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Chapter 1 
BASIC CONCEPTS 
 
 
 
1.1 

(i) Rectangular section 
 A = B0Y 
 P = 2Y+B0 
 B = B0 
 R = A/P = B0Y/(2Y+B0) 
 D = A/B = B0Y/ B0 = Y 
 
(ii) Trapezoidal section 

A = B0Y+ 2Y(SY/2) 

    = Y(B0 + SY) 

P = B0 +2Y S(S2+1) 

R = A/P = Y(B0 + SY)/ [B0 +2Y S(S2+1)] 

B = B0 +2SY 

D = A/B = Y(B0 + SY)/(B0 + 2SY) 

 
(iii) Triangular section 

We may use the same equation as that in the case of trapezoidal section with B0 = 0. 

Thus, D = Y/2 

 
 
(iv) Partially full circular section 
 
A = r2θ/2 +2 (rCos α)/2 (Y-D0/2) 

    = ( )( )αθ rCosDYD 2/8/ 0
2
0 −+  

Y = D0/2 + (D0/2) Sin α 

A = Do
2 θ /8 + Do

2 / 4 Sin α Cos α  
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(v) Standard horseshoe section: 
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The standard horse shoe section is divided into three sections, i.e., upper section, middle 
section and lower section. 
 
 
(a) Upper section 
π  ≤ θu ≤ 2 π 
 

Flow area, A = ( )
88

2
0

2
0 D

Sin
D

uu
π

θθ −−  

Wetted perimeter, P = 
2
0θD  

Hydraulic radius, R = A/P = 
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
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 −
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θSinD
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(b) Lower section 
 
0  ≤ θL ≤ 48.590 
 

Flow area, A = ( ) ( )θθθθ Sin
d
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Hydraulic radius, R = A/P = 
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(c) Middle section 
 
Assume trapezoidal section, S = 0.215 

Area,  A = Y(B0 + SY)  

A = Y(0.8229 d0 + 0.215Y) 

P = B0 + 2Y 12 −S  
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1.2 
Q = K A R2/3  

A = (θ – Sinθ) D2/8 
R = A/P 
P = Dθ/2 

Q = ( )
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∴ ( ) ( )θθθθ CosSin −=− 152  
     θ – Sinθ  = 5/2θ – 5/2θ Cosθ 
5/2 Cos θ – Sin θ / θ – 1.5 = 0 
 
Solving by trial and error or numerically θ = 302.41 

From the figure  2/
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1.3 
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Table 1 

 A V VA V2A V3A 

1 40 3 120 360 1080 

2 80 3 240 720 2160 

3 80 3.1 248 768.8 2383.28 

4 80 3.2 256 819.2 2621.44 

5 80 3.3 264 871.2 2874.96 

6 80 3.3 264 871.2 2874.96 

7 80 3.2 256 819.2 2621.44 

8 80 3.1 248 768.8 2383.28 

9 40 3 120 360 1080 

∑ 640  2016 6358.4 20079.36 

 

The calculation is shown in Table -1. 

α = (20079.36)(640)2/20163 = 1.0038 

β = (6358.4)(640)/20162 = 1.00126 

 

1.9  
Using hydrostatic pressure distribution and depth = y = 5m 

T =  γy2/2 = 9810 (52/1000)2=122.6 KN 

M = TY/3 =122.6x5/3=204.3 KN.m 

But, d = yCosθ = 5Cos30 = 4.33 m  

In this case the pressure distribution is not hydrostatic 

 

Correction: 

Tt = Pd/2 = γd2Cosθ/2 = 79.65KN 

Mt = Tt d/3 = 79.65 (4.33)/3 = 114.96 KN m 

% error in the shearing force:   

100(Tt – T)/Tt = (79.65 – 122.6)/79.65 = 53.9 % 

% error in the moment:   
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100(Mt – M)/Mt = (114.96 – 204.38) / 114.96 = 77 % 

 
 

1.10  
Centrifugal acceleration = V2/R 

Centrifugal force  =  ρysΔA V2/R  

Pressure head due to centrifugal acceleration = (1/g)ys V2/R 

Total pressure head, yt = ys + (1/g)ys V2/R = ys (1 + V2/gR) 

yt = 5 (1 + 202/9.81/20) = 15.19 m 

Pressure intensity at point C = γ yt = (9.81) (1000)(15.19/1000) = 149 kPa 

 
1.11 

Q = K A R 2/3
 

A = [B – (h/√3)]h 
P = B + (4h/√3) 
Q = K [B - h/√3]5/3h5/3[B + 4 h/√3]-2/3 

    = K[hB – h2/√3]5/3[B + 4 h/√3]-2/3 
Q is maximum or minimum if dQ/dh = 0 

dQ/dh = [ ] [ ][ ] 3/23
2

2 3/43/23/
3
5 −

+−− hBhBhhBK    

 
1.12 

(i) nonuniform 

(ii) nonuniform 

(iii) nonuniform 

(iv) uniform 

 
1.13 

(i) unsteady 

(ii) unsteady 

(iii) steady 

(iv) unsteady 

 
1.14 

(i) Re = Vy/ν = (1)(1)/(0.11 * 10-5) = 9.0 * 105  Turbulent 
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(ii) Re = Vy/ν = 5

3

1011.0
1021.0

−

−

×
××  = 181.8 Laminar 

 

1.15  
It is not possible to have uniform flow in a frictionless sloping channel.  The forces in the 

x direction will not be balanced. 

 
 
 
 
 
 
 
 
 
 
 

1.16 
It is not possible to have uniform flow in a horizontal channel. 

There is no acceleration force. 

 
1.17 

 y = flow depth measured vertically; θ = angle between water surface and horizontal; φ = 

angle between channel bed and horizontal. Let d = perpendicular on channel bed. 

Thus, pressure at channel bed is 

φρgdCosp =         

From the geometry, θφφ tandSindCosy +=  

Or, 
θφ

φ
TanTan

ydCos
+

=
1

 

Or, 
θφ

ρ
TanTan

ygp
+

=
1

 

 

1.18 
V = 5.75Vf  log (30y/K)                                                      (1) 
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Vm = [ ]1)/30log(75.5 0 −KyV f  
 
In Eq 1, at y = y0,  V = Vmax 
 
Vmax = 5.75Vf  log(30y0/K) 
 
Let γ = (Vmax/Vm)-1= 5.75Vf log(30y0/K)/ 5.75Vflog(30y0/K-1)-1 

γ = 1/[log(30y0/K)-1] 

Similar to the solution of problem 1.4 this will lead to  

α = 1 + 3γ2 - 2γ3 

β = 1 +  γ2 

 

1.19 
d = yCosθ 

p = (γd2/2)(Cosθ) 

p = (γy2/2) (Cos2θ Cosθ) 

p = (γy2/2) (Cos3θ ) 

M = pd3/3 = (py Cosθ)/3  

    = (γ/2)(y2Cos3θ)(y Cosθ/3) 

M = (γy3/6)(Cos4θ ) 

Shearing force = p = (γy2/2)(Cos3θ ) 
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Chapter 2 
CONSERVATION LAWS 
 
 
 
2.1 
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Assume α=1 and rectangular channel and width = B. q=Q/B 
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2.3 
Applying Newton second law 
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Q=4 x 5 x 5 = 100 m3/s 
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Trial and error will give y2 = 2.6 m. 
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y2 = 5.285 m rise with water level. 
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Using trial and error y2 = 4.52 m 
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Using trial and error, y2 = 5.285 m 
 
2.6 
Q = 400 m3 / s 
V1 = 400 / 5 x 10 = 8 m / sec 
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If the step is a rise water surface rises 
 
If the step is a drop water surface drops 
 
2.7 
Q = 96 m3 / s 
Section1 
B1 = 8 m    Y1 = 4 m       V1 = 3 m / sec 
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q1 = Q/B1= 96/8 = 12 m3/s / m 
 
Section 2 
B2 = 7.5 m 
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y2 = 3.91 m 
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Section 3 
 
B3 = 7 m 
q1 = Q/B1= 96/7 = 13.71 m3/s / m 
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y2 = 3.79 m 
 
Section 4 
 
B4 = 6.5 m 
q1 = Q/B1= 96/ 6.5= 14.77 m3/s / m 
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y2 = 3.6 m 
 
Section 5 
 
B4 = 6 m 
q1 = Q/B1= 96/ 6= 16 m3/s / m 
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y2 = 3.11 m 
 
 
2.8 
(i) 
h =20 m  Q= 40 m3/s   b= 4 m 
E1= E2 , V1 = 0, V2 =Q/By2 = q/y2, q= 10 m3/s / m 
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y2= 0.511 m 
V2=10/0.511=19.57 m/s 
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(ii) 
 
Thrust on the gate  
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Thrust force = γFth=9.81 x 721.72 = 7080.07 kN 
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Maximum q for critical depth 
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2.10 
(i) Channel width remains constant  
Use a step and determine if it is a rise or down 
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Bottom elevation = 700+0.34=700.34m 
(ii) 
Channel bottom level 0.5 of transition at elevation 700.2 m  
b1= 8m  
y1 = 4 m; y2 = 3.34 m 
Q= 32 x 4 =128 m3/s   
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2.11 
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(ii) 
 y2 = 2 m; V1 = 0.8 m; q = 1.6 m3/sec/m 

033.2
2

2
1

11 =+=
g

V
yE  

Maximum Δz occurs at minimum E and Fr=1 
 

m 073.196.0033.2

96.0
64.081.92

6.164.0
2

64.0
81.9
6.1

21max

2

22
2

22

3
2

3
2

2

=−=−=∆

=
××

+=+=

===

EEz
g

VyE

g
qy

 



Chapter 2 
 
 
 

21 
 

2.12 
Assume b1=10 m 
Q1= Q2= 10 x 2 x 0.8 = 16 m3/s 
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Q is constant. Therefore, maximum q2  corresponds to minimum b2. 
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From problem 2.11, E1 = 2.033 m 
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2.13 
(i) 
Q = 80 ft3 / sec 
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(ii) 
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2.15 
Q = 80 m3 / s 
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2.20 
Q= 18 m3/sec; B= 6 m; q= 18/6 = 3 m3 / s / m 
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2.21 
 
(i) 
q= 15 ft3/sec/ft 
Q= 6 x 5 x 3 = 90 ft3/sec  
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(ii) 
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2.22 
 
Q= 50 ft3/sec  
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2.23 
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2.24 
Assume rectangular cross section and horizontal channel bed 
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Y E (Q=10) E (Q=20) E (Q=40) E (Q=50) 
0.3 1.066 3.363 12.55 19.44 
0.5 0.7515 1.506 4.527 6.79 
0.7 0.8177 1.171 2.58 3.64 
0.8 0.886 1.145 2.183 2.96 
0.9 0.9655 1.162 1.948 2.54 
1 1.051 1.204 1.815 2.27 

1.1 1.14 1.262 1.7477 2.11 
1.2 1.233 1.33 1.723 2.018 
1.4   1.756 1.957 
1.5   1.8 1.968 
1.6   1.85 1.997 
2   2.142 2.22 
4   4.02 4.03 
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αθα
γ

θγ

α
γ

θ
α

 

 cos

   where                              cos

2
2

3

2
2

α
θ

α
θ

gDV

B
dy
dA

A
B

g
Q

=

==  

 

 cos

1
 cos

2

2
2

2

α
θ

α
θ

gD

VF

F
gD

V

r

r

=

==
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2.28 

[ ]181
2
1

)400(04.0

400
844.492.32

)400(2.322F

400
844.49

)400(2.322200
80000

)400(2.32220080000Q

)400(2.322

2
1

1

2

2
3

1

2
2
r1

1

1

1

−+=

−×=

−
×

−××
==

−
=

−×
=

−××==

−×=

F
y
y

z

z

z
gy
V

zz
y

zy

zV

 





 −−+=−×−





 −−××+=

−

−

1)400(32.01922.24400)220(

1)400(04.081
2
1

400
844.49

220

2
3

2
3

zzz

z

z

z  

By trial and error, z = 166.5 ft. 
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Chapter 3 
CRITICAL FLOW 
 
 
 
3-1 

f y∝= ( )  
2

2

2
2

2

cos
2

cos
2

QE d
gA
QE
gA

θ

θ

= + ∝

= γ + ∝

 

For critical flow 
 

2
2

20 cos
2

dE Q d
dy g dy A

θ ∝ = = +  
 

       (1) 

2 2 3 2

1 2 1 2d d dA d dA
dy A A dy A dy A dy A dy

 ∝ ∝ ∝ ∝  = − ∝ = −      

2 2 2

1 2 1 2cos cosd d dB
dy A A dy A A dy D

θ θ
   ∝ ∝ ∝ ∝ ∝  = − = −          

  where AD
B

=  

 
Equation 1 
 

2
2

2

2
2

1 2cos cos 0
2

2cos cos
2

Q d
g A dy D

V d
g D dy

θ θ

θ θ

  ∝ ∝
+ − =  

  
 ∝ ∝

= − 
 

 

Solving for V2 
 

2
2 2 cos

2 cos

gV
d

D dy

θ

θ
=

 ∝ ∝
− 

 

 

2 cosV=
2 1

cos

g
d

D dy

θ

θ
 ∝ ∝

− 
 

 

1
2 cos

2 1
cos

VFr
g

d
D dy

θ

θ

= =

 ∝ ∝
− 

 
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Or, 1
2 cos

2

VFr
g

d
D dd

θ
= =

∝ ∝ −  

 

 
3.3  

1
cos cos

Q
V AF

gD gDθ θ
= = =

∝ ∝

 

60 20.09
cos 9.81

1.1

QA D
g θ

= = =

∝

 

2
T bA y+ =  

 
 

T = 4y + b 
 

( )4 2 2
2

y bA y y b y+
= = +  

( )2
4
y b y

D
y b
+

=
+

 

( ) ( ) ( )
( )

3 3
2 2

1
2

2 2
2 20.09

4 4

c c

c

y b y y y b
A D y b y

y b y b

+ +
= + = =

+ +
 

By trial error, cy = 0.9835m 
 
3.4 
 

1
cosD

VF
gD θ

= =

∝

   For critical depth 

1
cos

Q
A

gD θ
=

∝

   cos
Q

A D
g

θ=

∝

 

 

For 0θ =  and 1∝=                              25.54QA D
g

= =  

( ) ( )8 0.5o c cA B Sy y y y= + = +                                 where Bo = 8m,  S = 0.5 
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B = Bo + 2Sy = 8 + y c  
 

( )8 0.5
25.54

8
c c

c

y yAD
B y

+
= = =

+
 

Using trial and error  y c = 2.074 m  

( ) ( )
1
20.5

0.5 25.54
8

o c c
o c c

c

B y y
B y y

y
+ 

+ = + 
  

3.5   
               

Y A R B D=A/B Z A D=  
0 
2 
4 
6 
8 

10 
12 
14 
16 
18 
20 

0 
23.4 
58.3 
95.7 

134.8 
174.6 
214.4 
252.5 
287 

315.4 
331.7 

0 
1.34 
2.68 
3.7 
4.5 
5.15 
5.65 
5.99 
6.13 
6.01 
5.08 

0 
16.6 
18.2 
19.2 
19.8 
20 

19.6 
18.3 
16 
12 
0 

- 
1.41 

3.203 
4.984 
6.808 
8.73 

10.939 
13.798 
17.938 
26.283 

∞  

- 
27.79 
104.34 
213.65 
351.72 
515.88 
709.11 
937.93 

1215.54 
1616.96 

∞  
 

850 271.38
9.81c

QZ
g

= = =  

Using graphical method                   y c= 6.8 m 
 
3.6 

2 2
1 2

1 22 2
V VE y y

g g
= + = +  

2 2
1 2

1 22 2 2 2
1 1 2 22 2

Q Qy y
gB y gB y

+ = +  

 
Rectangular Channel  

2 2

1 22 2
1 22 2

q qy y
gy gy

+ = +  

2 22
1 2

1 2 2 2
1 22

y yqy y
g y y

 −
− =  

 
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( )
2 22
1 2

1 2

2 y yq
g y y

=
+

   but, 
2

3c
qy
g

=  

( )
( )

2
1 23

1 2

2
c

y y
y

y y
=

+
 

 
3.7  
  For  

For 0θ =  and 1∝=            Qz A D
g

= =  

i. Trapezoidal  
 

A = (b+ zy)y           ( )
2

b zy y
D

b zy
+

=
+

 

( ) 1.5

2
c c

c

b zy yQ
g b zy

+  =
+

 

ii. Triangular 
                         
                  A= Zy3            D = 0.5 y   

                  

2.5

1
2.5

2
2 c

c

Q zy
g

Q zy
z g

=

 
=  

 

 

iii. circular  
                

                 ( ) 21 sin
8 oA dθ θ= −            1 sin

8 sin
2

oD A dθ θ
θ

 
 −

= =  
 
 

 

      ( )1.5
2.5

0.5

sin1
16

2sin
2

o
Q d
g

θ θ

θ

−
=

 
 
 

 

                  cos 180 1 cos
2 2 2 2 2

o o c o c
c

d d dy θ θ    = + − = −    
    
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3.8 
       i. using a step, with constant width 
               

          1

1

250 / (5 50) 0.143
cos 9.81 5

VVFr
gygD θ

×
= = = =

×
∝

   < 1 subcritical 

           E1 = ∆z + E2   

           
2 2

33
(250 / 50) 1.366

9.81c
qy m
g

= = =  

           250 / (1.366 50) 3.66 /cV m s= × =  
 

                  
2 2

1 2
1 22 2

V Vy y z
g g

+ = + + ∆  

                  ( )23.661 5 1.366
2 9.81 2 9.81

z+ = ∆ + +
× ×

 

                    
                    ∆z = 5.051 – 2.049 = 3 m  
ii. Reduction in the channel width  
             
              q= 250/50 = 5 m3/sec/m  
 

  
2 2

1 2 2

55 5.05
2 2 9.81 5

qE y m
gy

= + = + =
× ×

 

              (E – y) 2gy2 = q2    
                 
               2 3 0.5(2 2 )q gy E gy= −  

               
0.52 3 20.5 2 2 4 6 0dq gy E gy gEy gy

dy
−

   = − − =                       (Max q) 

                  4g Ey = 6gy2                             y c = 2/3 E        
                     y c = 2/3x 5.05 = 3.367 m  
                
               

0.52 3
max 2 9.81 3.367 5.051 2 9.81 3.367 19.35q  = × × × − × × =   m3/sec/m  

                   
               B min = Q / q max = 250 / 19.35 = 12.92 m 
               
               Reduction in width =  12.95 / 50  x 100 = 25.8% 
       

iv. Width Reduction and bottom step  
• Use ∆z < 3.0 m  
• Solve problem (i) to find y2 ≠  y c     



Chapter 3 
 
 
 

36 
 

• Solve problem  (ii) to go from y2  to  y c by reducing the channel width.   
 
3.9 

                         E1 = ∆z + E2                        
1

1

96 1.896
12 4.22 1.896

QV
A

= = =
× =

 m/s 

                         
2

1
1.8964.22 4.4
2 9.81

E m= + =
×

 

                           E2   = 4.4 - 0.2 = 4.2 m 
                           

                        
( )2

22 2 2
2

96 96
10 10 2 10

2

QV
yA y yy

= = =
+ + + 

 
 

 

                          
( )

2

2 2 2
2 2

964.2
10 2 9.81

y
y y

= +
+ × ×

 

                           2 2
2 2

21.674.2
10

y
y y

− =
+

                     y2 = 4.05 (by trial and error)     

                        F=1     96 30.65
9.81

Q A D
g

= = =  

                      ( ) ( ) 0.5
10

10 30.65
10 2

c c
c

c

y y
y

y
+ 

+ = + 
 

   Or,                     
( )

1.52

0.5

10
30.65

10 2
c c

c

y y

y

 +  =
+

 

   Or,                      
( )

3210
939.45

10 2
c c

c

y y
y

 +  =
+

 

            
                                y c = 1.97 m (by trial and error) 
  
 
3.11              
                           X = Ky m 
     Triangular      K = S   m=1   X = S Y 
      Rectangular   K = B o / 2   m = 0  

    Parabola      1 m

K
a

 =  
 

        m = 1/n      Y=a x n  

     
1

0

2 2
1

cY m
m c

c
yA Ky dy K
m

+

= =
+∫  

      2 2 m
c c cB x Ky= =  
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2

2
c

c c

AQ
gA B

=                   

3
1

32
2

1
2

m
c

c
m

c c

K y
AQ m

g B Ky

+ 
 + = =  

         
( ) ( )

2 3 2
3 3 2 3

3 3
8 1 4

21 1
m m

c cm
c

Q K Ky y
g Kym m

+ += =
+ +

 

           ( )
1

3 2 32

2

1
4

m

c

mQy
g K

+ +
=  

  
 

 
3.12  
            Y = a x n  
             3 = a ( 4.5) 2  
           A = 0.14815  
            Critical depth  

                                   Q A D
g

=      (1) 

                                   50 2 2
3 332.2

TY Y=  

                                     16.187 = TY1.5     (2) 
                                     

                 Also             
2

0.148
2
TY  =  

 
 

                                      T =  5.196 Y 0.5     (3)        
   
                  Putting Eq 3 in Eq 2,  
                                       16.187 = 5.196 Y0.5 Y 1.5 
                                       Y c = 1.765    
 
 3. 13  
           Slope = 1 ft / mile = 1 /(1760 x 3)  

                   1 cos
2 2

odY θ = −  
  

                   Q A D
g

=  

                   ( )1.5
2.5

0.5

sin100 1
1632.2

2sin
2

od
θ θ

θ

−
=

 
 
 
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                     ( )

0.5

sin2.2028 sin
sin

2

θ θ θ θθ

 
 −

= − 
 
 

 

                   or, 135.2oθ ≅  (trial and error) 

                     or, 8 135.21 cos 2.48
2 2cY  = − =  

 

                     This problem may also be solved by using Figure 3.7.  
 
3.14                   

                 17.62Q A D
g

= =  

 A = (Bo + 5y) y = (10 +2y ) y 
( )10 2

10 4
y y

D
y

+
=

+
 

( )
0.52

2 10 217.62 10 2
10 4

y yy y
y

 +
= +  + 

 

Critical depth yc = 1.33  
 
3.15 
        Q =15 ft3/sec   

15 2.64
32.2c

QZ
g

= = =  

Using fig. 3.7 

   2.5 2.5

2.64 0.0472
5

c

o

Z
D

= =  

 0.215
o

Y
D

=  

5 0.215 1.075cY = × =  
 
3.16  

               300 52.868
32.2

Q A D
g

= = =     

                 Use the notations in problem 1.1.  
                 Assume that the critical depth occurs in the lower portion  

                    ( ) 21 sin
8 oA dθ θ= −           2 sin

2oB d θ
=  

           Using θ = 48.590  



Chapter 3 
 
 
 

39 
 

              
2

230 48.59 sin 48.59 44.125
2 180

A ftπ = − = 
 

 

               48.592 30sin 58.99
2

B ft= × =  

 
                     The critical depth is located in the lower portion.  
 
                                  Trial and error procedure  
                    θ critical = 47.2o 
                          

                    47.21 cos
2 2critical
DY  = −  

 

                         D = 2do = 60 

                       [ ]60 1 0.916 2.52
2cY = − =  

 
3.17  

                 10 1.762
32.2c

QZ
g

= = =    

                 2.5 2.5

1.762 0.05506
4

c

o

Z
D

= =  

               Using Fig 3.7,  
                  Y / Do = 0.23 
               Y c = 0.23 x 4 = 0.92  
 
3.18       
                   22 0.7 10 2 32.2 60dQ C A gH y= = × × ×  
                    Q = 435.127 y2   

                   3 2
3

3

435.127
10 9 32.2 9

v yF
gy

= =
× ×

 

                     F3 = 0.284 y2  

                  
( )

23
2 3

2 2
2 2

1 1 8
2
9 1 1 8 0.284
2

yy F

y y

 = − + + 

 = − + +  

 

                     22
21 1 0.645

4.5
y y+ = +  

         
                ( )2 2

2 2 29 20.25 20.25 1 0.645y y y+ + = +  
                 12.06 y2

2 – 9 y2 = 0                              y2  = 0.766 
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                 Q = 0.746 x 435.127 = 324.6 cfs  
                     

                  
2 2

1 2 1 1 2 2
1 2

F s s
Q QF F Z A Z A
gA gA

ρ = − = + − −  

                       
2

3(324.6) 1 1 0.74630 60 10 0.746 10 1364.037
32.2 10 60 0.746 2

ft = − + × × − × × = ×  
 

                 Thrust = r ρ F = 62.4 x 1364.037 = 85115.9 lb  
 
3.19  
              Q = 2 x 4 = 8 ft3/sec/ft 

               2 0.176
32.2 4r

vF
gD

= = =
×

 

                Subcritical  
                              E1 = ∆z + E2   
                                   

                               
2 2
1

1 22
22 2

v qy y z
g gy

+ = + + ∆  

                                
2 2

22
2

2 84 0.5
2 32.2 32.2 2

y
y

+ = + +
× × ×

 

                                22
2

0.99383.562 y
y

= +  

                                3 2
2 23.562 0.9938 0y y− + =  

                                Y2 = 3.48 
                                v2 = 8 / 3.48 = 2.99 ft/sec 
 
3.20            
                q = 250 / 50 = 5 m3/sec/m 

                 
2 2

2 2

55 5.05
2 2 9.81 5

qE y m
gy

= + = + =
× ×

 

                y c= 0.67 E = 3.367 m   
                 3 39.81 3.367 19.35cq gy= = × =   m3/sec/m 
                B min = 250 / 19.35 = 12.92 m  
 
3.23   

             1.5 0.2395
9.81 4

F = =
×

  subcrtical 

               Q= 1.5 x 4 =6 m3/sec/m                    Q = 6 x 5 = 30 m2/s  

              
2

33
36 1.543

9.81c
qy m
g

= = =              if there is no converging transition  
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2 2

2 2

64 4.114
2 2 9.81 4

qE y
gy

= + = + =
× ×

 

               
              y c= 0.67 E = 2.74 m 
              

              
2

3c
qy
g

=                q = 14.2   m3/sec/m  

 Min Width = 30 / 14.2 = 2.11 m       
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Chapter 4 

UNIFORM FLOW 
 
 
 
4.1  
Given:                                       Compute Yn (Normal Depth) 
B= 5m 
Q=5m3/s 
n=0.013 
S0=0.001 
 
a) Design curves Method 

Section Factor: 2/1
0S

nQ = (0.013)(5)/(0.001)1/2= AR2/3 

Thus, AR2/3/ B8/3= 2.055/58/3= 0.028 
For a rectangular Channel and AR2/3/ B2/3= 0.028,  
Figure 4.5 gives Yn/ B=0.128,  
Thus, Yn= 0.64 m. 
 
b)Trial and error method 
We have A=BYn=5Yn (Area) 
P=2Yn+B=2Yn+5(Wetted perimeter) 

R=
P
A =

52
5

+Yn
Yn  

Therefore, AR2/3= ( )[ ( ) ] 3/2

52
5

5
+n

n
n Y

Y
Y =2.055   

or, 14.62Yn–2.055(2Yn+5)2/3=0 ----------------------------------------(1) 
 
Substituting values in Eq 1, we get the following results: 
 
Y f(y) 
0.6 -0.69 
0.7 0.984 
0.64 -0.05 
0.645 0.037 
 
Therefore, Yn=0.64m 
 
c) Numerical Methods 
The programs in Appendix C may be used to compute Yn.  
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4.2  
Given:                                                       Compute: Yn (normal depth) 
Q=50m3/s 
n=0.013 
B0=10m 
S0=0.001 

a) Design Curves Method: 
b) Section Factor: nQ/S0

1/2= (0.013)(50) /(0.001)1/2=20.55 
 

AR2/3 = 20.55 and AR2/3/ B8/3= 0.0443 
Entering in figure 4.5 with S=2 and AR2/3/ B8/3= 0.044 we get 
Yn/B0=0.145 
and, Yn=(0.145)(10) 
or 
Yn= 1.45m 
b) Trial and Error method  

for Trapezoidal channel we have: ( ) nn YYA 210 += , and R= ( )
( ) n

n

n Y
Y

Y
221210

210

++

+  

or, 

AR2/3=
( )

( ) ( )[ ] 3/2
3/2

2
210

21210

210
nnn

n

n YYY
Y

Y
+

++

+
=20.55 

Rearranging the equation: 

( )[ ] ( ) 04121055.20210
3/23/2 =++−+ nnn YYY -----------------{1} 

By trial and error, the solution to equation 1 is: 
Yn= 1.46m 
 
c) Numerical methods 
A similar result will be obtained by using the programs in appendix C to solve for the normal 
depth 
From the graph we get Yn= 3.6m 
 
For the critical depth we have: 

g
Q = 








T
AA = 

81.9
150 =47.89 

or; ( )[ ] 2/3583.0 yyb + [b+y(1.667)]1/2 = 47.89  for 0< Yc<4  

Where, b=15, therefore: 
[ ]
[ ]

2/3

2/1

2

667.115
583.015

y
yy

+
+ =47.89 

Solving by trial and error for y, we get 
yc=2.15 m. 
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4.4 
Given Q=150 m3/s 
S0=2/1000 
n=0.03 
Compute Yn and Yc 
Compute section factor: Qn/S0

1/2= (150)(0.03)/(0.002)1/2= 100.62 
From Manning’s equation: AR2/3=100.62 
For 0< y ≤4: 
TT=b+y/1.5+y/2 (Top width) 
AT=(b+TT)y/2=(b+b+1.1667y)y/2 (flow area) 
PT= ( ) ( )22 215.1115 ++++ yy  
PT=15+4.0388y (wetted perimeter) 
 
Make a plot of AT RT 2/3  vs. y to compute the normal depth 
 
Y AT PT RT RT

2/3 ATRT
2/3 

2 32.33 23.08 1.40 1.25 40.41 
4 69.33 31.16 2.22 1.70 117.86 
3 50.25 27.12 1.853 1.51 75.81 
 
4.5 
Given: 
Trapezoidal Channel 1H: 1V 
b=10m 
S0=0.0005 
Q=60 m3/s 
n=0.013 (for concrete) 
Determine flow depth (normal depth) 
 
Solution: 
For a trapezoidal channel with 1H: 1V we have: 
A=(b+T)y/2=(b+b+2y)/2=(b+y)y 
T=b+2y 
P=b+2 ( )y2  
Manning’s equation becomes: Qn/S0

1/2=A 5/3 P-2/3 
 
Or, 
Qn/S0

1/2=(by+y2)5/3/{b+2 ( )y2 }2/3 

Where, Qn/S0
1/2= (60) (0.013)/ (0.0005)1/2=34.88 

Then, [ ] [ ] 088.34)2(21010
3/23/52 =−++

−
yyy  
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This equation can be solved by trial and error or by using numerical methods as presented in 
appendix C. The solution is yn=2.10m. 
 
4.6  
According to Manning’s equation: 
AR 2/3=nQ/S0

1/2[ for n and S0 constants we have Q 3/2AR∝ ] 

( )

( )
( )

( )[ ]

938.0/,
))2/278.5(1(5.0:isdepthingcorrespondThe

278.5get,weerrorandtrialby0θforSolving
0)5.25.1(:getwegsimplifyinandzerotobracketsintermtheEquating

0)(3/2)1(3/50496.0

,0/)(
:ARofderivativefirsttheequatingbyfoundisdischargemaximumtoingcorrespondθofvalueThe

.factorsgeometricfor1.1TableSee

04496.0
2

1

8

:isfactorsectionthesectioncrosscircularaFor

0

3/53/13/23/2
3/4

3/8
0

3/2

2/3

3/5

3/2
3/8

0

3/2

3/2

0

2
0

3/2

=
−=

=〉
=+−

=−−−−

=∂∂

−
=









−

=

−

−

Dyor
Cosy

SinCos

SinCosSinD

orAR

SinD
D

SinD

AR

n

n

θ
θθθ

θθθθθθθ
θ

θ

θ
θθ

θ

θθ

 
In terms of flow velocity the Manning’s equation gives: 
R2/3=nV/S0

1/2 
Then, for constant n and S0, the velocity is maximum, when R2/3 is maximum, or: 
V 3/2R∝  
For a circular section: R2/3 =[1/4(1-Sinθ/θ)D0]2/3(see Table 1.1). Following the same reasoning as 
for the discharge, the angle θ Corresponding to the maximum velocity is given by: ∂ (R2/3)/ ∂ θ=0 

or: SinSinD [()1()4/(3/2 3/13/2
0

−−
θ

θ θ–θ Cosθ)/ θ2]=0 

Solving for θ results in: θm=4.493 
 
The corresponding depth for maximum velocity is: 
yn=Do/2(1-Cos4.493/2) 
or, yn/D0=0.812 
 
4.7  

     Max(Q) )()( 3/2

3/8

PMin
P
AMax ⇒⇒  

  
For a triangular section: P=2y ( )21 s+ where s is the lateral slope 
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Also, 
A=sy2 
Then, 

P=2y 





 + 4

2
1 y

A  

To find the min (P), dP/dy=0 is to be satisfied. 
or, dP/dy=2(1+A2/y4) –A2/y2=0 
but, A2=s2y4, then, 

y=1/s 






 +
2

1 2s  

Substituting this expression in the equation for P we get: 

P=2
( ) ( )

s
s

s
ss 222 1

2
21

2
1 +

=
+








 +  

dP/ds=2–1/s2–1=0 
or, s=1 
or, θ=450x2 
d2P/ds2=2/s>0 implies P is minimum. 
 
ii.   Trapezoidal section : 
A=(b+sy)y  --------------------------(1) 
P= b+2 ( )ys 21+ ------------------ (2) 

dP/dy=2 ( ) ybss /}1{ 2 −−+  
for minimum wetted perimeter dP/dy=0 
or:   
  b=2y( ( ) )1 2 ss −+ ----------------(3) 
substituting 3 in 1 we have: 
A=[2y( ( ) ysyss ]1 2 +−+  

or, y= ( )ss
A

−+ }1{2 2
 

from Eq 2, we have, 
P=2y[2 ( ) ss −+ 21 ] 

or, P=2 [ ]{ }( )ssA −+ 212  
To find s corresponding to minimum P, dP/ds=0 is to be satisfied. 

for A ≠ 0, we get 
( )

01
1
2

2
=−

+ s
s  

or, s=
3
3 =tan300. Thus, the most efficient section for a channel is half a hexagon. 



Chapter 4 
 
 
 

47 
 

4.8  
The channel having the least wetted perimeter for a given area has the maximum flow capacity. 
The area and the wetted perimeter for a circular channel are:  
A=1/8(θ–Sinθ) D0

2,  P=1/2 θ D0 
Solving for D0 in the equation for the area: 

D0= 







− θθ Sin
A8  

Substituting in to the perimeter: 
 

P= θ /2 







− θθ Sin
A8  

The wetted perimeter is minimum when dP/dθ=0 

dP/dθ=
( )

( ) ( ) ( )
2
8

1
2

1 2/3 A
CosSin

Sin 










−−−

−
− θθθθ

θθ
 

dP/dθ=0, when πθ = .  
 
This corresponds to a semicircular section. 
 
4.9  

For flow in a pipe flowing partially full that ( )

3/5

3/2
2
2

πθ

θθ 





 −

=

Sin

QQ fp in which Qp=flow for 

partially full pipe and Qf=flow when pipe is full.If D,=pipe diameter, yn=normal depth and 
S0=slope of the energy grade line in the case of full pipe flow (equal to the slope of the pipe 
bottom in pipe angle is given by: 

 







−= −

0

1 2
1

D
y

Cos nθ  

Christensen’s equation for partially full pipes, based on experimental data, is given by: 

)/2(04.0)/cos(5.046.0 00

exp

DyDy
Q
Q

nn
f

p ππ +−=









 

Plot yn/D0 vs. Qp/Qf using the analytical result and Christensen’s equation. Compute and plot 
np/nf with respect to y/D0 assuming that n is a function of depth. 
 
Solution: 
Prove that Qp=Qf(θ–0.5Sin2θ)5/3/(π θ2/3) 
a)Find an expression for the area of a circular segment for the element showed in the figure 
we have: 
 
y=RCosθ 
dy=–RSinθdθ 
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The area of the segment under the element is given by: 
A= ∫ xdy2  
x2+y2=R2 therefore: 

A= ( )dyyR
R

y
∫

−

−

− 222  

Or, in terms of θ, A=2R2 ∫
θ

θθ
0

2 dSin  

Solving by integration by parts we get, 
A=2R2 [θ–0.5Sin2θ]---------------------------------------(1) 

Put θ in terms of yn. 
When, yn<R 
yn=R–RCosθ  
2yn=2R(1–Cosθ) 
2yn/D0=1–Cosθ 
or, θ=Cos-1(1–2yn/D0) 
 
The same equation results when yn>R. 
θ=Cos-1(1–2yn/D0)    --------------------------------(2) 
 
Use Manning’s equation  

Qp=
( )

3/2

2/1
0

3/5
1

p

p

P
SA

n
,  

where Ap is given by equation1 
For full-pipe flow: 

Qf =
( )

3/2

2/1
0

3/5
1

f

f

P
SA

n
 

Then, Qp/ Qf=
( )

3/53/2

3/23/5

fp

fp

AP
PA

---------------------------(3) 

Recalling that Pp=2Rθ, Af=πr2, and Pf=2πR and substituting equations 1 and 2 into 3 we get, 
(Qp/ Qf )T= (θ–0.5Sin2θ)5/3/(π θ2/3)------------------(4)  
Where T refers to a theoretical result. 
 
2.Compute np/nf 
Assuming that the difference between theoretical equation 4 and experimental results  
(Qp/ Qf )exp is due to a variation of n with respect to yn, we have 

Qf exp=
( )

3/2

2/1
0

3/5
1

f

f

f P
SA

n
    and, Qp exp=  

( )
3/2

2/1
0

3/5
1

p

p

p P
SA

n
, 

Then, 
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(Qp/ Qf)exp =(nf/np)
( )

3/53/2

3/23/5

fp

fp

AP
PA

 ----------------------(5) 

The last term on the right hand side of Eq 5 is the same as Eq 3 and the result is given by Eq 
4. Therefore, 
 

(Qp/ Qf) exp=(nf/np) (Qp/ Qf )T 
(np/ nf) exp=(Qf/Qp)exp (Qp/ Qf )T 
 
Where, (Qp/ Qf )T  is calculated from Eq 4 and (Qf/Qp)exp is calculated with Christensen’s 
equation. 
 
3. Construction of curves 
Equations 4, 6 and Christensen’s are functions of yn/D0. To solve Eq 4, angle θ must be 
calculated first by using Eq 2.Table1 summarizes this calculation. 
 
Table1: Qp/ Qf  , np/ nf for circular pipes as function of yn/D0 
 
yn/D0 θ (rad) (Qp/ Qf )T (Qp/ Qf) exp (nf/np) 
0.1 0.6435 0.0209 0.0168 1.2403 
0.2 0.9273 0.0876 0.0679 1.2403 
0.3 1.1593 0.1958 0.1537 1.2737 
0.4 1.3694 0.3370 0.2731 1.2338 
0.5 1.5708 0.5000 0.4200 1.1905 
0.6 1.7722 0.6719 0.5821 1.1541 
0.7 1.9823 0.8373 0.7415 1.1291 
0.8 2.2143 0.9775 0.8779 1.1148 
0.9 2.4981 1.0658 0.9679 1.1012 
 
4.10  
For the horse-shoe section the following graphical method will be used: 
1. Compute the value of nQ/ S  from the given data. 
2. Plot a graph of y verses the section AR2/3 
3. The normal depth is the value of y corresponding to the ordinate AR2/3= nQ/ S . 
 
For this particular problem we have: 
1. nQ/ S =0.03x800/(0.0005)1/2=1073.31 
2. for the horse-shoe section: 
 
y(m) A(m2) R(m) AR 2/3(m 4/3) 
5 91.06 3.35 203.87 
10 210.63 5.63 666.59 
12 260.37 6.28 886.74 
13 285.37 6.57 1001.55 
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13.5 297.87 6.71 1059.44 
13.75 304.06 6.77 1087.88 
15 334.94 7.06 1232.64 
20 448.44 7.67 1744.09 
  
The normal depth is yn=13.55m. This value was obtained by plotting the first and the last 
columns of the previous table and taking the value corresponding to nQ/ S =1073. 
 
4.11  
Given: n=0.0125 
                    B0=1.2m 
                     Q=210l/s, 350l/s, 450l/s 
                   Channel gradient: 0.67, 0.07, 0.17, 0.3 m/Km 
Compute: Normal Depths. 
 
Case1: S0=0.00067 and Q=0.21m3/s, nQ/S0

1/2=0.10141 
AR2/3=(B0yn)5/3/(2yn+B0)2/3 
Solve for yn by trial and error or by using the computer programs in Appendix C. 
 
(1.2yn)5/3/(2yn+1.2)2/3=0.10141 or, yn=0.262m 
 
The other cases are solved in a similar way by using the appropriate values of Q and S0.The 
following Table summarizes the results. 

 
Computation of Normal Depths for Nimes Aqueduct 

 
Case Section Q0(m3/s) S0 nQ/ 0S  yn(m) 

1 ELEVATED  CHAN. 0.21 0.00067 0.10141 0.262 
2 ELEVATED  CHAN. 0.35 0.00067 0.16902 0.375 
3 ELEVATED  CHAN. 0.45 0.00067 0.21731 0.448 
4 POND DU GARD 0.21 0.00007 0.31375 0.587 
5 POND DU GARD 0.35 0.00007 0.5229 0.869 
6 POND DU GARD 0.45 0.00007 0.67232 1.062 
7 SUBTERRANEAN CH. 0.21 0.00017 0.2013 0.424 
8 SUBTERRANEAN CH. 0.35 0.00017 0.3355 0.618 
9 SUBTERRANEAN CH. 0.45 0.00017 0.43142 0.748 
10 SUBTERRANEAN CH. 0.21 0.00030 0.1515 0.347 
11 SUBTERRANEAN CH. 0.35 0.00030 0.2526 0.500 
12 SUBTERRANEAN CH. 0.45 0.00030 0.32476 0.603 

 
4.12 
Given: B0=15ft 
            Q=150cfs 
            S=1.5 
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           n=0.024 
            S0=2.5ft/mi 
          1mi=5280ft 
 
Solution: 
            S0=2.5ft/5280ft/mi=0.000473 
For steady–uniform flow the channel flow depth will be the normal depth, then we use 
Manning’s equation to solve for y=yn 
 
n Q/ S0

1/2 =1.49 (AR2/3) 
 
AR2/3=0.024x150/(1.49x90.000473)1/2=111.09 
 
1. Design curves method  
Use Figure 4.5 for AR2/3/B0

8/3=0.081 and s=1.5 to get yn/B0=0.21 or yn=0.21x15=3.15ft 
 
2. Trial and Error  
Solve for yn by trial and error (or using a root finding computer program). 

AR2/3=
( )[ ]

[ ] 09.111
12

3/2
2

0

3/5
0 =

++

+

syB

ysyB

n

nn  

or          
( )[ ]

[ ] 09.111
5.11215

5.115
3/2

2

3/5

=
++

+

n

nn

y

yy
 

    
 or yn=3.17 ft 
 
4.13  
Given: S0=10ft/mi 
                    n=0.045 
                    Q=50ft3/s 
Parabolic cross-section of problem 3.12 

P
xy
4

2

=  where, P=distance between the focus and the vertex. 

Compute: uniform flow depth 

Using the coordinates (4.5, 3), P is computed as 
)3(4

5.4 2

=P =1.6875 

Then, the equation of the parabolic section is: 
75.6

2xy =  

Also: A=(2/3)Ty, T=2x, P=T+(8/3)y2/T 
or, A=0.1975x3 
P=2x+0.02926x3 
nQ/(1.49S0

1/2)=(0.045)(50)/{(1.49)(0.001891/2)}=34.7348    -----------------------(1) 
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and 
( ) 3/23

5

3/2

3/5

02926.02
06698.0

xx
x

P
A

+
=                                      ----------------------------(2) 

Equating 1 and 2 and solving for x we get, 
 
x=4.9336 ft 
 

Finally,   yn=
75.6

2x  or yn= 3.606 ft 

 
4.14 
Given: 
Circular cross section 
D0=8ft 
S0=1ft/m 
Q=30ft3/s 
Concrete lined 
Compute: flow depth, y 
 
Solution: Assume steady-uniform flow, therefore y=yn 
S0=1/5280=0.000189 
n=0.013(from table4.1) 
nQ/(1.49S0

1/2)=(0.013)(30)/(1.49)(0.000189)1/2=19.019 
 
1. Design curves 

 
Using Figure 4.5 for AR2/3/D0

8/3=19.019/88/3=0.0742  we get yn/ D0=0.33 or yn=0.33(8) =2.64 ft. 
 
2. Numerical solution  

Expressing AR2/3 in terms of the angleθ  we get, ( )[ ]
( )

019.19
)2/1(

8/1
3/2

0

3/52
0 =

−
D

DSin
θ

θθ  

The solution is:  







 −=

2
1

2
toscorrespondwhich,46.2 0 θθ CosDrad =2.64 ft. Therefore, yn = 2.64 ft 

4.15 
Given: 
Sewer of problem 3-15 
D0=5ft 
S0=2ft/mi=0.00038 
Q=15ft3/s 
Concrete lined 
Compute: Normal depth  
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Solution:  
AR2/3= nQ/(1.49S0

1/2) = (0.014)(15)/(1.49)(0.00038)1/2 = 7.23 
 
1. Design curves method 
Use Figure 4.5 with AR2/3/D0

8/3=7.23/58/3=0.09891 and get, yn/ D0=0.39 or yn=1.95 ft 
 
2. Numerical solution  

Expressing AR2/3 in terms of the angleθ  we get ( )[ ]
( ) 3/2

0

3/52
0

)2/1(
8/1

D
DSin

θ
θθ − =7.23 

The solution is:  







 −=

2
1

2
scorrespondwhich,6861.2 0 θθ CosDtorad =1.94 ft. Therefore, yn =1.94 ft. 

4.16  
Given: 
Q=28m3/s 
S=1 
B0=8m 
S0=0.0001 
y=3m 
Compute y if Q is doubled. 
 
Solution: 
Assuming steady-uniform flow compute Maning’s coefficient using data for Q=28m3/s and 
Manning’s equation. 
Assuming constant n for the new flow we can compute the new flow depth. 
n= (AR2/3S0

1/2)/Q 
For a trapezoidal channel,Table1.1 gives: 
A=(B0+syn)yn=(8+3)3=33 

R= ( )
( )2

0

0

12 syB

ysyB

n

nn

++

+ = ( )
( )2)3(28

338
+

+ =2.00 

and n=33(2)2/3(0.0001)1/2/28=0.0187 
Section Factor for 56m3/s: 

AR2/3=
0S

nQ =
0001.0

)228)(0187.0( x =104.76 

 
1. Design Curves method 

Use Figure 4.5 for 0.141.03/8
0

3/2

== sand
B
AR  to get yn/B0=0.56 

or, yn=0.56x8=4.48m 
 

2. Numerical solution 
Solving for yn from 
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( )[ ] ( )
my

yyy

n

nnn

40.4
obtainwe,02)2(876.104)1(8

3/23/5

=
=+−+  

 
 4.17  
Given:  
Long rectangular channel 
Change in flow depth from 4ft to 5ft 
Determine: Percentage change of rate of discharge. 
From Manning’s equation: Q= (1.49/n)AR2/3S0

1/2 

At 4ft:                                 Q1= (1.49/n) ( )
( ) 3/2

1

3/5
1

2yB
By
+

 S0
1/2 

At 5ft:                                  Q2=  (1.49/n) ( )
( ) 3/2

1

3/5
1

2yB
By
+

 S0
1/2 

     Then                               
3/2

1

2

3/5

2

1

2

1

2
2









+
+









=

yB
yB

y
y

Q
Q  

Assuming a wide rectangular channel: 
B+2y2 B≈  
B+2y1 B≈ , 
 
Then, Q1/Q2= (0.8)5/3=0.689 

or , Q1/Q2=68.9 %  i.e.,  Q1 is 68.9 % of Q2 
 
4.18  
Assuming that the flow must be controlled by improving the channel conditions two possible 
solutions are: 
 
a) Improve Lining 
The conveyance of the channel can be increased by reducing the channel resistance. If the 
channel is lined, for example with concrete, the Manning’s coefficient will decrease and the 
channel capacity will be increased. Different lining processes should be considered. 
 
b) Increasing the flow area. 
If the cross-section area is increased, the capacity of the channel will increase. For example, a 
trapezoidal section could be a good choice. If any case, the cost of excavation and other local 
conditions will dictate the viability of this option. 
 
4.19  
Given 
Rectangular Channel 
B=4m 
Q=9m3/s 
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S0=0.005 
n=0.014 
Determine if the flow is sub-critical or supercritical 
 
Solution: 
i) Compute Critical Depth: 
yc= )/(3 22 gBQ   (see problem 3.11) 
 
yc= )1681.9/(93 x =0.802m 
ii) Assume steady-uniform flow and compute the normal depth: 

AR2/3=
0S

nQ  

AR2/3=1.065 

or, ( )
( )

065.1
2 3/2

3/5

=
+ n

n

yB
By  

or, yn=0.5m 
 
3) Compute yn and yc 
In this case yn < yc 
 
4.20  
Given: 
Trapezoidal channel 
B0=20ft 
s=1.5  
Q=220cfs 
S0=0.00032 
n=0.022 
Determine if the flow is subcritical or super critical. 
 
Solution: 
i) Compute critical depth: 
Section Factor Z=Q / g =220/ 2.32 =38.77 
 
a) Design Curves Method 
Use Figure 3.7 for Z/B0

2.5=0.0217 and s=1.5 
to obtain, yc/B0=0.076 or yc=1.52ft 
 
b) Solving by trial and error (or using numerical methods) 
Solve for A D =38.77 or: 
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( )[ ]
( )

77.38
2 2/1

0

2/3
0 =

+

+

c

cc

syB
ysyB  

( )[ ]
( )

77.38
)5.1(220

5.120
2/1

2/3

=
+

+

c

cc

y
yy  or,yc= 1.49ft 

 
ii) Compute Normal Depth: 

Section factor:
049.1 S

nQ  or, 
00032.049.1

)220(022.0 =181.59 

Design Curves:  
Use Figure 4.5 for AR2/3/B0

8/3 = 0.0616 and s=1.5 to get yn/b0=0.18 or yn=(0.18)(20)=3.6ft 
 
Trial and Error: 
Solve for yn from 

( )[ ] ( ) 05.11259.181
3/2

2
0

3/5
0 =++−+ nnn yBysyB  

 

or, ( )[ ] ( ) 05.1122059.1815.120
3/2

23/5 =++−+ nnn yyy  
 
yn=3.61 ft 
 
iii) Compare yn and yc 
The flow is subcritical as yn > yc . 
 
4.21  
Given:  
Trapezoidal Channel 
Q=15m3/s 
B0=10m 
S=2 
yn=2m 
Compute the flow depth for Q=20m3/s. 
 
Solution: 
Assuming steady-uniform flow and determine Manning’s coefficient from the data for 15m3/s: 
A=(B0+syn)yn=28m2 

( )














++

+
= n

n

n y
syB

syB
R

)1(2 2
0

0 =1.478m 

n=AR2/3 S0
1/2/Q=n/S0

1/2=2.422 
for, Q=20m3/s, AR2/3=nQ/ S0

1/2=2.422x20=48.44  or, 
( )[ ] ( )

my
yyy

n

nnn

34.2or,
0)5210(44.48210 3/23/5

=

=+−+  
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The flow depth yn for Q=20m3/s is 2.34m 
 
4.22  
Given: 
Compound Channel S0=0.001 
n=0.021(main channel) 
n=0.039 (flood plains) 
Compute i) Equivalent n (ne) 
               ii) Velocity-head coefficient (α ) 
               iii) Slope of the energy grade line (Sf) 
Assuming that the flow is 5m, use Eq 4.35 for ne and 4.47 for α . Alternatively, Eq 4.36, 4.37 or 
4.38 may be used to estimate ne. 
 
The following Table shows the computations for the compound channel. It has been subdivided 
into sub-sections 1, 2 and 3. 
 
                                             Computation of ne and α  for compound channel 
 

Section ni Pi Ai Ri Ki Pini
3/2 Ki

3/Ai
2 

1 0.021 30 106 3.533 11708.88 0.091 1.429x108 
2 0.039 7.236 6 0.829 135.77 0.056 6.952x104 
3 0.039 7.236 6 0.829 135.77 0.056 6.952x104 
∑   44.47 118  11980.42 0.203 1.430x108 

 
ne= ( ∑ Pini

3/2/ ∑ Pi)2/3=(0.203/44.47)2/3 
ne=0.028 
α = ( ∑ {Ki

3/Ai
2}) ( ∑ Ai)2/ Ki=1.16 

The discharge should be known in order to compute Sf using Eq 4.48. However, if steady-
uniform flow is assumed, the compound channel will have Sf=S0 
 
Thus, Sf = S0 = 0.001 
 
4.23  
Given: Rectangular channel  
B=12ft 
y=3ft 
n=0.035 
So=0.001 
Compute: i) Critical depth (yc) for the flow corresponding to y=3 ft 
                ii) Determine if the flow is critical, subcritical or super critical. 
i) Compute the flow rate: 
Q=(1.49/n)AR2/3S0

1/2=(1.49/0.035)(12x3){(12x3/(12+6)}2/3(0.001)1/2 

Q=76.93cfs or q=76.93/12=6.41cfs/ft 
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The critical depth is yc= 3

2

g
q  

yc= 3
2

2.32
41.6  =1.085 ft 

As yc < y, flow is subcritical. 



 
 

59 
 

Chapter 5 
GRADUALLY VARIED FLOW 
 
 

 
5.1 
Given:  

Gradually varied flow equation:    21 F
SS

dx
dy fo

−

−
=  

Wide rectangular channel 
Manning and Chezy formulae  
Prove that: 

a) ( )
( )

3
10

31
1

yy
yy

S
dx
dy

c

n
o

−

−
= using Manning’s formula 

and  

b) ( )
( )3

3

1
1

yy
yy

S
dx
dy

c

n
o

−

−
=   using Chezy’s formula 

Solution: 
The geometric properties for a wide rectangular channel can be approximated by, 
A = by 
P = b 
R = by/b = y   and  
D = y 
Therefore,   AR2/3=by5/3   and the Froude number can be expressed as  

32

2
2

2 ygb
QF =  

a) Using Manning’s equation the slope of the energy grade line for gradually varied flow is  

3102

2

32

2

yb
nQ

AR
nQS f ==          (1) 

Also, for uniform flow  

3102
n

o yb
nQS =  

or 

2

22
310

b
QnyS no =                     (2) 

When the flow is critical, the Froude number is one. Thus,  

1
2 32

2
2 ==

c
c gyb

QF  

and 
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( )32
2

2

yyF
F
F

c
c

==                (3) 

Substituting Eqs 1, 2 and 3 in the gradually varied flow equation we get, 
( )

( )31 yy
yySS

dx
dy

c

coo

−

−
=  

or  ( )( )
( )3

310

1
1

yy
yyS

dx
dy

c

no

−

−
=  

b) If Chezy’s equation is used, then 

( ) 21
21

21 yby
CS

QAR
f

==  

Or, 322

2

ybC
QS f =   and 322

2

n
o ybC

QS =  

or, 22

2
3

bC
QyS no =  

Combining the expressions for Sf   and So we get  
( )3yySS nof =  

Therefore, the gradually varied flow equation becomes 
( )( )

( )3

3

1
1

yy
yyS

dx
dy

c

no

−

−
=  

 
5.2  
Consider the control volume: 
 
The momentum equation establishes that the sum of forces acting on the control volume must be 
equal to the net change in momentum inside the control volume, For the X-direction this is 
expressed mathematically as, 

( )( ) θρρ sin21 WFFFQVdVVdQQ f +−−=−++         (1) 
Where, 
F1 =Pressure force at section 1 
F2 = Pressure force at section 2 
Ff = Force due to friction  
W = Weight of the fluid inside the control volume 
Assuming a hydrostatic pressure distribution, the pressure forces may be expressed as: 
 

AyF γ=1  

( ) ( )AdyydAdyAdyyF +≈++= γγγ
22  

and the friction force as 
dxASPdxRSPdxF ffof γγτ ===  (see Eq 4.7) 
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where, 
 γ = specific weight, 
y = location of the centroid of the cross section perpendicular to the flow, 

τo= shear stress at the channel wall,  
P=wetted perimeter and, 
Sf= slope of energy grade line. 
 
Substituting the expression for F1,F2 and Ff  into Eq 1, simplifying and neglecting second order 
terms like   dx dV we get, 

dxASdxASAdydx
g

Vq
g

QdV
of +−=+         (2) 

Where, θsinW  was substituted by dxASoγ  and 
g

Vqdx  is the contribution of the lateral flow to 

the change in momentum inside control volume. 
 
Further simplification leads to: 

dx
dV

gA
Q

gA
qQSS

dx
dy

fo −







−−= 2         (3) 

But, 





 −

= 2A
QdAAdQdV ; therefore, the last term on the right hand side becomes 

Dx
dA

gA
Q

gA
QqdV

gA
Q

3

2

2 −=                       (4) 

Recalling that for a prismatic channel 

dx
dy

dy
dA

dx
dA

=    and B
dy
dA

=  

Equation (4) becomes, 

dx
dyB

gA
Q

gA
Qqdv

gA
Q

3

2

−=  

substituting Eq 5 in Eq 3 and solving for dy/dx we get, 

3

2

22

1

2

gA
BQ

gAqQSS
dx
dy fo

−

−−
=          (6) 

 

or,    2

2

1
2
F

gAqQSS
dx
dy fo

−

−−
=      (7) 

where, F is the Froude number. When q is zero, Eqs 6 and 7 become the differential equation for 
gradually varied flow at constant discharge without lateral flow. 
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5.3   
a) 
 

 
 
Comment: At the upstream reservoir yRes>yc and in channel 1 y<yc ⇒ There is a control section 
near reservoir and channel 1 is steep. 
Channel 2 is horizontal ∞=⇒ ny  and ⇒< co SS The flow must go from supercritical to 
subcritical through a hydraulic jump. At the free flow the critical depth must occur again. 
 
 
 
b) 

 
Comment: At the upstream reservoir yRes> yn >yc ⇒  the control section is downstream and 
channel 1 is mild with subcritical flow. 
In channel 2, the flow becomes super critical after the slope changes from mild to steep. Because 
the down stream reservoir is very high a hydraulic jump is formed to raise the water level over 
the critical depth. 
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c) 

 
Comment:  
Both channels are mild (yn >yc always) 
The water profile crosses the critical depth just before the downstream reservoir. 
 
d) 

 
Comment:  
Both channels are mild (yn <yc always)  
There is a control section near the upstream reservoir. 
A hydraulic jump forms close to the down stream reservoir. 
 
5.4 
Analyze a sluice gate as a flow control device from a lake. 
Assume that the channel bottom slope is 
i) Mild 
ii) Steep 
 
Notation: NDL=Normal depth line, CDL= Critical depth line 
The problem will be illustrated with several possible combinations of channel slope and gate 
openings close and far from the reservoir. The more appropriate location for the gate will be 
suggested based on the analysis. 
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MILD CHANNEL  
a) Gate located ‘far’ from the lake outlet. Gate opening less than the critical depth. 

 
The control section is located at the gate. 
 
b) Gate far from the lake outlet. Gate opening greater than the critical depth. 
In this case the outflow from the lake does not depend on the gate opening. 

 
Cases (a ) and (b) will be the same for a gate near the lake. The water level at the gate position is 
very close to the reservoir level, therefore; if the gate is located very far from the reservoir, the 
size of it will increase considerably. From this point of view to locate the gate near the reservoir 
is more convenient. 
 
STEEP CHANNEL  

a) Gate near the lake outlet. Gate opening less than the normal depth. 

 
There is a control section at the gate. 
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b) Gate near the lake outlet. Gate opening greater than the normal depth. 

 
 
The control section is at the gate. 
 
c) Gate far from channel entrance. Gate opening less than the normal depth. 
 

  
There is a control section at the channel entrance. 
 
d) Gate far from channel entrance. Gate opening greater than the normal depth. 
 
 

  
 
There is a control section at the channel entrance. 
From the cases presented before it can be concluded that the more appropriate location for the 
gate in order to establish a control section is near the reservoir for both steep and mild channels. 
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5.5 

Given: 
Manning’s formula  
Gradually varied flow equation 
Show that ∞→dxdy  as 0→y  
 
Solution 
From,  

Manning’s equation: 342

22

RA
QnS f =  

Froude:
gA
BQ

gDA
QF 2

2

2

2
2 ==  

For a wide rectangular channel, we have yR ≈  and A=By, 
Then, 
 

3102

22

yB
QnS f =  

and 
gyB

QF 32

2
2 =  

Substituting the expression for Sf   and F2 into the gradually varied flow equation we get: 
( )
( ) 31232

223102

yQgyB
gQnyB

dx
dy

−
−

=  

Taking the limit when 0→y  the result is 
( ) ∞=→ dxdyy 0lim  

 
5.6  
Given: 
5m wide rectangular channel (concrete-lined) 
So =0.004  
n = 0.013 
Ho= 2m (lake level) 
Compute: 
i) Q in the canal (neglecting head losses) 
ii) Q if So is changed to 0.001 and head losses are gV 21.0 2 . 
i)Compute Q  
1) Assume steep or critical slope, then 

== ocy µ
3
2 4/3 m= 1.33 m 

and gyq o
32 =  

or, 822.43 == gyq o  m3/m-s 
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Q= qb = 24.111 m3/s 
  

2) Compute the critical slope 
21321

ccc SRA
n

Q =  

or, ( )
( )

2

35

322










 +
=

c

cn
c by

byQ
S  

( )
( )

2

35

32

3/45
53/83134.0










×
+

=cS  

Sc= 0.00266 
 
3) Compare So and Sc 
In this case So > Sc

 , then the canal is steep and the flow will be, 
Q = 24.11m3/s 
ii) If So

 =0.001 and K= 0.1 (minor loss co-efficient) 
then, 
1) Compute yc by using the energy equation at the entrance, 

g
V

g
VyH co 2

1.0
2

22

++=   (assuming steep channel) 

21.1 cco yyH +=  
29.1=cy m 

 
2) Compute Q for steep channel, 

gyq c
3=  

589.4=q m3/m-s 

Q= qb= (4.589)(5) =22.945m3/s 
Q=22.945m3/s →This is the maximum discharge in the canal 
3)        Compute the critical slope 

            
( )

( ) 310

34222

cby

bcyQn
cS

+
=  

         ( )( )
49.499

577.1208897.0
=cS  

              00224.0=cS  
   

4)  Compare oS   and     cS  
In this case cSoS 〈 , then the channel slope is mild and there is not control section      at the 
entrance. Therefore, the previous analysis does not apply. 
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We can assume that the flow will reach normal depth near the lake then; Q is given by 
Manning’s uniform flow formula. The flow depth can be obtained combining the energy and 
Manning’s equation. 
Doing this we get: 
  

                oSR
gn

kyH 34
22

1+
+=  

               oS
by

by

gn

kyH
34

222

1








+

+
+=  

  Substituting   81.9013.0,51.0,2 ===== gandnbkmH  
  And solving for y we get the normal depth as 
    mny 668.1=  
Q is obtained from Manning’s equation and the answer is  
 

  smQ 333.20=  
5.7   
   Lakes A and B are connected by a 10m-wide rectangular channel. 
 013.0=n  
           001.0=oS  
 mL 2000=  
          Sketch the water surface profile in the channel if: 

i) Lake B is at EL. 155 
ii) Lake B is at EL. 161 

         Computation of critical depth  
           

             oHcy
3
2

=        (Wide rectangular channel) 

             ( )( )( ) moH 82000001.0158168 =−−=  
  mcy 33.5=  
         Unit discharge for critical flow:  

             ( )333.581.93 == cgyq  

   msmq −= 358.38   
 

        Total discharge:               smBqcQ 377.3==   

        The critical slope is:         ( )( )

( )
32

67.1010
3.53233.510

277.385013.0
322

2









+
×

==
RA
cnQ

cS   
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                                                 0025.0=cS  
       Given that     oScS 〉   the channel is classified as MILD. 
     
      To get the uniform flow conditions we solve for ny  
       From:    

                                       21321
oSAR

n
Q =              (Manning’s equation) 

       And                         
g

Vk
g

VyoH
2

2

2

2
++=         (energy at the entrance) 

      Assuming 0=k    (zero entrance losses) and using AQV =  
      We have   

                                       
gn
oSR

y
gA

QyoH
22

34

22

2
+=+=  

     Solving for y:             
ng

oSR
oHy

2

34
−=  

Or     

                                     
22

34

2 gn
oS

yB
By

oHy 







+

−=  

Solving for y (by trial and error or by numerical methods) one gets 
mny 77.6=   

The flow profile is now sketched knowing the normal and critical depths in the channel. 
                         
In both cases, a M2 curve is produced.  
                      For EL. 155 a free-fall condition at the downstream end exists. 
 
5.8.           
Given: Concrete-lined channel 

N = 0.013 
B = 15m (rectangular shape) 
L = 15000m 
Reservoir Elevations: Water surface = 129.65m 

Bottom = 121.4m 
 

i) Determine Q, sketch and label the water surface profile. 
 

001.0=oS , Water elevation at downstream reservoir (y) is 109m 

oHcy 32=          moH 25.84.12165.129 =−=   
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mcy 5.5=                        (Critical depth) 

           q =  3
cy g  = 2)5.5(81.9  

       q = 40.4 ms
m

−
3          (unit charge for critical depth) 

                  smqBQc
3606==         (Critical flow) 

       The critical slope is 
 

 = 
310

3422

A

pcQn
 

 
       where, p = wetted perimeter = 26m 

                    A = area = 82.5 2m  

       
310)5.515(

34)155.52(2)606(2)013.0(

×

+×
=cS  

       00196.0=cS  
                   

       oc SS 〉 = is a mild channel 
 

Combining Manning’s equation for uniform flow and the energy equation between the 
reservoir and the channel entrance we get: 

                
gn
SRH o

yo n 2

34

2+=   (Equation 5.18 neglecting entrance losses) 

Or            
2013.081.92

001.034

215
15

25.8 ××







+

+=
ny

ny
ny

 

    
   Solving for ny we get     mny 634.6=  

   Then, ( ) 21321
oSRA

n
Q =  

                    ( ) 21001.03
2

27.28
52.99

013.0
52.99







=Q  

 

                 smQ 3560=  
 
 ii).      008.0=oS  

34

2

AR
cQn

cS =
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  In this case the channel slope is STEEP, oScS 〈 . Thus, the discharge is given by 

smcQ 3606=  the normal depth is obtained directly from Manning’s equation 
 

                    
oS
cnQ

AR =32  

                   08.88
32

215
15

15 =







+

=
ny

ny
ny  

Or                mny 35.3=  
 
5.9  
             Start with the total energy equation: 

                 
g

VyH
2

2α
++Ζ=                                                 [1] 

              The change in energy along the channel is: 

                
gdX

Vd

dX
dY

dX
d

dX
dH

2

2 






++
Ζ

=
α

                                 [2] 

               Recall that    oS
dX
d

−=
Ζ   (channel bottom slope) 

                                    fS
dX
dH

=   (Energy grade line slope) 

And                               VAQ =           
                
                 Then for L=1, equation 2 becomes: 

                 
gdX

AQd

dX
dY

oSfS
2

22 






++−=−                        [3] 

                      For constant discharge along the channel we have: 
 

                   
dX

Ad

g
Q

gdX

AQd 






=





 21

2

2

2

22

 

Or                
dX
dAA

dX

Ad
32

21
−−=








 

 
                But    ( )xyfA ,=    (the cross-sectional are is also a function of y) 
                Therefore, 
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                      dXdY
dY
dA

dX
dA

dX
dA

+=    (Chain rule) 

Also                
                      dYdAB =   Then, equation 3 becomes: 

                      





 +−+−=−

dX
dY

dY
dA

dX
dA

gA

QdXdYoSfS
3

2
 

Or: 

                        

gA
BV

dX
dA

gA
V

fSoS

dX
dY

2
1

2

−

+−
=  

 5.10 
 For a wide rectangular, derive expressions for the channel bottom slope to be     mild, step and 
critical. 
By definition a mild channel satisfy oScS 〈  and a steep channel satisfy      oScS 〉  

Therefore, we look for an expression for cS  in the terms of the critical flow   conditions and 
determine the channel type (mild or steep) using these inequalities. 
 
For a wide rectangular channel the hydraulic radius can be approximated as: 

yR ≅  
From Manning’s equation we get,   
                          

   213249.1
cSAR

n
Q =       Where      qBQ =  

                 For critical flow conditions  

                         ( ) 212349.1
cScycBy

n
Bcq =  

                Finally,            
2

3549.1 










=

oy

ncq
cS  

               The critical flow depth and discharge may be computed using the methods of chapter 3. 
 
5.11 
Given: 
 Chute spillway blasted through rock (not lined)  ( )ftftoS 205.1075.0=  
 Water level at the entrance 10ft above the channel bottom. 
                      
 Compute: Flow depth and discharge in the chute. 
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 Solution:    
                   Assume control at channel entrance, then: 
                 
                         ftoHoy 667.632 ==                             (Critical depth) 

                         ftsftcgycq −== 368.973           

                         ( ) 21
32

2
49.1 cS

Bcy
ByByBcqcQ 








+

==     

                     Simplifying and solving for cS  we get: 
 

                          
2

3549.1 










=

cy

ncq
cS    ( See problem 5.10) 

                         oScS 〈〈= 0094.0                                   (Using n=0.035 for blasted rock). 
 
                      The normal depth is given by Manning’s equation as: 
                

                          ( )
oS

nqBBy
Bny

nBy
49.1

32

2
=








+

 

                     The result is ⇒〈〈== cyynyfny 147.1  
 
The channel is STEEP the flow is supercritical and the profile type is S2. 
 
5.12  
a. 
 

 
b. 
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c. 

 
d. 
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e. 

 
 
 
 
5.13 
 
 

 
 
 5.14.  
Given: 
                              Trapezoidal channels 
                              Q = 800cfs 

      N = 0.028 
      S = 1 
      B = 15 ft 

                             Compute: cy      and           ny  sketch the water surface profile. 
                              For the channel 1: 0005.0=oS  
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                            Use Manning’s equation to get the normal depth: 

                            ( )( )
( )

32
210005.049.1

800028.032
2149.1

ARAR
oS

nQ
=⇒=  

                     Or       32.67232 =AR  
 
                              Enter the design curve with  
 

                                  
( )

491.0
3815

32.672
38

32
==

b

AR  

                        To get ftnybny 9156.06.0 =×=⇒=  
                 Or   solve for ny from: 

 

( )[ ] ( ) 32215/351532.672 nyznyny ++=  
                       
                        The result is:    ftny 09.9=  
    To compute the critical depth, solve for cy from: 

                        ( )[ ] [ ] 98.140
2.32

800212152315 ==−++ cycycy  

    The solution is: ftcy 05.4=  
 
   (Alternatively, you can use design curve for critical depth). 
    For channel 2  05.0=oS  

   Normal depth: ( )( ) 232.67
05.049.1

800028.0
2149.1

32 =⇒=
oS

nQAR  

   Solve for ny  from: 

                          ( )[ ] ( ) 232.67322215/3515 =++ nynyny  
                         ftny 46.2=  
    In channel 1 the flow is sub critical and in channel 2 the flow is supercritical. 
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5.15 

ny  for channel 1 was computed in problem 5-14 

ny For channel 2 is obtained from: 

( )[ ] [ ]
oS

nQ
nynyny

49.1

32
22153515 =++  

In this case, 96.867
49.1

=
oS

nQ       and          .40.10 ftny =   

 
Channel 1 has supercritical flow and channel 2 has subcritical flow. 
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Chapter 6 

COMPUTATION OF GRADUALLY VARIED FLOW 
 
 
 
6.1  
 The forces acting on the control volume shown in the next figure are: 
 
 F1  =  µA y     Hydrostatic force at section 1 

 F2 + F3 = µA y + µA
x
x

∂
∂

∆x   Hydrostatic force at Section 2 

 Ff = T0P∆x = µA∆xSf   Friction force 

 Wx =  µA∆ x sinθ = µA∆xS0   Weight component in the x-direction 
 
 
 
 

 
The sum of forces gives 
  
∑Fx =  F1 – F2 – F3 – Ff + Wx 
 

∑Fx =  µA∆ x (-
dx
dy  -Sf + S0) 

According to the principle of conservations of momentum, the sum of the forces acting on the 

control volume plus the net rate of momentum is flux must be equal to the time rate of change of 

momentum inside the control volume. 

 
The net rate of momentum influx produces 
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 ρAV2 - ρ(AV2 + 
dx
d (AV2) ∆x) 

Or 

 ρ
dx
d (AV2) ∆x 

 
The time rate of change of momentum is  

)( xAV
t

∆
∂
∂ ρ  

Then, the principle of conservation of momentum becomes: 

)()()( 0
2 SS

dx
dyxAxAV

xg
xAV

gt f −+∆−∆
∂
∂−

=∆
∂
∂ µµµ  

For steady-state conditions, )( xAV
gt

∆
∂
∂ µ  = 0 

Then, )(1 2AV
xg ∂
∂ = A (S0 -

dx
dy  - Sf) --------------(1) 

Expanding the derivative )( 2AV
x∂
∂ we get, 

 
x
A

d
A

dx
dy

y
AV

x
AV

∂

∂
+

∂
∂

=
∂

∂ )()( 2
2

2
2

 

     = V2
dx
dy

y
A

∂
∂ - 2V2

dx
dy

y
A

∂
∂ = -V2 B

dx
dy  

Then Eq 1becomes: 

 - )( 0

2

fS
dx
dySA

dx
dyB

g
V

−−=
− ) 

Or 

 =
−

dx
dy

gA
BQ

3

2

)( 0 fS
dx
dyS −−  
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Solving for dy/dx : 

 

3

2

1

0

gA
BQ

SfS
dx
dy

−

−
=  

 This is same as Eq 6.3 with α = 1. 

 
6.2 
 Given 

  Rectangular Channel 

  10 mts. Wide 

  Concrete Lined 

  S0 = 0.01 

  Constant take upstream, neglect entrance losses. 

  H0 = 6m 
 
 Compute : (i) Flow depth 800 m downstream 

   (ii) Distance where y = 2.5 m 

 

 Method of solution  : Direct Step 

 Mannin’s coefficient : n = 0.013 for concrete 

 

 From example 5.3 : y0 = 4m 

     Q = 250.6 m3/5 

     Steep Channel 

     yn = 2.37 m 

The water surface profiles have critical depth at the entrance.  A S2 curve will develop from the 

entrance to the normal depth. 

 
Table P6.2 shows the detailed computations of the flow profile by Direct Step method.  These 

computations may be easily made using a spreadsheet program.   
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The flow depth at 800 m downstream of the lake is 2.4/m.  The flow depth will be 2.5 m at 470 

m from the lake. 

Table P6.2 – Direct Step Method 

 

6.3 

Given 

 Trapezoidal channel 

 S0  = 0.001 

 Q = 75 m3/s 

 B0 = 50m 

 s  = 1.5 

 Control at downstream end that raises the water depth to 12 m. 

 n = 0.025 

Determine : Amount by which the channel banks must be raised along its length. 

Solution Compute the critical path. 
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DA
g

Q
=  

 
2
1

0

2
3

0

)5.1150(

]0)5.150[(
81.9

75

yx

yy

+

+
=  

 Solving for y0 we get, y0 = 0.608 m 

Compute the normal depth:  3
2

0

AR
S

nQ
=  

 =
001.0

)75)(025.0(

3
2

2

3
5

)5.11250(

])5.150[(

n

nn

y

yy

++

+  

 The normal depth, yn = 10106 m 

y0<yn  => Mild channel.  The new backwater curve is M1. 
Table P6.3 shows the computations of the new profile.  The last column (Dh) is the minimum 
distance by which the banks must be raised if the flow was uniform before the construction of 
the central structure. 

A freeboard must be provided for safety reasons.  The water depth will be normal at 11.8 km 
upstream from the central structure. 
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6.4 

Given: 

 5 km long canal with free over fall at the downstream end.   

 Y0  = 4m (at the fall) 
 n = 0.013 

 Entrance loss = 0.2
g

V
2

2

 

 B0  = 8.0 m 
 s = 1.5 

 S0 = 0.0001 
Determine : The minimum water level held in the lake for these conditions. 

Solution : Compute the channel discharge using the critical depth relation 

 DA  = 
g

Q  

Where A  = (8+4x1.5)4 = 56 

 D = 
5.1428
4)5.148(

xx
x

+
+  = 2.8 

And  Q = 56 81.98.2  

 Q = 293.49 m3/s 

Table P6.4 shows the computations of the flow profile using Standard Step Method. 

The water depth downstream of the entrance section is 6.34m. Using the velocity-head of this 

section the local losses are : 

0.2 
g

V
2

2

= (0.2)(0.356) = 0.071 

The minimum water level in the lake is : 

 Hlake = 6.34 + 0.07 = 6.41 m 
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6.5 
Given 

 Natural stream with the following cross section: 
n = 0.035 
Q  = 80 m3/s 
Flow depth at a bridge downstream = m 
S0  = 0.0002 
 

Determine : Flow depth 3.0 km upstream of the bridge. 
Solution: 
 First, determine the type of flow profile by comparing the normal depth, critical depth 
and the water elevation at the bridge. 
For the normal depth, we solve for yn from  

 

mn
n

nn

S

ygassu
y
yy

Then
S

nQ
where

P

A
S

nQ

5min198
)5210(
])210[(

198
0002.0

)80)(035.0(

6667.0

667.1

0

3
2

3

0

<=
+
+

==

=

 

 The solution is yn = 4.833 m 

For the critical depth we solve, 

 A√D = 
g

Q  

Or 

 
2
1

0

2
3

00

]2210[

])210[

yx

yy

+

+  = 25.54  assuming y0 < 5 

 
Or, y0 = 1.662 m 
Given that ybridge > yu > y0, the channel is MILD and the curve is M1 type. 

Table P6.5 shows the computations of the backwater flow profile using Standard Step method.  

At 3km upstream from the bridge, the water depth is y = 7.46 m 
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6.14 

Given : The tailrace system of a hydropower plant shown in the next figure, with  

Q = 1688m3/5 

Downstream water elevation = 504.00 m. 

Determine : The water level in each manifold.  
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The system was divided into 7 sections.  Table 1 shows the channel properties for each section.  
The following assumptions are made to solve this problem. 

1. All channels and tunnels are concrete-lined with n = 0.013 
2. The transitions are assumed rectangles in cross-section. 
3. The horse-shoe section is “standard with D = 18 m (see figure below) 
4. The flow through each turbine is the same : Q = 1688/2 
 or Q = 844 m3/s 
Standard horse-shoe section. 

 
Table 1: Channel Properties 

Channel N2 and 

section 

Upstream 

Elev. (m) 

Downstream 

Elev. (m) 
L (m) S0 Q (m3/s) 

1 C-C 492.56 492.10 502.92 0.000915 1688 

2 B-B 496.52 492.56 137.16 0.028871 1688 

3 B-B 496.52 496.52 97.54 0.0 1688 

4 Transition 2 488.50 496.52 122.0 -0.06245 844 
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5 Horse-shoe 2 489.50 188.90 573.0 .0001047 844 

6 Transition 1 488.90 496.52 198.0 -0.03848 844 

7 Horse-shoe 1 489.50 488.90 405.0 0.001431 844 

 

 
TRANSITIONS GEOMETRY 

 
The backwater profile is started at compound section A-A with a water depth of 11.9m of the 

weir.  The computations are carried out upstream using Standard Step Method as shown in Table 

2.  This corresponds to channel N2 1 in Table 1. 

 

The energy and continuity equations are used at the junction of Channel 1 and channel 2 to 

obtain the elevation at the beginning of channel 2, as follows: 

  

CHANNEL FUNCTION ANALYSIS. 

Energy E1 = E2 + Losses 

 EA+yA+
g

V A

2

2

 = EB+yB+(1+k)
g

VB

2

2

 --------- (1) 
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Continuity : QA = QB 

  VAAA = VBAB = Q  --------- (2) 

Assuming negligible losses at the junction (k=0) and combining Eq. 1 and Eq. 2, we get, 

YA+ B
B

BB
A

A H
g

VyZ
Ag

Q
=++=

2
1

2

2

2

2

 ----- (3) 

H2 is known from the last line in Table 2: 

 HB = 504.275 m 

If the bottom surface at the junction is continuous we have,  

 EA = EB = 492.56 m 

Then YA can be obtained from Eq. 3 as  

YA  =  11.607 m 

and  AA = 1158.37 m2 

 VA = 1.457 m/s 

Table 3 shows the computation of the water profile in channel 2 beginning with YA = 11.607m.  

Table 4 continues the computations for channel 3 (horizontal channel).  The standard step 

method was used in both cases. 

 

An energy analysis similar to the one made for the junction was made for the branch where 

channel 3 joins channels 4 and 6.  The details are as follows:- 

 

Energy Equation (neglecting losses): 

ZB + YB + 
g

VB

2

2

 = HA ----------- (4) 

ZC + YC+ 
g

Vc
2

2

 = HA ----------- (5) 

Continuity Equation : 

QA = QB + QC   ---------- (6) 

and 

QB = QC = QA/2  ---------- (7) 

From Eq. 4 : 
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YB + 2

2

2 B

B

gA
Q   = HA-ZB  ------------ (8) 

Using QB = 844 m3/s and HA = 504.288 m and ZB = 496.52 m from the last section of table 4, to 

solve for YB in eq. 8, we get : 

 YB  = 7.706 m 

Similarly we have YA = 7.706 m.  There are the downstream depth for channels 4 and 6. 

Assuming that the width of the downstream section in the rectangular transitions is equal to the 

top width of the main channel of section B-B we have, for y=9.45m, the width is 99.23m.   The 

width of the upstream end of the transition is equal to the diameters of the standard horse-shoe 

section, this is 18 m.  The channel is increased linearly between these two values.  Table 1 shows 

the length of each transition. 

The equation for gradually varied flow in a channel with variable cross-section derived in 

problem 5-9 was used here.  The Improved Euler method with the modifications required for a 

rectangular transition was used in the computations.  Table 5 and 6 show these results. 

Finally, the Direct Step Method with the help of a table of the geometric properties of a standard 

horse-shoe section was used to compute the water surface profile in the tunnels.  Table 7 and 8 

show the computations.  Interpretation between the last two lines of these table gives: 

From Table 7, at manifold 1,  y = 16.75 m (Elev. 506.25m) 

From Table 8, at manifold 2,  y = 16.71 m (Elev. 506.21m) 
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6.17 

Given : 

 The channel of problem 3.18 

 Rectangular outlet 

 B0 = 10 ft. 

 L = 500 ft. 

 S0 = 0.001 

 Q = 324.6 cfs 

Invert Elev. At the entrance  = 122 ft. 

Concrete channel (n = 0.013) 

Plot the water surface profile 

Solution: 

The bottom elevation at the river entrance is : 

122-500 x 0.001 = 121.5 ft. 

The water depth at this section is : 

 131-121.5  = 9.5 ft. 

The normal depth is obtained from  

001.049.1
)6.324)(013.0(

)210(

)10(

3
2

3
5

=

+ n

n

y

y  = 89.56 

Yn = 4.896 ft. 

The critical depth is Y0 = 3

2

3
2

2.32

)
10

6.324(
=

g
Q  

   Y0 = 3.199 ft. 

Therefore  

 Y river > Yn > Y0 => MILD CHANNEL, M1 PROFILE 

Table P6.17 shows the result obtained by using Standard Step Method.. 
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6.18 

 Given 

 Ybridge = 12 ft. 

 Trapezoidal channel 

 B0  = 20 ft. 

 S  = 20 

 S0  = 0.0003 

 Q  = 800cfs 

 n  = 0.025 

Determine how far the effect of dogging due to the debris accumulated at the bridge entered. 

 

Solution : 

 
Consider that the flow was uniform before the accumulation of debris.  Then compute the normal 

depth as : 

 

 AR2/3 = 
2
1

049.1 S

nQ  

 

 Or 

  

3
2

3
5

]5220[
])220[

n

nn

y
yy

+

+  =  774.97 

Then  Yn   = 7.59 m 

 

Now determine if the flow is subcritical or supercritical by computing the critical depth and 

comparing it with the normal depth. 
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 A √D = 
g

Q  

 

 Or  

  

3
20

3
5

00

]5220[
])220[

y
yy

+

+  = 140.98 

Y0 = 32.28 m. 

Then  Y0   <   Yn => sub critical flow. 

Also ybridge >    yn  >  y0  => M1 profile, starting at a depth of 12 m at the bridge and 

approximating the normal depth asymptotically.  

 

Table P6.18 shows the computations obtained by using Direct Step Method. 

 

The effect of clogging extends 36775 ft (6.96 mi) upstream of the bridge. 

 

Table P6.18 (Direct Step Method). 
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6.19 

Given: 

 10 ft. square Box CULVERT 

 Lculvert =  150 ft. 

 Sculver = 0.01 

 Depth upstream box entrance : 15 ft = M0 

 

The accumulation of debris at a channel crossing 0.5 mi downstream of the culvert raises the 

water level 5 ft. at the crossing.  The channel characteristics are: 

 Trapezoidal 

 B0 = 10 ft. 

 S = 1.5  

 Uniform flow prior to the accumulation 

 SCHANNEL = 
ft

ft
2640

2.1  = 0.00045 

 where 0.5mi = 2640 ft. 

Compute and plot the water-surface profile in the channel and inside the culvert.  

The following sketch shows the channel and culvert profile. 

 
 

Solution: 

The culvert discharge is given by the orifice equation, as discussed in Chapter 10, Sec. 10.4. 

In this case H0 > 1.2 D, where D is the height of the culvert.  Using eq. 10.14, we get, 
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Q = CB0D )(2 0 CDHg −  

where B0 is the culvert width and C is a coefficient of contraction.  For a squared-edge entrance 

C = 0.6, 

Then, 

 Q = (0.6)(10)(10) )10)(6.0(15(2.322 −x  

 Q = 1444.5 ft3/5 

The critical depth for the culvert is computed from  

 

 A
g

QDh =  

Where Dh  = hydraulic depth.  Then,  

Y0
3/2   = 254.56  

Finally  

 Y0 = 8.65 ft. 

Compute the normal depth in the culvert to determine the type of profile 

2
1

2
1

0 )01.0)(49.1(

)5.1444)(013.0(

49.1
=

S

nQ = 126.03. 

 

Solve for the normal depth from  

3
2

3
5

3
2

)102(

)10(

+

=

n

n

y

yAR = 126.03 

The answer is  Yn= 6.348 ft. 

We have yn<y<y0 and the curve is S2 type.  The flow inside the culver4t approaches the normal 

depth asymptotically.   

 

Now, we compute the normal and critical depth in the trapezoidal channel. 

For normal depth solve, 
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2
1

3
2

3
5

)00045.0)(49.1(

5.1444013.0

)25.3210(

])5.110[( x

y

yy

n

nn =

+

+  = 594.11 

Yn = 6.657 ft. 

 

For critical depth solve: 

 

2.32
5.1444

)5.1210(

])5.110[(

2
1

0

5.1
00 =

+

+

yx

yy
 = 254.56 

 

Y0 = 6.329 ft. 

 

Yn > y0  => MILD CHANNEL. 

 

FLOW PROFILE: 

The water profile in the channel is computed beginning with the water elevation at the bridge 

(yb=yn+5 ft.), yb = 11.66 ft.  The computations in the channel are carried out upstream from the 

bridge up to a distance of 2640 ft.  The computations in the culvert start upstream, at the central 

section near the culvert inlet.  They are carried out up to a distance of 150 ft. downstream, where 

the culvert meets the channel.  It is assumed that the flow depth is critical near the culvert inlet. 

 
 The Standard Step Method was used in these computations. 

Table 9-19a and 9-19b show the results. 

 
 
SKETCH OF WATER SURFACE PROFILE 
 
 Figure 1 is a sketch of the water surface profile.  After the accumulation of debris at the 

bridge the outlet of the culvert is submerged.  The culvert flow is partially full and a hydraulic 

jump forms inside.  (Read section 10.4 for more details on culverts). 
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6.20 

Given  

 Rectangular Channel 

 B = 10 m 

 Concrete Lined (n = 0.013) 

 S0 = 0.01 

 

 Constant level lake upstream, H = 6m.   

If the flow depth at the channel entrance is critical, determine the location where the flow depth 

is 3.9, 3.7, 3.5, 3.3 and 3.0 m 

 

Solution: 

From example 5.3, we know that : 

 Y0 = 4m (at entrance) 

 Q = 250.6 m3/5 

 Yn = 2.37m 

The Direct Step Method is particularly appropriate for this type of problem.  Table 6.20 shows 

the computations. 

The locations required are : 

 

Flow depth (m)  Location from the entrance (m) 

3.9     0.51 

3.7     5.09 

3.5     15.89 

3.3     35.64 

3.0     93.31 
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6.21 

Given 

 Rectangular Channel 

 B0 = 10m 

 Q = 50 m3/s 

 Concrete lined (deteriorated) :  n = 0.015 

 S0 = 0.0006 

 Free outfall downstream. 

 Assume y = y0 at 4y0 upstream of the fall. 

 

Compute Water depth 2 km upstream of the fall and the water surface profile. 

 

Solution: 

 Compute critical and normal depth to determine if the channel is mild or steep. 

Critical depth  2
3

00yB
g

Q
=  

  2
3

010
81.9

50 y=   

 Y0  = 1.366 m => 4 y0 = 5.46 m 

 

Normal depth  

 

 
0

3
2

S
nQAR =  

 

 
0006.0

)50)(015.0(

)2(

)(

3
2

3
5

0 =

+ on

n

By

By  = 30.619 

Solving for yn, we get yn = 2.274 m. 
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Yn   >  y0  => MILD CHANNEL 

 

Table 6.21 shows the computations by using the Standard Step Method. 

The water depth 2 km upstream of the fall is 2.23 m. 

 

 

6.22 

Given 

 Trapezoidal Channel 

 B0  = 10 m 

 S  = 1.5 

 Q  = 80 m3/5 

 S0  = 0.002 

 n  = 01.015 

 ∆Ydam  = 10 m 

Compute : Flow depth at 250, 500 and 750 m upstream from the dam. 

Solution 

Critical depth computation : 
g

QDA =  

Or 

 
2
1

0

5.1
00

)5.1210(

])5.110[(
81.9

80

yx

yy

+

+
=  

Y0  = 1.707 m 
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Normal Depth Computation : 

 
0

3
2

S
nQAR =  

 
2
1

3
2

3
5

)002.0(

80015.0

)52.11210(

])5.110[( x

y

yy

n

nn =

++

+  = 26.833 

Yn = 1.742 m  

 

The channel bottom slope is practically the critical slope (yn  ≈  y0).  Assuming that the initial 

flow in the channel is uniform, the dam will raise the water elevation above the critical depth 

forming a C1 profile upstream of the dam. 

Table 6.22 shows the computations for the water profile using Standard Step Method.  The initial 

water depth at the dam is yn = ∆ydam = 11.74 m. 

The required flow depth are : 

Location     Water depth 
(upstream of dam, m)  (m) 

 
250     11.24 

500     10.74 

750     10.24 
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6.23 

Given : 

 Yn = 2m 

 Rectangular Channel 

 B0 = 10m 

 S0 = 0.001 

 n = 0.020 

∆Ybridge = 1m 

Determine the distance from the bridge at which y = 2.5 m 

 

Solution: 

Assuming that previous to the construction of the bridge the channel had uniform flow; 

then, at the bridge section the water depth is  

 Ybridge  = 2+1 = 3m 

 The channel flow is given by : 

  Q = 2
1

0
3
21 SAR

n
  

  Q = 2
1

3
2

3
5

)001.0(
)104(

)210(
02.0
1

+

x  

  Q = 40.111 m3/s 

 The critical depth is  

 Y0
3/2 = Bo

g
Q  

 Y0 = 3
2

]
1081.9

111.40[
X

 

 Y0  = 1.179 m 

 Y0  <  yn  => MILD CHANNEL 

 Yb  >  yn => M1 profile 

Table 6.23 shows the result using direct step method. 
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The flow depth is 2.5 m at 777 m upstream of the dam. 
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Chapter 7 
RAPIDLY VARIED FLOW 
 
 
 

7.1 

 H  = Z + y + 
g

v
2

2

 

 H0 = H-z = y + 2

2

2gA
Q  

 

 
dx
dA

gA
Q

dx
dy

dx
dH

3

2
0 −=  

 

 S0 = 
dx
dA

gA
BQ

dx
dy

3

2

−  

 

 S0 = 
dx
dy

ygB
Q









− 32

2

1  ------------------ (1) 

 

 H0 = Y + 2

2

2gA
Q  

 

For critical section 
dx

dH0  = 0 

 

0
2

21 32

2
0 =−=

ygB
Q

dy
dH  

 

Yc = 3
2

2

gB
Q  --------------------- (2) 
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Or  

 
32

2

cygB
Q  = Yc 

 

 
22

2
1 Yc
g

V
=  

 

∴ Hmin = Yc + YcYcYc
g

V
2
3

22

2
1 =+=  

 

From eqn (2) 

 Hmin = 3
2

2

2
3

gB
Q  

From Eqn. (1) 

 ∫ ∫ −=
x y

Y

dy
ygB

QdxS
0 0

32

2

0 )1(  

 

 S0x =  y + 2
0

2

2

22

2

22 ygB
Qy

ygB
Q

c−  

 

 S0x =  y + 2

3

2

3

2
1

2
1

c

c
c

c

Y
Y

Y
Y
Y

−−  

 

 S0x =  Y + c
c Y

Y
Y

2
3

2
1

2

3

−  
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7.2 

θ = tan-1

dx
dB

dx
dB

=    

    θdx = dB  -- (1)  

 

Q  = BY )(2 0 yHg −  

B = 
)(2 0 yHgY

Q
−

 -- (2) 

 

 H0  = Y + 2

2

2gA
Q   

At the critical depth, 

0
2

21 32

2
0 =−=

YgB
Q

dy
dH  
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Yc = 3
2

2

gB
Q   Yc = 

g
Vc

ygB
Q

c

2

22

2

=  

 

H0  = Yc  +  YcYcYc
g

Vc
2
3

22

2

=+=  

 

 H0 = 3
2

2

2
3

gB
Q  

 

 Bmin = 
2
3

0 )2(

1

g
Hg

Q  

 

From (1) 

 

 ∫∫ =
B

B

x

dBdx
min0

θ  

 

 θ x = B  -  Bmin 

 

 θ x = 
2
3

00 )32(

1
)(2 Hg

Q
yHgY

Q
−

−
 

 

7.4 

 

 Y2 = Y1 

 b2 = b1 

 E1 = E2 

 M2 = M3 
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 γ = b3/b1  

 S = Y3/Y1 

 E1 = Y1 + V1
2/2g 

 E3 = Y3 + V3
2/2g 

 Q1 = Q2 = Q3 

 A1V1 = A2V2 = A3V3 

 b1y1v1 = b2y2v2 = b3y3v3 

 
 

 ∆E = Y1 + 
g

v
y

g
V

22

2
3

3

2
1 −−  

 

 ∆E = ]221[
2 2

1

2
3

2
1

3
2

1

1
2

1

V
V

v
gy

v
gy

g
V

−+  

 

 ∆E = 222
1

2
1

2
1 1221[

2 SrF
S

Fg
v

rr

−−+ ] ---------- (1) 
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Momentum 

 P1  +  P2  -  P3 = )( 13 vv
g
rQ

−  

 P1 = 
2

1
2

1 byγ  

 P2 =  
2

)( 2
213 ybb −γ   P2 = 

2
)( 2

113 ybb −γ  

 P3 = 
2

2
13ybγ  

 

2222
)( 3

2
31

2
13

2
11

2
113 bybybyby

g
vvQ γγγγγ

−−+=
−

 

][½)( 2
3

2
1313

111 yybvv
g

vyb
−=−  
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3

2
1311

2

1

3

1111 yybvv
y
y

b
b

g
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−=−  

 

22
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2
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2
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2
2
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1

22
1

2
1

22
2

1

2
1

2
3

2
1

2
1

1

3

1

2
1
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SF
s

F

SF

y
y

y
y

b
b

sgy
v

γ
γ
γγγ

γγγ
γ
γ

γ
γ

γ

γ

+=+

−=−

−=−
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    ----------- (2) 
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Eqn. 2 can be solved for S 

 

S = 1 + 
2

2
1 )1(

γ
γγ −F  

 

S2 = 1 + 2 2

2
1 )1(

γ
γγ −F +

4

4
1 )1(
γ

γγ −F  

 

Eqn. (1) 

 ∆E =  222
1

2
1

2
1 1221[

2 SF
S

Fg
V

γγγ
−−+  

 

  

∆E =  22
1

22
1

2
1 )1(22

)1(22
121[

2 γ
γ

γγγγγ
−

−−
−+

−+
FFFg

V  

 

 =  ]222
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

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
















−
+− 4

1

3

1

22

2

3

1
2

1

)1(
2)1(

2

b
b

b
bFr

b
b

g
v  
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




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



−+− )(2)1(

2 134
3

3
122

3

1
2

1 bb
b
bFr

b
b

g
v  ---- (3) 

 

∆E = 2

3

1
2

1 )1(
2 b

b
g

v
−  

 

As Fr < 0.5 and 
1

3

b
b

 > 1.5, the last term in eqn. (3) vanish also y1 = y2 = y3 

 

 ∆E = 









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3

2
1

3

1
2

1 21
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2
1 2

313
2

1 vvvv
g

+−  

 

 ∆E =  
g
VV

2
)( 2

31 −
 

7.5 

 

 Yr = 2
1811[

2
1 Fr++− ] 

  =  
½

2
1

2
1 8

118
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1

2
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


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

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
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
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  =  -½ + ½ (8Fr1
2)½ 










++ ........

8
1

2
11 2

1Fr
  

 

  =  -½ + √2 Fr1 

 

Yr = √2 Fr1 - ½  for Fr1  >  2 

 

7.6 

 hi = E1 – E2  = 

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hi = (y1-y2) 






 +
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21 )(

4
11

yy
yy   

 

= (y1-y2) 
21

21
2

2
2

121

4
24

yy
yyyyyy −−−   

 

= - (y1-y2) 
21

21
2

2
2

1

4
2

yy
yyyy −+  

 

= 
21

2
1212

4
)()(

yy
yyyy −−  

 

 hi =  
21

3
12

4
)(

yy
yy −  

7.7 

 



Chapter 7 
 
 
 

120 
 

 

)20(2sin254

2sin2

54
2

6
2

60

2
1

2

0

2
2

2
2

2

2
2

2
1

xxX

h
X

g
v

g
v

hiy
g

vy
g

v

b

b

=

=

=

+=

++=+

α

 

 

 Xb = 104 sin 40 

 

For design  

 Xb = 0.8 x 104 x sin 40 =  53.5 

 

7.8 

 
 

 

V1 = .sec/97.58)660(2.322 ftx =−  
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Y1 = 
B

Q
97.58

 

 

 

 Fr1
2 = 

Q
B

Q
Bx

gy
V 69.6368

2.32
97.5897.58 2

1

2
1 ==  

 

2
1

1

2 811[
2
1 Fr

y
Y

++−= ] 

 

 

]89.6368811[
2
197.58

1

2

Q
Bx

y
BY

++−=  

 

Y2 = 







++−

q
q 095.5095711

94.117
 

 

Stilling basin design 

 
 

Assume, 

Fr1 = 11.79,  y2 = 12.39 y1 = 0.766 
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L1 = [1.5 + 
11
1 (Fr1 – 4.6)] y2 

 

 = [1.5 + 
11
1  (11.79 – 4.6)] x 12.39  = 26.68 

 

h = [1 + 0.13 (Fr1 – 4.6)] y1 

 

 = [1 + 0.13 (11.79 – 4.6)] 0.766 

 

 = 1.48  ≈ 1.5 

 

L2 = 2.5 h 

 

 = 2.5 x 1.5  =  3.75 

 

hs = h/2 = 1.5/2 =  0.75 

 

L = 26.68 + 3.75= 30.4 

 

L ≥ 4y2 

 ≥ 4 x 12.39 ≥ 49.56 

 

L = 50 

d2 = 0.85 x 12.39 = 10.5    
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7.9 

 
 Q  = 360,000 Cfs 

 

 V1 = )140)(2.32(2 2y+  

 

 V1 = 8.02 2140 y+  

 

 Q = B1. v1. y1 

 

 Y1 = 
22 14049.240714002.8650 y

Q
yx

Q
+

=
+

 

 

 Fr1
2 = 

2

2

1

2
1

14049.2407
.2.32

)140(32.64

y
Q

y
gy
V

+

+
=  

 

  = 4809.03 
Q

y 2
3

2 )140( +  
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 ]811[
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1 2
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


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
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Q
yx

Q
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 Y2 











+++−=+ 2

3

22 )140(24.3847211
98.4814

140 y
Q

Qy  ----- (1) 

 
For Q = 260,000 
 

 Y2 2
3

22 )140(107.0177.7477.74140 yy +++−=+  
Trial and error, 
 
 Y2 = 90.5 
 

 Y1 = 85.9
5.9014049.2407

000,360
=

+
 

 
Design of Flip bucket : 
  

 Assume no losses  ∴h0 = 
2.322

76.121
2

2
1

xg
V

=  = 230 

 
 Yb = 0  α = 30 
 

 α2sin2
0

=
h
xb  

 
 Xb = 230 x 2sin 60 = 398 
 
For design,  
 Xb = 0.8 x 398 = 318.7  320 
 

Bucket redius = 15m x 
3048.0
1  = 49.2  50 

 
Bucket top above the bucket invert by  = 10/100 x 50 = 5 
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Design of Roller bucket:- 
 
Fig. 7.20 
 

2=
Hd
p  Cd = 0.485 

 
Fig. 7.21 
 

 1=
Hd
He  Kd = 0.02 

 
 Q = 360,000  Cfs 
 
 Le = Ln-2(N Kp + Ka) He 
 
 Le = 6 x 50 – 2(5 x 0.02) He 
 
 Le = 300 – 0.2 He 
 
 360,000 = 0.485 Le 5.12.322 Hex  
 
 92484.9 = (300-0.2 He) He1.5 
 

 He3 = 2

2

)2.0300(
9.92494
He−

  Trial and error  He = 46.61 

 
If we take Y2 = 90.5  and  y1 = 9.85, from the first part, 
 
 V1 = )85.95.90140(2.322 −+x  = 119.21 ft/sec. 
 

 Y1 = 
50621.119

000,360
xx

 = 10 

 

 Fr1 = 
102.32

21.119
x

 = 6.62   Fig. 7.28 

g
Vy

R

2

2
1

1 +

 = 0.25 

 

 R = 0.25 (10 + 
2.322

21.119 2

x
 = 57.67 ≈ 58 

 



Chapter 7 
 
 
 

126 
 

Fig. 7.26 a wing Fr = 6.62 and 

g
Vy

R

2

2
1

1 +

= 0.25 

 

 10
1

min =
y

T   Tmin = 10 x10 = 100 

 
From Fig. 7.26 b 
 

 13
1

max =
y

T
  Tmax = 10 x13 = 130 

 
For best performance  Tmin ≈  tail water depth 
 
 

 9
1

=
y
Ts   Ts = 9 x 10 = 90 

 
 

 
 
 
 R   = 58’ 

 0.05 R  = 2.9 

 0.125 R = 7.25 

 0.5 R  = 59 
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 Stilling basin : notation on figure 7.24 
 
 Fr1 = 6.62  y1 = 10  y2  = 90.5 
 
 L1 = [1.5 + 1/11 (Fr1 – 4.6)] y2 
 
  = [1.5 + 1/11(6.62 -2.6)] 90.5 = 152.4 
 
 h = [1 + 0.13(Fr1 – 4.6)] y1 
 
  = [1 + 0.13 (6.62-4.6) 10  = 12.6 
 
 L2 = 2.5 h = 2.5 x 12.6  = 31.6 
 
 hs = h/2 = 12.6/2 = 6.3 
 
 L = L1 + L2 = 152.4 + 31.6  = 184 
 
 L ≥ 4y2    ≥ 4 x 90.5 = 362 
 
 L = 362 
 
 d2 = 0.85 x 90.5 = 76.95 
 
 i : Roller bucket 

 ii : Flip bucket 

 iii : Roller bucket 
         
 
7.10 
 Q = 260,000 Cfs  Hs = 46.61 

  

 
61.46
93.55

=
Hd
He  = 1.2  Fig. 7.21 type 2  Kp = -0.005 

 

 
Hd
He  = 1.2   Fig. 7.20  c/cd = 1.015 

 C = 0.485 x 1.015 = 0.492 

 Le = Ln – 2 (NKp + Ka)Hc 
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 Le = 50 x 6 – 2 [5 x (-0.005) + 0] 55.93 = 302.796 

 Q = 0.492 x 302.796 5.193.592.322 x  

 Q = 500,063.73 Cfs at H = 55.93 

 
Hd
He  = 

61.46
23.37  = 0.8  Fig. 7.21 type 2  Kp = 0.025 

 
Hd
He  = 0.8  Fig. 7.20 c/cd = 0.965 

 C = 0.483 x 0.965 = 0.468 

 Le = Ln – 2 (NKp + Ka)Hc 

 

  = 50 x 6 – 2 [5 (0.25)+0] 37.23 = 290.69 

 Q  = 0.468 x 290.69 5.123.372.322 x  

  = 248,003.84 Cfs 

 Q = 248,003.84 Cfs at H = 37.23 
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7.11 

 
 Le  = Ln – 2 (NKp + Ka)Hc 

Fig. 7-21 Kp = 0.0125 

 Le = 4 x 50 – 2(3 x 0.0125)32 

 Le = 197.6 

 
32
64

=
Hd
p  = 2  Fig. 7.20.8  cd = 0.49 

 

 Q = C Le g2 He1.5 

  = 0.49 x 197.6 2.322x x 321.5 

  = 140653.59 Cfs at H = 32  

 

 He = 48 

 
32
48

=
Hd
Hc  = 1.5 Fig. 7.21  Kp = -0.025 

 Le = 4 x 50 – 2[3 x (-0.025)]48 = 207.2 

 

Fig. 7.20 b 
Hd
H  = 1.5  c/c1= 1.05  C = 1.05 x 0.49 = 0.5145 
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 Q = 0.5145 x 207.2 2.322x x 481.5 

 Q = 284498.44 Cfs at H = 48 

 

 
 

7.12 

 Q = CLc H1.5 

 Q = 3.8 Lc H1.5 

 C = 3.8 = Cd 2.3222 xCdg =  

  

For S I 

 

 C = 81.92
2.322

8.3 x
x

 = 2.097 

 

 Q = C. Lc. H1.5 

 Q = 2.057 x 100 x 101.5 = 6631.295 m3/s 
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7.13 

(i) Flip bucket : 

- so much spray un-desirable for road, bridge and electric equipments.  

-  Act enough submergence D.S 

- Water level fluctuation 

- current and eddies around the plunge pool 

(ii) Roller bucket 

(iii) Stilling basin : 

  - control the jump location 

  - Low apron level, may required a lots up cavitations and    

 concrete 

- Chute blocks and baffle blocks and end stills are used in control the jump. 

 

7.14 

 
 

Fig. 7-20 4
25

100
==

Hd
p   Cd = 0.492 
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Fig. 7.21 Kp = 0.0125 

  Le = Ln – (N Kp + Ka) He 

  Le = 60 x 5 – 2(4 x 0.0125 +0) 25 = 297.5 

  Q = 0.492 x 297.5 2.322x x 25 1.5 

   = 146826.67 Cfs 

 

  
25
30

=
Hd
H  = 1.2  Fig. 7.20 b  C/Cd = 1.01 

 

  C  = 1.01 x 0.492 = 0.497 

 

Fig. 7.21 Kp  = 0  

  Le = 60 x 5 – 2 (4 x 0 + 0)25 = 300 

  Q = 0.497 x 300 2.322x x  301.5  

   = 196608.54 Cfs 

  

  
25
40

=
Hd
H  = 1.6  Fig. 7.20 b  C/Cd = 1.07 

 

  C = 1.07 x 0.492 = 0.5264 

 

Fig. 7.21 Kp = -0.025 

  Le = 5 x 60 – 2(4 x (-0.025)+ 0) 40 = 308 

  Q = 0.5264 x 308 x 2.322x  x 401.5 

   = 329154.25 Cfs 

 

  EL = 150  Q  = 196608.54 Cfs 

  EL = 160  Q = 329154.25 Cfs 
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7.15 

 
 

Fig. 7.20 Q 

 
18
36

=
Hd
p  = 2  Cd = 0.49    Le = 20 

 

 Q = 0.49 x 20 x 81.92x 18 1.5 = 3315 m3/sec.   

Elev. 300 
18
20

=
Hd
H  = 1.11  Fig. 7.20 b C/Cd = 1.05 

 

 C  = 1.05 x 0.49  = 0.5145 

 Q = 0.5145 x 20 81.92x  201.5 = 4076.7 m3/sec. 

 

Elev. 310 
18
30

=
Hd
H  = 1.67  Fig. 7.20 b C/Cd = 1.09 

 

 C = 1.09 x 0.49 = 0.5341 
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 Q = 0.5341 x 20 81.92x  x 301.5 = 7774.7 m3/s 

 

 

7.16  Assume Hd = 30 

 Hd = 0.75 (652 – Hcrest)  = 30  ∴ Hcrest = 612 

 

 60000 = Cd L 2.322x  x 301.5  

 
Hd
p  = 2  Cd = 49  Vs bed level = 552 

 

 60000 = 0.49 x L x 2.322x  301.5 

 L = 92.9 

 

Elev. 620 
30
8

=
Hd
H  =  0.267  Fig. 7.20 b  C/Cd = 0.86 

 
 C  = 0.86 x 0.49  = 0.42 

 Q = 0.42 x 92.9 2.322x x 81.5 = 7085.05 Cfs 

 

Elev. 648 
30
36

=
Hd
H  =  1.2  Fig. 7.20 b  C/Cd = 1.02 

 

 C  = 1.02 x 0.49  = 0.5 

 Q = 0.5 x 92.9 2.322x x 361.5 = 80516 Cfs 

 

 

 

 

7.17 
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DA
g

Q
=  
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800028.0
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+

+=

+
+
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y
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x
S

nQAR

y
yyyy

yB
yyB

yyB

 Yc = 4.05 

       Yn1 = 3.11 

 

0003.0
800028.0

2

3
2 x

S
nQAR ==  

 

[ ]
[ ]

265.1293
2215

)15(

3
2

3
5

=
+

+

y

yy    Yn2 = 12.8 

 

V1 = 
)11.315(11.3

800
+

 = 14.204 ft/sec. 

Fr1 = 419.1
11.32.32

204.14
==

xgy
V  

 

Y2 = [ ]1419.181
2
11.3 2 −+ x      =  4.877 
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The jump will move upstream till the exact position where Y1, Y2 will be satisfied. 

 

7.18 

 
(i) L   = 100’ 

 167.1
24
28

==
Hd
p  Cd = 0.483 using Fig. 7.20 a 

 

At Elev. 165 

  46.1
24
35

==
Hd
H  Fig. 7.20 b C/Cd = 1.05 

 

 C = Cd x 1.05  = 0.483 x 1.05  = 0.507 

 Q = 0.507 x 100 x 2.322x x 351.5 = 84246.7 ft3/sec. 

 

(ii) assume n = 0.013 for concrete 

 To find critical depth 

 
5.1

0
5.1 100

2.32
7.84246 ybY

DA
g

Q

==

=

 

 Yc = 28.04 
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 Sc = 
3
4

2

04.282100
04.28100

1
04.28100

7.84246013.0

3
42

22









+









=

x
x

x
x

RA

Qn  

  = 0.00324 

 

But So = 
700
70  = 0.1  ∴ S0 ≥  Sc Steep channel 

To find the normal depth 

 

AR 3
2

 = 
0S

nQ   

 

100 yn 
1.0

7.84246013.0
2100

100 3
2

x
y

y

n

n =







+

 

Yn
3
2

2100
100









+ n

n

y
y  = 34.6335 

Trial and error  yn = 8.96 

 

From point C to point n, S2 profile. Then yn will be the lowest possible epth other than spilling.   

The type of the flow profile developed in the steep canal depends mainly on the tail water 

situation. 

(iii) Y1 = 8.96  Fr1 = 5.5 

 Y2 = [ ]21 811
2

FrY
++−  

  = 





















++−

96.82.32
1

36.8100
7.84246811

2
96.8

2

xx
 

 Y2 = 65.81 

 Tail water level = 65.81 + 60 = 125.81 
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(iv) h2 = E1 – E2 

  = 









+−










+

g
vy

g
vy

22

2
1

2

2
1

1  

  h2 = 8.96 + 













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


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
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
2.322

1
81.125100

7.8424681.125
2.322

1
96.8100
7.84246

22

xxxx
 

  = 19.73 

7.19 

 Q  = 50,000 Cfs 

 AR 3
2

 = 
0S

nQ   

20555
2100

100

1.0
50000013.0

)2100(

)100(100

3
2

3
2

3
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
+

=

+

n

n
n

n

n
n

y
yy

x

y

yy

 

 

Trial and error = 6.44 

 

Y1 = 6.44  v1 = 
44.6100

50000
x

 = 77.64 ft/sec. Fr1 = 5.39 

 

Y2 = 



 ++− 2

1811
2
1 FrY  

  = 
2
44.6  [ 2)39.5(811 ++− ] = 45.989 

 

But the tail water level  = 72 

Tw = 72 – 60 = 12 

There is not enough submergence – use flop bucket 
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Flip bucket design: 

 h0 = 
2.322

64.77
2

22
1

xg
v

=  = 93.6 ft. 

 Yb = 0 α = 300 

 
0h

Xb  = 2 sin2α 

 Xb = 93.6 x 2 sin 60 = 162.12 

 

For design, Xb= 0.8 x 162.12 = 129.7 

Bucket radius = 15 m  = Sc 

Bucket lip above the bucket invert by = (10/100) x 50 = 5 

 

7.20 

 
 Invert elev = z 

 Y2 = 50 – z 

 V1 = )200(2 zxg −  

 Q = Bv1y1 

 2700 = 50 y1 )200(81.92 zx −  

 Y1 = 
zz −

=
− 200

19.12
)200(62.1950

2700  

 



Chapter 7 
 
 
 

140 
 

 Fr1
2 = 

19.1281.9
)200()200(62.19 ½

1

2
1

x
zz

gy
v −−

=  

  = 0.1641 (200-z)1.5 

 )811(
2
1 2

1
1

2 Fr
y
y

++−=  

 

[ ]5.1)200(1641.0811
2
1

200
19.12
50 zx

z

z
−++−=

−

−  

 

(50-z) 5.1)200(3128.11095.6095.6200 zz −++−=−  

 

Trial and error z = 25.06 m 

   Y2 = 24.94 m 

 

If one-row of battle block and en sill is used the invert deviation may be raised and when it saves 

excavation and stabilizes the jump.  
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Chapter 8 
COMPUTATION OF RAPIDLY VARIED FLOW 
 
 
 
8.1 
The computer program can be written in two ways: 

a. By using a false transient approach wherein the two-dimensional unsteady flow 
equations are solved. 

b. By solving the steady flow equations. 
 
Note that in both the approaches, the governing equations are hyperbolic partial differential 
equations. However, the equations are two dimensional in the first approach and are one-
dimensional in the second approach. Herein, results are represented for the first approach. In this, 
concepts of coordinate transformation and artificial viscosity are used. Results by MacCormack 
scheme and by Lax scheme are presented in Fig. 8.1.       
 
 

2

2.5

3

3.5

0 1 2 3 4 5

Distance (m)

Fl
ow

  d
ep

th
 (m

)

MacCormack Lax

 
 
Figure 8.1: Surface profile in a channel contraction 
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8.2 
Flow depths at all the points are computed by using the computer program developed in 8.1. The 
maximum flow depth at any section is considered to be the shok wave. Thus, the height and 
location of the shock wave is determined. Results for the height of the shock wave are presented 
in Fig. 8.2. Both MacCormack scheme and the Lax scheme is used to determine the shock wave.   
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Figure 8.2: Height of the shockwave in a channel contraction 
 
8.3  
MacCormack scheme is suitable for both sub- and super critical flows. Therefore, the computer 
program given in the appendix can be used to compute the flow. Note that this problem is same 
as the computation of a hydraulic jump. 
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Chapter 9 
CHANNEL DESIGN 
 
 
9.1 

Given Q  = 50 m3/S 

 S0  = 0.0002 

 Channel material : Rock 

Design the canal. 

Solution: 

For rock in good conditions n = 0.035 and side slopes could be almost vertical (S = 0.25) 

From Monning’s equation, we get, 

 
2
1

2
1

0

3
2

)0002.0(

)50)(035.0(
=

S

nQAR  = 123.74 

For S = 0.25, we can take B0 = 2y, then : 

 

A = (2y + 0.25y) y  = 9/4 y2 

P = 2y + ½ y25.1 = 2.259 y 

R = 
y

y
559.24

9 2

 = 0.879 y 

And  

 3
2

23
2

)879.0)(25.2( yyAR =  

 123.74 = 2.0646 y2.67 

Or  

 y = 4.63 m. 

Then B0 = 2y = 9.26 m 

SELECT CHANNEL BOTTOM WIDTH 

Use B0 = 10.0 m, then for AR2/3 = 123.74, the value of y obtained by solving: 
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3
2

3
5

)062.210(

])25.110[(

y

yy

+

+  = 123.74 

The answer is  y  = 5.37 m. 

 

ADD APPROPRIATE FREEBOARD. 

Freeboard equation  : Fb =  37.58.0 x  = 2.0 m 

From Table 9.1,   Fb = 0.75 m 

Use Fb = 0.75 m 

 

DETERMINE CHANNEL DEPTH 

The total depth is :   

 YT = 5.37 + 0.75 = 6.12m 

CHECK MINIMUM ALLOWANCE VELOCITY 

Flow Area = 60.9m2 

Flow Velocity : Q/A = 50/60.9 = 0.82 m/s  > Vmin.  Ok  

(Vmin. = 06.m/s) 

SKETCH CHANNEL CROSS-SECTION 
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9.2 

Design : 

 Irrigation Channel 

 100 km2 farmland 

 0.1 m3/s/km2 (water demand) 

 S0 = 1/2000 

 Soil is stuff clay. 

Solution: 

1. Permissible –Velocity Method: 

 We choose a trapezoidal channel with side slopes of 1:1 (from Table 9.2).  For stiff clay n 

= 0.025.  The discharge is Q  = 100 km2 x 0.1 m3/s/km2)  

= 10 m3/s 

From Table 9.3 the permissible velocity is : Vp = 1.8 m/s. 

A = Q/V = 10/1.8 = 5.56 m2 

R = 5.1

2
1

0

][
AS

nQ  

R = 5.1

2
1 ]

)56.5()0005.0(

)10)(025.0([  

R = 2.85 m (Hydraulic Radius) 

Water perimeter : P = A/R = 1.95 m 

Then, compute the water depth : 

 A = (B0 + y)y = 5.56 

 P = B0 + 2…..y = 1.95 

Or B0 = 1.95-2√2y 

Then  

 A = (1.95-2√2y+y)y = 5.56 

or 1.828 y2 – 1.95y + 5.56 = 0 
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This equation has not real roots !  The reason for the inconsistency is that the permissible 

velocity is very high for this flat channel.  The problem could be solved by reducing the channel 

flow velocity.   

Let’s try: Vp = 0.9 m/s 

  A = Q/vp = 10/0.9 = 11.11 m2 

  R = 5.1]
11.110005.0

10025.0[
x
x   = 1.01 m 

  P = 11.01 m 

Solve for ‘y’ now : 

  A = (B0 + y)y  = 11.11 

  P = B0 + 2√2 y  = 11.01 

 => B0 = 11.01 - 2√2 y  

  A = (11.01 - 2√2 y + y)y  = 11.11 

or 1.828y2 – 11.01 y + 11.11  = 0 

Solving for ‘y’, we get. 

 Y = 1.282 m 

 Therefore, B0 = 7.38 m. 

The other root of the quadratic equation is real, but less than zero.  The result is physically 

impossible. 

 

The freeboard could be : Fb = 28.18.0 x  = 1.01 m 

or 0.75 m, depending on the criterion followed. 

 

Using 0.75 (Table 9.1), the cross-section depth is  

 D = 1.287 + 0.75 = 2.03 m 

 Choose d = 2.0 m 

CHANNEL SKETCH. 
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9.3 

Given: 

 Runoff Area  = 200 km2 

 Flow   = 0.5 m3/s/m2 

 Material size = 2 mm. 

 S0   = 0.00002 

Design the channel by using : 

(i)  Permissible velocity method, 

(ii)  Tractive Force method and (iii) Regime Theory. 

 

1. Permissible Velocity Method: 

 For fine sand (loose sandy soil) we have 

 Side slope = 2:1 (Trapezoidal Channel)  

 Manning’s n = 0.020 

 Permissible Velocity = 0.57 m/s. 

Then  A = Q/V = 100/0.57  = 175.439 m2 

 

 R = 5.1

2
1

0

][
AS

nQ =  5.1]
00002.0439.175

10002.0[
x

x  
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 R = 4.0699 m 

 P = A/R = 
0699.4

439.175  = 43.106 m 

 P = B0 + 2 251+  = 43.106 

or 

 B0 = 43.106 - 2√5 y 

Also  A = (B0 + 5y)y  = 175.439 

Substituting B0 in the expression for the area, we get, 

 (43.106 - 2√5 y + 2y)y = 175.439 

or 

 -2.472 y2 +43.106 y – 175.439 = 0 

The solutions for ‘y’ are : 

 Y0 = 6.472 m, y2 = 10.966 m 

The first root (y1) gives B0 = 14.16 m, while the second gives B0 <1 which is not possible. 

Add 0.78 m of freeboard to have a total height of 7.25 m and use B0 = 14m. 

 

CHANNEL DIMENSIONS USING PREMISSIBLE VELOCITY METHOD. 

2. TRACTIVE FORCE METHOD. 

This is a fine method (<5 mm), therefore, the effect of angle of repose is negligible. 

 
The permissible shoes stress is Jcrit = 0.06 lb/ft2 or 2.872 M/m2 (From Figure 9.4 assuming clew 

water). 

The unit tractive force on the side is 0.76 @ S0y 

=> Jt = 0.76 x 999 x 9.81x 0.00002 x y 

Equating ‘Jt’ to ‘Jcrit’, we get, y = 19.28 m. 

This method predicts a very high value of ‘y’.  The reason is that the channel slope is extremely 

small.  This results in a very small coefficient of tractive force (0.76&S0) and, therefore, a very 
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high flow depth.  Actually, Manning’s equation predicts a negative value of the bottom width, 

which is totally unrealistic. 

3. REGIME THEORY 

 From table 9.4, the silt factor can be taken as low as 1.44.  The higher the value of silt 

factor, the wider the channel is, then we look for a better proportionate channel. 

fs = 1.44 

 P = 4.75 √Q = 4.75 x 10 = 47.5 m 

 R = 0.47 (Q/fs)1/3 = 1.932 m 

 A = PR = 91.76 m2. 

Also  

 A = (B0 + 2y)y = 91.76 

 P = B0 + 2√(1+4) y = 47.5 

Eliminating B0 from these two equations, we get, 

-2.472 y2 + 47.5 y -91.76 = 0 

The roots are :  y1 = 2.18 m and y2 = 17.04 m 

For y = y1, B0 = 37.76m.  The other root gives B0 < 0 

 

Then, use y = 2.18, B0 = 37 m and 0.82 m of freeboard.  However, the channel is very wide and 

shallow.  This is not a good option.  The permissible velocity method gave a better proportionate 

channel. 

 

9.4 

 Design a storm sewer, 

 Area  = 4 km2 

 Runoff = 0.15 m3/s/km2 

 S0 = 1/2000 

 

Try using a concrete pipe : n = 0.013 

Discharge  Q = 0.15 x 4 = 0.6 m3/5 
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Slope  S0 = 0.0005 

0005.0
)6.0)(013.0(

0

=
S

nQ  = 0.35   

Then, 
667.2
35.0

3/2

3/2

DD
AR

= = 0.16 

The valve 0.16 was taken using Figure 4.5.  The value yn/D0 was used approximately as 0.5 to 

get 3/2

3/2

D
AR =0.16.  This ensures that the final cross-section is close to the most efficient hydraulic 

section. 

Then D = 1.34m, use D = 1.37m (54 inches pipe).  Then θ = 3.11 rad and the flow depth is y = 

0.67m.  

Also : A = 0.72 m2 

 V  = Q/A = 0.6/0.72 = 0.83m 

 V > Vmin. Ok. 

Use a circular concrete pipe with D = 1.37 m 

 

9.5 

 Design an irrigation channel. 

 Q  = 1100 ft3/s 

 S0  = 2 ft/mile = 2/5280 = 0.00038 

 Soil is clay. 

Solution: 

 Tractive Force Method.  

(a) For clay we select a trapezoidal channel with s=1 (Table 9.2) and n = 0.024.   

 For fairly compact clay and a voids ratio of 0.8, the critical shear stress is (Fig. 9.5) 

 

 Jc = 0.17 lb/ft2 

 

(b) Determine the flow depth. 

 Jc = 0.17 = 0.76 HyS0 
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 Y = 
)00038.0)(4.62)(76.0(

17.0  = 9.43 ft. 

 

(c) Compute B0 : For clay use n = 0.024, then 

 92.908
00038.044.1

)1100)(024.0(

]22[

])[(

3
2

0

3
5

0 ==
+

+

xyB

yyB  

 

 For y = 9.43 ft, the solution for B0 is B0 = 19.95ft.   

 Use B0 = 20 ft (Try solving this problem by the permissible velocity method!). 

 

Use a freeboard of 2.57 ft. to have a total channel depth of : 

 d = 9.43 + 2.57 = 12 ft. 

 

9.6 

 Design a flood control channel for  

 Q  = 500ft3/s 

 S0  = 0.003 

 Channel paved with bricks (n = 0.013) 

This is a non-erodible channel which could be designed using the criterion of the most efficient 

hydraulic section.  A trapezoidal section is selected. 

 

The most efficient trapezoidal section is half of a hexagon for which 

 A  = √3 y2 

 P = 2√3 y 

 R = ½ y 

 

Section Factor : AR2/3  = 
2
1

)003.0(49.1

)500)(013.0(   = 79.65 
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Then  √3 y2 (
2
y )2/3 = 79.65 

 1.091y2.667 = 79.65 

 

Finally  y  = 5ft. 

From here, we get, 

  A  = 43.3 ft2 

  A  = (B0 + y
3
3 )y = 43.3 ft2 

  B0 = √3 y - y
3
3  = 2 y

3
3  

  Finally B0 = 5.77 ft. 

  Flow Velocity = Q/A = 500/43.3 = 11.55 ft/s. 

This velocity is acceptable for a paved channel. 

Add 2.5 ft. of freeboard. 

Channel Sketch. 

 
9.7 

 Given 

 2 km long tunnel with horseshoe section (standard). 

 Material  : sound rock 

 Inlet bottom level : 100 m 
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 Exit bottom level : 98.5 m 

 Q = 100 m3/s (design flow) 

 Free flow in the tunnel 

 Downstream water level 102 m 

(a) Plot the water surface profile for the design flow. 

(b) Plot the water surface profile for Q = 150 m3/s and downstream elevation = 105 m. 

Solution: 

(a) First select the tunnel dimensions.  Use 

 n = 0.035 (rock) 

 S0 = 
2000

5.98100 −  = 0.00075 

 Section Factor: AR2/3 = ½)00075.0(
)100)(035.0(  = 127.80 

A DIAMETER FOR THE HORSE-SHOE SECTION HAS TO BE ASSUMED HERE.  A 

TABLE CONTAINING THE PROPERTIES OF A STANDARD HORSE-SHOE SECTION 

MAY ALSO BE NEEDED. 

For a horse-shoe section at full capacity 

 2D
A  = 0.8293 and R/D = 0.2538 

 where D is the diameter of a standard horse-shoe section. 

 
 Then AR2/3 = (0.8293 D2) (0.2538D)2/3 = 127.80 

 Therefore, the minimum diameter should be  D = 9.32 m. 

Try D = 15 m and compute the normal depth. 

By using a table of Standard horse-shoe section, we get: 

y  A  R  AR2/3 

(m)  (m2)  (m)  (m8/3) 

5  60.37  2.971  124.78 Low ! 

5.1  62.55  3.03  131.10 High ! 

The normal depth is 5.05 m (approximated from the values in the previous table) 
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For uniform conditions, the flow velocity is V = 
46.61

100   

V = 1.63 m/s, The Frovde number is : 

  1136.0
6.1481.9

62.1
<==

xgD
V

h

 

Then, the flow is sub critical. 

The critical depth is computed next: 

Section factor : 2/1

2/3

T
A

g
Q

=  

where 
g

Q = 100/√9.81  = 31.93 

Also: 

y 
(m) 

A 
(m2) 

T 
(m) A3/2T-1/2 Remarks 

3.0 32.78 13.62 50.85 high 

1.95 18.88 12.87 22.87 low 

2.55 26.73 8.83 46.49 high 

2.25 22.77 13.10 30.01 low 

2.40 24.75 13.21 33.87 high 

From the last two lines we know that y0 = 2.3 m.  This confirms that y0 < yn and the channel is 

MILD. 

The downstream depth is 102-98.5 = 3.5 m < yn. 

Therefore, the profile is M2 type. 

Table 9.7 shows the computations of the water surface profile for Q = 100 m3/5. 

 

 (b)  Flow profile for Q = 150 m3/5 and downstream depth of 105-98.5 = 6.5 m. 

Section Factor : AR2/3  = 191.70 

Normal depth computation: 

y 
(m) 

A 
(m2) 

R 
(m) 

AR2/3 

(m8/3) Remarks 

6.0 75.83 3.738 170.72 low  



Chapter 9 
 
 
 

155 
 

 

 

From the table we get yn = 6.45 m.  In this case the normal depth is equal to the downstream 

water depth; therefore, the flow in the tunnel is uniform at yn = 6.5m. 

The possibility of a smaller horse-shoe section should be considered for this problem.  In this 

case, a new diameter (between 15m and 10 m) should be assumed and the computations repeated 

again.   

 
9.8 

6.3 80.28 3.483 184.45 high  

6.45 82.51 3.534 191.4 Ok 
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Design a grass-lined channel for Q = 100 ft3/s, S0 = 0.03 

Solution : Use Permissible Velocity Method. 

 

For Bermuda grass and sandy silt the  

permissible velocity is V – 1.8 m/s = 5.9 ft/s (from Table 9.3) 

Use n = 0.030 (Manning’s n is grossed channels varies depending on the depth of flow, the shape 

and slope of the channel and the grass growth conditions.  A more detail analysis is 

recommended for any particular case and circumstances). 

Lateral slope : use 2 : 1 (Tropezoidal cross-section) 

Then : A = 295.16
9.5

100 ft
V
Q

==  

Section Factor : AR2/3 = 
03.049.1

10003.0
x

x  = 11.62 

Also R = 0.57 ft and P = 29.84 ft. 

Then : (B0 + y)y = 16.95 =>  B0 = 29.84-2√5 y 

Substituting B0 in the section factor formula and solving for y, we get, 
 
 3.47 y2 – 29.84 y + 16.95 = 0 

From here : y = 0.61ft.  Therefore, B0 = 27.11 ft. 
 
The channel is very wide compared to the water depth.  In order to have better proportional 

dimensions, we can try s=6. In this case, we have, 

 

 P = B0 + 2 361+ y = 29.84 

 

Then, B0 = 29.84-2√37 y 

and (29.84 y – 11.165 y2) = 16.95 

 

Finally we get,  y1 = 0.82 ft. and B0 = 19.87 ft. 
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   Y2 = 1.85 ft. and B0 = 7.29 ft. 

 

We have two options for the channel.  The top width in both cases will be similar.  Take the 

second choice as our option: 

 y = 1.85 ft. 

 B0 = 7.29 ft. 

 

The freeboard given by the US Bureau of Reclamation formula is  

 Fb = 85.18.0 x  = 1.2 ft. 
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Chapter 10 
SPECIAL TOPICS 
 
 
 
10.1 Given : Rectangular channel connecting lakes B & C 

 B0  = 10 m 

 L  = 1000m 

 S0  = 0.0002 

 n  = 0.013 

 Channel bottom at Lake B entrance = 94 m. 

 

(i) Plot the delivery curve if the water level in Lake B is of constant elevation El = 100 m 

and the water level in Lack C is variable. 

 

Solution: 

 Use the computer program given in Appendix D4 for simultaneous solution of the energy 

equations for the channel reaches. 

 

The input variable are :  

NCHAN = 1   sΦ = 0.0002 

 MAXI  = 25   CHL  = 1000 

 G   = 9.81m/s2  CMAN = 0.013 

 TOL  = 0.0001  BOT  = 10 

 TOP  = 6.0 m  2Φ = 0.0 

 YB  = 6.0 m  NR = 20 

 CHELEV = 94   ALPHA= 1 

QΦ is VARIED from 20 m3/s to 251 m3/s to get the delivery curve. 
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For every discharge, compute the critical depth and check that y0 ≤ yd where yd = 

downstream depth (given by the depth at section 2.1 in the program output) and y0 = critical 

depth. 

 

The critical depth is obtained from  

 

y0 = 3
2

3
2

2

981
Q

gB
Q

=     

The discharge corresponding to uniform flow conditions in this channel is  

Qn = 127.41 m3/s  

However, the channel is short ; therefore, the discharge increases to a maximum of 

approximately 252 m3/s.  These conditions can be verified with the computer program. 

Table 10.1a shows the results.  The delivery curve is obtained by plotting Q vs yd from this table. 

(ii) Plot the channel discharge for different upstream lake levels (Lake B) if the water level in 

Lake C is El = 98 m. 

The maximum discharge is obtained when the downstream depth is critical, this is  

QMAX  = YYd
3 B0  

Or  

Qmax = 81.9)]0002.0100094(98[ 3 xx−− x10 

Qmax = 269m3/5 

The normal discharge is given by  

Qn = 0002.0)
1022.4

102.4)(
013.0

102.4( 3
2

+x
xx  

Qn = 79.21 m3/s 

Other points for the discharge curve can be obtained by using the Standard Step method program 

given in appendix D2. The input data for this program is  

Bφ = 10 m  ZD  = 93.8 

S = 0.0   G = 9.81 m/s2 
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Sφ = 0.0002  ALPHA= 1.0 

yD = 4.2 m 

x(I)  use N Values between 0 and -1000 m 

Q  Variable 

The upstream depth for every flow corresponds to the valve of y at station 1000. 

Table 10-1b shows the Q and Yup Valves.  

(iii) Plot a diagram between the water levels in both lakes and the channel discharge if the 

water levels in both lakes are variable. 

Take for example Q=200M3/s. Use the Standard Step method program given in Appendix D2. 

For the same discharge input different Valves of downstream depth, yd, and determine the 

upstream depth, yup. Table 10-1c shows the results. 

Repeat the same process with different discharge and plot yd vs yup for each flow. 
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10.2 

For a concrete spillway with θ =300 and Ho = 8m, determine the development of the boundary 

layer thickness along the spillway length. 

Solution: 

For a concrete spillway take k5=0.5mm and n=0.013. 

(k5=equivalent sand-roughness, n=Manning’s coefficient). 

The boundary layer development can be computed using equation 10-5. 

 

10.011.0 )()(021.0
s

s

s

s

s X
K

h
X

X
=

∂  

For our spillway hs/xs =  cos30 = 0.866  

Or  

δ = 0.0213 (0.0005)0.1X5
1.1 

 

δ = 0.010 X5
1.1 
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Table 10.2 shows the boundary layer development Note that Xs is measured from the water 

surface over the spillway crest. The distance along the Spillway length is denoted by x. 

 

TABLE 10.2 Boundary Layer Growth 

X5(m) X(m) δ (cm) X5(m) X(m) δ (cm) 

6.93 

8.00 

10 

0.0 

1.07 

3.07 

8.4 

9.8 

12.5 

 

12 

15 

5.07 

8.07 

15.3 

19.6 

 

10.3 

Given: Same spillway as problem 10.2 

Determine: c , y99, f e, ye . 

Solution: 

The average air concentration depends upon the angle θ ; then, for θ =300 : 

C =0.75(sinθ)0.75   (Eq.10.6) 

 

 

To estimate the uniform water depth at 99 % air concentration (y99) we need to computed the 

water depth corresponding to pure water. This is  

Yw =(
0S

nq )3/5     (wide rectangular channel) 

Where q = θ/L = Cd He
1.5, He = total energy head on the crest. Neglecting the velocity 

head and assuming Ho = Hd a typical valve for Cd is 4.0 (When Hd is in feet).   Then: 

q = (8x3.28)1.5x0.4  = 53.76 ft3/ft 

q = 5.0 m3/s-m 

Then yw = 6.0

2
)

30tan
5013.0( x  = 0.23 m  

From Eq.10.7 we get: 

C =0.446     or        44.6 % 
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 ygg = yw+1.35yw[ 32

3sin
gn

ywθ ]0.25 

or, substituting the numbers : 

 

Given fw = 0.015 we get ‘fe’ from Eq.10.8 

as: fe  = 4
101 c

fw

+
 

or 

 

Finally the bulk flow depth is given by Eq.10.12 

Ye= 3
1

0

2

)
8

(
gS
qfe  

 

  

 

10.4   

Given :  A box culvert 2m wide by 4m high  

 S0=0.005 

 n=0.013 

 Downstream end un-submerged  

Compute the rating curve  

Solution: 

Assuming inlet control we compute the culvert discharge using the  weir and orifice 

equations. 

For un-submerged entrance (H<1.2D) 

Q  = ghCBH
3
2

3
2  

Use B =  2m,  C =  0.9 and g = 9.81 m/s2 to get  

Q =  3.07H3/2  if H  <  4.8m 

Y99=0.43m 

fe=0.0107 

ye=0.18m 
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 For submerged entrance (H  > 1.2D) 

 Q =  CBD )(2 CDHgCBD −  

Use C =  0.6 to get  Q =  21.26 4.2−H ,      If H  >  4.8m 

Also the critical and normal depth are given by  

  

Yc = 3
2

3
2

62.19
Q

Bg
Q

=  

And  
3
2

3
5

)2(

)(

By

By

+

 =  0.184 Q (use S0 = 0.005) 

Table 10.4 shows the results : head, H, discharge critical and normal depths. 

For flow between 0.5m3/5 and 43m3/5 the control is at the inlet (supercritical flow). 

Therefore in this range of flows, the weir and orifice equations give the correct discharge. 

Table 10.4 

Rating Curve  

H(m) Q(m3/5) Yc(m) Yn(m) 

0.5 

1.0 

1.5 

2.0 

2.5 

3.0 

3.5 

4.0 

4.5 

5.0 

5.5 

6.0 

6.5 

7.0 

1.08 

3.07 

5.64 

8.68 

12.14 

15.95 

20.10 

24.56 

29.31 

34.28 

37.43 

40.34 

43.05 

45.60 

0.38 

0.78 

1.17 

1.57 

1.96 

2.35 

2.74 

3.13 

3.52 

3.91 

4.15 

4.36 

4.55 

4.73 

0.27 

0.56 

0.86 

1.20 

1.55 

1.93 

2.34 

2.77 

3.22 

3.69 

3.99 

4.27 

4.52 

4.76 
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10.5        

Given: 

Box culvert of problem 10A with  

S0 = 0.001 

L =100m 

 Tail water level remains below the culvert top at the outlet. 

 

Compute : The rating curve. 

Solution: 

Determine of the control is at the inlet or not .Table 10-5a show the normal and critical depths 

for several discharge (these are the Q values computed in problem 10.4) 

 

Table 10-5a 

Q 
(m3/s) 

Yc 
(m) 

Yn 
(m) 

1.08 

3.07 

5.64 

8.68 

12.14 

15.95 

20.10 

24.56 

29.31 

0.38 

0.78 

1.17 

1.57 

1.96 

2.35 

2.74 

3.13 

3.52 

0.473 

1.00 

1.60 

2.27 

3.03 

3.93 

4.70 

5.63 

6.62 

 

From Table 10-5a we conclude that the flow is sub-critical and the control is at the outlet. For 

outlet control the discharge and the water profile depends on the culvert length and the tail water 

level at the down streams end. It also depends on the head water level. 
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We compute the rating curve for the maximum flow in the culvert for a given tail water level. 

Recall that for a tail water level below the top of the culvert, the maximum flow in the culvert 

occurs when the tail water level is less or equal to the critical depth. 

This is  Qmax  =  qmaxB0 

 

 Qmax =  gygy TAIL
33

0 =  

 

Using these equations, the following rating curve for maximum flow as a function of the tail 

water level is obtained. 

 

Table 10-5 b 

Rating Curve      

YTAIL 

(m) 
qmax 

(m3/sm) 
Qmax 

(m3/s) 
0.5 

1.0 

1.5 

2.0 

2.5 

3.0 

3.5 

4.0 

1.11 

3.13 

5.75 

8.86 

12.38 

16.27 

20.51 

25.06 

2.22 

6.26 

11.5 

17.72 

24.76 

32.54 

41.02 

50.12 

  



Chapter 10 
 
 
 

169 
 

 
10.6 

Given: Culvert of prob.10-5 

  L=100m 

 The tail water level is 4.5m above the culvert invert at the outlet. 

Compute and plot the water surface profile. 

 

Solution: 

The culvert of prob. 10-5 is 4m high; therefore , the outlet for the conditions given here is 

going to be submerged. Also the flow in the culvert is SUBSRITICAL (See Table 10-5a). 

 

Under these conditions the control is at the outlet and culvert flow full or pressurized.. 

 

 

10.7 

Given : Logarithmic Velocity Distribution. 

Prove that the flow velocity at 0.368d is the depth-averaged flow velocity. 

Solution: 

Assume velocity distribution of the form  

 v  = a ln (by) 

where y is the flow depth and ‘a’ and ‘b’ are constants. 

 

Integrating ‘v’ across the flow depth, we have, 
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 v   = a [ln (bd) -1] 

Then,  
 ln c  = 1 =>  v  = a [ln (bd)-ln e] 
 

or  v  = a ln (
e

bd ) 

 
But e = 2.718  => 1/e = 0.368,  
 
Finally  v  = a ln (0.368db) 

Then y = 0.368d corresponds to the depth at which the flow velocity is the depth averaged flow 

velocity. 

 

10.8 

Given :  

Flow velocity at 0.2 d and 0.8 d 

 Logarithmic velocity distribution. 

Show that the average  

 Vav  = 
2

8.02.0 dVdv +
  

gives the depth-averaged flow velocity with an error of 2 %. 

Recall that  v = a ln (by) 

Then Vav = 
2

8.02.0 dVdv +
 

 Vav = 
2

)8.0ln()2.0(ln dbadba +  

 Vav = 
2
a  ln(04bd)2 

 Vav = a ln (0.4 bd) 

The relative error is expressed as  

 ε  = 
]1)[ln(

)4.0ln()368.0ln(
v 
 Vav-v 

−
−

=
bda

bdadba  
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 where v  was taken from Prob. 10.7 

 ε  = 
1)ln(

084.0
−bd

 

 

Typically b ≈ 30/k (sec. Prob. 1.4) and 30d/k > 200  => ε ≈ 2% or less! 

 

10.9 

The water level in the upstream lake of the channel system shown in Fig. 10.10 remains constant 

at El. 108 m; the water level in the downstream lake may vary between El.98 and 108 m. 

 

(i) Compute the rates of discharge on the channel for different downstream lake levels and 

plot the delivery curve. 

 

 A computer program similar to the one presented in Appendix …. for the computation of 

backwater flow profiles using simultaneous solution approach was used to solve this problem.  

The computation of the delivery curve only requires to specify the discharge and the program 

solves for the water depth. 

 

Table 10.9 presents relevant water depth for selected discharges. 

Table 10.9 

Normal, Critical and Downstream Depth at Channel 2 

Q 
m3/5 

yn 
m 

y0 
m 

yd 
m 

100 

150 

200 

250 

300 

350 

400 

4.148 

5.172 

6.028 

6.772 

7.439 

8.387 

8.606 

2.140 

2.738 

3.252 

3.708 

4.122 

4.504 

4.859 

8.721 

8.620 

8.461 

8.230 

7.880 

7.290 

5.248 
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Figure 10.9 shows the delivery curve for the system.  A maximum depth of 8.8 m at the 

downstream end of channel 2 corresponds to zero flow conditions.  As the water level decreases 

the flow increases very rapidly, for high water level in the downstream reservoir.  An increase in 

discharge from 0 to 200 m3/s corresponds to only 0.30 m variation in the reservoir level.  At this 

condition the channel is carrying approximately a half of the maximum flow for the system. 

 
 

 

10.10 

Given 
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 Branch channel system consisting of the two channels of Prob. 10.9 and a branch channel 

(channel 3) this takes off from the junction of channels 1 and 2. 

 

 Channel 3 is, L3 = 1000m 

 Same cross section as Ch. 2 

 n = 0.015 

 water level at downstream end = 105 

 

(i) Compute and plot the delivery curves for channels 2 and 3 for the different downstream 

lake levels downstream of channel 2. 

 

Solution: 

A computer program for the solution of this problem using simultaneous solution procedure can 

be written following the explanations of Section 6.8.  In this case, the solution will be easily 

obtained in a straight forward manner from the computer program.  However, other procedure 

that uses the ‘traditional’ integration techniques (like Euler or Runge Kutta) to solve the 

gradually varied flow differential equation will be discussed here.  In this case, the computations 

are more tedious because a trial and error procedure must be applied. 

 

The first step is to determine the maximum discharge in channel 3.  Theoretically, this 

corresponds to the valve for which the reservoir level is the critical depth.  However, in this case 

the flow is restricted by the capacity of channel 1.  After a trial and error process, trying to match 

the water elevation coming from reservoir 1 towards the junction with the constant elevation at 

reservoir 3, the maximum flow in channel 3 is estimated as 478 m3/s, corresponding to a water 

elevation of 7.0 m at the junction.  An elevation of 5.2 m at the junction represents zero flow in 

channel 3.  So we look for water elevation at the junction between 7 and 5.2 m. 

 

Now, by trial and error we find several combinations of flow and head that satisfy the continuity 

and the energy equations at the junction and, at the same time satisfy the boundary conditions of 
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each channel.  Table 10.10 shows the discharges head of the junction and depth at reservoir 2 

that occur simultaneously. 

 

Table 10.10 

Discharge and water depth for the channel system. 

Q ch1 
m3/s 

Qch3 
m3/s 

Qch2 
m3/s 

ynor 
m 

y0 
m 

yjunc 
m 

yd 
m 

H 
m 

500 

520 

530 

535 

537 

538 

448 

393 

355 

320 

308 

298 

52 

127 

175 

215 

229 

240 

2.94 

4.73 

5.62 

6.26 

6.47 

6.63 

1.46 

2.48 

3.00 

3.39 

3.52 

3.62 

6.76 

6.43 

6.19 

6.02 

5.93 

5.88 

7.34 

6.88 

6.41 

5.87 

5.50 

5.13 

106.54 

106.08 

105.61 

105.07 

104.70 

104.33 

 

Differences in velocity head at the junction were neglected in the computations.  During the trial 

and error process a maximum difference of ±5 cm between the reservoir elevation of channel 2 

(105 m) and the valve computed with the program was allowed. 

 

As mentioned before, the maximum flow in channel 3 is approximately 478 m3/s corresponding 

to a water elevation of 7.0 m at the junction.  Elevations greater than 7.0 m correspond to flows 

less than 475 m3/s in channel 1, causing a situation where the continuity equation is not satisfied.   

 

Water elevations less than 7m at the junction correspond to flows greater than 478 m3/s in 

channel 1.  In these cases there is flow going from the junction towards reservoir 2 and 3.   

The steps followed to obtain the values in table 10.10 are : 

(i) Assume a discharge in channel 1 and compute the backwater profile up to the junction.  

We know that this flow must be greater than 478 m3/s. 

 

(ii) With the water depth at the junction obtained in Step 1, assume a discharge for channel 3 

and use trial and error to match the end of the flow profile with the reservoir elevation. 
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(iii) Once step 2 is satisfied, apply the continuity equation at the junction to find the discharge 

in channel 2. 

(iv) Knowing the discharge in channel 2 and the water depth at the junction, compute the 

backwater profile for channel 2 and obtain the reservoir elevation. 

Repeat the same procedure for different discharges to get the delivery curve.  Figure 10.10 shows 

the results for channel 2. 
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Chapter 11 
UNSTEADY FLOW 
 
 
 

11.1 

Vw = absolute velocity.  Assume rectangular channel. 

 

Continuity eqn : 

 (Vo+∆V-Vw)(Yo+∆y)   = (Vo-Vw)yo 

 Voyo+yo∆y-Vwyo+Vo∆y+∆y∆v-Vw∆y = voyo-vwyo 

 (vo-vw) ∆y = -yo∆v 

 (vw-vo) ∆y = yo∆v 

 Vw-vo  = yo y∆
∆v  

 C  = yo y∆
∆v   ----------------(1) 

Momentum equation: 

 
][

g
y)v-(v]2[

2
1

)]v-v(v-)v-[(v)y-v(v]½)(
2

½[

0
o

wo
222

wowoowo
22

wowooo

oo

vvvvvyyyyy

g
rryyyr

+∆−−−=−∆+∆+

∆+=−∆+
 

 y0 ∆ y =  v0-vw 
g
y 0 (- ∆ v) 

 v0-vw = -g
v∆

∆y  

 C = g
v∆

∆y  ---------------- (2) 

From (1):  
v∆

∆y = 
C
y 0  

From (2):  C = g
C
y0  

    C2 = gy0 
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 C = 0gy  

 Note that C is relative to flow velocity Vo. 

 

11.2 

 

 V1  = .sec/1
5.15

5.7
11

m
xyB

Q
==  

 (v1-v2)2 =  )(
2

2
2

2
1

21

21 yy
yy
yyg −

−  

(1-0)2  = 
2

2

5.12
)5.1(81.9

yx
y− (2.25-y2

2) 

0.3058 = 
2

2 )5.1(
y

y− (2.25-y2
2) 

Use trial & error,  

 y2  =  1.914 m 

 

 vw  = sec/623.3
5.1914.1

5.110
12

1122 mx
yy

yvyv
=

−
−

=
−
−  
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11.3 

∆E  = )(2)1[(
222 123

2

3
12

1
2

2

1
2

1
2

2
2

2
1

1 bb
b
bFr

b
b

g
V

g
vy

g
Vy −+−=−−+  

= y1+ )1(
5
4

81.92
)45.7(2)

5
41[(

81.92
)45.7(

81.92
15.1

81.92
)45.7(

4

32
12

2
1

2
1

x
y

x
y

xx
y

+−=−−  

= y1+ ]07339.004.0[1792.005097.05.11792.0
3

1
2

1
2

1 yyy
+=−−  

y1
6-1.55097y5-0.172y3-0.01315 = 0 

Y1 = 1.474 m 

Y1` = (1.914-1.5)5/4+1.474 = 1.9915 m  

 

11.4 

 

y1+ )5.2(
5
5.7

81.9
)5.75.7(2)

5
5.71[(

81.92
)5.75.7(

81.92
15.1

81.92
)5.75.7(

4

3

1

2
12

2
1

2
1 −+−=−−

yx
y

x
y

xx
y  

y1+ ]344.025.0[
8.92
1

81.92
15.1

y81.92
1

3
1

2
1

2
1 yxyxxxx

−
+=−−  

 

y1
6 -1.55097y5+0.0382y3+0.01753  = 0 

 

trial and error 

y1 = 1.533 m 

y1` = (1.914-1.5)5/7.5+1.533 = 1.809 m. 
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11.5 

 
 Q1=Q2 

A1(v1-vw) = A2(v2-vw)   Eqn. 11.8 

 

g
ρ Q[(v1-vw)-(v2-vw)] = γ 2y A2 - γ 1y A1 

A1(v1-vw)[v1-vw-
2

1

A
A (v1-vw)] = g( 2y A2 - 1y A1) 

A1 (v1-vw)2(1-
2

1

A
A ] =  

2

1

A
A (vw-vw)2(A2-A1) = g( 2y A2 - 1y A1) 

(v1-vw)2 = )y  A- y A([
)( 1122

121

2

AAA
gA
−

 

C=vw-v1 = )y  A- y A([
)( 1122

121

2

AAA
gA
−

 eqn. 11.17 
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11.6 

 
This is a positive wave 

 C = gy  

In fig. a :  The depth at 1 is less than the depth at 2, the wave celerity c2 > c1.  As the wave 

travel it tends to over take the front edge.  Therefore, the wave tent becomes 

steeper until a bare form (figure b). 

- a similar argument can be done for the negative wave front and it will flatten as 

it travel in the channel. 

 

11.7 
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(v1-v2)2= (y1-y2)2 
21

21

2
)(

yy
gyy +  ---- (1) 

 To the left side new singe 

 V2 = -v y2 = y  v1=-v1 

 (v1-v)2   =   (y1-y)2 
yy

gyy

1

1

2
)( +  ---- (2) 

 To the right side new singe 

 V2=v  v1=v1`  y2=y  y1=y1` 

 (v1`+v)2 = (y1`-y)2 
yy

gyy
`2

)`(

1

1 +  ---- (3) 

Solving eqn (2) and (3), Find v and y 

vw = 
21

2211

yy
yvyv

−
−  

Left side vw  = 
1

11

yy
vyyv

−
−   

Right side vw` = 
`

``

1

11

yy
vyyv

−
+  

11.8 

 



Chapter 11 
 
 
 

182 
 

(v1-v2)2= (y1-y2)2 
21

21

2
)(

yy
gyy +   ---- (1) 

 Applying eqn (1) to left side new singe 

 (v1-v2)2= (y1-y2)2 
21

21

2
)(

yy
gyy +   ---- (2) 

Applying eqn.(1) to right side new singe 

 (v1`+v2`)2 = (y1`-y2`)2 
``2

`)`(

21

21

yy
gyy +  ---- (3) 

 By geometric continuity 

 y2 + F  = y2`  -------- (4) 

 By hydraulic continuity 

 V2y2 = v2`v2` 

Solving 2,3,4,5  we get  v2, y2, v2`, y2` 

 

11.9 

 Stationary wave. 

 Au (vu-vw) = Ad (vd-vw) 

 Au (vw-vu) = Ad (vw-vd) 

 Auvw-Advw = Auvu – Advd 

 vw (Au – Ad) = Qu – Qd 

 vw   = 
AdAu
QdQu

−
−   
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Chapter 12 
GOVERNING EQUATIONS FOR ONE-DIMENSIONAL FLOW 
 
 
 

12.1- Derive the continuity equation for the one-dimensional unsteady flow using infinitesimal 

length of channel show in the figure. 

 
 

The law of conservation of mass can be expressed as : “The time rate of increase of the mass 

inside the control volume must be equal to the net rate of mass inflow into the control volume “. 

From the figure we have the rate of mass in flow  

as  P1Q1= g
H V1 A  Where H=specific weigh of water. 

The rate of outflow is: 

 

P2Q2 = 
g
H (A+ ))( x

x
VVx

x
A

∆
∂
∂

+∆
∂
∂  

Then the net rate of flow is : 

 

∆m  =  P2Q2 - P1Q1    

or 

 ∆m = +− A
g
HAV

g
H ( ))( x

x
VVx

x
A

∆
∂
∂

+∆
∂
∂  
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Neglecting second-order terms and simplifying we get : 

 

 ∆m =  x
x
VA

x
AV

g
H

∆
∂
∂

∆
∂
∂

g
H-x   (1) 

The time rate of increase of mass inside the control volume is given by : 

 x
t
A

g
H

t
m

∆
∂
∂

=
∂
∂   (2) 

According to the law of conservation of mass, Eq.1 is equal to Eq.2, therefore  

x
VA

x
AV

t
A

∂
∂

+
∂
∂

+
∂
∂  =  0 (3) 

 

Recalling that Q=VA and 
x
VA

x
AV

X
AV

x
Q

∂
∂

+
∂
∂

=
∂

∂
=

∂
∂ )(  

We get the law of conversion of mass, Eq.3 as: 

 0=
∂
∂

+
∂
∂

x
Q

t
A  

This is the continuity equation in conservative form without lateral flow (Eq. 12.4). 

 

12.2   

Derivation of the momentum equation. 

The law of conservation of momentum can be expressed as: 

“The time rate of increase of momentum is equal to the net rate of momentum influx plus the 

summation of the forces acting inside the control volume “. 

First we obtain an expression for the forces acting in the control volume shown in  

 

Problem 12.1 

F1 = HA y    Pressure forces 

F2 = HA y + HA x
x
y

∆
∂
∂  

 F3 = HASf∆x  Force due to friction  
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     Sf = slope of the energy grade line. 

 

 F4 = W = HAS0∆x Gravity Force 

S0 = channel bottom slope  

 

Adding the forces in the x-direction we get the resultant force: 

FR = -HA x
x
y

∆
∂
∂  - HASf x∆ + HASa x∆  

The momentum influx is  

   ρ1Q1V1 = 
g
H  A1V1

2 = 
g
H  AV2 

The momentum influx: 

   ρ2Q2V2 = 
g
H  A2V2

2 = 
g
H  [AV2 +

x
AV
∂

∂ )( 3

x∆ ] 

The net change in momentum: 

ρQ2V2 – PQ1V1= 
g
H−  

x∂
∂  (AV2) x∆  

Then, the time rate of momentum is given by : 

    
t

mv
∂

∂ )(  = 
t∂

∂  (
g
H AV x∆ ) 

Finally, the conservation of momentum is  

     
t∂

∂ (
g
H AV x∆ )      = -   

g
H

x∂
∂  (AV2) x∆  -   HA 

x
g

∂
∂ x∆ +HAS0 x∆ - HASF x∆  

Time rate of change of momentum Net rate of momentum influx       Summation of forcer acting on the control volume  

 

Simplifying this equation we get: 

       
t∂

∂ (AV) + 
x∂
∂  (AV2)  + gA

x
y

∂
∂  = gA (S0-Sf)   (1) 

Recalling that  

x∂
∂ (AV2)  = V2 

x
A

∂
∂  + A 

x∂
)∂  (V2
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      = V2 

x
A

∂
∂  + 2A 

x∂
∂V  

      = V (V
x
A

∂
∂  + 2A 

x∂
∂V )     (2) 

and   
t

AV
∂

∂ )(  = V 
t∂

∂A +A 
t∂

∂v      (3) 

Substituting Eq.2 and Eq.3 in Eq.1 result in  

     V(
t∂

∂A  +V 
x
A

∂
∂  +A 

x∂
∂V ) + gA

x∂
∂y +AV 

x∂
∂V  +A

t∂
∂V  = gA(S0- SF )  

Dividing by A and noting that the first term in the left hand side is equal to zero (se 

prob.12.1,Eq.3), the find expression is: 

 

This is the momentum equation or dynamic equation. 

 

 

 

12.3   

Derive  Eq.5.5  from  Eq.12.17 

Equation 5.5 is: 

dx
dy  = 

3
1

 )-S(S
2

f)0

gA
BQ

−
  

 

Equation 12.17 is:   
t∂

∂V +g 
x∂
∂ (

g2
 V 2

+y) = g (S0-Sf) 

We know that Eq. 5.5 apply to STE Dy∆ , gradually varied flow, then: 

t∂
∂V  = 0 

Then, Eq. 12-17 becomes  

g
x∂
∂ ( y

g
V

+
2

2

) = g(S0-Sf)    (1) 

g
x∂

∂y +V
x∂

∂V +
t∂

∂V  = g(S0- SF )  
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Recalling that: Q=VA then:  

g
x

gV
∂

)2/( 2

= g 
x

gAQ
∂

∂ )2/( 22

 

          = - 
g

Q2

3A
B

x∂
∂y     (2) 

 Using the fact that   B=
y
A

∂
∂   

Substituting Eq.2 into Eq.1 we get  

-
3

2

A
BQ  

dx
dy +g

dx
dy = g(S0-Sf)                   (3)  

 

Note that the partial derivatives are not needed in equation 3. 

Rearranging   Eq.3, we get:  

 

 

 

 

 

This is Eq.5-5 (Gradually varied flow equation). 

 

12.4   

If we use stage (the equation of water surface above a specified datum), Z instead of flow depth 

,g, show that the continuity momentum equations for a prismatic channel become: 

  
t

Z
∂

∂  +V
x
Z

∂
∂  +

B
A 

x
v

∂
∂  +VS0  = 0 

t
V
∂

∂  +V
x
V
∂

∂  +g
x
Z

∂
∂  +gSf  = 0 

Solution: 

The relation between Z and y is  

Y = Z-Z0 Where Z0 is the elevation of the channel bottom. 

 

dx
dy = V

3
1

 )-S(S
2

f)0

gA
BQ

−
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Then  
x
y

∂
∂  =V

x
Z

∂
∂  -

x
Z
∂

∂  0 = 
x
Z

∂
∂  +S0   

Where  S0 is the channel bottom slope. 

Also  
t
y
∂

∂   = 
t
z

∂
∂   

Substituting 
x
y

∂
∂  and 

t
y
∂

∂   in terms of 
x
Z

∂
∂   and 

t
z

∂
∂   we get:  

continuity Equation: 

t
y
∂

∂  +
B
A 

x
v

∂
∂  +

x
y

∂
∂  

 = 0   → 

    
t
z

∂
∂  +

B
A 

x
v

∂
∂  +V 

t
z

∂

∂  +VS0 = 0 

Momentum Equation : (Eq. 12-16) 

V [ B
t
z

∂
∂  +A 

x
v

∂
∂  +BV

t
z

∂
∂  +BVS0 ]+A [

t
V
∂

∂  +V
x
v

∂
∂  +gS0 +gSf – gS0] = 0 

 

The first term in brockets is identically zero because of the continuity equation, Therefore  

A [
t

V
∂

∂  +V
x
v

∂
∂  +g

x
z

∂
∂  

 +gSf] = 0 

Or 

t
V
∂

∂  +V
x
v

∂
∂  +g

x
z

∂
∂  

 +gSf = 0 

 

 

12.5  
The momentum equation is  

t
Q
∂

∂  + 
x∂

∂ (QV+gA
−

Y ) = gA(S0-Sf) 

If the flow is steady we have 
t

Q
∂

∂  = 0 
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For uniform flow we have: 
x∂

∂ (Qv+ gA
−

Y ) = 0 

Then, the momentum equation becomes  

   gA (S0-Sf) = 0 

 

Or         S0  = Sf . 

 

12.6   

If the wind stress on the flow surface is included, prove that the continuity and momentum 

equations becomes: 

 

B 
t
y
∂

∂  +
x∂

∂Q -
l

q =0 

 

t∂
∂Q +

A
Q 

x∂
∂Q +Q

x∂
∂ (

A
Q )+gA

x
g

∂
∂   - gA(S0 -Sf) – 

l
q u – Kw BVW

2 cosθ= 0 

 

In which u=Velocity component of the latest flow in the positive x-direction, Vw= wind velocity 

and Kw=dimensionless wind stress coefficient. 

The addition of wind stress on the surface flow does not modify the continuity therefore , is 

remains the same as Eq.12.5, this is  

   B 
t
y
∂

∂  +
x∂

∂Q -
l

q =0 

 The wind force can be expressed empirically as : 

Fw = KwVw
2 

 

Where Kw was defined  as a dimensionless wind-stress coefficient. 

If θ is the angle between the wind direction and the x-direction, the component of the wind force 

is the x-direction is: 

Fw = KwVw
2cosθ∆x 
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Adding this terms to the summation of forces in the momentum equation (problem 12.2) we get: 

 

g
H 

t
Q
∂

∂  ∆x = - 
g
H 

x
QV
∂

∂ ) ( ∆x - HA∆x 
x
y

∂
∂  +HAS0∆x - HASf∆x - KwVw

2cosθ + a
l

q  

Expending the partial derivative and simplifying we get: 

 

t
Q
∂

∂  +V
x
Q
∂

∂   + Q
x
v

∂
∂   +gA 

x
y

∂
∂   - gA(S0 – Sf) - KwVw

2cosθ + a
l

q  = 0 

Or 

t
Q
∂

∂  +(
A
Q ) 

x
Q
∂

∂  + Q
x∂
∂ (

A
Q ) +gA 

x
y

∂
∂   + gA(S0 – Sf) - l

q a - KwVw
2cosθ + = 0 
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Chapter 13 
NUMERICAL METHODS 
 
 
 
13.1 

A computer program is developed for the transient by using the Method of 
Characteristics. The channel length is divided into 50 reaches (51 nodes). Other input 
values are as per the problem statement. 

 
Results of surface profile due to sudden closure of the downstream gate at different time 
levels are presented in Fig. 1(a). Reflection of the wave is observed. Variation of flow 
depth with time at different locations in the reservoir is shown is Fig. 1 (b). 
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Fig. 1 (a)  Surface profile at different times 
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Fig. 1 (b) Variation of the flow depth with time at different locations. 
 
13.2  
The results are obtained by using different dt/dx. Result indicates diffusion errors in the wave 
shape as dt/dx becomes smaller.  
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Fig. 13.2 Effect of dt/dx on the wave propagƒvation 
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Chapter 14 
FINITE-DIFFERENCE METHOD 
 
 
 
14.3  

Use Von Newman analysis to show that the following scheme is unstable. 

x
f

∂
∂  = 

x
ff k
i

k
i

∆
− −+

2
11  

t
ff

t
f

k
i

k
i

∆
−

=
∂
∂

+1

, where f refers to both ‘y’ and ‘v’ variables. 

 

Solution 

The linearized Saint-Venant equation (eq. 14.64 and 14.65) are  

t
V
∂

∂  +V0 x
V

∂
∂ +g

x
y

∂
∂   = 0 

t
Y
∂

∂  +D0 x
V

∂
∂ + V0 x

y
∂
∂   = 0 

 

Van newman assumed that the error has the form of a fourier  series, this is  

ε(x,t) = ∑X(t) ejmx  where j=√-1 

 

The finite difference approximation of the linearized equations using the given scheme is  

 V K

i

1+ = K
iV  - 

2
 0V

(
x
t

∆
∆ ) ( VV K

i

K

i 11 −+
− ) - 

2
 g  (

x
t

∆
∆ ) (Y K

i 1+
-Y K

i 1−
) 

 

 ( ) ( )YYVVYY K

i

K

i

K

i

K

i

K

i

K

i x
tV

x
tD

11
0

11
01

22 −+−+

+ −







∆
∆

−−







∆
∆

−=  

 

The exact solution to these equation are: 

  Yexact = Ycomp + ε 
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Vexact = Vcomp + ε 

 

Where Vcomp is the approximation given by a real computer with limited accuracy. Since the 

exact solution, Vexact and Yexact most satisfy the difference equation too we conclude that the 

same must be true for the error as long as the system is linear, therefore we have: 

 

V K

i

1+ = K
iV  - 

2
 0V

(
x
t

∆
∆ ) ( VV K

i

K

i 11 −+
− ) - 

2
 g  (

x
t

∆
∆ ) (W K

i 1+
-W K

i 1−
) 

W K

i

1+ = K
iW  - 

2
 0D

(
x
t

∆
∆ ) ( VV K

i

K

i 11 −+
− ) - 

2
 oV  (

x
t

∆
∆ ) (W K

i 1+
-W K

i 1−
) 

Where v and w represent the round of error introduced by the real-computer computations and 

given by    

jmxk
i

jmxkk

i

eB

eA

W

V

=

=

  

 Since the system is linear, we can consider only one term in the error series; therefore, the 

error Equations becomes: 

For  υ 

A(t+∆t) jmxe  = A(t) jmxe - 
2

 oV
r [A(t) )( xxjme ∆+  - A(t) )( xxjme ∆− ] - 

2
 g

r [B(t) )( xxjme ∆+ - B(t) )( xxjme ∆− ] 

Where r=
x∆

∆t
, Calling η=

)(
 t)A(t

tA
∆+  the amplification factor we have : 

η A(t) jmxe  = A(t) jmxe - 
2

 oV r [A(t) jmxe xjme ∆ + 
2

 oV r A(t) jmxe xjme ∆−    

-
2
 g r [B(t) jmxe xjme ∆ +

2
 g r B(t) jmxe xjme ∆−  

 

Cancelling jmxe and simplifying the equation we obtain: 

[η-1+V0r )
2
-ee(

x-jmxjm ∆∆

] A+gr( )
2
-ee(

x-jmxjm ∆∆

B = 0  
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Defining ∫ =m∆x and recalling that sin ∫ = 
2
-ee -jj ∫∫

 we obtain: 

[η-1+V0r sin∫j]A+gr sin∫B = 0 

 

A similar procedure for the  W K

i

1+ equation gives: 

[η-1+V0r sin∫j]B+D0r sin∫A=0 

 

In this derivation it was assumed that  

η = 
)(

 t)A(t
tA
∆+

 = 
)(

 t)B(t
tB
∆+

 

 

To obtain a non-trivial solution for the amplitude (A and B) the following condition must be 

satisfied : 

η -1+V0rsinδj   grsinδj   

         =  0 

D0rsinδj   } -1+V0rsinδj  

 

Or  

(η-1+V0r sin δj)2 + D0gr2Sinδ = 0 

η-1+V0r sin δj  =  ± j gD0 + sinδ 

 Finally  η = 1- (V0 ± gD0 )+ sinδj 

In order to have the error bounded the condition must be η   < 1 

Where η   is the module of η 

Or  

 (1 + (V0 ± gD0 )2 t2 sin2δ)½ < 1 
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This reduces to the impossible condition  

 (V0 ± gD0 )2 t2 sin2δ) < 0 

Therefore the error cannot be bounded and the scheme is UNSTABLE . 

 

14-6  

  The linearized Saint-Venant equations are: 

 

 00 =
∂
∂

+
∂
∂

+
∂
∂

x
Y

x
VV

t
V  --------------  (1) 

 

 

 000 =
∂
∂

+
∂
∂

+
∂
∂

x
YV

x
VD

t
Y  --------------  (2) 

 

Predictor part of Mac Cormack Scheme applied to equation 1: 
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i
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Similarly: 
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  (5) 

 

The corrector part for the same equation is: 

x
g

x
V

t
YYVVVV x

i

x

i

x

i

x

i

k

i

xx

i

∆

−
+

∆

−
+
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−
++ 11

0   = 0   (6) 

 

or 
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The predictor part for equation Z is: 

t
YY k

i

x

i

∆

−
 + D0 (

x
VV k

i

k

i
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−
−1(

 +V0 
x
YY k

i
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−
−1  = 0    (8) 

  Y i

* = - D0 
x
t

∆
∆  (V k

i
- V k

i 1−
) –V0

x
t

∆
∆ (V k

i
- V k

i 1−
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Y i

*

1+
= Y k

i 1+
- D0

x
t

∆
∆ ( V k

i 1+
-V k

i
) – V0

x
t

∆
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i 1+
-Y k

i
)  (10) 

The corrector part for equation Z is : 

 
t
YY k

i

x

i

∆

−*

 + D0 ( )( 1

x
VV k

i

k

i

∆

−
+ +V0 

x
YY ii

∆

−
+

**

1  = 0   (11) 

or 

Y x

i

*  = Y k

i
 - D0

x
t

∆
∆ ( VV k

i

k

i −
+1

)V0
x
t

∆
∆ YY ii

**

1−
+

   (12) 

The flow velocity in the next time step is given by  

   V k

i

1+ = 
2

** VV k

ii +
     (13) 

Substituting Eqns. 4 and 7 into Eq.13 and defining ∆t/∆x=r we obtain:  

V k

i

1+
= 

2
()(1

2

)()( **

1

**

10110 YYVVVYYVVV iiii

k

i

k

i

k

i

k

i

k

i

k

i grVgrrV −−−−−
+

−−−−
++−−   (14) 

   

   

Using Eq.4 and Eq.5 we can express VV ii

**

1 −
+

 as:  

)2()2(1 111101

**

1 YYYVVVVVVV k

i

k

i

k

i

k

i

k

i

k

i

k

i

k

iii grV −+−−+−−−=−
−+−+++

 (15)  

 

Similarly by using Eq. 9 and Eq.10 we get: 
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)2()2( 1101101
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 (16) 

Substituting Eq.15 and Eq.16 into Eq. 14 we have: 
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The error must also obey equation 17 then: 
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Where 1,)()( −=== jandtBandtA ewe mjxk

i

mjxk

iυ  

Defining the amplification factor as  

} = 
)(

t)A(t
tA
∆+  

and substituting the expression for ν k

i
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i
 into Eq.18, we have : 
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Introducing δ =m∆x, cos∫=
2
ee xjmxjm ∆−∆ +

, sin ∫ = 
2
ee xjmxjm ∆−∆ −

 into eq. 19 and simplifying, 

we get. 

 

A 



 −∫−∫+− )0

2
0)(1(cossin1} 2

0 gDVV rjr +B[gr(sin∫j-2V0r(cos∫-1)] = 0  (20) 

 

 

Similarly to equation B, we have 
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i
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      (21) 

 

After substituting Eqns. 4,5,9, and 10 into eq. 21 and simplifying, we obtain 

)2([
2 11

0
11

01 VVVVVDYY k

i

k

i

k

i

k

i

k

i

k

i

k

i rV
r

−+−−−=
−+−+

+  

YYYVVVYYYYY k

i

k

i

k

i

k

i

k

i

k

i

k

i

k

i

k

i

k

i

k

i rVrD
rV

gr 2()2([(
2

)]2( 11011011
0

11 −+−+−−−−+−
−+−+−+−+

(

22) 

  

Writing Eqn. 22 in terms of the expression for the error, using the trigonometric 

equalities for cosδ and sinδand simplifying, we arrive to : 

A [D0r(sinδj-2rv0(cosδ-1)] + B[ } -1-r2(D0g+v0
2)] 

For a non-trivial solution of A and B, the following condition must be satisfied. 





 −∫−∫+− )0

2
0)(1(cossin1} 2

0 gDVV rjr gr(sin∫j-2V0r(cos∫-1) 

D0r(sin∫j-2V0(cos∫-1)) jrVgDr V ∫+−+−− ∫ sin)1)(cos(1} 0
2

00
2    

Must be equal to zero.  Expanding the determinant and simplifying, we get. 

For a decay in the error the modulus of 3 must be less than 1.0.  If we define, 

 Cn =   as the Courant Number, the modulus of 3 is : 
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A plot of the amplification factor, 3, versus the frequency parameter, δ, for different Courant 

Number shows that the scheme is STABLE if Cn ≤1.  If Cn > 1 the amplification factor grows 

larger than 1 and the scheme becomes unstable.  

 

For Gabutti scheme follows the same procedure presented for MaiCormack . 

 

14.7   

The stability analysis for Preissman scheme is discussed in the following references: 

(a) Lyn, DA and Goodwin P “Stability of a General Preissman Scheme”, Journal of 

Hydraulic Engineering, ASCE, Vol. 113, F=1, 1987 

(b) Samuels, P.G and Skeels, CP “Stability limits for Preissman Scheme”, Journal of 

Hydraulic Engineering, ASCE, Vol. 116, N28, 1990 
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Chapter 16 
SEDIMENT TRANSPORT 
 
 
 
16.1 
Table 16.1: Fraction of individual size classes in the sample 

i D_fi Ψ_fi F_fi D_i Ψ_i f_i 
1 0.125      -3      0   0.1767767    -2.5   0.01 
2 0.25 -2 0.01   0.35355339 -1.5 0.05 
3 0.5 -1 0.06 0.70710678 -0.5 0.12 
4 1 0 0.18 1.41421356 0.5 0.07 
5 2 1 0.25 2.82842712 1.5 0.01 
6 4 2 0.26 5.65685425 2.5   0.02 
7 8 3 0.28 11.3137085 3.5   0.04 
8 16 4 0.32 22.627417 4.5   0.18 
9 32 5 0.5 45.254834 5.5   0.2 
10 64 6 0.7 90.509668 6.5   0.22 
11 128 7 0.92 181.019336 7.5   0.08 
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Figure 16.1: Grain size distribution 
 
D50 = 32 mm 
D90 = 126 mm 
Ψm = 4.02 
Dg = 2^( Ψm) = 16.223 mm 
σ2 = 8.19 
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σg = 2^( σ) = 7.269 
Gravel bed river 
 
16.2 
Eq. 16-30 is used. The solution is shown is Table 16.2. Columns 1 and 2 are from the problem 
statement. Column 3 is obtained by R ep = (D/ν).√ (R.g.D). Column 4 is obtained by using Eq. 
16-30. 
 
Table 16.2: Non-dimensial critical shear stress by Brownlie equation 

Sediment size, D 
(mm) R Rep Ζ*

c 

0.25 1.65 15.90327 0.1144 
0.5 1.65 44.98125 0.088855 
2 1.65 359.85 0.06822 
16 1.65 8142.475 0.061262 

 
16.3 
Eqs. 16-44, 16-45 and 16-48 are used to calculate the non-dimensional bed load for different 
values of non-dimensional shear stress. The range of values for the non-dimensional shear stress 
is from 0.05 to 1.0 with an incremental value of 0.05. Computations for the three methods are 
shown in Table 16.3. The plots are presented in Fig. 16.3. 
 
Table 16.3: Computation of bed load by different formulas 

ζ* (i) (ii) (iii) 
0.05 0.001315 0.000453 0 
0.1 0.097612 0.044842 0.078728 

0.15 0.264451 0.129833 0.278276 
0.2 0.47877 0.244542 0.570197 

0.25 0.731702 0.384451 0.939737 
0.3 1.018054 0.546814 1.377492 

0.35 1.334301 0.729718 1.876806 
0.4 1.677846 0.931722 2.43265 

0.45 2.046669 1.151688 3.041052 
0.5 2.439143 1.388686 3.698775 

0.55 2.853921 1.641934 4.403111 
0.6 3.289862 1.910764 5.151755 

0.65 3.745984 2.194596 5.942714 
0.7 4.221432 2.492918 6.774238 

0.75 4.715448 2.805275 7.644781 
0.8 5.22736 3.131258 8.55296 

0.85 5.756564 3.470498 9.497528 
0.9 6.30251 3.822657 10.47736 

0.95 6.864701 4.187428 11.49141 
1 7.44268 4.564525 12.53875 
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Fig. 16.3 Variation of the non-dimensional bed load with non-dimensional shear stress 
 
 
16.4  
Eq. 16-83 is valid for uniform (normal) flow condition: 

2/13/2
6/1 SH

C
g

U
f

rα=  

Discharge per unit width = qw=U.H 
Thus, 
 

2/13/5
6/1 SH

C
g

q
f

rw α=  

Or, 











=

gS
qC

H
r

wf
2

23/1

α
 

 
16.5 
Considering sand to be between 0.65 mm and 2 mm, Fs = 0.19, from Table 16.1. 
Wilcok-Crowe model: 
S = 0.012; qw = 4 m2/s 
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16.6 
Eq. 16-80 is used. αr = 8.32 and ks = 3D90 is used. The computations are presented in Table 16.6. 
A plot between the depth and discharge is shown in Fig. 16.6. 
 
Table 16.6: Computation of discharge 

H S D_90 K_s C_f U UH 
0.9 0.00005 0.000425 0.001275 0.002 0.501 0.451 
1 0.00005 0.000425 0.001275 0.002 0.541 0.541 

1.1 0.00005 0.000425 0.001275 0.002 0.579 0.637 
1.2 0.00005 0.000425 0.001275 0.001 0.617 0.740 
1.3 0.00005 0.000425 0.001275 0.001 0.654 0.850 
1.4 0.00005 0.000425 0.001275 0.001 0.689 0.965 
1.5 0.00005 0.000425 0.001275 0.001 0.725 1.087 
1.6 0.00005 0.000425 0.001275 0.001 0.759 1.215 
1.7 0.00005 0.000425 0.001275 0.001 0.793 1.348 
1.8 0.00005 0.000425 0.001275 0.001 0.827 1.488 
1.9 0.00005 0.000425 0.001275 0.001 0.860 1.633 
2 0.00005 0.000425 0.001275 0.001 0.892 1.784 

2.1 0.00005 0.000425 0.001275 0.001 0.924 1.940 
2.2 0.00005 0.000425 0.001275 0.001 0.956 2.102 
2.3 0.00005 0.000425 0.001275 0.001 0.987 2.270 
2.4 0.00005 0.000425 0.001275 0.001 1.018 2.442 
2.5 0.00005 0.000425 0.001275 0.001 1.048 2.620 
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Fig. 16.6: Depth-discharge relationship 
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Chapter 17 
SPECIAL TOPICS 
 
 
 

 17.1 

 Given: Reservoir with the following data: 

(i) Spillway outflow = 50 H1.5, where H = head above the spillway crest in feet. 

(ii) Reservoir with vertical sides and surface area of 300000ft2 

(iii) The inflow increases linearly from zero at t = 0 to 500 ft3/s at t = 15 min.  Then 

linearly decreases to 100 ft3/s in 10 min. to remain constant afterwards.  

(iv) Reservoir at spillway crest elevation at t=0 

 

Solution: 

To solve this problem, follow the procedure described in Section 17.4 

For a given outflow, the spillway head can be obtained as : 

  H = (O/H)0.667 

Then, the corresponding storage is S = 300000 Hm3.  If a Dt of 5 minutes is selected, then the 

relation 0 vs 0+25/Dt is easily obtained.  Table 17.1a presents the computations.  Figure 17.1a 

shows this relation. 

 

With the inflow hydrograph and Fig. 17.1a the routing is done by following the steps of the 

procedure given in section 17.4 
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Table 17.1b shows the computations.  The inflow and outflow hydrographs are presented in Fig. 

17.1b 

 

17.3 

Given, 

 Detention pond with the following characteristics: 

(i) Spillway crest level = 10 ft. 

(ii) Spillway discharge equation, Q = 100(E-10)1.5, E in ft. 

(iii) Pond surface area at El. 0 ft = 200000 ft2 and it increases linearly to  300000 ft3 at El.40 

ft. 

(iv) Inflow for t < 10 min. is 5t (t in seconds).  After 10 min. the inflow remains constant at 

3000 fs.  

(v) Pond level at t = 0 at El. 8 ft. 

Compute : Outflow hydrograph from the pond until t = 20 min. 

 

Solution : 

(i) Express the pond surface area and the storage volumen as a function of the spillway head 

elevation E, this is : 

 A = 225000 + (e-10)2500 

 

 S = ∫ +=
Z

zzAdz
0

21250200000  

 

 Therefore, for any value of E the previous relations give the area and the storage volume.  

The spillway discharge equation gives the outflow corresponding to the given E.  These three 

variables, A, S and Q are computed in the first columns (columns 2 to 4 in Table 17.3a).  The last 

column is the at flow-storage relation 2S/Dt + 0 where an interval of one minute was chosen for 

the routing.  Figure 17.3 a shows the relation 0 Vs 2S/Dt + 0 
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(ii) Following the procedure outlined in section 17.4, Tble 17.3 is obtained.  The last column 

in this table is the water elevation over the spillway corresponding to the particular time 

of the routing. 

 

(iii) Figure 17.3b shows a plot of the inflow and outflow hydrographs.  It also shows the 

spillway head during the routing time. 
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17.4  Given 

 X = 0.5 and a 
x
t

∆
∆ = 1, in the Muskingum-Cunge model. 

 Show that the wave does not attenuate as if is routed through a channel reach. 
 
Solution : 
 Compute the constants for the Muskingum-Cunge model 

 Co = 
a

xt
a

xt

a
xt
axt

∆+∆

∆−∆
=

∆−+∆

∆−∆

5.05.0

5.05.0

)1(5.0
/5.0

α
α  

 =  
xta
xta

∆+∆
∆−∆  

Co = 
)1(

)1(

+
∆
∆

−
∆
∆

x
ta

x
ta

 = 0 because 1=
∆
∆
x
ta  

C1 = 1
5.05.0

5.05.0

)1(5.0
)/(5.0

=
∆+∆

∆+∆
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∆−+∆

∆+∆

a
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a
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α
α  

And  

 C2 = 
a

xt
a

xt

a
xt

axt
∆+∆

∆−∆−
=

∆−+∆

∆−+∆−

5.05.0

5.05.0

)1(5.0
/)1(5.0

α
α  

  

= 
a

xt
a

xt
∆+∆

∆+∆−
 

But a
x∆        = ∆t, therefore, Cz = c 

Subsequently, in the routing expression (eq. 17.12) the values of C0, C1 and Cz, we get, 
 

 Ok+1 = Co I k + 1 +C1 Ik + C2 Ok 

 Ok+1 = Ik 

From this equality we conclude that the inflow at time ‘t’ is exactly the outflow at time t + ∆t and 

the wave is not attenuated.   
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