Chapter 1
Systems and Models

1.1 INTRODUCTION

As its title suggests, this book is about a special class of systems which in recent decades
have become an integral part of our world. Before getting into the details of this particular
class of systems, it is reasonable to start out by simply describing what we mean by a
“system”, and by presenting the fundamental concepts associated with system theory as it
developed over the years. This defines the first objective of this chapter, which is for the
benefit of readers with little or no prior exposure to introductory material on systems and
control theory (Sect.1.2). Readers who are already familiar with concepts such as “state
spaces”, “state equations”, “sample paths”, and “feedback” may immediately proceed to
Sect. 1.3.

The second objective is to look at useful classifications of systems so as to reveal the
features motivating our study of discrete event systems. Historically, scientists and engineers
have concentrated on studying and harnessing natural phenomena which are well-modeled
by the laws of gravity, classical and nonclassical mechanics, physical chemistry, etc. In so
doing, we typically deal with quantities such as the displacement, velocity, and acceleration
of particles and rigid bodies, or the pressure, temperature, and flow rates of fluids and gases.
These are “continuous variables” in the sense that they can take on any real value as time
itself “continuously” evolves. Based on this fact, a vast body of mathematical tools and
techniques has been developed to model, analyze, and control the systems around us. It is
fair to say that the study of ordinary and partial differential equations currently provides
the main infrastructure for system analysis and control.

But in the day-to-day life of our technological and increasingly computer-dependent
world, we notice two things. First, many of the quantities we deal with are “discrete”,
typically involving counting integer numbers (how many parts are in an inventory, how
many planes are on a runway, how many telephone calls are active). And second, what

2 | Chapter 1 Systems and Models

drives many of the processes we use and depend on are instantaneous “events” such as
the pushing of a button, hitting a keyboard key, or a traffic light turning green. In fact,
much of the technology we have invented and rely on (especially where digital computers
are involved) is event-driven: communication networks, manufacturing facilities, or the
execution of a computer program are typical examples.

1.2 SYSTEM AND CONTROL BASICS

In this section, we will introduce carefully, but rather informally, the basic concepts of
system theory. As we go along, we will identify fundamental criteria by which systems are
distinguished and classified. These are summarized in Sect. 1.4, Fig. 1.31. Since this section
may be viewed as a summary of system and control engineering basics, it may be skipped by
readers with a background in this area, who can immediately proceed to Sect. 1.3 introducing
the key elements of discrete event systems. By glancing at Fig. 1.31, these readers can also
immediately place the class of discrete event systems in perspective.

1.2.1 The Concept of System

System is one of those primitive concepts (like set or mapping) whose understanding
might best be left to intuition rather than an exact definition. Nonetheless, we can provide
three representative definitions found in the literature:

m An aggregation or assemblage of things so combined by nature or man as to form an
integral or complex whole (Encyclopedia Americana).

m A regularly interacting or interdependent group of items forming a unified whole (Web-
ster’s Dictionary).

m A combination of components that act together to perform a function not possible with
any of the individual parts (IEEE Standard Dictionary of Electrical and Electronic
Terms).

There are two salient features in these definitions. First, a system consists of interacting
“components” , and second a system is associated with a “function” it is presumably intended
to perform. It is also worth pointing out that a system should not always be associated
with physical objects and natural laws. For example, system theory has provided very
convenient frameworks for describing economic mechanisms or modeling human behavior
and population dynamics.

1.2.2 The Input—Output Modeling Process

As scientists and engineers, we are primarily concerned with the quantitative analysis of
systems, and the development of techniques for design, control, and the explicit measurement
of system performance based on well-defined criteria. Therefore, the purely qualitative
definitions given above are inadequate. Instead, we seek a model of an actual system.
Intuitively, we may think of a model as a device that simply duplicates the behavior of the
system itself. To be more precise than that, we need to develop some mathematical means
for describing this behavior.

Section 1.2 SYSTEM AND CONTROL BASICS | 3

To carry out the modeling process, we start out by defining a set of measurable variables
associated with a given system. For example, particle positions and velocities, or voltages
and currents in an electrical circuit, which are all real numbers. By measuring these variables
over a period of time [tg 7] we may then collect data. Next, we select a subset of these
variables and assume that we have the ability to vary them over time. This defines a set of
time functions which we shall call the input variables

{ur(t),- . up()} to <t <tf (1.1)
Then, we select another set of variables which we assume we can directly measure while
varying wi(t),...,up(t), and thus define a set of output variables

{a(), - sym(t)} to <t <ty (1.2)

These may be thought of as describing the “response” to the “stimulus” provided by the
selected input functions. Note that there may well be some variables which have not been
associated with either the input or the output; these are sometimes referred to as suppressed
output variables.

To simplify notation, we represent the input variables through a column vector u(t) and
the output variables through another column vector y(t); for short, we refer to them as the
input and output respectively. Thus, we will write

u(t) = fus(t), ..., up(t)]"

where []7 denotes the transpose of a vector, and, similarly,

Y(t) = [yl (t)’ e 7ym(t)]T

To complete a model, it is reasonable to postulate that there exists some mathematical
relationship between input and output. Thus, we assume we can define functions

y1(t) = g1 (ua(t), ..y up(®) s oo Ym(t) = gm (ua (t), ..., up(t))

and obtain the system model in the mathematical form

y = 8(w) = [g1 (w1 (1), ey (1)) s ooy Gon (ur (1), ooy (1)) (1.3)

where g(-) denotes the column vector whose entries are the functions g1(-),. .., gm ().

This is the simplest possible modeling process, and it is illustrated in Fig.1.1. Strictly
speaking, a system is “something real” (e.g., an amplifier, a car, a factory, a human body),
whereas a model is an “abstraction” (a set of mathematical equations). Often, the model
only approximates the true behavior of the system. However, once we are convinced we
have obtained a “good” model, this distinction is usually dropped, and the terms system
and model are used interchangeably. This is what we will be doing in the sequel. But, before
doing so, it is worth making one final remark. For any given system, it is always possible
(in principle) to obtain a model; the converse is not true, since mathematical equations
do not always yield real solutions. For example, let u(t) = —1 for all ¢ be a scalar input
representing a constant voltage, and y = y/u = \/—1 be the output. Clearly, we cannot
build any electrical system generating an imaginary voltage. In such cases, we say that a
system is not physically realizable.

It is important to emphasize the flexibility built into the modeling process, since no
unique way to select input and output variables is imposed (see also Example 1.1). Thus, it
is the modeler’s task to identify these variables depending on a particular point of view or
on the constraints imposed upon us by a particular application.

4 | Chapter 1 Systems and Models

u(t) — = MODEL [> y=g(u)

Figure 1.1: Simple modeling process.

Example 1.1 (A voltage-divider system)

The voltage divider circuit of Fig.1.2 constitutes a simple electrical system. Five
variables are shown: the source voltage V', the current ¢, the two resistances r and
R, and the voltage v across R. The simplest models we can construct make use of

standard circuit theory relationships such as:

R
U_VR—H"
v=1iR (1.5)

Assuming we can adjust the source voltage V (input) and are interested in regulating

(1.4)

Figure 1.2: Simple electrical system for Example1.1.

the voltage v (output), we can obtain the model shown in Fig. 1.3(a). Alternatively,
suppose the power source is fixed, but we have an adjustable resistance r, in which
case our model might be that of Fig. 1.3(b). Finally, if both V and r are adjustable and
we are interested in regulating the current 4, the model of Fig. 1.3(¢) is appropriate.

Section 1.2 SYSTEM AND CONTROL BASICS | 5

Thus, for the same underlying system, different models may be conceived. Of course,
the functional relationships between variables do not change, but only the choice of
input and output.

1% =VE 7 v=V2L
—>| MODEL ——> B+ 5| MODEL —> = R+r

() (b)

Vo > 1=
R+
r MODEL ——> ftt7

(¢)

Figure 1.3: Three models for the system of Fig. 1.2.
Depending on what we view as controllable input and observable output, several alternate models of

the same underlying system may be constructed.

Example 1.2 (A spring-mass system)

Consider the spring-mass system of Fig.1.4. Suppose that at time ¢ = 0 we displace
the mass from its rest position by an amount u(0) = ug > 0 (the positive direction is as
shown in Fig.1.4) and release it. Let the displacement at any time ¢ > 0 be denoted
by y(t). We know, from simple mechanics, that the motion of the mass defines a
harmonic oscillation described by the second-order differential equation

mij = —ky (1.6)

with initial conditions y(0) = ug, §(0) = 0. If we are interested in controlling the
initial displacement «(0) and observing the position of the mass as a function of time,
we can construct the model shown in Fig. 1.4, where the input is the function u(t)
defined so that

0 otherwise

u(t) :{ u t=0 (1.7)

and the output y(t) is the solution of the differential equation (1.6). Note that the
variables k and m are assumed constant.

/ /1]

Figure 1.4: Simple mechanical system for Example 1.2 and corresponding model.

Chapter 2

Languages and Automata

2.1 INTRODUCTION

We have seen how discrete-event systems (DES) differ from continuous-variable dynamic
systems (CVDS) and why DES are not adequately modeled through differential or difference
equations. Our first task, therefore, in studying DES is to develop appropriate models,
which both adequately describe the behavior of these systems and provide a framework for
analytical techniques to meet the goals of design, control, and performance evaluation.

When considering the state evolution of a DES, our first concern is with the sequence
of states visited and the associated events causing these state transitions. To begin with,
we will not concern ourselves with the issue of when the system enters a particular state
or how long the system remains at that state. We will assume that the behavior of the
DES is described in terms of event sequences of the form ejeq---e,. A sequence of that
form specifies the order in which various events occur over time, but it does not provide the
time instants associated with the occurrence of these events. This is the untimed or logical
level of abstraction discussed in Sect.1.3.3 in Chap. 1, where the behavior of the system
is modeled by a language. Consequently, our first objective in this chapter is to discuss
language models of DES and present operations on languages that will be used extensively
in this and the next chapters.

As was mentioned in Sect.1.3.3, the issue of representing languages using appropriate
modeling formalisms is key for performing analysis and control of DES. The second objective
of this chapter is to introduce and describe the first of the two untimed modeling formalisms
for DES considered in this book to represent languages, automata. Automata form the most
basic class of DES models. As we shall see in this chapter, they are intuitive, easy to use,
amenable to composition operations, and amenable to analysis as well (in the finite-state
case). On the other hand, they lack structure and for this reason may lead to very large state
spaces when modeling complex systems. Nevertheless, any study of discrete event system

54 | Chapter 2 Languages and Automata

and control theory must start with a study of automata. The second modeling formalism
considered in this book, Petri nets, will be presented in Chap.4. As we shall see in that
chapter, Petri nets have more structure than automata, although they do not possess, in
general, the same analytical power as automata. Other modeling formalisms have been
developed for untimed DES, most notably process algebras and logic-based models. These
formalisms are beyond the scope of this book; some relevant references are presented at the
end of this chapter.

The third objective of this chapter is to present some of the fundamental logical behavior
problems we encounter in our study of DES. We would like to have systematic means for
fully testing the logical behavior of a system and guaranteeing that it always does what it is
supposed to. Using the automaton formalism, we will present solution techniques for three
kinds of verification problems, those of safety (i.e., avoidance of illegal behavior), liveness
(i.e., avoidance of deadlock and livelock), and diagnosis (i.e., ability to detect occurrences
of unobservable events). These are the most common verification problems that arise in
the study of software implementations of control systems for complex automated systems.
The following chapter will address the problem of controlling the behavior of a DES, in the
sense of the feedback control loop presented in Sect. 1.2.8, in order to ensure that the logical
behavior of the closed-loop system is satisfactory.

Finally, we emphasize that an important objective of this book is to study timed and
stochastic models of DES; establishing untimed models constitutes the first stepping stone
towards this goal.

2.2 THE CONCEPTS OF LANGUAGES AND AUTOMATA

2.2.1 Language Models of Discrete Event Systems

One of the formal ways to study the logical behavior of DES is based on the theories of
languages and automata. The starting point is the fact that any DES has an underlying
event set F associated with it. The set F is thought of as the “alphabet” of a language
and event sequences are thought of as “words” in that language. In this framework, we can
pose questions such as “Can we build a system that speaks a given language?” or “What
language does this system speak?”

To motivate our discussion of languages, let us consider a simple example. Suppose there
is a machine we usually turn on once or twice a day (like a car, a photocopier, or a desktop
computer), and we would like to design a simple system to perform the following basic task:
When the machine is turned on, it should first issue a signal to tell us that it is in fact
ON, then give us some simple status report (like, in the case of a car, “everything OK”,
“check oil”, or “I need gas”), and conclude with another signal to inform us that “status
report done”. FEach of these signals defines an event, and all of the possible signals the
machine can issue define an alphabet (event set). Thus, our system has the makings of a
DES driven by these events. This DES is responsible for recognizing events and giving the
proper interpretation to any particular sequence received. For instance, the event sequence:
“I'm ON”, “everything is OK”, “status report done”, successfully completes our task. On
the other hand, the event sequence: “I'm ON”, “status report done”, without some sort of
actual status report in between, should be interpreted as an abnormal condition requiring
special attention. We can therefore think of the combinations of signals issued by the
machine as words belonging to the particular language spoken by this machine. In this
particular example, the language of interest should be one with three-event words only,

Section 2.2 THE CONCEPTS OF LANGUAGES AND AUTOMATA | 55

always beginning with “I'm ON” and ending with “status report done”. When the DES we
build sees such a word, it knows the task is done. When it sees any other word, it knows
something is wrong. We will return to this type of system in Example 2.10 and see how we
can build a simple DES to perform a “status check” task.

Language Notation and Definitions

We begin by viewing the event set E of a DES as an alphabet. We will assume that E is
finite. A sequence of events taken out of this alphabet forms a “word” or “string” (short for
“string of events”). We shall use the term “string” in this book; note that the term “trace”
is also used in the literature. A string consisting of no events is called the empty string
and is denoted by e. (The symbol € is not to be confused with the generic symbol e for
an element of E.) The length of a string is the number of events contained in it, counting
multiple occurrences of the same event. If s is a string, we will denote its length by |s|. By
convention, the length of the empty string ¢ is taken to be zero.

Definition. (Language)
A language defined over an event set F is a set of finite-length strings formed from events
in E. ¢

As an example, let E = {a,b, g} be the set of events. We may then define the language
Ly = {e,a,abb} (2.1)
consisting of three strings only; or the language
Lo = {all possible strings of length 3 starting with event a} (2.2)
which contains nine strings; or the language
L3 = {all possible strings of finite length which start with event a} (2.3)

which contains an infinite number of strings.

The key operation involved in building strings, and thus languages, from a set of events
E is concatenation. The string abb in L above is the concatenation of the string ab with the
event (or string of length one) b; ab is itself the concatenation of a and b. The concatenation
uw of two strings v and v is the new string consisting of the events in u immediately followed
by the events in v. The empty string ¢ is the identity element of concatenation: ue = eu = u
for any string u.

Let us denote by E* the set of all finite strings of elements of F, including the empty
string &; the * operation is called the Kleene-closure. Observe that the set E* is countably
infinite since it contains strings of arbitrarily long length. For example, if E = {a, b, ¢}, then

E* ={e,a,b,c,aa,ab, ac, ba, bb, be, ca, cb, cc, aaa, . . .}

A language over an event set I is therefore a subset of E*. In particular, #, E, and E* are
languages.

We conclude this discussion with some terminology about strings. If tuv = s with
t, u, v € B*, then:

m tis called a prefix of s,

56 | Chapter 2 Languages and Automata

m w is called a substring of s, and

m v is called a suffix of s.
We will sometimes use the notation s/t (read “s after t”) to denote the suffix of s after
its prefix ¢. If ¢ is not a prefix of s, then s/t is not defined.

Observe that both ¢ and s are prefixes (substrings, suffixes) of s.

Operations on Languages

The usual set operations, such as union, intersection, difference, and complement with
respect to £, are applicable to languages since languages are sets. In addition, we will also
use the following operations:!

m Concatenation: Let L., Ly, C E*, then
LoLy:={s € E":(s=54%) and (s, € L,) and (s, € Lp)}

In words, a string is in L,L; if it can be written as the concatenation of a string in
L, with a string in L.

m Prefiz-closure: Let L C E*, then
L:={seE*:(3te E") [ste L]}
In words, the prefix closure of L is the language denoted by L and consisting of all
the prefixes of all the strings in L. In general, L C L.
L is said to be prefiz-closed if L = L. Thus language L is prefix-closed if any prefix of

any string in L is also an element of L.

m Kleene-closure: Let L C E*, then
L*:={e} UL ULLULLL U

This is the same operation that we defined above for the set F, except that now it is
applied to set L whose elements may be strings of length greater than one. An element
of L* is formed by the concatenation of a finite (but possibly arbitrarily large) number
of elements of L; this includes the concatenation of “zero” elements, that is, the empty
string €. Note that the * operation is idempotent: (L*)* = L*.

m Post-language: Let L C E* and s € L. Then the post-language of L after s, denoted
by L/s, is the language
L/s:={te E":ste L}

By definition, L/s = () if s & L.
Observe that in expressions involving several operations on languages, prefix-closure and
Kleene-closure should be applied first, and concatenation always precedes operations such as

union, intersection, and set difference. (This was implicitly assumed in the above definition
of L*.)

1«

:=" denotes “equal to by definition.”

Section 2.2 THE CONCEPTS OF LANGUAGES AND AUTOMATA | 57

Example 2.1 (Operations on languages)
Let E = {a,b,g}, and consider the two languages L1 = {e,a,abb} and Ly = {g}.
Neither L nor Ly are prefix-closed, since ab ¢ L; and € ¢ Ly. Then:

LyLy = {g,ag,abbg}
Ly = {e,a,ab,abb}
Ly = {eg}
Llﬂ = {€7aaabbag7a97abb9}
Ly = {e.9,99.999,...}
L7 = {e,a,abb,aa,aabb, abba, abbabb, ...}

We make the following observations for technical accuracy:

(i) e & 0;

(ii) {e} is a nonempty language containing only the empty string;

0" = {e} and {e}* = {e};
0L =L0O=10.

)
)
(iii) If L = 0 then L =), and if L # () then necessarily ¢ € L;
(iv) 0
) 0

(v

Projections of Strings and Languages

Another type of operation frequently performed on strings and languages is the so-called
natural projection, or simply projection, from a set of events, Fj, to a smaller set of events,
E, where E, C E;. Natural projections are denoted by the letter P; a subscript is typically
added to specify either Eg or both E; and E, for the sake of clarity when dealing with
multiple sets. In the present discussion, we assume that the two sets F; and E; are fixed
and we use the letter P without subscript.

We start by defining the projection P for strings:

P:Ef - E;
where
Ple) = ¢
e if e€ E;
Ple) = {5 if e€ E;\ Fs

P(se) := P(s)P(e) for s€ E/, e€ E

As can be seen from the definition, the projection operation takes a string formed from the
larger event set (E;) and erases events in it that do not belong to the smaller event set (Es).
We will also be working with the corresponding inverse map

Pl g 2b

defined as follows
P t):={s€ E} : P(s) =t}

Chapter 5
Timed and Hybrid Models

5.1 INTRODUCTION

In this chapter we concentrate on timed models of DES. We also explore what happens
when a system combines time-driven dynamics with event-driven dynamics giving rise to
what are referred to as hybrid systems, which were introduced at the end of Chap.1. The
simplest instance of time-driven dynamics is the case of adjoining one or more clocks to the
untimed DES model, resulting in a timed model. In the case of timed DES models, the sample
paths are no longer specified as event sequences {ey, e, ...} or state sequences {zg,x1, ...},
but they must include some form of timing information. For example, let ¢, k = 1,2,...,
denote the time instant when the kth event and state transition occurs (with to given); then
a timed sample path of a DES may be described by the sequence {(xo,t0), (z1,t1),. ..}
Similarly, a timed sequence of events would look like {(e1,t1), (e2,t2),...}. Creating a
framework for timed DES models will enable us to address questions such as “how many
events of a particular type can occur in a given time interval?”, “is the time interval between
occurrences of two different events always greater than a given lower bound?” or “how long
does the system spend in a given state?” These issues are of critical importance in analyzing
the behavior of many classes of DES since they provide us with particularly useful measures
of system performance. The next step is to consider more complicated time-driven dynamics
than clocks. Namely, at each discrete state of the system, we can associate a set of differential
equations that describe the evolution of continuous variables of interest. This brings us to
the realm of hybrid systems.

The first objective of this chapter is to describe timing mechanisms for DES. For this
purpose, we will introduce the notion of a clock structure, which will capture the timing
constraints associated with the consecutive occurrences of each event in the model and will
serve as input to the untimed model. Using the mechanism of a clock structure, we will
find that we can directly extend the untimed automata and Petri nets that were introduced

270 | Chapter 5 Timed and Hybrid Models

in previous chapters to create modeling frameworks for DES that include event timing.
Establishing the framework of timed automata and timed Petri nets with clock structures is
our second objective (Sects. 5.2 and 5.3). Most of the analytical techniques in subsequent
chapters will be based on timed automata with clock structures (or simply timed automata).
Another approach we will briefly cover uses a special kind of algebra, referred to as a dioid
algebra, and attempts to parallel some of the analytical techniques used for linear CVDS
for some classes of timed DES (Sect. 5.4). The third objective of this chapter is to present
alternative timed models of DES (Sects.5.5 and 5.6). In particular, timed automata with
guards will be defined (Sect. 5.6). This modeling framework is known under the name of Alur
and Dill timed automata, from the two researchers who proposed this model in the early
1990s. Timed automata with guards employ a generalized form of clock structure where a set
of clocks with time-driven dynamics are adjoined to the automaton and the transitions of the
automaton include pre-conditions on the clock values, known as guards. Timed automata
with guards form the basis of hybrid automata, which include more complicated time-driven
dynamics than clocks. The last objective of this chapter is to introduce the notion of a
hybrid automaton along with some basic associated concepts on hybrid systems (Sect. 5.7).

As will become clear upon reading this chapter, all input information required for the
timed models we develop is assumed to be available, either in the form of a clock structure
or in the form of timing intervals. This means that we have a means of describing in a
non-stochastic manner when events are allowed to occur in the future. Of course, it is
unrealistic to expect this to be always the case. A computer system user does not announce
the jobs he will submit and their times of submission for the next week. Nor does a common
person plan days in advance when he is going to place various telephone calls. In short, we
will ultimately have to resort to probabilistic models in order to carry out some analysis
of practical value; this is going to be the goal of the next chapter. We limit ourselves in
this chapter to an input description of timing considerations which is specified in a non-
stochastic manner, so as to gain an understanding of the basic event timing dynamics of a
DES, independent of the probabilistic characterization of its input.

5.2 TIMED AUTOMATA

We begin with an automaton model G = (X, E, f,T', o), where

X is a countable state space

E is a countable event set

f: X xFE— X s a state transition function and is generally a partial
function on its domain

r: X —2F is the active event function (or feasible event function);
T'(x) is the set of all events e for which f(x,e) is defined
and it is called the active event set (or feasible event set)

o is the initial state

This is the same as the automaton defined in Chap. 2 with only a few minor changes. First,
we allow for generally countable (as opposed to finite) sets X and E. We also leave out of
the definition any consideration for marked states, since we will not be considering blocking
issues in this chapter.

Section 5.2 TIMED AUTOMATA | 271

5.2.1 The Clock Structure

In order to introduce the key ideas of the timing mechanism we need, we start out by
discussing the simplest possible DES we can think of. We then gradually proceed with more
complicated cases.

A DES with a single event. Let E = {a}, and I'(x) = {a} for all z € X. A sample path
of this simple system on the time line is shown in Fig. 5.1. The event sequence associated
with this sample path is denoted by {e1,ea,...,}, where e, = a for all k = 1,2,... The
time instant associated with the kth occurrence of the event is denoted by tx, k = 1,2,...
The length of the time interval defined by two successive occurrences of the event is called
a lifetime. Thus, we define

'Uk:tk_tk—l k:1,2,... (51)
to be the kth lifetime of the event. Clearly, this is a nonnegative real number, i.e., v, € RT.
er=0 e=0 e =0 (49

o

Xk

=
<
P
- -
————— 1 -l

|
T
t
| I
< & > Vi
I
Event Lifetime

Figure 5.1: Sample path of a DES with £ = {«a}.

The evolution of this system over time can be described as follows. At time ¢;_1, the kth
event is said to be activated or enabled, and is given a lifetime v;. A clock associated with
the event is immediately set at the value specified by vy, and then it starts ticking down to
0. During this time interval, the kth event is said to be active. The clock reaches zero when
the lifetime expires at time ¢, = t,_1 + v. At this point, the event has to occur. This will
cause a state transition. The process then repeats with the (k+ 1)th event becoming active.

Observe the difference between the event being “active” and the event “occurring.” The
event « is active as long as it is feasible in the current state, that is, a € I'(x). The event
actually occurs when its clock runs down to 0, and a state transition takes place. This is
similar to the distinction between “enabling” a transition and “firing” it in Petri nets, as
discussed in the last chapter. In Fig. 5.1, the event « is in fact continuously active, but it
only occurs at the time instants ¢1, %o, ... Every time it occurs, it is immediately activated
anew, since it is always feasible in this example.

To introduce some further notation, let ¢ be any time instant, not necessarily associated
with an event occurrence. Suppose t;_1 <t < t;. Then t divides the interval [t5_1,tx] into
two parts (see Fig. 5.1) such that

Ye =tk — 1 (5.2)

is called the clock or residual lifetime of the kth event, and

ZL = t— tk—l (53)

272 | Chapter 5 Timed and Hybrid Models

is called the age of the kth event. It is immediately obvious that
Vg = 2k + Yk (5.4)

It should be clear that a sample path of this DES is completely specified by the lifetime
sequence {v1,va,...}. This is also referred to as the clock sequence of event «.

A DES with two permanently active events. Things become more interesting if we con-
sider a DES with E = {«a,8}. For simplicity, we first assume that I'(z) = {«, 8} for all
x € X, so that both events are always active. Suppose that a clock sequence for each event
is specified, that is, there are two known sequences of lifetimes:

Vo = {va,lafva,27~-~}, vg = {’Uﬁ’l,vﬁ’z,,.,}

Starting with a given time ¢, the first question we address is: Which event occurs next? It
is reasonable to answer this question by comparing v,,1 to vg,1 and selecting the event with
the shortest lifetime. Thus, if

Va,1 < Vg1

a is the first event to occur at time t; =ty 4 vq,1, as illustrated in Fig. 5.2.

=
S

o
Il
R
Q

N

i~
2

-
ST <l
=
N
T<—
=
by

L X0 | X1 + X4
tIO l!l 13 ll‘4

| | | | |
o e — | : |
P vy ———! | |
o ve :
pr—m | |
Ot}— Va2 E :
B v = |
! I

0‘:_ Vaz —!
Bi— vpy —————>

Figure 5.2: Sample path of a DES with £ = {«, 8} and both events permanently active.

The next event to occur is always the one with the smallest clock value. When an event occurs, it is
immediately activated again, and its clock is reset to the next available lifetime value in its assigned
clock sequence.

We are now at time t;, and we may pose the same question once again: Which event
occurs next? Since (3 is still active, it has a clock value given by

Y1 = V3,1 — Va1

On the other hand, « is also active. Since « just took place, its next occurrence is defined
by the new lifetime v, 2, taken out of the given clock sequence. We now compare v, 2 to

Section 5.2 TIMED AUTOMATA | 273

yp,1 and select the smaller of the two. Thus, if

Yp,1 < Va,2

B3 is the second event to occur at time ty = t1 + yg,1, as illustrated in Fig. 5.2.

The mechanism for selecting the “next event” at any time is therefore based on comparing
clock values and selecting the smallest one. If an event has just occurred, then its clock is
actually reset to a new lifetime value supplied by its clock sequence.

A DES with two not permanently active events. Our modeling framework would not be
interesting if no events could ever be made inactive. Suppose that in the previous DES,
I'(z) = {a, B} for some z € X, and I'(x) = {8} for all remaining x € X. For a given initial
state xq, let I'(zg) = {a, S}. Thus, as before, the first event to occur is « (see Fig. 5.3).
Next, let us assume that the new state, 1, is such that T'(z1) = {£}. In this case, the only
remaining feasible event is (, and no comparison with any other clock is required. Next,
when [occurs at time s, it causes a state transition into xo. Suppose both a and [are
feasible once again. In this case, both events are activated. We compare their clock values
(the new lifetimes assigned to them at this point), and find that vgs < v4,2, S0 event 3
occurs next (see Fig. 5.3). Now suppose that the new state, xs, is such that I'(x3) = {5}.
Since « is no longer feasible, it is deactivated or disabled. Its clock becomes irrelevant in the
determination of the next event, and is therefore ignored. Finally, at time ¢4, # occurs and
causes a transition to a new state x4. Assuming I'(xz4) = {«, 8}, both events are once again
activated. Note that a completely new lifetime, v, 3, is selected for event «, since v, 2 was
discarded when o was deactivated at ts.

e =« e,

B e=p

)
IN

=

=
——
=
N
~—
=
N
|
Rl

=~
~

-~
bJN T
-~

_T__
1

=
[
=

S
I

R
i

-
1

=
_r_r_

=
:
J

]

va,}

vﬂ,4
Figure 5.3: Sample path of a DES with £ = {«, 3} and a not feasible in some states.

In this example, o is not feasible in states x1 and x3. At t1, « is not activated again after it occurs.
At ts, a is explicitly deactivated when B occurs. The clock value of o at this point is discarded.
When it is activated again at ta, a new lifetime is assigned to the clock of o

Therefore, in general, the mechanism for selecting the “next event” at any time is based
on three simple rules:

2 Springer
http://www.springer.com/978-0-387-33332-8

Introduction to Discrete Event Systems
Cassandras, C.G.; Lafortune, 5.

2008, XxXIV, 772 p., Hardcover

ISENM: 978-0-387-33332-8

	Cassandras1
	Cassandras2
	Cassandras5

