicity, and without loss of generality, consider only M = 2 null
hypotheses, i.e., a bivariate random vector X.

Proposition 2.8, below, provides asymptotic variances and covariances for

the difference statistics D,, under two different data generating distributions
for (X,Y).

Proposition 2.8. [Asymptotic variances and covariances of difference
statistics for two-sample test of means, under two different data
generating distributions] Consider a data structure (X,Y) ~ P € M,
where X = (X(1),X(2)) is a bivariate random vector and Y € {1,2} is a
binary population label, with my, = Pr(Y = k), k = 1, 2. Let Px\, denote a
bivariate distribution, with mean vector vy = [¢x(1),v1(2)]T and covariance
matriz o, = (ox(m,m’) : m, m' = 1,2), k = 1, 2. Specifically, consider the
following two data generating distributions for (X,Y).
Non-parametric data generating distribution, P. For (X,Y) ~ P, the
conditional distribution of X givenY =k is Px\y, that is, X|Y =k ~ Px,
k=1, 2.
Independence data generating distribution, P,. For (X,Y) ~ P, X
and Y are independent and X has the mizture distribution X ~ niPxp +
n2Px|2-

Then, for a random sample XY, = {(X;,Y;) : i = 1,...,n}, of n IID
copies of the pair (X,Y) ~ P, the asymptotic covariance matrixz of the differ-
ence statistics D,, = (Dy,(1), D (2)) of Equation (2.69) is given by

¢ = lim Covp[D,]| =

n—oo

(2.70)

o1(1,1) + o2(1,1) o01(1,2) + o2(1,2)
0'1?11,2) + 0'2?12,2) (71?21,2) + (72?22,2) '
m 2 1 72
For (X,Y) ~ Py,

0’1(1,1) + 0’2(1,1) 0’1(1,2) + 0’2(1,2)

<o = lim Covp [Dn] =1 5,82 | 0ulle) o1B2) | (32 [+ (271
n—o + +
72 M 72 m
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It is interesting to note that the asymptotic covariance matrices ¢ and ¢
of the difference statistics D,, are identical, except for the roles of population
frequencies 77 and 7y being reversed.

The expressions for ¢ and ¢, illustrate that, for most values of the para-
meters o and 7, kK = 1, 2, the difference statistics have different asymptotic
distributions for data generating distributions P and P, . If, however, either
(i) m = 19 or (ii) o1 = o9, then the asymptotic distributions are the same for
both scenarios, i.e., ¢ =¢;.

As discussed below, the bootstrap estimator of the distribution of the test
statistics D,, converges to the asymptotic distribution of D,, under P, while
the permutation estimator of the distribution of D,, converges to the asymp-
totic distribution of D,, under P,. Thus, under the reduced location shift
model M_, for which o7 = 02, a permutation data generating distribution
yields a sensible test statistics null distribution.

It is somewhat surprising that, even when the data generating distribution
P is not an element of the reduced model M_ (e.g., o1 # 02), one still has
¢ =gy when 1 = n2. Thus, in the case of equal population frequencies (i.e.,
7 = 1)2), permutation distributions, corresponding to the independence data
generating distribution P, , yield valid test statistics null distributions.

In summary, Proposition 2.8 suggests that, unless either (i) 7 = 12 or (ii)
01 = 09, one should use the bootstrap (rather than permutation) to estimate
the null distribution of the test statistics D,,, since the bootstrap preserves the
covariance structure ¢ of these test statistics. However, for equal population
frequencies (i.e., 1 = 12) or covariance structures (i.e., o1 = o9, as in model
M_), one could use permutation estimators, because the asymptotic covari-
ance matrix of the test statistics D,, is the same for both data generating
distributions P and P, (i.e., ¢ = ¢, ). Furthermore, permutation estimators of
the covariance matrix tend to be more efficient than non-parametric bootstrap
estimators, because they correspond to a smaller model and make use of all
n observations (Pollard and van der Laan, 2004).

Similar conclusions apply to the usual (standardized) two-sample Welch
t-statistics,

_ ¢2,n2 (m) — wl,m (m)
= \/"inl(m) N ag’nz(m)

ni n2

Tn(m) : (2.72)

where ny, Yg.n, (m), and O']%mk (m) denote, respectively, the sample size, em-
pirical means, and empirical variances, for Population k, k = 1, 2.

Proof of Proposition 2.8. The derivations of variances and covariances
for the difference statistics D,, = (D,(1), D,(2)) are similar for the two
data generating distributions P and P; and make use of the Double
Expectation Theorem. For simplicity, and without loss of generality, as-
sume that both null hypotheses Hy(1) and Hy(2) are true and that the
mean vectors for Px|; and Px|o are zero, i.e., 9y = 9 = [0,0]T. Then,
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E[D,] = [0,0]T and Cov[D,] = E[D,,D,] under both distributions P and
P . Let Y, ={Y;:i=1,...,n}.

Variances. First, derive the asymptotic variances of the difference statistics
Dy, (m).

lim Var[D,, (m)] = lim E[D?(m)]

= lim nE -E <z:; (I(Yi Zsin(m) RE Ziin(m))>2 ”
= Jim B :E i (1(1@ :2 Xi(m) _ 1(¥i Z;sz(m)y yn']
= lim nE | B i <I(Yl _i%Xf(m) L1 _:z)%XE(m)>‘y"-]
= fm nk zf; <_I (Yi = 2)E[2(%2(m)|16 =2 _
+1(1€:1>E[§<m>m - 1})]

BIX2(m)|Y =2] | B[X*(m)|Y =1]

12 m

The third equality follows by noting that the (X;,Y;) are independent,
with E[X;(m)|Y; = k] = 0, m = 1,2, k = 1,2; the fourth from
I(Y; =1)I(Y; =2) = 0; the sixth from the fact that the (X;,Y;) are identi-
cally distributed; and the seventh from lim,, ng/n = n; a.s., k =1, 2.

When (X,Y) ~ P,

E[X2(m)[Y =1] E[X?(m)|Y =2
lim Var[D,(m)] = (X (m)] ] + [X=(m)| ]
n—o0 771 772
_ oi(m,m) n oa(m, m)’ mel 2.
m M2

Similarly, when (X,Y) ~ P, the asymptotic variance of the difference
statistic D,,(m) is as follows.
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lim Var[D,,(m)] = EXZ(m)Y = 1] + E[X?(m)|Y =2]

_ BX3m)] | ELX(m)
m 72
1 1
= () mostmm) + moa(m, )
m 72
_ o1(m,m) +02(m,m)’ m=1,9
12 m

The second and third equalities follow by noting that X and Y are inde-
pendent, with X having the mixture distribution X ~ 01 Px1 + 12Px)2,
so that Var[X(m)] = E[X?(m)] = E[X?(m)|]Y = 1] = E[X?*(m)]Y = 2] =
moi(m,m) +naoa(m,m), m =1, 2.

Covariances. Now consider the asymptotic covariance between the difference
statistics Dy, (1) and D,,(2).

lim Cov[D, (1), D,(2)] = nh_)rrolo E[D,(1)D,(2)]

~ lim nE [E S <I<K- :nz) Xi(1) (Y= 1)XZ-(1))
i=1 2 ni
(1Y, =2)X;(2) I(Y;=1)X;(2

x2<< J (2) I( nf(ﬁbﬁl

= lim nE lE Zn: (1 Yi =n2> Xi(1) 1Y =n1)Xz(1))
[(Yi=2)Xi(2) I(Y:=1)X:(2)

X ( o - n )|yn‘|‘|
= lim nE lE z”: (I(Y‘ - 2))gi(1)Xz(2)

+”“=%?mxmwhﬂ

= lim nE [zn: <I(Yi =2) E[X;(1)X;(2)]Y; = 2]

2

Im=mm&m&®m=ﬂﬂ

=EX(1)X(2)]Y =2] lim E [:2] +EX(1)X(2)Y =1] lim E [”}

n—oo ny

EX()X@)Y =2]  EXOXQY =1
2 m
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The third equality follows by noting that the (X;,Y;) are independent,
with E[X;(m)|Y; = k] = 0, m = 1,2, k = 1,2; the fourth from
I(Y; =1)I(Y; =2) = 0; the sixth from the fact that the (X;,Y;) are identi-
cally distributed; and the seventh from lim,, ng/n = n; a.s., k=1, 2.
When (X,Y) ~ P,
EX(1)X2)|Y =1 EX(DX(2)|Y =2
s Cos{Du (1), (2) — EXQX@IY =1] | EXQOXQ)Y =2
n—oo 771 ’]72
1,2 1,2
o1(1,2) | 02(1,2)

Uit 12

Similarly, when (X,Y) ~ P, , the asymptotic covariance of the difference
statistics D, (1) and D, (2) is as follows.

BXX@IY =1] | EX()XQ)Y =2]

lim Cov[D, (1), D,(2)] =

n—oo n 2
_BX()X(2)] | EIX(1)X(2)]
m 12
1 1
= (771 + 772) (mo1(1,2) 4+ n202(1,2))
_a(1,2) N o2(1,2)
12 m

The second and third equalities follow by noting that X and Y are indepen-
dent, with X having the mixture distribution X ~ 1 Px|; + 172 Px2, so that
Cov[X(1), X(2)] = E[X(1)X(2)] = E[X(1)X(2)]Y = 1] = E[X(1)X(2)|Y =
2] = 7]10'1(1, 2) =+ 7]20’2(1, 2)

O

2.9.3 Bootstrap and permutation test statistics null distributions

As suggested by Proposition 2.8, the non-parametric model M and the smaller
location shift model M_ imply different bootstrap sampling distributions
for estimating the distribution of the test statistics D,, = (D,(m) : m =
1,...,M). In particular, each model implies different data generating and
test statistics null distributions. For non-parametric model M, one samples
from the joint empirical distribution of the pair (X,Y), whereas for reduced
model M_, one samples from a model-based estimator of the data generating
distribution.

Bootstrap test statistics null distribution for model M

For the non-parametric model M, the bootstrap estimator of the joint data
generating distribution P of the pair (X,Y) is the joint empirical distribution
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P, of the n = ny + ny pairs of (X,Y)-observations, {(X;,Y;):i=1,...,n}.
One resamples n pairs of (X,Y)-observations at random, with replacement
from P,, to form a bootstrap sample {(Xi#,Yi#) :1=1,...,n}. The boot-
strap test statistics null distribution Qg,, is the empirical distribution of the
M-vectors of centered difference statistics, Z# = \/ﬁ((wfnz —1/1?21) —(Y2,n, —

Y1,n,)), Where wlﬁnk denotes the bootstrap empirical mean vector for Popu-
lation k, that is, ¢, =371 (Yi# - k) X#/S1 (Yi# - k:) k=1,2.
Note that an asymptotically equivalent estimator could be obtained by
sampling ny observations at random, with replacement from the Population 1
sample, {(X;,Y;) : Y; =1,i=1,...,n}, and ny observations at random, with
replacement from the Population 2 sample, {(X;,Y;):Y; =2,i=1,...,n}.

Bootstrap test statistics null distribution for model M_

For the reduced location shift model M—, the bootstrap estimator of the
common mean-zero marginal data generating distribution Px of X is the cen-
tered marginal empirical distribution Px , of the n = n; 4+ ny centered X-
observations, {X_; : ¢ = 1,...,n}, where X_; = X; —I(Y; = 1) {10, —
I(Y; =2)¢2.,,. One resamples n centered X-observations, {Xﬁl o=
1,...,n}, at random, with replacement from P ,,, and sets Xi# = Xﬁi—i—zbk,nk
and Yi# = k for a random subset of nj such observations, £ = 1, 2, to form
a bootstrap sample {(XZ-#, YZ#) :1=1,...,n}. Again, the bootstrap test sta-
tistics null distribution Qg,, is the empirical distribution of the M-vectors of
centered difference statistics, Z7 = \/ﬁ((wfnz - w#nl) — (Y2,ny — Y1.ny))-

Note that the above bootstrap procedure for model M_ is equivalent to
the following approach: form the mizture marginal empirical distribution Px ,
of the n = ny +ns (uncentered) X-observations, {X; : i = 1,...,n}; resample
n X-observations, {XZ# 24 =1,...,n}, at random, with replacement from
Px p; set Yz# = k for a random subset of nj such observations, k = 1, 2;
and define Qo,, as the empirical distribution of the M-vectors of (uncentered)
difference statistics, D = \/ﬁ(w;# I wffm). This yields the non-parametric
bootstrap (sampling with replacement) analogue of the commonly-used per-
mutation (sampling without replacement) test, corresponding to the indepen-
dence data generating distribution P, in Proposition 2.8.

Permutation test statistics null distribution

Permutation tests are known to be exact (up to the discreteness of the permu-
tation distribution) under the location shift model M_ and the complete null
hypothesis (Theorem 6, p. 231, Lehmann (1986); Puri and Sen (1971)). In-
deed, if X and Y are independent, then the permutation distribution is equal
to the conditional joint distribution of the pair (X,Y’), given the marginal
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empirical distributions of X and Y. In contrast, bootstrap procedures corre-
sponding to non-parametric model M are only approximate. In other words,
model M_ C M implies a stronger null model restriction than M, as needed
for an exact test.

As remarked in Section 2.9.2, above, when the permutation approach is
appropriate, it tends to provide less variable estimators of the test statistics
null distribution than the non-parametric bootstrap. Indeed, it should come
as no surprise that, for small sample sizes, one typically obtains more accurate
test results using a model-based (permutation or other suitable) estimator of
the null distribution than a non-parametric estimator.

In general, estimation of the test statistics null distribution involves a bias-
variance trade-off and raises the interesting open question of model selection.

The reader is referred to Pollard et al. (2005a) and Pollard and van der
Laan (2004) for a more detailed discussion of the relative merits of bootstrap-
and permutation-based multiple testing procedures.
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B bootstrap samples

M hypotheses TnB E[TnB] Var[TnB]

Bootstrap test statistics

Row means and variances

1 Row-shifting and scaling of T °

B bootstrap samples Bootstrap estimator of

test statistics
null distribution
zk =
M hypotheses n =
empirical distribution of
columns of Z.".

Null-transformed bootstrap
test statistics

Figure 2.1. Bootstrap estimation of the null shift and scale-transformed test sta-
tistics null distribution Qo (Procedure 2.3). The bootstrap test statistics are stored
in the M x B matrix TZ = (Tf (m,b)), with rows corresponding to the M null
hypotheses and columns to the B bootstrap samples. Expected values, E[T},(m)],
and variances, Var[T;,(m)], of the test statistics are estimated by taking, respec-
tively, row means and variances of TZ. The matrix of test statistics T2 can then be
row-shifted and scaled using the null values A\o(m) and 70(m), to produce an M x B
matrix ZZ = (Z,’LB (m,b)). The null distribution Qo is estimated by the empirical

distribution Qo of the columns of Zf.
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Bbootstrap samples

Z8(m,b)

Null-transformed bootstrap

Mhypotheses test statistics

For each row m, the unadjusted p-value P (m)

is the proportion of the B null-transformed
bootstrap test statistics Z"B(m,b)

that exceed the observed test statistic T (m).

T(m) |P,(m)
M M

observed | ynagjusted

test p-values
statistics

Z5m,b)

Pom)
T,(m)

Figure 2.2. Bootstrap estimation of the unadjusted p-values Po,(m). Bootstrap
estimators of the unadjusted p-values Py, (m) are obtained from the matrix ZZ” =
(Zf (m, b)), of null-transformed bootstrap test statistics, by recording, for each row

m, the proportion of ZZ(m,b) that are greater than or equal to the observed test

statistic Tp,(m).
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