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Chapter 1
BASIC CONCEPTS

1.1 VAR
(i) Rectangular section 4
A = BgY vy
P =2Y+B, i
B= Bo v
R = A/P = BoY/(2Y+By)
D=AB=ByY/By=Y D Bo =777 "- >

(ii) Trapezoidal section
A = BoY+ 2Y(SY/2)
= Y(Bo + SY)
P = BO +2Y S(5°+1)
R = A/P = Y(Bo + SY)/ [BO +2Y S(S°+1)]
B = By +2SY
D = A/B = Y(Bo + SY)/(Bo + 25Y)

(i) Triangular section
We may use the same equation as that in the case of trapezoidal section with By = 0.
Thus, D =Y/2

(iv) Partially full circular section

A =1%0/2 +2 (rCos a)/2 (Y-Dy/2)
=DZ20/8+(Y —D,/2)rCosa)

Y = Dy/2 + (Do/2) Sin a

A =Dy 0/8+ Dys?/4 Sin o Cos a
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D20 D’ .
A = ——+—>SIna.cosa
8 4

2

= [?30 (6 + sin 2a)

But 0=20+m

and sin 0 =sin (20 + 7)= — sin 2a
2

A= [Z; (6 —sind)  0<6<2n

4 0

B:ZrCOSa:Zrcos(g—%) = Dosing

D=2 = 2o(1 - 222007

B 8 in%

A D @-sin @
S

(v) Standard horseshoe section:

Length KB
OM = MC-OM
OM =d,/2v/2

— \/[Ej—(G_ J Z\/d(’z’[zdﬁjz :d{ l_%]

- 1
OC =d,| ,/7/8 ——= |=0.58186d, - —————— 1
(7R3 : ®
2
KC =FC? KF2=d02—[do—KBj —————— (2)

2
KC? = FC?-0K? =ocz—(cﬁ— @j

2
KC? =(0.58186d, )’ —(%0— KB) ———————— 3)
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2 2
(2) and (3) doz—(do—@j _ 0.33856 doz_(%o_@j

2 2
d,” —d,’ +2d, KB— KB? =0.38856 d,’ _G d, KB—[KB]
4

KB =0.088562 d, OK =d—2°—0.088562 d, =0.411438 d,
KC? =d,” —(d, —0.088562d, )’ = 0.169281 d,’

KC = 04114377 d, CC =0.822875d,

SinH—ZL =0.4114377 ‘9—2L = 24.295° 6, = 48.59°

The standard horse shoe section is divided into three sections, i.e., upper section, middle
section and lower section.

€)] Upper section
T <0,<2m

2 2

Flow area, A = %(eu ~Sing, )- ﬂzo

Wetted perimeter, P = D¢

Hydraulic radius, R = A/P = %(1_ S'QGJ

Top water surface, B = Dy Sin (6/2)

Hydraulic depth, D = A/B = Dy m
8 \ Sin(8/2)

(b) Lower section

0 <0, <48.59°

2

2
Flow area, A = %(GL -Sing, )= %0(9— Sing)

Wetted perimeter, P = D0 _ A,
2
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Hydraulic radius, R = A/P = %0(1_ 3249)

Top water surface, B = 2do Sin (6/2)
Hydraulic depth, D = A/B = 9 m
4 { Sin(@/2)

(c) Middle section

Assume trapezoidal section, S = 0.215
Area, A =Y(By + SY)
A =Y(0.8229 d, + 0.215Y)

P=By+2Y +S?-1

P =0.8229d, +2Y~/0.2152 +1 = 0.8229d, + 2.05Y
R V ~ Y(0.8229d, +0.2154)
~ /P 0.8229d, +2.05Y
B = B, — 254 = 0.8229d, + 2x0.215Y =0.8229d, +0.43Y
Y(0.8229d, +0.215Y)
D= = 0
% 0.8229d, +0.43Y

Q=KAR™
A = (6 — Sinf) D8
R=A/P
P =D6/2
10 5 5
_ KD® (6-Sinf): _ (6-Sind)s
Q= 5 ; 2 ¢ %
8° (D/2):6° o
%
Where C = SLZ
8% (D/2)%
dQ I :
98- 0 will give the angle @ correspondingto Q...
3—3 = c{-%e‘% (0-sing)* +%0‘%(9— Sin&)%(l—Cose)} =0



Chapter 1

%
‘;_(; -C ‘93 (0-Sin)?[- 207 (6 - Sing)+5(1— Cos )] =0

. 2(6-Sin@)=56(1—Cos#)
0 —Sin = 5/20 — 5/20 Cos0
5/2Cos0-Sin®/0-15=0

Solving by trial and error or numerically 6 = 302.41

From the figure Y :%-{-%Sina and az%—n/Z

v =24 2sinf 2712
2 2 2

Y =E{1—Cosg}
2 2

Substituting € value for the Qmax
Y - E{l—Cos 302.41}
2 2

Y=0.938D

2 %
a3y - (DY _ o %
(AR = 22 (—4) = D

2 % . %
AR = %(9 - Sinﬁ)[%j (‘9 - S'nej

7
% ph
= 2°D” (h_sing)%
o (6 -Sing)
AR i(a-sme}%
(AR%) 27 9%
R _6-Sing

Y = 2+28|n(€_£j
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Y = 2{1—Cos§}
2 2

.1 1—Cosg
D 2 2

Using trial and error

%
S =0.938 gives maximum value for _ART
; ()
F
Al

R%
=0.81 gives maximum value for —

; o

F

1.4
V = 575V, |og30y
deA Ide
5.75jv0 log30y/K dy
V.- s _ 575V, I' 30yOly
[ dy
0
30 K
Let x=30y/K dx=—dy dy=—dx
i CW o dy= o
V=575 VolYo K [1og dx
30
K
=5.75 Vo/ Yo %[X log x — x2°
Yo
= 5.75 Vo/Yo ﬁ{?’oy log>2Y 303’}
0| K K K
= 5.75Vo/Yo {yo 30%, }
K
Vin = 5.75 Vg { 3(:<y° —1}

Energy coefficient, « :
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5.75v,1og > | d
_jv3dA:jv3de_I[ -5V OQK} y

a= =

VoA V.By, VoY,
30y )’

5.75V, )’ [| log=2 | d

5750, J[100%) | o
o = 3

meO
Vig = iI(Iog x)° dx where, b = (5.75 V,)°K/30
Yo

But, I(Iog x)"dx = x(log x)" — nJ.(Iog x) " dx

3 2
K K K K

Yo

"yl K K K

3
_ (6.75v,)° K| 30y, Iog30y°—3 30y, Iog30y0_230y0 Iog30y(,+230y0
K K K K K

K K

Yo 30

30y, \’ 30y, \’ 30y
5.75V, || lo ol —3 1o 0 6lo 0|6
( o) l:[ g K j g K j + g K

r 3
5.75v. Y log >0 _1
(5.75v,) <

w

a =

3 3 2
Let, (Vm)® = {Iog?’o%—l} = Iog?’O%J —3(Iog30%j +log(30y,)-1

v +3(Iog3(:<y°—1j— 2

o= =1+ -
V*S V*Z 3

m m

a=1+3e*-2¢&° where e=

Momentum coefficient, f:
jvsz ijde jvzdy
S OVaA o VIBY, Vi

2
j{5.75\/0 log BOy} dy

K
VYo
V2B= b j (log x)’ dx where b = (5.75V0)?K/30
Yo

[(log )" dx=x(logx)" —n [ (log x)"" dx
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( 30yj _23Oy|g30y 230y
K k K .

30Y,

y, 30 K

2
(575v) K130, (050 Y0 ) _530%0 10, 30%
K K K

K

|

2
(5.75v, ) [log 30%, —1}

2
Let Vn’jz = Iog%—lj = Iog% —2Iog%+1
K K K

(Iog 30Y, J -2log 3(:<y0 +1+1

2
30y, 30y,
log——| —-2log———+1

2
VAGRS] 1
IB: " = l—‘,— 2
\ \Y

m m

B =1+e” wheree=

VA TA
(VA

Fori=3

a =

(VA VA VA A + A+ A)
VA +V, A, +V A )

(VZA +VZA, +VZA (A + A, + A)
V,A +V, A, +V,A, )

p =
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Table 1

A V VA VZA VA
1 40 3 120 360 1080
2 80 3 240 720 2160
3 g0 | 31 | 248 | 7688 | 2383.28
4 80 | 32 | 256 | 819.2 | 2621.44
5 8o | 33 | 264 | 8712 | 2874.96
6 g0 | 33 | 264 | 8712 | 2874.96
7 80 | 32 | 256 | 819.2 | 2621.44
8 g0 | 31 | 248 | 768.8 | 2383.28
9 40 3 120 360 1080
Y | 640 2016 | 6358.4 | 20079.36

The calculation is shown in Table -1.
o = (20079.36)(640)%/2016° = 1.0038
B = (6358.4)(640)/2016° = 1.00126

Using hydrostatic pressure distribution and depth =y = 5m
T = n?/2 = 9810 (5%/1000)2=122.6 KN

M = TY/3 =122.6x5/3=204.3 KN.m
But, d = yCosf) = 5C0s30 = 4.33 m
In this case the pressure distribution is not hydrostatic

Correction:

T.= Pd/2 = yd*Cos6/2 = 79.65KN

M= T;d/3 =79.65 (4.33)/3=114.96 KN m

% error in the shearing force:

100(Ty— T)/Ty = (79.65 — 122.6)/79.65 = 53.9 %

% error in the moment:
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100(M; — M)/M; = (114.96 — 204.38) / 114.96 = 77 %

1.10
Centrifugal acceleration = V2/R

Centrifugal force = pys44 V2R

Pressure head due to centrifugal acceleration = (1/g)ys V*/R

Total pressure head, y; = ys + (1/g)ys VAR =y, (1 + V4/gR)

yi =5 (1 + 20%/9.81/20) = 15.19 m

Pressure intensity at point C =y y; = (9.81) (1000)(15.19/1000) = 149 kPa

1.11
Q:KARM

A=1[B-(hIN3)Jh
P =B + (4h/"3) |
Q = K [B - hiN3/**n*[B + 4 hiN3/ % 5

= K[hB — h’/N3/°°[B + 4 h/N3T*" |
Q is maximum or minimum if dQ/dh =0

dQ/dh = %K[hB—hz/\/g]%[B—Zh/\/gIB+4h/\/§]2/3

1.12

(1) nonuniform
(i1) nonuniform
(iii) nonuniform

(iv) uniform

1.13
(1) unsteady
(i) unsteady
(iii) steady
(iv) unsteady

1.14
(i) Re = Vy/v = (1)(1)/(0.11 * 10°%) = 9.0 * 10° Turbulent

10



Chapter 1

.. 0.1x2x107° ]
i) Re=Vyv= ——"—"— =181.8 Laminar
()R = Vy 0.11x10°°

1.15

It is not possible to have uniform flow in a frictionless sloping channel. The forces in the
x direction will not be balanced.

1.16

It is not possible to have uniform flow in a horizontal channel.

There is no acceleration force.

1.17

y = flow depth measured vertically; 6 = angle between water surface and horizontal; ¢ =
angle between channel bed and horizontal. Let d = perpendicular on channel bed.
Thus, pressure at channel bed is

p = pgdCos¢
From the geometry, y = dCos¢ + dSingtan &

Or, dCos¢ = ¥y
1+ TangTand

y

or, p=pg——————
P 'Ogl+Tan¢Tam9

1.18
V = 5.75V; log (30y/K) (1)

11
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Yo
5.75jv log(30y/ K)dy 0
V= deAJde: il == fyjlog(soy/K)dy
IdA Idy Tdy 0 o0

0

Let x = 30y/K, dx = (30/K)dy or, dy = (K/30)dx
[vda 575V, K
" I dA  y, 30

v _ 575V, 5[30yl0 30y_30y}y°
" Yy, 30| K K K

\Y

% 5.75V; K
log x dx = L —[xlogx - x]2°
! 0g x dx — [xlog x — ]}

0
Vi = 5.75V, [log(30y, / K) —1]

INEql,aty =yYo V= Vmnax

Let v = (Vmax/Vm)-1= 5.75V¢ log(30yo/K)/ 5.75Vlog(30yo/K-1)-1
v = 1/[log(30yo/K)-1]

Similar to the solution of problem 1.4 this will lead to
a=1+3y"-2y°

B=1+ ¢

1.19

d = yCost ™
p = (yd*12)(Cos0) A

p = (°12) (Cos?d Cosb) \K
p = (°[2) (Cos’d) SN
M = pd®/3 = (py Cos6)/3 L

= (4/2)(*Cos°0)(y Cosb/3)
M = (°16)(Cos*0 )
Shearing force = p = (yy*/2)(Co0s°0)

12
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CONSERVATION LAWS

2.1

d =ycosé

2
H:Z+£+ aQZ
7y 20A

p =y cosé

p=ycos’ @

aQZ

E=vycos?0+——
y 2gA°

Assume o=1 and rectangular channel and width = B. g=Q/B

2

q
29

E =ycos’ 6+

AZ

2
[E-ycos?aly? = I _ const.
29

The E-y curve has two asymptotes

E—-ycos’d=0&y=0
E 1

y cos20

1

tan ¢ =
¢ cos’ 6

2.2
QZ
E = i, S
T 2gA°
A=(B+2y)y=(20+2y)y
Q2
2g[(20+ 2y)y[

E=y+

13
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2.3
Applying Newton second law

%(\/2 ~V,)=P, - P, +Wsin0-F,

Assume 6=0 and no friction F,=0

R=rzA
P, =yz,A
Q° Q —~,
o =LA LA
gA, oA T 7
Q2 _ Q2 o
—+ A =——+1Z,A
T
2 —
FS:Q—+ZA
gA
Force / Unit weight

2.4

Q=4 x5x5 =100 m%/s

F = v = 4 =0.57 Sub critical
Joy /9.81x5

Energy equation neglecting losses

H,=E =E,—Az
2

yl+%:E2+0.2

2 2
S5+ 4 Y, Q +0.2

= + —
2x9.81 2gA?
2
561=y, + 100 5
2x9.81x(5xY,)

Y, —5.61xy,” +20.387 =0

Trial and error will give y, = 2.6 m.

14
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V Vv
H=y +1+02=y,+%
Y1 29 Y> 29

42 100°

5+ +02=y,+

2%9.81 2x9.81x (5% Y,)’

6,015 y, 1 20387

2

y,. —6.015x y,” +20.387 =0

y» = 5.285 m rise with water level.

2.5
Fo i QA4 g5

Joy, oy,  +/9.81x5

Energy equation neglecting losses

H,=E, =E,+Az

q=Q/B =20 m*/m

v, 42
+

Vi _g —5.8155=E, +0.3
29 2x9.81

Y+

2
5.8155-0.3=y, + — 1
29y,

Y, —5.5155y,” +20.387 = 0

Using trial and error y, = 4.52 m

(ii)

F,=0571
V,? A
H1:y1+i+0.2:y?_+§:E2
2 2
S5+ 4 +02=y, + f 5
2x9.81 29y,

Chapter 2

15



y,’ —6.015y,” +20.387 =0

Using trial and error, y, =5.285 m

2.6
Q=400m/s
V1=400/5x10=8m/sec

oV 8
g

Joy,  +/9.81x5

If the step is a rise water surface rises

If the step is a drop water surface drops

2.7

Q=96m’/s

Sectionl

B:=8m Y;=4m V=3 m/sec

H:= Hy,= H3=Hs=Hs
Hi= E;

2

H =Yy, +VL =4.459m
29

3

F—-__°
' J9.81x4

g1 = Q/B;=96/8 =12 m*/s/ m

=0.479<1 Sub critical

Section 2
B,=7.5m
g1 = Q/B;=96/7.5=12.8 m*/s/ m

QZ
E,=E =y, + = 4.459
2 =R =Y, (B,y,)* x2x9.81

y,. —4.459y,° +8.35=0
y2=3.91m

Chapter 2

=1.14>1 Super critical

16
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Section 3
B;=7m
g1 = Q/B1=96/7 =13.71 m*/s/ m
gs
E=E = B 4459
1 3 y3+y§><2><9.81
Y, —4.459y,” +9.58 =0
Y2 =3.79m
Section 4
Bs=6.5m
g1 = Q/B1= 96/ 6.5= 14.77 m®/s / m
qs
E=E, =y, +— % —4.459
1= Fe T y2x2x9.81
v, —4.459y,% +11.12 =0
y,=3.6m
Section 5
Bs=6m
g1 = Q/B1= 96/ 6= 16 m*/s / m
Ge
E,=E.=y. +———>———=4.459
1= 5= s y2x2x9.81
y,. —4.459y,° +13.048 =0
y.=3.11m
2.8
(i)

h=20m Q=40m’/s b=4m
Ei=E>,,V1=0, V> :Q/Byz = Q/yz, q= 10 m3/s/ m

2
h+L: 5 q—2
2xg 2xgxYy,

Y, —20y,” +5.097 =0
yo=0.511 m
V,=10/0.511=19.57 m/s

c__V
2 Joxy

=8.47 >1 Supercritical

17
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Y, :%L/l+8Fj —1]
0511 h e e 7a
y3:T 1+8x8.74° —1(=6.066m

(i)
Thrust on the gate
Fth = Fsl - Fsz
2 2
-9 oA=L 10x(20x4)=802.038m
gA 9.8x(20x4)
2 2
Fo=2 yza=— 20 05, g519,4)-8031m°
oA, 9.8x (0.511x4) 2

F, =802.038-80.31=721.72m®

Thrust force = yFin=9.81 x 721.72 = 7080.07 kN

(iif)

Energy losses

E,=E,+H,
H, =E,-E,
q° q°
H =Y+ ——-Ys———
S 2gy; T 20y
2 2
H,=0511+ 10 _ —6.066—#=13.8Sm
2x9.8x0.511 2%x9.8x0.66
2.9
q2
E=y+
d 29y’

q* =2gy*(E-v)
q=(20y°E - 2gy°)

dg 1 :
d_?/:E(ZgyZE ~29y°) "[agyE - 6gy°]=0

Maximum q for critical depth

18
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4gyE —6gy* =0
2

=ZE
Ye =1

tanezﬁzg
E 3

2.10
(1) Channel width remains constant
Use a step and determine if it is a rise or down

F=— =% _0630<15ub critical flow

4
Joy,  +9.81

E >E, Az is positive (step rise)

E,=E,+Az
Q

q :E:Vy =16m®/sec/m

and
y, =Y, +Az+ (704 - 703.54)
Az =354-y,

2 2
Aoy +Q_2
29 20y,

16 16°

=y, 44 (354-
2x981 2 anosixyr T4V
y, =3.198m

Az =3.54-3.198 = 0.34m

A + Az

4+

Bottom elevation = 700+0.34=700.34m

(ii)

Channel bottom level 0.5 of transition at elevation 700.2 m
b1: 8m

yi=4m;y,=3.34m

Q=32 x4 =128 m¥/s

E,=E,+Az
y +i= y +£+Az
1 29 2 Zg

19
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2
1 __ 3.34+ 128 +0.2
2x9.81 2x9.81x (b, x3.34)*
74.856

2
2

4+

4.815=3.54+

b, =7.66m

2.11

(1)

V1A1 :V2A2
V, = 0.8x2xb
y, xb

v,o18

Y,

F-—28 _o18<1  suboritical

b 2x9.81
E, =E,+Az
2 2
yl+VL:y2+VL+Az
29 29

2 2
208y (L8 g4
2x9.81 2x9.81
y,> —1.882y,% +0.1305 =0
y, =1.84m
(i)
y,=2m; V1=0.8m; q=1.6 m*/sec/m

2

V.
E, =y, +——=2.033
29

Maximum Az occurs at minimum E and F=1

2 2
y2=3qE=3 ;.21:0_64
V,? 1.6

E2=yz+£:o.64+ =0.96

2x9.81x0.642
Az, =E —E,=2033-0.96=1.073m

20



Chapter 2

2.12
Assume b1=10 m
Q1= Q,=10x2x 0.8 =16 m*/s

d, = (29E,y; —2gy;)"?

_Q
% =,

Q is constant. Therefore, maximum g, corresponds to minimum bs.

1 _
2 =5(29y§E —29y3) %[4gyE —~6gy|=0

From problem 2.11, E; =2.033 m

Y, :%x 2.033-1.355m

0, = (2x9.81x 2.033x1.355% — 2x 9.81x1.355°)"2
=4.941m%/sec/m

b, = 4941_3.238m

b,_3238_ .,
by 10
2.13
(i)
Q =80 ft*/ sec
E1 = Ez

+V12 +V :
Y1 29 =Y, 29

2 2
ity
29(b,y,) 29(b,y,)

21
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802 80?
8+ =Yt 2
2x32.2x(5x8) 2x32.2x(4xY,)
8+0.0621=vy, +£§1
Y,
y,” —8.0621y,” +6.211=0
y, = 7.964 ft
(i)
V, :ﬂ= 2 ft/sec
5x
F = v = 2 =0.125 < 1subcritical
Joy +/9.81x8
E =E,+Az
Q’ Q’
V+———=Y +————+AZ
Fo2g(y)? T 29(byy,)’
80 80°

8+ > =1.964 + >+ Az
2x32.2x(5%8) 2x32.2x(5x7.964)
8.0621=8.0266 + +Az

y, —8.0621y,” +6.211=0
Az =0.035ft

2.14
V, = 80 =8m/sec
0.5x20

F-__ 8  _ag12

" 4J9.81x05

Y =%[\/1+?12_1]

y, = 0—;[\/1+8>< (3.162)° —1]= 2.316m

LossesH, =E, —E,
V,? V,?

H =y, +-2 —y ——2_

L=Y1 29 Y2 29

22
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2 2
H —05+—° _2316-— — 80
2x9.81 2x9.81\ 20 23.6

=1.294m

2.15
Q=80m®/s

V, = >4 =11.25m/s
8x0.6

Fo— 12 463

" J9.81x0.6
Y, =%L/1+8Ff —1]

Y, =°_f 1+8x (4.63)2 —1]=3.646 m

2.16

0.2V,
29

Lossesat junction =

~ 10
' 10x1.5

F = _ 067 _ 0.173 subcritical

" \9.81x15

E, =E, + Az + Losses

2 2 2
Y, +VL =Y, +VL+0.1+ 0.2V,
29 29 29

=0.67m/s

2 2
067" _ y, +1.2x 10 > +0.1
2x9.81 2x9.81x(8y,)

y,” —1.432y,% +0.0956 = 0
y, =0.29m

15+

2.17
B=8m
Q=8x2x3=48m?/s
E,+Az=E,
3 482

+015=y, + >
2x9.81 2x9.81x(8y,)

2+

23
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2.609=y, + 152
2

y,® —2.609y,% +1.835=0

y, =2.245m
2.18
F= v __ 3 =0.533
Jgxy +/9.81x3
V1y1 =V2Y2
3><3:szz
V, =91y,
E,=E,+Az
3? 1 (9Y
3+ =y, + +0.3
2x9.81 2x9.81| y,
y,) —3.16y,% +4.128 =0
y, =1.66m
2.19
V, =+/29(160—120)
=28 m/sec
Q = Bvlyl
y, = 1200 _ 5 4m
20x 28
2 2
2=V 28 _3735

"7 gy, 9.81x2.14
v, %W_l]

Y, = 2'—214 J1+8x37.35-1]=17.46m

2 = _ 1200 _ 3.44 m/s
20x17.46
Energy losses=E, -E,
2 2
214+ _1746- 3% _ounm
2x9.81 2x9.81
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2.20
Q=18 m¥/sec; B=6m; q=18/6 =3 m*/s/m

18
 6x0.3
, VI 10°

" gy, 9.81x0.3

\'A =10 m/s

=33.97

y, = % +1+8x33.97 —1]: 2.328 m sequential depth

2

q
29y°
aty=0.3

E=y+

2
E=03+- > 5307
2x9.81x0.3

5.307  y 1 0487

2

y," —5.397y," +0.4587 =0
Yy, =5.38 malternate depth

Head loss=E, -E,

q; q;
=Yy, -
t2gy; TP 2gy:
32 32

=03+———5-2.328- 5
2%x9.81x0.3 2x9.81x2.328

=5.397-2.413=2.98m

2.21

()

q= 15 ft3/sec/ft

Q=6 x5 x 3 =90 ft*/sec

25



F o v _ 3
Jgxy  4/32.2x5
E = y1+£:5+ 3 =5.14
29 2x32.2

E,=E,=E,=E,=E,=E,

Section 2:

E =E

514=y, + 90° —
2x32.2x5.8% x y?

y,' —5.14y,> +3.74=0

y, = 4.99 ft

Section 3:

E =E;

514=y, + %" —
2x32.2x5.6% x y

y, —5.14y," +4.01=0

y, =4.977 ft

Section 4

E =E,

514=y, + 90" —
2x32.2x5.4°xy;

y, —5.14y,°+4.31=0

y, = 4.965 ft

Section5:

E, = E,

5.14=y, + %0°

2x32.2x5.2% x y?
Y- —5.14y,” +4.65=0

ys =4.95ft

Section 6

E, =E,

Chapter 2

=0.2364 subcritical
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2
514 =y, + %0

2x32.2x5% x y?

ye. —5.14y,> +5.031=0
y, = 4.933ft

(if)
H =H,
E +Az=E,
2 2

yl+VL+Az: y2+VL
29 29

for the water surface to be horizontal

i +Az=Y,
ARR'A
29 29
90°
Fy
y, =6ft
Az=y,—-y, =6-5=1ft

2.22

Q=50 ft®/sec
V, = 0 _ 3.33 ft/sec

3.337 52
+ =25+
2x32.2 2x32.2
Az =0.28 ft

+ Az

Chapter 2
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2.23
:% J1+8x25 -1|=9.88 t

Fo5-_ V1
’ V32.2x15
V, =34.75ft/sec
~ 34.75x1.5
088
head loss=E, - E,
3475° g 5275

=5.275ft/sec

1.5+ : =0.939 ft
2x32.2 2x32.2
2.24
Assume rectangular cross section and horizontal channel bed
F, = Vs 43 =0.3323

"~ Joy, 32.2x52
- %L/n 8F; —1]

- %[\/1+8x (0.3323) —1]= 0.968 ft

q=5.2x4.3=22.36ft*/sec/ft

22.36

' 0.968

E, =E, neglecting losses through the gate
V,? V,’
Yi+-— 29 =Y +Z

23.099?

2x32

= 23.099 ft/sec

=0.25ft

y, =0.968+

V, :@:2.41ft/sec oY, =9.16ft
9.25

22.36

= 2.44 ft/sec S Y, =9.157 ft
9.16

V=

2.25
A=(8+2y)y
Q°? Q°?
=y+
2gA° y 2x9.8x(8+2y)%y?

E=y+
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Y E (Q=10) E (Q=20) E (Q=40) E (Q=50)
0.3 1.066 3.363 12.55 19.44
0.5 0.7515 1.506 4.527 6.79
0.7 0.8177 1.171 2.58 3.64
0.8 0.886 1.145 2.183 2.96
0.9 0.9655 1.162 1.948 2.54
1 1.051 1.204 1.815 2.27
1.1 1.14 1.262 1.7477 2.11
1.2 1.233 1.33 1.723 2.018
14 1.756 1.957
15 1.8 1.968
1.6 1.85 1.997
2 2.142 2.22
4 4.02 4.03
2.26
D = Hydraulicdepth
a = Velocity Coefficient
d =ycoséd
2
E=H=z+P %
y  20A
2 2
_ g 2dcos0 an =Z+ycosf* + an
y 20A 20A
2
g€ _ 0=cos8’ + ﬂ(—2A‘3)d—A at critical depth
dy 29 dy
2
cos §? _ ES whered—A:B
g A dy
vz _ gDcos 0°
2
v —=1=F}
gD cosé
o
F=— Y

29
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2.28

V, = 4/2x32.2(400 - z)

Q =80000 = 200 x y;/2 x 32.2(400 — z)
~ 80000 _49.844
200,/2x32.2(400-z) /400 z

2 —_—
poo Y 2x822x(00-2) _ 04, (400 )
gy 32_2XM
400 -1z

Yz :% freer 1]
Y1

Y1

220-7 1 3
W—E[\/l+8x0.04x(400—z) —1:|

VJ400-2

(220 - 2) /400 = 24.922{\/1Jr 0.32(400 - 2)2 —1}
By trial and error, z = 166.5 ft.
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Chapter 3
CRITICAL FLOW

3-1
oc=f(y)
QZ

E=d cos¢9+<>c—2
20A
QZ

E =vcos® 0+ o«
Y 2gAZ

For critical flow

2
% o —cos? 9+Q—i(%j
dy 2g dy\ A

d(oc) 1do 2 dA l[doc 2och}

1)

_——-l=———tt———=— -k
dy( A% ) A% dy Aldy A’| dy A dy
i(izj=i2 d—oc—z—OCBcose =i2 d—oc—z—occose where D=é
dy\ A A"l dy A A"l dy D
Equation 1
2
cos? 0+ 2 iz 4o 2% 0s0||=0
20| Al dy D
2
cos? =" 2—occose—d—OC
2g| D dy
Solving for \/2
Ve 2gcos® @
2—occose—d—OC
D dy
V= 2gcosé
20c 1 da
D cosé dy
Fr= v =1
2gcosé

2c 1 do
D cosé dy

31



\/gD cosd \/gD cosd
oC

oC

AD=—2  _ 80 5509
cosd 9.81

« V11

T+b
A= 2
( 2 jy

T=4y+b

A:4y+2by=(2y+b)y

I:):(2y+b)y
4y +b

Chapter 3

3
2

3
2
(2y+b)y _ y2(2%.+b)2 0o

AVD =(2y+b
VD (y+)y 4y +b

By trial error, y,=0.9835m

3.4
F = v =1
gD cosd
oC
=1

For =0 and oc=1

A=(B,+Sy)y=(8+0.5y,)y,

1

(4y,+b)2

For critical depth

Q
AD = Nc0so
9
oC
A\/B=%=25.54
g

where Bo=8m, S=0.5



B=B,+2Sy=8+y,

A (8+05y,)y

D=—=~——"2"2=2554

B 8+Y.

Using trial and error y.=2.074 m

Chapter 3

1
B, +0.5 2
(BO+O.5yc)yc[( o y°)y°} — 25.54
8+,
3.5
Y A R B D=A/B Z=AJD
0 0 0 0 - -
2 23.4 1.34 16.6 1.41 27.79
4 58.3 2.68 18.2 3.203 104.34
6 95.7 3.7 19.2 4.984 213.65
8 134.8 4.5 19.8 6.808 351.72
10 174.6 5.15 20 8.73 515.88
12 214.4 5.65 19.6 10.939 709.11
14 252.5 5.99 18.3 13.798 937.93
16 287 6.13 16 17.938 1215.54
18 315.4 6.01 12 26.283 1616.96
20 331.7 5.08 0 00 0
7= 2= 80 57138
NCERYEER
Using graphical method y~=6.8m
3.6
A VA
E= =y, +—2%
it Zg =Y, 29
Q Q;
yl + 12 2 = y2 22
20B.y; 29B;y;

Rectangular Channel
2 2

9 9
Y, + =y, +
to2gy? TP 29y

9’ (V.-
Vi~ Y, =
b 29( ylsz

33
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2 2,,2 2
9, N ot yoziﬁ
9 (it Y.) g

For =0 and =1 z:A\/Bzi

Jo

I Trapezoidal

A=Grzyy DY
b+2zy

Q _[(b+2.)y.]"
Jo o Jor2zy,

ii. Triangular

A= Zy3 D:05y

iii. circular

A:E(Q—siné?)do2 DoA=L
8 8

Q 1(6’ sing)"”

o5 ds°
\/7 (25|n 2)

yc=$+$ cos 180—i :d—° 1—cosi
2 2 2 2 2
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3.8
I. using a step, with constant width

V.V, _250/(5x50)
\/gDcose Joy,  +/9.81x5
oC

Ei=Az+E;

2 2
y, = i/% - 3/% ~1.366m

V., =250/ (1.366x50) = 3.66m /s

Fr— =0.143

12 V22
+—=—=Y,+—=—+Az
Y1 29 Y 29

1 (3.66)°
+5=Az+ +1.366
2x9.81 2x9.81

Az=5.051-2.049=3m
ii. Reduction in the channel width

g= 250/50 = 5 mg/sec/m
2 2
b _54 >
2gy° 2x9.81x5°
(E-y) 29y’ = ¢

El = y+ =5.05m

a=(29y°E-2gy°)*

3—3 =0.5[2gy°E - 2gy*] " [4gEy ~6gy? | =0

49 Ey = 6gy’ y.=2/3E
Y¢=2/3x5.05=3.367 m

< 1 subcritical

(Max q)

Qe =| 2%9.81x3.3672 x5.051-2x9.81x3.367° |~ =19.35 m/sec/m

B min = Q / q max = 250 / 1935 = 1292 m

Reduction in width = 12.95/50 x 100 = 25.8%

iv. Width Reduction and bottom step
e UseAz<3.0m
e Solve problem (i) to find y, # y.
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e Solve problem (ii) to go fromy, to y. by reducing the channel width.

3.9

Ei=Az+E; \Y =g= % =1.896 m/s
A 12x4.22=1.896

1.896°

2x9.81

E; =44-02=42m

E, =4.22+ =4.4m

Q 96 ~ 96
A, (10+10+2y2jy (10+y,) Y,
2

2
96°
(10+y,)" y?x2x9.81

Ja2-y, = Lﬂz y2 = 4.05 (by trial and error)
10y, + y2

42=y,+

F=1 Lo AD=—2__3065

J_l

(10+y,) {0 Ye)ye } =30.65
10+2y,

(o]

[10y,+y2]"
(10+ 2y, )0'5

[10y,+y? ]
(10 +2Y, )

Or, =30.65

Or, =939.45

Yy ¢ =1.97 m (by trial and error)

3.11

Triangular K
Rectangular K

Parabola K = (EJ m=1n Y=ax"
a
m+1

" y
2[ Ky"dy = 2K Yo
Afyy ]

B. =2x, = 2Ky,
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[ZK y}
Q? _A _z_ﬁ m+1-°
gA’ B, g B 2Ky/
_2: 8K3 3m+3 1 _ 4K2 y2m+3

g (m+1 " 2Ky! (m+1) "

3.12
Y=ax"
3=a(4.5)?
A =0.14815
Critical depth
Q _AD (1)
Jo
50 2 2
——=ZTY, [5Y
J322 3 \3
16.187 = TY*® (2)
2
Also Y =0.148 (TEJ
T=519Y° (3)
Putting Eq 3 in Eq 2,
16.187 =5.196 Y*° Y 1°
Y .=1.765

3.13

Slope =1 ft / mile =1 /(1760 x 3)

Y = d—"{l—cosq
2 2

2 _aD

g

100 _ 1 (8-sind)”
32.
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0.5

or,  =135.2° (trial and error)

or, Y, = §{1—003@} =2.48
2 2

This problem may also be solved by using Figure 3.7.

3.14
Q _AJD-17.62

Jo

A=(Bo+5y)y=(10+2y)y
(10+2y)y
10+4y
10y+2y? )"
17.62=(10y +2y?)| -2
10+4y
Critical depth y. = 1.33

3.15
Q =15 ft¥/sec

Y, =5x0.215=1.075

3.16
Q 300
— = AJD =——=52.868
Jo J32.2

Use the notations in problem 1.1.
Assume that the critical depth occurs in the lower portion

A:%(e—siné?)do2 B:2dosin§
Using 0 = 48.59°
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2
_80 @ﬁ—sin 48.59 | = 44.125 ft?
2 \ 180
B =2x30sin 48.59 _ 58.99 ft

The critical depth is located in the lower portion.

Trial and error procedure

0 critical = 47.2°
Ycritical = 2 1-cos ﬂ:l
2 2
D =2d, =60

Y, = 6—20[1—0.916] =252

3.17
Z, :&=L=1.762
Jo /322
Z, 1.762
S5 =~y = 0.05506
Using Fig 3.7,
Y /Dy, =0.23
Y .=0.23x4=0.92
3.18

Q =C,AJ2gH =0.7x10y,+/2x32.2x60
Q=435.127y,

v, 435.127y,
F,= =

Joy,  10x94/32.2x9
F3 =0.284 Y2

Y, :%[—1+,/1+8F32J
Y, :%[—1+\/1+8(0.284)2 yg}

%+1:‘/1+0.645y22

Y +9Y, +20.25=20.25(1+0.645y; )
12.06 y,° =9y, =0 y, =0.766
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Q =0.746 x 435.127 = 324.6 cfs

Q’° Q’
ol :Fs_Fs _+ZA1_ _ZAZ
F 1 2 gA1 gA2
_@248° 1 1 a0 60x10- 2748 0746 %10 =1364.037 ft°
32.2x10| 60 0.746 2

Thrust=r p r = 62.4 x 1364.037 = 85115.9 Ib

3.19
Q =2 x 4 =8 ft¥/sec/ft

F_ v o 2

" JgD  /32.2x4

Subcritical
Ei=Az+E;

=0.176

v2 q2
_+ y1 B2
29 29y,

2
2 +4= >
2x32.2 32.2x2xy,
0. 9938
Y

ys —3.562y7 +0.9938 =0

Yz =3.48
Vo =8/3.48 = 2.99 ft/sec

+Y,+Az

2

+y,+0.5

3.562 =

2

3.20
q=250/50 =5 m®sec/m

q2 5 52
29y°  2x9.81x5’
y o= 0.67 E=3.367m

q =10y’ =+/9.81x3.367° =19.35 m°/sec/m

B min=250/19.35=12.92m

=5.05m

E=y+

3.23

F= 1S 0.2395 subcrtical

 J/9.81x4

Q= 1.5 x 4 =6 m*/sec/m Q=6x5=30m?s
3 q2 =3 36

Yy, =3— =1.543m if there is no converging transition
g 9.81
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2 2
a__ 4+ 0
2gy? 2x9.81x 47

E=y+ =4.114

y~=067E=274m

2
y, = i/i q=14.2 m¥sec/m
g

Min Width=30/14.2=2.11m
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UNIFORM FLOW

4.1

Given: Compute Y, (Normal Depth)
B=5m

Q=5ma3/s

n=0.013

S0=0.001

a) Design curves Method
Section Factor: SnQ = (0.013)(5)/(0.001)"*= AR??

1/2

0
Thus, AR?®/ B¥3= 2.055/5%°= 0.028
For a rectangular Channel and AR*?/ B?"= 0.028,
Figure 4.5 gives Y,/ B=0.128,
Thus, Y,=0.64 m,

b)Trial and error method

We have A=BY=5Y,, (Area)

P=2Y,+B=2Y,+5(Wetted perimeter)
A_ 5Yn

P 2Yn+5
Therefore, AR”*= (5, )

5Y 2/3
n =2.055
(2v, +5) ]

or, 14.62Y1=2.055(2Y 1+5)?3=0 —---memmmmm e (1)

Substituting values in Eq 1, we get the following results:

Y f(y)

0.6 -0.69
0.7 0.984
0.64 -0.05
0.645 0.037

Therefore, Y,=0.64m

c) Numerical Methods
The programs in Appendix C may be used to compute Yy,
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4.2
Given: Compute: Y, (normal depth)
Q=50m3/s
n=0.013
Bo=10m
S0=0.001
a) Design Curves Method:
b) Section Factor: nQ/Sy*?= (0.013)(50) /(0.001)*?=20.55

AR?? = 20.55 and AR™®/ B¥*= 0.0443

Entering in figure 4.5 with S=2 and AR¥*/ B®"= 0.044 we get
Yn/Bo=0.145

and, Y,=(0.145)(10)

or

Y,=1.45m

b) Trial and Error method

(1o+2v,) y

Lo+2v,v1+27) "

for Trapezoidal channel we have: A = (10+2Y, )Y, , and R=

or,
(10+2v,)

/3 n
(10+2Y N1+ 22 )2

Rearranging the equation:

AR?P= [10+2Y, ), ['°=20.55

[40 +2Y, )Y, F'* = 205500 + 2Y, 1+ 4 ™ = 0 -creeemeremeeenee {1}
By trial and error, the solution to equation 1 is:
Y= 1.46m

¢) Numerical methods

A similar result will be obtained by using the programs in appendix C to solve for the normal
depth

From the graph we get Y,= 3.6m

For the critical depth we have:
L [4)- 52709

\/_ T) Josl

3/2
or:[(b+0.583y)y] / [b+y(1.667)]Y2 = 47.89 for 0< Y.<4
Where, b=15, therefore:

5y + 0583y "%

> —47.89
[15+1.667y]
Solving by trial and error for y, we get
Ye=2.15m.
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4.4

Given Q=150 m/s

Sp=2/1000

n=0.03

Compute Y,and Y,

Compute section factor: Qn/So*= (150)(0.03)/(0.002)*%= 100.62
From Manning’s equation: AR?*=100.62

For O<y <4:

T=b+y/1.5+y/2 (Top width)

Ar=(b+T1)y/2=(b+b+1.1667y)y/2 (flow area)

Pr=15+ yy/[L+1.52)+ y/{1+2?)
P1=15+4.0388y (wetted perimeter)

Make a plot of Ar Ry 2 vs. y to compute the normal depth

Y Ar Pr Ry R ArR:™"®
2 32.33 23.08 1.40 1.25 40.41
4 69.33 31.16 2.22 1.70 117.86
3 50.25 27.12 1.853 1.51 75.81
4.5

Given:

Trapezoidal Channel 1H: 1V

b=10m

S0=0.0005

Q=60 m*/s

n=0.013 (for concrete)
Determine flow depth (normal depth)

Solution:

For a trapezoidal channel with 1H: 1V we have:
A=(b+T)y/2=(b+b+2y)/2=(b+y)y

T=b+2y

P=b+2 (\/E)y

Manning’s equation becomes: Qu/SoH2=A 51 p2

Or,
Qn/SOl/ZZ(by+y2)5/3/{b+2 (\/E)y }2/3
Where, Q./SY/?= (60) (0.013)/ (0.0005)*%=34.88

Then, floy + y2[ [0+ 2(v2)y] " ~34.88 = 0
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This equation can be solved by trial and error or by using numerical methods as presented in
appendix C. The solution is y,=2.10m.

4.6
According to Manning’s equation:

AR ?P=nQ/S, [ for n and S, constants we have Q o« AR?'?]
Foracircularcross —section the section factoris:

213 |:DO% (Q_Sing)} 2/3
AR =
(}é a)o)zm

See Tablel.1for geometricfactors.
The valueof 6 corresponding to maximumdischarge is found by equating the first derivative of AR??:

d(AR?*®)/00 =0,0r
0.0496D,""°

64/3

Equating the termin brackets to zeroand simplifying weget : #(1.5—2.5Cos#) + Sind =0
Solvingfor6)0by trialand error we get,8 =5.278

The corresponding depthis:y, =0.5(1—Cos(5.278/ 2))

or,y,/D,=0.938

o3 (0—Sing)™"°

02/3

= 0.04496D,

[5/3(9—Sin0)2’3(1—0039)92’3 —2/30’1’3(0—Sim9)5’3]: 0

In terms of flow velocity the Manning’s equation gives:

R2/3:nV/801/2

Then, for constant n and Sy, the velocity is maximum, when R?” is maximum, or:

Vo R?3

For a circular section: R¥® =[1/4(1-Sin6/0)Dg]**(see Table 1.1). Following the same reasoning as
for the discharge, the angle 6 Corresponding to the maximum velocity is given by: 6 (R?3)/ 6 6=0
or:2/3(D, /4)2’3(1—S+29)‘1’3[(Sin 0—0 Cos0)/ 6°]=0

Solving for 6 results in: 6,=4.493
The corresponding depth for maximum velocity is:

Vn=Do/2(1-C0s4.493/2)
or, yn/Dy=0.812

4.7

8/3

Max(Q) = Max(g—) = Min(P)

2/3

For a triangular section: P=2y./{1+ s® Jwhere s is the lateral slope
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Also,

A=sy’

Then,

2
P=2y (1+ AAJ
To find the min (P), dP/dy=0 is to be satisfied.

or, dP/dy=2(1+A?/y*) —A%/y*=0
but, A%=s%y*, then,

1+5s?
=1/s
s 75

Substituting this expression in the equation for P we get:

(1452 \/(1+ sz) 2 (1+ sz)

p=2 B )
2 S J2 s

dP/ds=2-1/s*-1=0

or,s=1

or, 0=45"x2

d?P/ds*=2/s>0 implies P is minimum.

ii. Trapezoidal section :
A=(bt+sy)y =-------smmeememeeeeeeenes (1)

T @
dP/dy=2{,/{1+5%) - s}-b/y

for minimum wetted perimeter dP/dy=0
or:

substituting 3 in 1 we have:

A=[2y(JlL+5?) = s+ sy]y
~ A
°“V‘J@hﬂzé}_q

from Eq 2, we have,

P=2y[2/lL+s?)-s]

or, P:Z\/(A{Z 1+s? —s})
To find s corresponding to minimum P, dP/ds=0 is to be satisfied.

for A= 0, we get 25 -1=0

Ji+s?)
NE)

or, S:?:tanSOO. Thus, the most efficient section for a channel is half a hexagon.
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4.8

The channel having the least wetted perimeter for a given area has the maximum flow capacity.

The area and the wetted perimeter for a circular channel are:

A=1/8(6-Sinf) Dy, P=1/2 6 Dy

Solving for Dy in the equation for the area:

Do= ( 8A.\
6 -Sind

Substituting in to the perimeter:

p:e/z( BA j
¢ —-Sing

The wetted perimeter is minimum when dP/d6=0

dP/do= {;—g(e— Sing)*'*(1- COS@)}—V (zAj

(6 —Sing)

dP/d6=0, when 6 = r .

This corresponds to a semicircular section.

4.9
[9_ Sir;29j5/3
For flow in a pipe flowing partially full that Q, = Q; 7—r in which Qy=flow for
71_92/3

partially full pipe and Qs=flow when pipe is full.If D,=pipe diameter, y,=normal depth and
So=slope of the energy grade line in the case of full pipe flow (equal to the slope of the pipe
bottom in pipe angle is given by:

0= Cos‘{l—%j

0
Christensen’s equation for partially full pipes, based on experimental data, is given by:

f

[&J =0.46 —0.5cos(zy, / D,) +0.04(2zy,, / D)
exp

Plot y/Do vs. Qu/Qs using the analytical result and Christensen’s equation. Compute and plot
np/ns With respect to y/Do assuming that n is a function of depth.

Solution:

Prove that Q,=Qf(6-0.5Sin26)>"/( 7 62°)

a)Find an expression for the area of a circular segment for the element showed in the figure
we have:

y=RCos0
dy=—RSin6d6
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The area of the segment under the element is given by:
A= I 2xdy

x*+y?=R? therefore:
-R
A= j R? —y? Jdy

-y
0
a2
Or, in terms of 0, A=2R2I8|n o
0

Solving by integration by parts we get,
A=2R? [0=0.5Si120]-----nmmmmmmmmmmmmmmmmmmm e (1)
Put 0 in terms of y.
When, y,<R
Yn=R—-RCos0
2yn=2R(1-Cos0)
2yn/D0=1-Cos0
or, 0=Cos™(1-2y,/Do)

The same equation results when y,>R.
O o 7,V T F S ———— 2)

Use Manning’s equation

o ZE(ApSBSOl/Z)
p n szls '
where A, is given by equationl
For full-pipe flow:
1 (Af5/3801/2)

Qr=— 2/3
n Pf

5/3 2/3

(Ap Pf ) ___________________________ (3)
/ /

P 2 3Af5 3

p
Recalling that P,=2R6, AFnr?, and P=2nR and substituting equations 1 and 2 into 3 we get,
(Qy/ Qf )= (6-0.5Sin20)>"*/( 7 0%3)-mmmmmmmeeeeeemev (4)
Where T refers to a theoretical result.

Then, Qy/ Q=

2.Compute ny/ny
Assuming that the difference between theoretical equation 4 and experimental results
(Qp/ Qs )exp(is due to a)variation of n with respect to y,, we have
5/3 1/2 5/3 1/2
1 \A7°S 1 |\A°"°S
Qs exp:n_% and, Qpexp= _(p—o)
f

2/3
Pf np I:)p

Then,
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5/3 2/3)

(Qu/ Qexp =(N/Np) =2

Pp2/3Af 5/3
The last term on the right hand side of Eq 5 is the same as Eq 3 and the result is given by Eq
4. Therefore,

...................... (5)

(Qo/ Q1) exp=(ni/Np) (Qp/ Q)7
(Np/ Ng) exp=(Q/Qp)exp (Qp/ Qs )7

Where, (Qy/ Qr )7 is calculated from Eq 4 and (Q#Qp)exp is calculated with Christensen’s
equation.

3. Construction of curves
Equations 4, 6 and Christensen’s are functions of y,/Dy. To solve Eq 4, angle 6 must be
calculated first by using Eq 2.Tablel summarizes this calculation.

Tablel: Qy/ Qs ,ny/ ns for circular pipes as function of yn/Do

Yn/Do 0 (rad) (Qpf Q1 )7 (Qo/ Q1) exp (ni/np)
0.1 0.6435 0.0209 0.0168 1.2403
0.2 0.9273 0.0876 0.0679 1.2403
0.3 1.1593 0.1958 0.1537 1.2737
0.4 1.3694 0.3370 0.2731 1.2338
0.5 1.5708 0.5000 0.4200 1.1905
0.6 1.7722 0.6719 0.5821 1.1541
0.7 1.9823 0.8373 0.7415 1.1291
0.8 2.2143 0.9775 0.8779 1.1148
0.9 2.4981 1.0658 0.9679 1.1012
4.10

For the horse-shoe section the following graphical method will be used:

1. Compute the value of nQ/+/S from the given data.
2. Plot a graph of y verses the section AR??

3. The normal depth is the value of y corresponding to the ordinate AR?*= nQ/ /S .

For this particular problem we have:

1. nQ/+/S =0.03x800/(0.0005)2=1073.31
2. for the horse-shoe section:

ym |AM) [Rm) [ART(m™)
5 9106 [335 |203.87

10 21063 | 563 | 666.59

12 26037 | 6.28 | 886.74

13 28537 | 657 | 100155
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13.5 297.87 |6.71 1059.44

13.75 304.06 | 6.77 1087.88

15 33494 | 7.06 1232.64

20 448.44 | 7.67 1744.09

The normal depth is y,=13.55m. This value was obtained by plotting the first and the last
columns of the previous table and taking the value corresponding to nQ/ /s =1073.

4.11
Given: n=0.0125
Bo=1.2m
Q=210lI/s, 3501/s, 450I/s
Channel gradient: 0.67, 0.07, 0.17, 0.3 m/Km
Compute: Normal Depths.

Casel: Sp=0.00067 and Q=0.21m?%s, nQ/Sy?=0.10141

AR2/3:(BOyn)5/3/(2yn+ BO)2/3

Solve for y, by trial and error or by using the computer programs in Appendix C.
(1.2y0)*1(2y,+1.2)%%=0.10141 or, y,=0.262m

The other cases are solved in a similar way by using the appropriate values of Q and Sy.The
following Table summarizes the results.

Computation of Normal Depths for Nimes Aqueduct

Case | Section Qo(m’/s) | So nQ/yS, | Yn(m)
1 ELEVATED CHAN. 0.21 0.00067 | 0.10141 0.262
2 ELEVATED CHAN. 0.35 0.00067 | 0.16902 0.375
3 ELEVATED CHAN. 0.45 0.00067 | 0.21731 0.448
4 POND DU GARD 0.21 0.00007 | 0.31375 0.587
5 POND DU GARD 0.35 0.00007 | 0.5229 0.869
6 POND DU GARD 0.45 0.00007 | 0.67232 1.062
7 SUBTERRANEAN CH. | 0.21 0.00017 | 0.2013 0.424
8 SUBTERRANEAN CH. | 0.35 0.00017 | 0.3355 0.618
9 SUBTERRANEAN CH. | 0.45 0.00017 | 0.43142 0.748
10 SUBTERRANEAN CH. | 0.21 0.00030 | 0.1515 0.347
11 SUBTERRANEAN CH. | 0.35 0.00030 | 0.2526 0.500
12 SUBTERRANEAN CH. | 0.45 0.00030 | 0.32476 0.603
412
Given: Bo=15ft
Q=150cfs
S=1.5
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n=0.024
So=2.5ft/mi
1mi=5280ft

Solution:
So=2.5ft/5280ft/mi=0.000473
For steady—uniform flow the channel flow depth will be the normal depth, then we use
Manning’s equation to solve for y=y,
n Q/ So*? =1.49 (AR??)
AR?*=0.024x150/(1.49x90.000473)°=111.09

1. Design curves method
Use Figure 4.5 for AR??/B,¥*=0.081 and s=1.5 to get yn/Bo=0.21 or y,=0.21x15=3.15ft

2. Trial and Error
Solve for y, by trial and error (or using a root finding computer program).

ARY3= [(Bo + Syn)yﬂ]5/3 =111.09

[BO +2y, 1+s? JZ/S
5/3
or (05+1.5y, )y " 144 0
b5+ 2yn\/1+1.52J2
or y,=3.17 ft
4.13
Given: Sp=10ft/mi
n=0.045
Q=50ft%s

Parabolic cross-section of problem 3.12
2

X .
y = ) where, P=distance between the focus and the vertex.

Compute: uniform flow depth
2

Using the coordinates (4.5, 3), P is computed as P = j(i) =1.6875

2
Then, the equation of the parabolic section is: y =

6.75
Also: A=(2/3)T,, T=2x, P=T+(8/3)y*/T

or, A=0.1975x°

P=2x+0.02926x°

nQ/(1.49S,%)=(0.045)(50)/{(1.49)(0.00189Y%)}=34.7348  ------mmmmmmeeeeeeeeev (1)
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5/3 5
g A ooeeeex® 2

P**  (2x+0.02926x° /"
Equating 1 and 2 and solving for x we get,

x=4.9336 ft

2

. X
Finally, =
Yo =67

or y,= 3.606 ft

4.14

Given:

Circular cross section
Do:8ft

So=1ft/m

Q=30ft*/s

Concrete lined
Compute: flow depth, y

Solution: Assume steady-uniform flow, therefore y=y,
Sp=1/5280=0.000189

n=0.013(from table4.1)
nQ/(1.49S,%)=(0.013)(30)/(1.49)(0.000189)2=19.019

1. Design curves
Using Figure 4.5 for AR??/Do¥%=19.019/8%"=0.0742 we get y,/ Dy=0.33 or y,=0.33(8) =2.64 ft.

2. Numerical solution
h/8(0-sino)D,?[”

e ~19.019

Expressing AR?? in terms of the angle & we get,

The solution is:

6 = 2.46rad, which corresponds to %(1—Cos g} =2.64 ft. Therefore, y, = 2.64 ft

4.15

Given:

Sewer of problem 3-15
Do:5ft
So=2ft/mi=0.00038
Q=15ft%s

Concrete lined
Compute: Normal depth
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Solution:
AR?3= nQ/(1.49S5,*) = (0.014)(15)/(1.49)(0.00038)*? = 7.23

1. Design curves method
Use Figure 4.5 with AR??/D¥*=7.23/5%°=0.09891 and get, y,/ Dg=0.39 or y,=1.95 ft

2. Numerical solution
L/8(0 - sing)p,’ [

(@/2)eD, )" s

Expressing AR?? in terms of the angle & we get

The solution is:

6 =2.6861rad, which corresponds to%(l—Cos gj =1.94 ft. Therefore, y, =1.94 ft.

4.16

Given:

Q=28m’/s

S=1

Bo=8m

S0=0.0001

y=3m

Compute y if Q is doubled.

Solution:
Assuming steady-uniform flow compute Maning’s coefficient using data for Q=28m?*/s and
Manning’s equation.
Assuming constant n for the new flow we can compute the new flow depth.
n= (AR2/3801/2)/Q
For a trapezoidal channel, Tablel.1 gives:
A=(Bo+sYn)yn=(8+3)3=33
_ (Botsy,)y, _ (8+3B _
R= = =2.00
(BO +2y, V1+s? ) (8+ 2(3)\/5)
and n=33(2)%%(0.0001)"/%/28=0.0187
Section Factor for 56m’/s:

AR?9= NQ _ (0.0187)(28x2)

Js,  +o.0001

=104.76

1. Design Curves method
2/3

Use Figure 4.5 for ABR— =0.41 and s =1.0 to get y,/Bo=0.56

8/3
0

or, ¥,=0.56x8=4.48m

2. Numerical solution
Solving for y, from
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[(8+@y, )y, F? —104.76(8+ (2)y.~2 )2’3 =0, we obtain
y,=4.40m

4.17

Given:

Long rectangular channel

Change in flow depth from 4ft to 5ft

Determine: Percentage change of rate of discharge.
From Manning’s equation: Q= (1.49/n)AR??s,?

5/3
At 4ft: Q.= (1.49/n)% Set?
(B+2y,)
5/3
At 5ft: Q.= (1.49/n)% Sot?
(B +2y,)
5/3 2/3
Then Q_ [Lj [—B 2y, J
Q, Y, B+2y,
Assuming a wide rectangular channel:
B+2y,~ B
B+2y:~ B,

Then, Q1/Q,= (0.8)**=0.689
or, Q1/Q,=68.9 % i.e., Q1is 68.9 % of Q.

4.18
Assuming that the flow must be controlled by improving the channel conditions two possible
solutions are:

a) Improve Lining

The conveyance of the channel can be increased by reducing the channel resistance. If the
channel is lined, for example with concrete, the Manning’s coefficient will decrease and the
channel capacity will be increased. Different lining processes should be considered.

b) Increasing the flow area.

If the cross-section area is increased, the capacity of the channel will increase. For example, a
trapezoidal section could be a good choice. If any case, the cost of excavation and other local
conditions will dictate the viability of this option.

4.19

Given

Rectangular Channel
B=4m

Q=9m®/s
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S0=0.005
n=0.014
Determine if the flow is sub-critical or supercritical

Solution:
1) Compute Critical Depth:

y=%/Q%/(gB?) (see problem 3.11)
Ye=3/9/(9.81x16) =0.802m

i) Assume steady-uniform flow and compute the normal depth:
AR%3= nQ

5.

AR?®=1.065

(By,)"”
or, y,=0.5m

or,

3) Compute y, and Yy,
In this case y, < Y

4.20

Given:

Trapezoidal channel

Bo:20ft

s=1.5

Q=220cfs

S0=0.00032

n=0.022

Determine if the flow is subcritical or super critical.

Solution:
i) Compute critical depth:

Section Factor Z=Q /./g =220/+/32.2=38.77

a) Design Curves Method
Use Figure 3.7 for Z/By*°=0.0217 and s=1.5
to obtain, y./By=0.076 or y.=1.52ft

b) Solving by trial and error (or using numerical methods)
Solve for Ay/D =38.77 or:
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]3/2

[(BO + Syc )yc
(B, +2sy, )"

[(20+1.5y, )y, ?
(20+2(1.5)y, )"?

=38.77

=38.77 or,y.= 1.49ft

i) Compute Normal Depth:
0.022(220) 159

Q_ o =181,
1.49,/S, ' 1.4940.00032

Design Curves:
Use Figure 4.5 for AR¥3/B,®” = 0.0616 and s=1.5 to get y,/by=0.18 or y,=(0.18)(20)=3.6ft

Section factor:

Trial and Error:
Solve for y, from

[(B, +sy, )y, ["° —181.59(5O +2y 41+1.5° )2/3 =0

or, [(20+1.5y, )y, [® —181.59(20 +2y,vV1+1.5° )2'3 =0
Yn=3.61 ft

iii) Compare y, and y;
The flow is subcritical as y, > y..

4.21

Given:

Trapezoidal Channel

Q=15m’/s

Bo=10m

S=2

Yn=2m

Compute the flow depth for Q=20m?/s.

Solution:
Assuming steady-uniform flow and determine Manning’s coefficient from the data for 15m*/s:
A:(BO+Syn)yn:28m2

R =[ (B, +5Y,) J:1.478m

Yn
B, +2Y,4/(L+s%)

n=AR® 5,2/Q=n/S,*?=2.422
for, Q=20m°/s, AR¥*=nQ/ S,'/?=2.422x20=48.44 or,

[10+2y, )y, [’ - 48.44(10+2,/(5)y,)?* =0
or, y,=2.34m
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The flow depth y, for Q=20m*/s is 2.34m

4.22
Given:
Compound Channel Sy=0.001
n=0.021(main channel)
n=0.039 (flood plains)
Compute i) Equivalent n (ne)
if) Velocity-head coefficient (« )
iii) Slope of the energy grade line (Sy)

Assuming that the flow is 5m, use Eq 4.35 for n. and 4.47 for « . Alternatively, Eq 4.36, 4.37 or

4.38 may be used to estimate ne.

The following Table shows the computations for the compound channel. It has been subdivided

into sub-sections 1, 2 and 3.

Computation of ne and « for compound channel

Section | n; P; A Ri Ki Pini3’2 Ki3/Ai2

1 0.021 30 106 3.533 11708.88 | 0.001 1.429x10°
2 0.039 7.236 6 0.829 135.77 0.056 6.952x10*
3 0.039 7.236 6 0.829 135.77 0.056 6.952x10*
> 44.47 118 11980.42 | 0.203 1.430x10°

ne= (X Pin¥? ¥ Pi)??=(0.203/44.47)%°
Ne=0.028
a = (Z{KIA) (X A)Y Ki=1.16

The discharge should be known in order to compute S using Eq 4.48. However, if steady-

uniform flow is assumed, the compound channel will have S=S,
Thus, Sf= Sp=0.001
4.23

Given: Rectangular channel
B=12ft

S0=0.001
Compute: i) Critical depth (yc) for the flow corresponding to y=3 ft

if) Determine if the flow is critical, subcritical or super critical.

i) Compute the flow rate:
Q=(1.49/n)AR?"S,'/2=(1.49/0.035)(12x3){ (12x3/(12+6)}**(0.001)*?
Q=76.93cfs or q=76.93/12=6.41cfs/ft
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2
The critical depth is y.= 3/q_
g
6.41°
=3 =1.085 ft
Y\ 322

As y. <Y, flow is subcritical.
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GRADUALLY VARIED FLOW

51
Given:

- . . dy So - Sf
Gradually varied flow equation: — = >

dx 1-F

Wide rectangular channel
Manning and Chezy formulae
Prove that:

_ 1%
a) dy =S, L”/yz using Manning’s formula

dx  "1-(y./y)
and
3
b) dy =S, M using Chezy’s formula
dx "1-(y./y)
Solution:
The geometric properties for a wide rectangular channel can be approximated by,
A =bhy
P=b
R=by/b=y and
D=y
Therefore, AR**=by**® and the Froude number can be expressed as
F 2 — Q2
ZgbZ y3
a) Using Manning’s equation the slope of the energy grade line for gradually varied flow is
nQ? nQ?

s, =19 __ M (1)

AR 2/3 b2y10/3
Also, for uniform flow

nQ

0 2 iO/S
or

n 22
s,y = @

When the flow is critical, the Froude number is one. Thus,
F’ = Q° _ 1

© o 2b%gyd
and
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F2 2 3
F_f_F =(v./y) (3)

Substituting Eqgs 1, 2 and 3 in the gradually varied flow equation we get,
dy _ S, =S, (y./y)
d 1-(y./y)
dy S0 (y,/y)™
dc 1-(y./y)
b) If Chezy’s equation is used, then

AR =2 = (by)y*?

cs?
2 2
Or, S, = ZQZ ; and S, = 2Q2 3
Cby Cb°y,
2
or, S,y; = Cszz

Combining the expressions for S; and S, we get

S¢ =S,(¥a/y)

Therefore, the gradually varied flow equation becomes
dy _S,[-(y,/y))

dx  1-(y,/y)

5.2
Consider the control volume:

The momentum equation establishes that the sum of forces acting on the control volume must be
equal to the net change in momentum inside the control volume, For the X-direction this is
expressed mathematically as,

p(Q+dQ)V +dV)-pQV =F, -F,—F, +Wsing (1)

Where,

F1 =Pressure force at section 1

F, = Pressure force at section 2

Ft = Force due to friction

W = Weight of the fluid inside the control volume

Assuming a hydrostatic pressure distribution, the pressure forces may be expressed as:

F = 7/§A
F, =yly+dy)a+y dAzdy ~ 7y +dy)A

and the friction force as
F, =7,Pdx =3RS, Pdx = yAS, dx (see Eq 4.7)
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where,
v = specific weight,

y = location of the centroid of the cross section perpendicular to the flow,

To= Shear stress at the channel wall,
P=wetted perimeter and,
Si= slope of energy grade line.

Substituting the expression for F; F,and Fr into Eq 1, simplifying and neglecting second order
terms like dx dV we get,

%+V_qu=Ady—ASfdx+ AS,dx (2

9 g
Where, W sin @ was substituted by yAS_ dx and Vadx is the contribution of the lateral flow to
g9

the change in momentum inside control volume.

Further simplification leads to:

QZ(SO_Sf_ﬂj_gd_V G

] ; therefore, the last term on the right hand side becomes

2
ng:qu_Qsd_A (4)
gA gA° gA® Dx
Recalling that for a prismatic channel
oA _dAdy and oA _ B
dx dy dx dy
Equation (4) becomes,

2
gdv = % — Q_s B ﬂ
0A gA gA° dx
substituting Eq 5 in Eq 3 and solving for dy/dx we get,
dy S, —S; —29Q*/gA’ ©)
dx 1 Q’B
gA’

dy S,—S;—2qQ*/gA
ol > (7)

X 1-F
where, F is the Froude number. When q is zero, Egs 6 and 7 become the differential equation for
gradually varied flow at constant discharge without lateral flow.

or,
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b
- A B L o Ol

i 2

AN
|

Comment: At the upstream reservoir yres>Yc and in channel 1 y<y.— There is a control section
near reservoir and channel 1 is steep.

Channel 2 is horizontal = y, = and S, <S_, = The flow must go from supercritical to
subcritical through a hydraulic jump. At the free flow the critical depth must occur again.

TATE A B B ar B it

a? S

Comment: At the upstream reservoir yres> yn >Yyc.— the control section is downstream and
channel 1 is mild with subcritical flow.

In channel 2, the flow becomes super critical after the slope changes from mild to steep. Because

the down stream reservoir is very high a hydraulic jump is formed to raise the water level over
the critical depth.
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c)
17
———
e -
7 Y pEsTy
chy . /QII?
3
. =

Comment:

Both channels are mild (y, >y, always)
The water profile crosses the critical depth just before the downstream reservoir.

d)

Comment:

Both channels are mild (y, <y.always)

There is a control section near the upstream reservoir.

A hydraulic jump forms close to the down stream reservoir.

5.4

Analyze a sluice gate as a flow control device from a lake.

Assume that the channel bottom slope is

i) Mild

i) Steep

Notation: NDL=Normal depth line, CDL= Critical depth line

The problem will be illustrated with several possible combinations of channel slope and gate

openings close and far from the reservoir. The more appropriate location for the gate will be
suggested based on the analysis.
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MILD CHANNEL
a) Gate located “far’ from the lake outlet. Gate opening less than the critical depth.

;:"-j & 7; /o

Y

DL

& YA

A i TR i 3" P -
The control section is located at the gate.

b) Gate far from the lake outlet. Gate opening greater than the critical depth.
In this case the outflow from the lake does not depend on the gate opening.

9 ¢7¢
,.#f"_/

1_1{3

VO,

— e D)

o = = F # - e

Cases (a ) and (b) will be the same for a gate near the lake. The water level at the gate position is
very close to the reservoir level, therefore; if the gate is located very far from the reservoir, the
size of it will increase considerably. From this point of view to locate the gate near the reservoir
IS more convenient.

STEEP CHANNEL
a) Gate near the lake outlet. Gate opening less than the normal depth.
{ .
— 5%
TR Y el — —— i s e De
» AD L

-"'-J"f-,a'.a".-'__'_,z,.r,-_‘f_.-.ﬂ-

P

There is a control section at the gate.
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b) Gate near the lake outlet. Gate opening greater than the normal depth.

The control section is at the gate.

c) Gate far from channel entrance. Gate opening less than the normal depth.

i l;
-
-
-

CoO¢

AE PSS

There is a control section at the channel entrance.

d) Gate far from channel entrance. Gate opening greater than the normal depth.

P e

There is a control section at the channel entrance.
From the cases presented before it can be concluded that the more appropriate location for the
gate in order to establish a control section is near the reservoir for both steep and mild channels.
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55

Given:

Manning’s formula

Gradually varied flow equation
Show that dy/dx — o asy — 0

Solution
From,
22
Manning’s equation: S, = :Z—IS“/?’
2 2
Froude: F* = ? =QzB
A“gD A°g
For a wide rectangular channel, we have R ~ y and A=By,
Then,
22
S¢ = anﬁ()/s
2
and F?= ?3
B y"g

Substituting the expression for S; and F? into the gradually varied flow equation we get:
ﬂ ~ (Bzylo/s _ anz)g
dx (Bzysg_Qz)yus
Taking the limit when y — O the result is
lim,_,, (dy/dx) = oo

5.6

Given:

5m wide rectangular channel (concrete-lined)
S0=0.004

n=0.013

Ho= 2m (lake level)

Compute:

1) Q in the canal (neglecting head losses)

i) Q if S, is changed to 0.001 and head losses are 0.1V * / 29 .
i)Compute Q

1) Assume steep or critical slope, then

V. zéﬂo ~4/3m=1.33m

and g” = y;9
or, q=+/y’g =4.822 m*/m-s
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Q=gbh =24.111m%s

2) Compute the critical slope
Q :lACRZ/C’:S:I/Z
n C C

2/3 72
s, {Qn(Zyc +b) }

(by, )**
o _[031348r3+57° |
YT
S,= 0.00266

3) Compare Soand S,
In this case S, > S, then the canal is steep and the flow will be,
Q =24.11m%s
i) If S =0.001 and K= 0.1 (minor loss co-efficient)
then,
1) Compute y. by using the energy equation at the entrance,
2 2

H, =V, +V—+ 0.1V— (assuming steep channel)

29 29
H, =y, +1.1y./2

y. =1.29m

2) Compute Q for steep channel,
4=4Y.9

q = 4.589m*/m-s

Q= gb= (4.589)(5) =22.945m°/s

Q=22.945m°%/s —This is the maximum discharge in the canal

3) Compute the critical slope
S = n“Q%(2yc +b)4/3
(byc )10/ 3
_ (0.08897)12.577)
¢ 499.49
Sc =0.00224

4) Compare Sg and  S¢
In this case S (S¢, then the channel slope is mild and there is not control section
entrance. Therefore, the previous analysis does not apply.
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We can assume that the flow will reach normal depth near the lake then; Q is given by
Manning’s uniform flow formula. The flow depth can be obtained combining the energy and

Manning’s equation.
Doing this we get:

H = y+Lk2R4/380
2gn

1k [ by V3
H=y+ So
2gn2 2y +b

Substituting H =2m, k=0.1 b=5 n=0.013
And solving for y we get the normal depth as
yn = 1668m

Q is obtained from Manning’s equation and the answer is

Q =20.33m3/s
5.7
Lakes A and B are connected by a 10m-wide rectangular channel.
n=0.013
Sp =0.001
L =2000m

Sketch the water surface profile in the channel if:
) Lake B is at EL. 155
i) Lake B isat EL. 161

Computation of critical depth

Yo = % Ho (Wide rectangular channel)
Ho =168 — (158 —(0.001)(2000)) = 8m
yC = 533m

Unit discharge for critical flow:

q= \/ 0ycd = 9.81(5.33)3
q= 38.58m3/s -m

Total discharge: Q¢ =Bq=3.77 m3/s
2 2
The critical slope is: S = Qe _ (0.013385.77)
A2R2/3 o 533 23
(10x5.33)7| - —=° _
10+10.67
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S¢c =0.0025
Giventhat S¢)Sg the channel is classified as MILD.

To get the uniform flow conditions we solve for yp

From:
Q= 1 AR 2/380]/2 (Manning’s equation)
n
vZ y?
And Ho=y+—+k— (energy at the entrance)
29 29
Assuming k =0 (zero entrance losses) and using V = Q/A
We have
2 4/3
R
HO:y+Q2=y+ 280
20A 2n“g
4/3
R
Solving for y: y=Hg - So
2ng
Or
y=Ho-|g
+ 2y 29n2

Solving for y (by trial and error or by numerical methods) one gets
Yp =6.77m
The flow profile is now sketched knowing the normal and critical depths in the channel.

In both cases, a M2 curve is produced.
For EL. 155 a free-fall condition at the downstream end exists.

5.8.

Given: Concrete-lined channel
N =0.013
B = 15m (rectangular shape)
L =15000m
Reservoir Elevations: Water surface = 129.65m

Bottom =121.4m
)] Determine Q, sketch and label the water surface profile.

So =0.001, Water elevation at downstream reservoir (y) is 109m
Yc =2/3Hg Ho =129.65-121.4 =8.25m
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yc =5.5m (Critical depth)
q=ygycS = +981(55)2
q=404 m%_ m (unit charge for critical depth)

Q. =qB =606m°/s (Critical flow)
The critical slope is

Sp = _
UV LE A10/3

where, p = wetted perimeter = 26m
A= area = 82.5m?
(0.013)2(606)2 (2% 5.5+15)%/3

SC =
(15x5.5)10/3

S¢=0.00196

S.)S, = is a mild channel

Combining Manning’s equation for uniform flow and the energy equation between the
reservoir and the channel entrance we get:
4/3
omy ¢ R; ZS (Equation 5.18 neglecting entrance losses)
Toentg
4/3 0.001

15
8.25=yp+ >IN 29,81 0.0132
1542y,

Or

Solving for ypwe get  ypn =6.634m
Then, Q=+ A(R)2/3sg,/2
n

99.52(99.52 2
= 0.001
Q 0.013(28 27) ¥

Q=560m3/s

i). Sg=0.008
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In this case the channel slope is STEEP, S¢(Sq. Thus, the discharge is given by

Q¢ =606 m3/s the normal depth is obtained directly from Manning’s equation

2/3 _ Q¢
AR4/® = =L
VSo

2/3
15y = _Yn 1 _gg08
15+2yp

Or Yn=3.35m

59
Start with the total energy equation:

2

H=Z+y+02/g [1]

The change in energy along the channel is:

2
dH  dz dy d(“v)
dX dX dx | 2gdX

[2]

Recall that g—i =-S5 (channel bottom slope)

aH _ St (Energy grade line slope)

dX
And Q=VA

Then for L=1, equation 2 becomes:

d(Q?/a?)
~S¥ :_S°+d_x+W [3]

For constant discharge along the channel we have:

o{eE0) ot

2gdX 29 dX

d(]/AZJ -3 dA

Or —==-2A
dXx dXx

But A= f(y,x) (the cross-sectional are is also a function of y)
Therefore,
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dA _ dA d—AdY/dX (Chain rule)
dX  dX  dY
Also
B =dA/dY Then, equation 3 becomes:
-S§ =-Sg+dY/ dX —Q(dA +— oA de
gA3 dX dy dX
Or:
2
SO -S f +V7d7A
dy _ gA dX
dX 2
1- BV
gA
5.10

For a wide rectangular, derive expressions for the channel bottom slope to be  mild, step and
critical.
By definition a mild channel satisfy S (Sq and a steep channel satisfy ~ S¢)Sq

Therefore, we look for an expression for S¢ in the terms of the critical flow conditions and
determine the channel type (mild or steep) using these inequalities.

For a wide rectangular channel the hydraulic radius can be approximated as:
Rzy
From Manning’s equation we get,

Q=1%9Ar235 V2 where Q=g
For critical flow conditions
1.49
dcB = - =—(Byc)y c3/23c]/2

2
Finally, S¢ =| el __
1.49y,°/3
The critical flow depth and discharge may be computed using the methods of chapter 3.
5.11
Given:

Chute spillway blasted through rock (not lined) ~ Sq = 0.075(1.5 ft/20 ft)
Water level at the entrance 10ft above the channel bottom.

Compute: Flow depth and discharge in the chute.
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Solution:
Assume control at channel entrance, then:

Yo =2/3Hq =6.667 ft (Critical depth)
dc = gycS =97.68 ft3/s— ft

gy 3 V2
=0-B=1.49(By) ——— S
Qc =0c ( y)[ZyC N Bj c

Simplifying and solving for S we get:

2
Sc = B L ( See problem 5.10)
1.49y°/3

Sc =0.0094((Sq (Using n=0.035 for blasted rock).

The normal depth is given by Manning’s equation as:

o j%(By)—ﬂ

2yn +B 1.49/S,
Theresultis yp =1.147f = yp(y(yc =

The channel is STEEP the flow is supercritical and the profile type is S2.

5.12
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5.13

5.14.
Given:

Trapezoidal channels
Q =800cfs

N =0.028

S=1

B=15ft

Compute: yo and Yn sketch the water surface profile.
For the channel 1: Sy =0.0005

75



Chapter 5

Use Manning’s equation to get the normal depth:
nQ - AR2/3 (0.028)(800)2 _ AR2/3
1.495,Y 1.49(0.0005)Y

or  AR%Y3_-672.32

Enter the design curve with

AR 672.32
8/3 (15)8/3
Toget yn/b=0.6=y, =0.6x15=9ft
Or solve for yp, from:

=0.491

672.32 = [15+ yn yn '3 /5 + 242yn ' °

Theresultis:  yp =9.09ft
To compute the critical depth, solve for y¢ from:

3/2 —1/2 _ 800 _
15 15+2 =——=140.98
[( +Yc )YC] [ + YC] 322

The solution is: yq =4.05ft

(Alternatively, you can use design curve for critical depth).
For channel 2 Sg =0.05

Normal depth: AR2/3 = nQ = (0'028)(800) =67.232
1,49503/2 1.49+/0.05

Solve for yp from:

(A5 + yn )yn IP/3 15 + 242y )2/ 3 _67.232
Yn = 2.46 ft
In channel 1 the flow is sub critical and in channel 2 the flow is supercritical.
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5.15
yn for channel 1 was computed in problem 5-14

yn For channel 2 is obtained from:

[(05+ yn )yn ]5/3/[15 +242yp, ]2/3 = %
: 0

In this case, _n__ 867.96  and Yn =10.40ft.

9%

Channel 1 has supercritical flow and channel 2 has subcritical flow.

Ky DiAvLIC Tump

)l
ooy nVog
ST T - - ot
-‘/,—“-_r"',‘p"//,//////
c4 Z
sLIe J‘UMJ" 7
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COMPUTATION OF GRADUALLY VARIED FLOW

6.1
The forces acting on the control volume shown in the next figure are:

Fi. = pAy - Hydrostatic force at section 1
Fo+Fs=pAy+ MA% AX - Hydrostatic force at Section 2

Fs = ToPAX = pAAXSs -> Friction force

Wy = pAAXSsIind = pAAXSO -> Weight component in the x-direction

The sum of forces gives

2 Fx Fi—F—Fs—F¢ + Wy

d
YF, = pAAX (-d—i St + So)
According to the principle of conservations of momentum, the sum of the forces acting on the

control volume plus the net rate of momentum is flux must be equal to the time rate of change of

momentum inside the control volume.

The net rate of momentum influx produces
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PAVZ - p(AV2 + OIi(AVZ) AX)
X
Or
d 2
p— (AV?) Ax
dx

The time rate of change of momentum is

g(,oAVAX)

ot

Then, the principle of conservation of momentum becomes:

0 u —u 0 2 dy
Z (£ AVAX) = —E = (AV?)AX — iAAX(—-L +S, - S
8t(g ) . ax( JAX — uA (CIX r —Sp)

For steady-state conditions, %(g AVAx) =0

Then, li(Av )= A (So-d—y S T (1)
g ox dx

Expanding the derivative ai(AV Z)we get,
X
2
2 od7/,2)
oX oy dx OX

= V2%d_y_ ZVZ%d_y: -2 Bd_y
oy dx oy dx dx

Then Eq 1becomes:

-V? _d d
L BY A, -Yos)))
g dx dx

Or

-Q°Bdy dy
Y_5,-Y_s
gA® dx o dx 2
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Solving for dy/dx :

dy _SO0-Sf
- 2

dx 1_Q B

gA®

This is same as Eq 6.3 with a = 1.

6.2
Given

Rectangular Channel

10 mts. Wide

Concrete Lined

Sp=0.01

Constant take upstream, neglect entrance losses.
Ho = 6m

Compute : (1 Flow depth 800 m downstream
(i) Distance where y =2.5m

Method of solution Direct Step
Mannin’s coefficient : n = 0.013 for concrete
Fromexample 5.3 Yo =4m
Q =250.6 m*®
Steep Channel
Yn=2.37m

The water surface profiles have critical depth at the entrance. A S2 curve will develop from the
entrance to the normal depth.

Table P6.2 shows the detailed computations of the flow profile by Direct Step method. These
computations may be easily made using a spreadsheet program.
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The flow depth at 800 m downstream of the lake is 2.4/m. The flow depth will be 2.5 m at 470
m from the lake.

Table P6.2 — Direct Step Method

Table P6-2
Direct Step Method

Q= 2506 m3fs B= 10 m
So= 001 n= 0013

y A R v St Sfave So-Sfave E E2-E1 x2-x1 x2

m m2 m m/s m m m m
4 40 2222 6265 0.002287 6.000521 0
a8 38 2.159 6.595 0.002634 0.002461 0.007539 6.016644 0.016123 214 214
3.6 36 2.093 6.961 0.003059 0.002846 0.007154 6.069779 0.053135 7.43 9.57
3.4 34 2.024 7.371 0.003587 0003323 0.006677 6.168887 0.099108 14.84 24.41
32 32 1.951 7.831 0.004251 0.003919 0.006081 6.325814 0.156927 25.80 50.21
3 30 1.875 8353 0.005101 0004676 0.005324 6. 556482 0.230668 43.32 93.54
2.8 28 1.795 8.950 - 0.006206 0.005653 0004347 6.882696 0326214 75.05 168.59
26 26 1.711 9.638 0.007675 0.006941 0.003059 7.334961 0.452265 147.83 316.41
2.5 25 1.667 10.024 0.008594 0.008134 0001866 7.621334 0.286373 153.49 469.90
2.45 24,5 1.644 10.229 0009111 0.008852 0.001148 7.782501 0.161167 140.41 610.31

24125 24425 1.627 10.388 0.009527 0.009319 0.000681 7.912067 0.129566 190.22 B00.53

6.3
Given

Trapezoidal channel

So =0.001
Q =75 m’ls
Bo =50m

S =15

Control at downstream end that raises the water depth to 12 m.

n =0.025

Determine :  Amount by which the channel banks must be raised along its length.

Solution Compute the critical path.
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%=A\/B

75  [(50+1.5y,)y0]?
- 1

4/9.81

(50 +1x1.5y,)?

Solving for yp we get, yO = 0.608 m

2
Compute the normal depth: nQ =AR?3

JSo
(0.025)(75) _ [(50+1.5y,)y,]°

/ 2
0.001 55,21+ 1.5%y )3

The normal depth, y, = 10106 m
Yo<V¥n => Mild channel. The new backwater curve is M1.

Table P6.3 shows the computations of the new profile. The last column (Dh) is the min_imum
distance by which the banks must be raised if the flow was uniform before the construction of
the central structure.

A freeboard must be provided for safety reasons. The water depth will be normal at 11.8 km
upstream from the central structure.

Table P6-3
Direct Step Msthod

Q= 75 m3/s B= 50 m
So = 0.001 n= 0.025 2= 1.5
y A R \" Sf Sfave So-Sfave E E2-E1 x2-x1 X2 Dh
m m2 m m/s m m m m m
12 816 8749 0092 2929E-07 12 0 10.89
1 7315 8.159 0.103 4.001E-07 3.465E-07 0.0009997 11.001 -0.999895 -1000.24 -1000.24 9.89
10 650 7.553 0.115 5615E-07 4.808E-07 0.0009995 10.001 -0.999857 -1000.34 -2000.58 8.89
9 571.5 6.931 0.131 8.145E-07 6.88E-07 0.0009993 9.0009 -0.999801 -1000.49 -3001.07 7.89
8 496 6.291 0.151 1.231E-06 1.023E-06 0.000999 8.0012 -0.999712 -1000.74 -4001,80 6.89
7 4235 5629 0.177 1.958E-06 1.594E-068 0.0009984 7.0016 -0.999567 -1001.16 -5002.97 5.89
6 354 4942 0.212 3.333E-06 2645E-06 0.0009974 6.0023 -0.999311 -1001.96 -6004.93 489
5 287.5 4.226 0.261 6.225E-06 4.779E-06 0.0009952 5.0035 -0.998819 -1003.62 -7008.54 3.89
4 224 3477 0335 1.33E-05 9.763E-06 0.0008902 4.0057 -0.997755 -1007.59 -8016.14 2.89
3 1635 2.688 0.459 3518E-05 2.424E-05 00009758 3.0107 -0.994989 -1019.71 -9035.85 1.89
2 106 1.853 0.708 00001375 8.634E-05 0.0009137 20255 -0.985209 -1078.31 -10114.16 0.89
35 78.375 1.414 0.957 0.0003605 0.000249 0.000751 15467 -0.478843 -637.59  -10751.74 0.39
1.11  57.3482 1.062 1.308 0.0009866 00006735 0.0003265 1.1972 -0.3495 -107058 -11822.32 0
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6.4
Given:

5 km long canal with free over fall at the downstream end.

Yo = 4m (at the fall)
n =0.013
V 2
Entrance loss =0.2—
29
Bo =8.0m
S =15
SO =0.0001

Determine : The minimum water level held in the lake for these conditions.

Solution : Compute the channel discharge using the critical depth relation
A\/_ = g
Vo
Where A = (8+4x1.5)4 =56
D = w =28
8+2x4x1.5
And Q =56 /2.84/9.81
Q  =293.49m’s

Table P6.4 shows the computations of the flow profile using Standard Step Method.

The water depth downstream of the entrance section is 6.34m. Using the velocity-head of this

section the local losses are :

2
0.2 \;—g: (0.2)(0.356) = 0.071

The minimum water level in the lake is :

Hae =6.34+0.07 =6.41m
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6.5
Given
Natural stream with the following cross section:

n =0.035

Q =80ms

Flow depth at a bridge downstream = m
So =0.0002

Determine : Flow depth 3.0 km upstream of the bridge.
Solution:
First, determine the type of flow profile by comparing the normal depth, critical depth
and the water elevation at the bridge.
For the normal depth, we solve for y, from

3

R _ A

JSo ps

where

nQ _ (0.035)(80) _ 108

JSo 1/0.0002

Then

[A0+2y, )y, ™ = 198 assuming y,<5,
(10+2\/§yn)0.6667
The solution is yj =4.833m

For the critical depth we solve,

AD =L
Vo
Or
3
2
[10+ .2)/0))/0]l = 2554 assuming yo <5
[10 +2x2y,]?
or, yo=1.662 m

Given that Yrigge > Yu > Yo, the channel is MILD and the curve is M1 type.

Table P6.5 shows the computations of the backwater flow profile using Standard Step method.
At 3km upstream from the bridge, the water depthisy =7.46 m
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6.14

Given : The tailrace system of a hydropower plant shown in the next figure, with

Q

1688m3/5

Downstream water elevation = 504.00 m.

Determine : The water level in each manifold.
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The system was divided into 7 sections. Table 1 shows the channel properties for each section.
The following assumptions are made to solve this problem.

1. All channels and tunnels are concrete-lined with n = 0.013

2. The transitions are assumed rectangles in cross-section.

3. The horse-shoe section is “standard with D = 18 m (see figure below)
4 The flow through each turbine is the same : Q = 1688/2

or Q =844 m¥/s
Standard horse-shoe section.

Table 1: Channel Properties

Channel N*and Upstream Downstream )
. L (m) So Q (m°/s)
section Elev. (m) Elev. (m)
1 Cc-C 492.56 492.10 502.92 0.000915 1688
2 B-B 496.52 492.56 137.16 0.028871 1688
3 B-B 496.52 496.52 97.54 0.0 1688
4 Transition 2 488.50 496.52 122.0 -0.06245 844
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5 Horse-shoe 2 489.50 188.90 573.0 .0001047 844
6 Transition 1 488.90 496.52 198.0 -0.03848 844
7 Horse-shoe 1 489.50 488.90 405.0 0.001431 844
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The backwater profile is started at compound section A-A with a water depth of 11.9m of the

weir. The computations are carried out upstream using Standard Step Method as shown in Table

2. This corresponds to channel N2 1 in Table 1.

The energy and continuity equations are used at the junction of Channel 1 and channel 2 to

obtain the elevation at the beginning of channel 2, as follows:

CHANNEL FUNCTION ANALYSIS.

EnergyE; = E, + Losses

2

EA+yA+ \/_A = EB+yB+(1+k) \/L
29 29

2
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Continuity: QA =QB
VaAAA=VgAs=Q - (2)
Assuming negligible losses at the junction (k=0) and combining Eq. 1 and Eq. 2, we get,

2 2
YA+Q2g A_iz =Zg+Ys +\;Lg = Hg - 3)
H; is known from the last line in Table 2:
Hg = 504.275 m
If the bottom surface at the junction is continuous we have,
Ea = Es = 492.56 m
Then Y a can be obtained from Eq. 3 as
Ya = 11.607 m
and Aa = 1158.37 m2
Va = 1.457 m/s

Table 3 shows the computation of the water profile in channel 2 beginning with YA = 11.607m.
Table 4 continues the computations for channel 3 (horizontal channel). The standard step
method was used in both cases.

An energy analysis similar to the one made for the junction was made for the branch where
channel 3 joins channels 4 and 6. The details are as follows:-

Energy Equation (neglecting losses):

vV 2
ZB-l'YB'l'% = Ha - (4)

2
Zc+ Yt ve = [ P — (5)
29
Continuity Equation :
Qa=Qe+Qc e (6)

and

Qe=Qc=Qx2 - (7)
FromEq. 4 :
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Using Qg = 844 m*/s and HA = 504.288 m and Zg = 496.52 m from the last section of table 4, to
solve for Yg in eq. 8, we get :

Ys = 7.706 m
Similarly we have Ya =7.706 m. There are the downstream depth for channels 4 and 6.
Assuming that the width of the downstream section in the rectangular transitions is equal to the
top width of the main channel of section B-B we have, for y=9.45m, the width is 99.23m. The
width of the upstream end of the transition is equal to the diameters of the standard horse-shoe
section, this is 18 m. The channel is increased linearly between these two values. Table 1 shows
the length of each transition.
The equation for gradually varied flow in a channel with variable cross-section derived in
problem 5-9 was used here. The Improved Euler method with the modifications required for a
rectangular transition was used in the computations. Table 5 and 6 show these results.
Finally, the Direct Step Method with the help of a table of the geometric properties of a standard
horse-shoe section was used to compute the water surface profile in the tunnels. Table 7 and 8
show the computations. Interpretation between the last two lines of these table gives:
From Table 7, at manifold 1, y =16.75 m (Elev. 506.25m)
From Table 8, at manifold 2, y =16.71 m (Elev. 506.21m)
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Table 5
IMPROVED EULER METHOD FOR RECTANGULARE TRANSITIONS
TRERANSITION No 1

BO= 99.2 M
g = .0
50 = -.0385
N = .013
Q = 844.00 M3/5
YD = 7.706 M
BUF= 18.0 M
y 4 B R ¥
m m m2 m
.0 99.230 764.666 7.706
-10.0 95.127 770.822 8.103
-20.0 91.025 773.702 8.500
-30.0 86.922 773.323 8.897
-40.0 82.820 769.699 9.294
~50.0 78.717 762.841 9.691

~60.0 74.615 732759 10.089
=70.0 70.512 739.462 10.487
-80.0 66.410 722.957 10.886
-90.0 62.307 703.252 = 11.287
-100.0 58.205 680.35¢6 11.68%
-110.0 54.102 654,275 12.083
-130.0 45.897 592.882 12.918
-140.0 41.795 557.293 13.334
=150.0 37.692 518.579 13.758
-160.0 33.590 476.773 14.194
-180.0 25.385 385.070 15,169
-198.0 18.000 293.445 16.303

Table €
IMPROVED EULER METHOD FOR RECTANCGCULAR TRANSITIONS
TRANSITION No 2

BO= 99.2 M
5 = .0
80 = -,0625
N = .013
Q = 844.00 M3/S
YD = 7.706 M
BUP= 1B8.0 M
X B A b
m m2 ’ m
.0 99,230 764,666 7.706
. 92.572 773.060 8.351
-20 85.914 772.848 8.99¢
79.255 764.093 9.641

72.597 746.841 10.287
65.939 T21..13% 10.936
59,281 687.001 11.589
52.623 644.488 12.247
45,964 593.642 12.915
39.306 534.539 13.599
32.648 467.316 14.314
25.990 392.265 15.093
18.000 293.762 16.320

i
e B 1
HOWw®R-Jnwawn - o
DOoOocOOCOoCOCOOCO

coocoo0oocoooo0o

=122,
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6.17
Given:
The channel of problem 3.18

Rectangular outlet

Bo =10 ft.

L =500 ft.
So =0.001

Q =324.6 cfs

Invert Elev. At the entrance =122 ft.
Concrete channel (n = 0.013)

Plot the water surface profile

Solution:

The bottom elevation at the river entrance is :

122-500 x 0.001 =121.5ft.
The water depth at this section is :
131-121.5 = 9.5 ft.

The normal depth is obtained from

10y )3 _ (0.013)(324.6)

= 89.56
2
10+2y.)° 1.4940.001
Yn=4.896 ft.

2

The critical depth is Y = 3{Q_ ~ 310
g
Yo =3.199 ft.
Therefore
Y river > Yn> Y => MILD CHANNEL, M1 PROFILE

Table P6.17 shows the result obtained by using Standard Step Method..
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951
4.7 L
’
Wk il ot
Z}}afé 9.3 ' “%“ ‘.-/,,‘,% £
#
.l
g0 ; : . ¢ .
o 1o0 Zoo 3w 40 Seo
Di7AvcE /f
Table P6-17
Standard Step Method
X y A P Vv va2/2g z H St Sfave Dx hf
ft ft ftz ft ft/s ft ft ft ft ft
(4] 9.5 95 29 34168 0.1813 0 96813 0.000183 0

-50 9.458 94575 28915 34322 01829 0.05 9.6904 0.000185 0.000184 -50 0.009188
100 9.415 94,152 2883 3.4476 0.1846 01 9.7 0.000187 0.000186 -50  0.00829
-160 9.373 93,729 28,746 34632 01862 0.15 97092 0000189 0.000188 -50  0.00939
-200 9331 893307 28.661 3.4788 0.1879 02 97186 0.000191 0.00019 -50 0.0095
-300 9.247 92466 28493 35105 0.1913 0.3 9,738 0.000195 0.000193 -100 0.01932
400 9163 91,629 28326 35426 0,1949 0.4 97577 0.0002 0.000198 -100 0.019755
-500 9.079 90.795 2B.159 3.575 0.1985 0.5 97779 0.000204 0.000202 -100 0.020205
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6.18
Given
Ybridge =12 ft.
Trapezoidal channel
Bo =20 ft.
S =20
So =0.0003
Q = 800cfs
n =0.025

Determine how far the effect of dogging due to the debris accumulated at the bridge entered.

Solution :

Consider that the flow was uniform before the accumulation of debris. Then compute the normal

depth as :
a3 _  NhQ
AR = ——~ _
1.49S,2
Or
5
3
[20+ 245y, 1,
3
Then Y, =759 m

Now determine if the flow is subcritical or supercritical by computing the critical depth and
comparing it with the normal depth.
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AVD = &
Vo
Or
5
3
[20 + 24/5y,],
3
YO =3228m.
Then Y, < Yn => sub critical flow.
AlSO Yhrigge > YN > y0 => M1 profile, starting at a depth of 12 m at the bridge and

approximating the normal depth asymptotically.

Table P6.18 shows the computations obtained by using Direct Step Method.

The effect of clogging extends 36775 ft (6.96 mi) upstream of the bridge.

Table P6.18 (Direct Step Method).

Table P6-18
Direct Step Method

Q= 800 cfs B= 20 ft C= 149
So = 0.0003 n= 0.025 s§s= 2 g= 322 m/s2
y A R v st Sfave  So-Sfave E E2E1 x2x1 2
ft ft2 t fit/s ft ft fi t_
12 528 7.168 1515 4.68E-05 12.03565 0

11.5 4945 6923 1.618 558E-05 5.13E-05 0.000249 11.54064 -0.49501 -1990.44 -1990.44
11 462 6.677 1.732 6.71E-05 6.15E-05 0.000239 11.04656 -0.49408 -2071.57 -4062.01
105 4305 6429 1.858 B.13E-05 7.42E-05 0.000226 10.55362 -0.49294 -2183.37 -6245,38
10 400 6180 2.000 9.93E-05 9.03E-05 0.00021 10.06211 -0.49151 -2343.94 -8589.33
9.5 3705 5929 2159 0000122 0.000111 0.000189 9.572397 -0.48972 -2588.34 -11177.67
9 342 5676 2339 0000152 0.000137 0.000163 9.084965 -0.48743 -209444 -14172.11
85 3145 5421 2.544 0.000191 0.000172 0.000128 B8.600474 -0,48449 -3776.51 -17948.62
8 288 5163 2778 0.000243 0.000217 8.27E-05 8.119814 -0.48066 -5815.50 -23764.12
76 26752 4955 2.990 0.000298 0.000271 2.93E-05 7.738861 -0.38095 ~/30/0.67 -36774.79
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6.19
Given:
10 ft. square Box CULVERT
Leutvert = 150 ft.
Scuver = 0.01
Depth upstream box entrance : 15 ft = My

The accumulation of debris at a channel crossing 0.5 mi downstream of the culvert raises the
water level 5 ft. at the crossing. The channel characteristics are:

Trapezoidal
Bo =10 ft.
S =15
Uniform flow prior to the accumulation
1.2ft
S = = 0.00045
CHANNEL 2640ft

where 0.5mi = 2640 ft.
Compute and plot the water-surface profile in the channel and inside the culvert.

The following sketch shows the channel and culvert profile.

. L i .

Solution:
The culvert discharge is given by the orifice equation, as discussed in Chapter 10, Sec. 10.4.
In this case Ho > 1.2 D, where D is the height of the culvert. Using eq. 10.14, we get,
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Q =CB¢D ,/2g(H, -CD)

where By is the culvert width and C is a coefficient of contraction. For a squared-edge entrance
C=0.6,

Then,

Q = (0.6)(10)(10) 4/2x32.2(15 —(0.6)(10)
Q = 14445 ft3/5
The critical depth for the culvert is computed from

AJDT:%

Where Dy, = hydraulic depth. Then,
Yo*? = 254.56
Finally
Yo = 8.65 ft.
Compute the normal depth in the culvert to determine the type of profile
nQ _ (0.013)(1444.5)

1

- = 126.03.
1.49S,2 (1.49)(0.01)2

Solve for the normal depth from

5
2 3
AR: = A0)T - 49603
(2y, +10)°
The answer is Yn=6.348 ft.
We have yn<y<y0 and the curve is S2 type. The flow inside the culver4t approaches the normal

depth asymptotically.

Now, we compute the normal and critical depth in the trapezoidal channel.
For normal depth solve,
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5
3
[(10+1.5y,)y,]° _ 0013x14445 _ .. ..

1

2
(10+243.25y,)°  (1.49)(0.00045)>
Y, = 6.657 ft.

For critical depth solve:

[(10+1.5y,)y,]*° _ 14445

= 254.56
1 [
(10 +2x1.5y,)? 32.2
Yo = 6.329 ft.
Y, > Yo  =>MILD CHANNEL.

FLOW PROFILE:

The water profile in the channel is computed beginning with the water elevation at the bridge
(Yb=Yyn*5 ft.), yb = 11.66 ft. The computations in the channel are carried out upstream from the
bridge up to a distance of 2640 ft. The computations in the culvert start upstream, at the central
section near the culvert inlet. They are carried out up to a distance of 150 ft. downstream, where
the culvert meets the channel. It is assumed that the flow depth is critical near the culvert inlet.

The Standard Step Method was used in these computations.
Table 9-19a and 9-19b show the results.

SKETCH OF WATER SURFACE PROFILE

Figure 1 is a sketch of the water surface profile. After the accumulation of debris at the
bridge the outlet of the culvert is submerged. The culvert flow is partially full and a hydraulic

jump forms inside. (Read section 10.4 for more details on culverts).
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6.20

Given
Rectangular Channel
B=10m
Concrete Lined (n =0.013)
Sp=0.01

Constant level lake upstream, H = 6m.
If the flow depth at the channel entrance is critical, determine the location where the flow depth
is3.9,3.7,35,3.3and 3.0 m

Solution:
From example 5.3, we know that :
Yo = 4m (at entrance)
Q =250.6 m3/5
Yn=2.37m
The Direct Step Method is particularly appropriate for this type of problem. Table 6.20 shows
the computations.

The locations required are :

Flow depth (m) Location from the entrance (m)
3.9 0.51
3.7 5.09
35 15.89
3.3 35.64
3.0 93.31
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6.21
Given
Rectangular Channel
Bo = 10m
Q =50 m¥s
Concrete lined (deteriorated) : n=0.015
So = 0.0006
Free outfall downstream.

Assume y = Y at 4y, upstream of the fall.

Compute Water depth 2 km upstream of the fall and the water surface profile.

Solution:
Compute critical and normal depth to determine if the channel is mild or steep.
- Q 3
Critical depth — = B,y,2
Ja
50 3
——— = 10y,2
Jo.81 °
Yo =1.366 m =>4 Yo = 5.46m

Normal depth

(YaBo)® _ (0.015)(50)

4/0.0006

Solving for y,, we get y, = 2.274 m.

=30.619
2y, + Bo)g
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Yn > Yo => MILD CHANNEL

Table 6.21 shows the computations by using the Standard Step Method.

The water depth 2 km upstream of the fall is 2.23 m.

Table P6-21
Standard Step Method
x y A P v va/2g z H Sf Stave Dx nt
_m m m2 m mis m m m m m
546 1.366 13.66 12,732 3.66 0.6829 0 2.04887 0.00274 0
400 1.777 17.7709 135542 28136 0.4035 0.05672 223729 0.00124 0.00199 -94.5 0.18842
.300  1.942 194225 13,8845 25743 03378 0.17672 245675  D.0D095 0,0011 -200 021946
500 2,020 202975 14.0595 24633 03093 029672 2.63576 0.00084 0.0009 -200 0.17901
700 2.087 20.8734 14.1747 2.3954 02925 041672 279652 0.00077 0.0008 -200 0.16076
4200 2174 21.7386 14.3477 24 02696 071672 3.16022 0.00068 0.0073 -500 03637
4600 221 220079 14.4196 22627 02609 095672 3.42745 0.00065 0.00087 -400 026723
2000 2232 223202 14,464 2.2{101 0.2558 1. 19672 3.68451 0.00063 0.00064 -400 025706

Given
Trapezoidal Channel

Bo =10m

S =15

Q =80 m3/5
So =0.002

n =01.015
AYdam =10 m

Compute : Flow depth at 250, 500 and 750 m upstream from the dam.
Solution

Critical depth computation : AVD = Q

Vo

Or
80  [(10+1.5y,)y,]**

Jo.81 L

(10 +2x1.5y,)?

Yo =1.707m

106
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Normal Depth Computation :
_ nQ
VSO
5
[(10+1.5y,)y,]° _ 0.015x80
- 1

2
(10+2y,+1+152)°  (0.002)2
Yn=1742m

wilnN

AR

=26.833

The channel bottom slope is practically the critical slope (yn = yo). Assuming that the initial
flow in the channel is uniform, the dam will raise the water elevation above the critical depth
forming a C1 profile upstream of the dam.

Table 6.22 shows the computations for the water profile using Standard Step Method. The initial
water depth at the dam is y, = Aygam = 11.74 m.

The required flow depth are :

Location Water depth
(upstream of dam, m) (m)
250 11.24
500 10.74
750 10.24
Table 6-22
_— __ Standard Step Method
x y A P Vo Vorpg  z H Si Sfave  Dx hf
_m m _m2 m m/s m m m m i
0 1174 32414 5233 0247 000310 000 11743 120E-06 "

100 1154 31515 5161 0254 000328 020 11.743 1.30E-06 1.256-06 100 0.00013
250 1124 30190 5053 0265 000358 050 11743 1.46E-06 1.34E-068 150 0.00021
500 1074 28041 4872 0285 000415 1.00 11.744 17BE-06 1.62E-06 250 0.00040
750 1024 25066 4692 0.308 000484 150 11.744 19BE-06 4.30E-06 250  0.00049
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6.23

Given:
Yn=2m
Rectangular Channel
Bo = 10m
Sp=0.001
n=0.020
AYprigge = 1M

Determine the distance from the bridge at whichy =2.5m

Solution:

Assuming that previous to the construction of the bridge the channel had uniform flow;
then, at the bridge section the water depth is

Yoridge = 2+1=3m

The channel flow is given by :

1

2
Q = HARSSOE

Q=1 (0% 50012

(4+10)°
Q =40.111 m*/s
The critical depth is

Yo =Bo-L
Vg
v, =[ 20111 ]§
/9.81X10
Yo =1179m
Yo <  y»  =>MILD CHANNEL
Yh > Yn => M1 profile

Table 6.23 shows the result using direct step method.
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The flow depth is 2.5 m at 777 m upstream of the dam.

Table P6-23
Direct Step Method

= 40111 m3/s B= 10 m
So = 0.001 n= 0.02
y A R v S Sfave  So-Sfave E E2-E1 x2-x1 x2
m m2 m m/s m m m m
3 30 1.875 1.337 0.000309 3.091114
29 29 1.835 1.383 0.000341 0.000325 0.000675 2.997506 -0.09361 -138.66 -138.66
28 28 1,795 1.433 0.000376 0.000358 0000642 2904595 -0.09291 -144.82 -283.48
27 27 1.753 1.486 0.000418 0.000397 0.000603 2812487 -0.09211 -152.74 -436.21
2.6 26 1.711 1.543 0.000465 0.000441 0.000559 2721306 -0.09118 -163.25 -599.47
25 25 1.667 1.604 0.000521 0.000493 0.000507 2.631204 -0.0901 -177.80 -777.27
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RAPIDLY VARIED FLOW

7.1
2
H :Z+y+v—
29
_ _ Q*
H =H-z =y+
° Y 2gA°
dH, _dy_Q’ dA
dx dx gA® dx
dy Q°BdA
So = ==
dx gA° dx
2
So :(1_ Qz 3jd_y
gBy*® jdx
2
Ho =Y+ Q
2gA*
For critical section dH, _ 0

dH, , 2Q%
dy 2gB%y°
2
Yc =3 Qe
gB?




Chapter 7

Or
2
Ly
9By,
v _Ye
29 2
. v,? Yc 3
Hmin =Yc+ -+ =Yc+— =—YcC
29 2 2
Fromeqgn (2)
3 2
Hmin = —=3 Q 2
2\gB
From Eqgn. (1)
X y 2
Q
S,dx = |(1- )dy
!J. ’ YJ.O gB%y?
2 2
Sex = y+ Qz 2 o 2
2g9B%y 29B%y,
3 3
SoX :y+1 ¢ _ C—EYC
2Y? 2y ?
3
Sox = +1YC —3 c
2Y? 2
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7.2
0 :tan'ld—B _ a8
dx dx
0dx =dB - (1)
Q =BY y2g9(H, -Yy)
_ Q
B = -(2)
Y\/29(Ho —Y)

IS

2
HO =y
2gA*

At the critical depth,

dHO _ 1_ 2Q2
dy 2gB%Y?
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2 2
Yc =3 Q2 Yc = Q 5
9B gB%y,
Vc? Yc
Ho =Yc + =Yc+— = -YcC
29 2
2
HO :§3 Q
2\ gB?
Bmin = \/Q_ 1 3
9 H/z
2 0
@79
X B
jedx - de
0 Bmin

Ox = Q Q L

Y\29(H, -y) Y H

Y2 =Y
07} =b;

= =E
M2 = M3
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¥ = ba/by

S = YalY;

E.  =Yi+Vi%2g
Es =Y+ V5/2g
Q1 =Q2 =0Qs

AV: = AV =A3V;

biyivi = boyovo = bgysvs

@ @ @
L
_
= S -
/ —-! —
F
s P S 7 YT TIE
f
P
ll:)‘, “J > [,\'S
—_— .

AE  =21[1
Zg V12 12 V12
2
aE =V, 2 .2 1,
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Momentum
P]_ + Pz - P3 = E(V3 _Vl)
g
Pl - lebl
2
b, = 7(s-b)y,’ p, = 2By by’
2 2
P3 = 7/b3y12
2

RV —V,) _ 7y12b1 n 7’y12b3 _ 7y12b1 _ Wszbs

g 2 2 ? ’
by, (Vs —Vvy) =%by[y," ~Y,']
9
byyv, b
mi—i—v —vy) =%y [y, -yl
LAESP L YA A
2b, y? oy
ay, 5 IR AT £

Fr. 2 Y 2
—L -Fy =L -2
)5 2 2
2
F 2 7/ Fyl 752
Vi Tt =
2 s 2

115



Chapter 7

Eqn. 2 can be solved for S

_. L Frh-)
S =1+ 172
Frr=1, Fr' (-9
S2 =1+2+-=% + i/
v Y
Egn. (1)
A 2 2S 1
AE - 2#[]_.,. 2 2 2g?2
Fr. Fr. 4
AE = \ﬁ[lJr 2 1 2 2(y-1)

29 Fy? yiH2Fp20r-) Fyr o p?

2 2 _
_ \L[1+ 2 1 Y -2Fy2(y-1) 2 _£+_2]

20 pp rPH2Fp2y-1) 2 -2Fy200-1) Fy' oy oy

_ \/L[l_ Y  =2Fy"(y-1) _2,2,
29 r-2Fntr-0* oy y°

Ve (1_3 1j_i+w+i]
2 4 2

/4 /4 /4

:\;L[(l_ i) 2+2w]
g r

116



Chapter 7

b
Fre(2-1
_vl2 1 bl 2 2 (bl )
“20|" ) T
; b,
B
2 [ 3
Vv b b
AE = 2 |@--2)%+2Fr*—-(b,-b - (3
29 _( b3) b34( 5 1)} (3)
2
AE :VL(l_ﬂ)Z
2 b,

As Fr<0.5and b—3 > 1.5, the last term in egn. (3) vanish also y1 =y, = y3
1

AE = Vil 200 B A -
g b3 b32 Zg Vl V12
= %[\/12 2V, +V,°]
AE - (\/1 _V3)2
29
75
Yr = %[—1+1/1+8Fr12]

Yo
—1+1 8Frl2 1+ 1 >
2 2 8Fr,
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7.6

Fl'l2

hi

Yo +\2 Fry

=\2Fr-¥%

=E1-E2 :(

:(Y1—YZ)+£(

29

2

q

s + Y5 (8Fr,?)” (1+ >

1

Chapter 7

1

forFry > 2

Vv

Y, +——

)
o

29

2

1

=(yi—y2) +
2

gy,

2

2

q

2
Y2

= (Y1 - Y2) +[1-

29y

d

Yo+, J

Y,

= (Y1 - Y2) +[1-

=% &[y_2+1]

1 1

= (Y1-Y2) {1—— Y

2

1

1_(_
4y, \y

Y2+

1

2

Yo

Fr,” Vi (Y2 +Ya),
2 2
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= (yl_yz) {1_EM:|
4 Y.y,

4y.y,—Y. ~Y," —2yy
= (Y1-Y2) Y2~ Y1 2 Y2
4y.y,

2 2
y1 +y2 _2y1y2
)
4y.y,

= - (Y1-y2

(yz _Y1)(Y2 B y1)2
4y.1y,

— (Y2 _y1)3
4y.y,
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X

Xb

For design
Xb

\1

= 2sin2«a

=54x2xsin2(20)

=104 sin 40

=0.8x 104 x sin 40

= /2x32.2(60-6)

Chapter 7

= 53.5

=58.97ft/sec.
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Y1 = Q
58.97B
e - A 58.972 x58.97B
1 —_ =
ay, 32.2Q

Y,58.97B
Y

Stilling basin design

Yoo %[—1+\/1+8Fr12 ]

~6368.69 >
Q

2 Q

_ 1[_1+\/1+8x6368.898

]

q

q {_ " \/1+ 50957.095}

117.94

Assume,
Fro  =11.79,

Yy, =12.39 y1 =0.766
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hs
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1
=15+ —(Fri—-4.6
[ 11( 1 ) Y2

=[15+ 1i1 (11.79 - 4.6)] x 12.39

=[1+0.13 (Fry—4.6)] y1

= [1+0.13 (11.79 — 4.6)] 0.766

=1.48 = 1.5
=25h

=25x15 = 3.75
=h/2 =15/2= 0.75
=26.68 +3.75= 30.4
>4y2

>4x1239  >49.56

=50
=0.85x12.39=10.5
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Q

4809.03

7.9
W - B Y /_.
L\
( \
i \ \“‘ - =, A
P — L f -
N .
o ;.“fl O s v 4
Q = 360,000 Cfs
Vi =,/2(32.2)(140 +y,)
Vi1 =8.02 140 +vy,
Q = Bl. V1. V1
Y1 = Q
50x68.02,140+y,
ol = V,)  _ 64.32(140+y,)
. 322 Q
2407.49,/140 +y,
3
(140+y,)?

123
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Yoo 1[—1+w/1+8|:12]
Y, 2
[ 3
2407.49,/140 2
Y, Y2 _ 11 41 8xag09.03 A0 Y2)"
Q 2
Q 38472.24 s
Y, /140 + =— | -1+, /1+———(140+ 2
? Yz 4814.98 Q (140+ys)
For Q =260,000
3
Y24/140+y, = —74.77+74.77\/1+0.107(140+y2)2
Trial and error,
Yo =90.5
v1 _ 360,000 _985
2407.49,/140+90.5
Design of Flip bucket :
V,? .
Assume no losses ~hy =21 = 121.76 _ 230
29 2x32.2
Yb =0 o =30
%o =2Sin2«
hO
Xb =230 x 2sin 60 =398
For design,
Xb =0.8x398 =318.7 - 320
Bucket redius = 15m x 1 3 =492 - 50
Bucket top above the bucket invert by =10/100 x50 =5
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Design of Roller bucket:-

Fig. 7.20
P2 cd=0485
Hd
Fig. 7.21
He =1 Kd=0.02
Hd
Q = 360,000 Cfs
Le = Ln-2(N Kp + Ka) He

Le =6 x50-2(5x0.02) He

Le =300-0.2 He

360,000 =0.485 Le 4/2x32.2He"®
92484.9 = (300-0.2 He) Hel.5
2
He; = 92494.9 5 Trial and error He = 46.61
(300-0.2He)
If we take Y, =90.5 and  y; =9.85, from the first part,
Vi =,2x32.2(140+90.5-9.85)  =119.21 ft/sec.
360,000
1 = =10
119.21x6 x50
Frp, = (11921 6.62 > Fig. 7.28 R > =0.25
4/32.2x10 V,
Vit -
29
2
R =0.25(10 + 119.21 =57.67 ~ 58
2x32.2
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Fig. 7.26a  wing Fr = 6.62 and R >=0.25
Vl
+7
Y1 29
T
M =10 Tmin =10 x10 =100
Y1
From Fig. 7.26 b
T
—m =13 Tmax =10 x13 =130
Y1

For best performance Tmin = tail water depth

Ts =9 Ts =9x10 =90
Y1
e S {".
4 ¢ L.i N P
S X ¥ J
N >
. o S
o, o
R =58’
0.05R =29
0.125R =7.25
05R =59
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Chapter 7

Stilling basin : notation on figure 7.24
Fry =6.62 Y1 =10 Y2 =90.5
L, =[1.5+1/11 (Fr1 - 4.6)] y2

= [1.5 + 1/11(6.62 -2.6)] 90.5 = 152.4

h  =[1+0.13(Frl-4.6)] y:
=[1 +0.13 (6.62-4.6) 10 =12.6

L, =25h=25x12.6 =31.6

hs =h2 =126/2 =6.3

L =Li+L, =1524+316 =184

L >4y, >4x90.5 =362

L =362

d, =0.85x90.5 =76.95

i : Roller bucket
i - Flip bucket
i : Roller bucket

Q = 260,000 Cfs Hs = 46.61
He 55.93 .
= =12 > Fig.7.21 type2 Kp =-0.005
Hd 46.61 J P P
He .
— =12 - Fig. 7.20 c/cd =1.015
Hd
C =0.485x1.015 =0.492
Le =Ln-2 (NKp + Ka)Hc
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Le =50x6-2[5x(-0.005) + 0] 55.93 = 302.796
Q =0.492 x 302.796 /2x32.259.93'°
Q =500,063.73Cfs  at H=55.93
He 37.23 .
= =0.8 Fig. 7.21 type 2
Hd 46.61 J P
He  _os Fig.7.20  clcd = 0.965
Hd
C =0.483 x 0.965 =0.468
Le =Ln-2 (NKp + Ka)Hc
=50 x 6 — 2[5 (0.25)+0] 37.23 =290.69
Q = 0.468 x 290.69 ,/2x32.237.23"5
= 248,003.84 Cfs
Q =248,003.84Cfs  atH=37.23
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7.11
e B 1
E 5 932
Yok ”, 5 Y o
'-.‘.
=“
V= £4 \
v A3 e _

Le =Ln-2 (NKp + Ka)Hc
Fig. 7-21 Kp =0.0125

Le  =4x50-2(3x0.0125)32

Le =197.6

. Fig. 7.20.8 cd = 0.49

Hd 32

Q =C Le 4/2g He®®

=0.49 x 197.6 4/2x32.2 x 32**
= 140653.59 Cfs at H =32

He =48

He 48 _i5 Fig. 7.21 Kp =-0.025

Hd 32

Le  =4x50-2[3x(-0.025)]48 =207.2
Fig. 7.20 b HH—d =15 - c/ci=1.05 C =1.05 x 0.49 = 05145
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Q =0.5145 x 207.2 /2x32.2 x 48'°
Q = 284498.44 Cfs at H =48
y S
j2e |
|
|
jie !
I-‘." b1 ‘b
7.12
Q  =CLcH™
Q =3.8 Lc H'®
C =3.8 =Cd .29 =Cd+2x32.2
For S|

3.8
C =22 /2x9.81 =2.097
V2x32.2
Q =C. Lc. H*®
Q =2.057 x 100 x 10° =6631.295 m*/s
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7.13
Q) Flip bucket :

- so much spray un-desirable for road, bridge and electric equipments.

- Act enough submergence D.S

- Water level fluctuation

- current and eddies around the plunge pool
(i) Roller bucket
(iii)  Stilling basin :

- control the jump location

- Low apron level, may required a lots up cavitations and

concrete

- Chute blocks and baffle blocks and end stills are used in control the jump.

7.14
g AN | A
Mj- €4 s
- i [ l'f X
3
3
F LR
£ \
.
J\L\-._
I P ‘-Lh_""t-.

Fig.7-20 P _100 _4 >  Cd=0492

Hd 25
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Fig. 7.21

Fig. 7.21

Fig. 7.21

Kp
Le
Le

Kp
Le

Kp
Le

EL
EL

=0.0125

Chapter 7

=Ln- (N Kp + Ka) He

=60 x 5 — 2(4 x 0.0125 +0) 25 =2975
=0.492 x 297.5 \/2x32.2 x 25 **

= 146826.67 Cfs

Fig. 7.20b  C/Cd = 1.01

=1.01x0.492=0.497

=0

=60x5-2(4x0+0)25 =300
=0.497 x 300 +/2x32.2 x 30'°

=196608.54 Cfs
29 16
25

Fig. 7.20b  C/Cd = 1.07

=1.07 x 0.492 = 0.5264

=-0.025
=5x60—-2(4x(-0.025)+0)40 =308
= 0.5264 x 308 x +/2x32.2 x 40"°

= 329154.25 Cfs

=150 Q  =196608.54 Cfs

= 160 Q  =329154.25 Cfs
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7.15
Nl gt
D SPLE. S v
%0 Hi: 1%
' "R " -
P= B¢
i € 4l g o]
Fig. 7.20 Q
p 36, Cd = 0.49 Le =20
Hd 18
Q =0.49 x 20 X +/2x9.8118 ** = 3315 m®/sec.
Elev.300 1+ -20  _q111 Fig.7.20b  C/Cd =1.05
Hd 18
C =1.05x0.49 =0.5145
Q =0.5145 x 20 +/2x9.81 20'°= 4076.7 m®/sec.
Elev.310 1+ -39 _147 Fig.7.20b  C/Cd =1.09
Hd 18
C =1.09x0.49 =0.5341
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Q =0.5341 x 20 /2x9.81 x 30*° =7774.7 m’/s
7.16 Assume Hd =30
Hd  =0.75(652 — Hees) = 30 . Hepest = 612

60000 = Cd L +/2x32.2 x 30'°

P - cd =49 Vs bed level =552
Hd

60000 = 0.49 x L x +/2x32.2 30'°

L =92.9
H 8 _ . _
Elev. 620 i3 - 0.267 Fig. 7.20 b C/Cd =0.86
C =0.86 x0.49 =0.42
Q =0.42 x 92.9 4/2x32.2 x 81° = 7085.05 Cfs
Elev. 648 :—d - % =12 Fig. 7.20 b C/Cd = 1.02
C =1.02x0.49 =05
Q =0.5%92.9 /2x32.2 x 361° = 80516 Cfs

7.17
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800

W
N
N

Chapter 7

AVD

B (B, +5Y)y
= (B, +5y)y1/—(BO T25y)

/(15+y)y
140.98 = (15 =
(15+y)y 15+ 2y

2 nQ 0.028 x 800
AR? == -
JS, ,/0.05
5
[(15+—y)y]32 ~100.176
5+ 242y f
Yn;
AR% nQ ~0.028x800
S, ,/0.0003
5
[(15+—y)y]32 ~1293.265 Yn,
[15 + 2\/§yF
= 800 =14.204 ft/sec.
3.11(15 +3.11)
- v 14.204 1419

Y2

T Joy  JB22x311

= ﬂ'[\/1+ 8x1.419° —l] = 4.877

2
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The jump will move upstream till the exact position where Y1, Y will be satisfied.

7.18
” f
(i) L =100’
P 28 =1.167 Cd=0.483 using Fig. 7.20 a
Hd 24
At Elev. 165
H 35 146 Fig.7.20b  C/Cd = 1.05
Hd 24
C =Cdx1.05 =0.483x1.05 =0.507
Q =0.507 x 100 x /2x32.2 x 35%°  =84246.7 ft*/sec.

(i) assumen = 0.013 for concrete

To find critical depth

% ~AJD

84246.7

\32.2

Yc =28.04

= by ?** =100y,"’
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sc = N2Q2 ~ {0.013x84246.7}2 1
4 - . 4
AR 100x28.04 100x28.04 )2
100+2x 28.04
=0.00324
70
ButSo= — =0.1 .. So > Sc Steep channel
700

To find the normal depth

2
AR® = "
VSo
2
3
100 yn 100y, _ 0.013x84246.7
100+ 2y, 0.1
2
3
vn| 200¥, = 34.6335
100 + 2y,
Trial and error yn =8.96

From point C to point n, S2 profile. Then yn will be the lowest possible epth other than spilling.
The type of the flow profile developed in the steep canal depends mainly on the tail water

situation.
(i) Y1 =8.96 Fr1=55

Y2 = Y—Zl[—1+w/1+8Fr2]

2
_ 8.96 _1+\/1+8[ 84246.7 J 1

2 100x8.36 ) 32.2x8.96
Y2 =65.81
Tail water level =65.81+60 =125.81
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(iv) h2 =E1-E2

V2 V2
= +-1 | 41
[yl Zg] (yz Zg]

2 2
" :8.96+(84246.7] 1 [125_81{ 84246.7 j 1 ]

100x8.96 ) 2x32.2 100x125.81) 2x32.2
=19.73
7.19
Q  =50,000Cfs
2
AR? = nQ
VSO
2
3
100y, (00¥.)" _ 0.013x50000
(100+2y )3 vo.1
2
3
y,| 120¥ — 20555
100+2y,

Trial and error=6.44

50000

= ———  =77.64ft/sec. Fry =5.39
100x6.44

Y1 =6.44 V1

Y2 =

|\)|'<

1[— 11+ 8Fr12}
4

= 674 [-1+/1+8(5.39)% ] = 45.989
But the tail water level =72
Tw =72-60 =12

There is not enough submergence — use flop bucket
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Flip bucket design:

2 2
o =Vi _ 7764 _ s
29 2x32.2

Yb =0 a=30°

X—b =2sin2a

h0

Xb =03.6 X 2 sin 60 =162.12
For design, Xb= 0.8 x 162.12 = 129.7
Bucket radius =15 m = Sc
Bucket lip above the bucket invert by = (10/100) x 50 =5
7.20

7 Do _‘
|50 m
b < °°
.f/'.: fz
. ¥ <
R

Invert elev =z

Y, =50-z

Vi1 = /2xg(200 - z)

Q = BV1y1

2700 =50yl ,/2x9.81(200 - 2)

_ 2700 1219
50,/19.62(200-z)  +/200-z

Y1
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_ vy 19.62(200-2)(200 - )"
ay, 9.81x12.19

=0.1641 (200-2)*°

Y2 =%(—1+1/1+ 8Fr.?)

Fl'l2

= 1590 ~Z :%[— 1+,/1+8x0.1641(200— 2), , |
' / \J200-z
(50-2)4/200 -2z =—6.095+ 6.095\/1+1.3128 (200 - 2)*®
Trial and error z =25.06 m

Y2 =2494m

If one-row of battle block and en sill is used the invert deviation may be raised and when it saves
excavation and stabilizes the jump.
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COMPUTATION OF RAPIDLY VARIED FLOW

8.1
The computer program can be written in two ways:
a. By using a false transient approach wherein the two-dimensional unsteady flow
equations are solved.
b. By solving the steady flow equations.

Note that in both the approaches, the governing equations are hyperbolic partial differential
equations. However, the equations are two dimensional in the first approach and are one-
dimensional in the second approach. Herein, results are represented for the first approach. In this,
concepts of coordinate transformation and artificial viscosity are used. Results by MacCormack
scheme and by Lax scheme are presented in Fig. 8.1.

3.5
MacCormack - - - Lax
g °
<
o
(]
©
2
©
L 25
2 T T T T 1
0 1 2 3 4 5

Distance (m)

Figure 8.1: Surface profile in a channel contraction
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8.2
Flow depths at all the points are computed by using the computer program developed in 8.1. The

maximum flow depth at any section is considered to be the shok wave. Thus, the height and
location of the shock wave is determined. Results for the height of the shock wave are presented
in Fig. 8.2. Both MacCormack scheme and the Lax scheme is used to determine the shock wave.

3.5 7
MacCormack - = = .Lax
g 37 '4’
— ‘f'
5 .
T .
e '4
X -
2
c L
wn 25’ L -
‘4
- .
L d
_f
- —’
2 ‘
0 1 2 3 4 5

Distance (m)

Figure 8.2: Height of the shockwave in a channel contraction

8.3
MacCormack scheme is suitable for both sub- and super critical flows. Therefore, the computer

program given in the appendix can be used to compute the flow. Note that this problem is same
as the computation of a hydraulic jump.
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CHANNEL DESIGN

9.1
Given Q =50 m%/S
So =0.0002
Channel material : Rock
Design the canal.
Solution:
For rock in good conditions n = 0.035 and side slopes could be almost vertical (S = 0.25)

From Monning’s equation, we get,
2
AR M9 _ (0'035)(5?) = 123.74
Se2  (0.0002)2
For S = 0.25, we can take By = 2y, then :

A=(2y+0.25y)y =9/4y*
P=2y+%4125y =2250y

2
-9y =0.879y
4 2.559y
And
2 2
AR?® = (2.25y?)(0.879y)?
123.74 = 2.0646 y**'
Or

y =4.63 m.
Then By =2y =9.26 m
SELECT CHANNEL BOTTOM WIDTH
Use By = 10.0 m, then for AR?? = 123.74, the value of y obtained by solving:
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=123.74

[(10 +1.25y)y]?

(10 +2.062y)3

The answer is y =5.37m.

ADD APPROPRIATE FREEBOARD.

Freeboard equation :F,= 40.8x5.37 =2.0m
From Table 9.1, Fob=0.75m
Use Fpb,=0.75m

DETERMINE CHANNEL DEPTH
The total depth is :

Yr=537+0.75=6.12m
CHECK MINIMUM ALLOWANCE VELOCITY
Flow Area  =60.9m2
Flow Velocity : Q/A =50/60.9 =0.82 m/s > Vpin. Ok

(Vmin. = 06.m/s)

SKETCH CHANNEL CROSS-SECTION

SAETCH CAAVNVEL (AT -~ SECT/on
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9.2
Design :
Irrigation Channel
100 km? farmland
0.1 m*/s/km? (water demand)
So = 1/2000
Soil is stuff clay.
Solution:

1. Permissible —Velocity Method:
We choose a trapezoidal channel with side slopes of 1:1 (from Table 9.2). For stiff clay n
=0.025. The discharge is Q =100 km? x 0.1 m*/s/km2)
=10 m%/s
From Table 9.3 the permissible velocity is : Vp = 1.8 m/s.
A=Q/V =10/1.8 =5.56 m2
R= [y
AS,2

R (00250

(0.0005)2(5.56)
R = 2.85 m (Hydraulic Radius)
Water perimeter : P=A/R=19m
Then, compute the water depth :
A=(Bo+Yy)y=5.56
P=By+2...y=195
Or  Bg=1.952V2y
Then
A = (1.95-2\2y+y)y = 5.56
or  1.828y*-1.95y+5.56=0
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This equation has not real roots ! The reason for the inconsistency is that the permissible

velocity is very high for this flat channel. The problem could be solved by reducing the channel

flow velocity.
Let’s try: Vp=0.9m/s
A=Q/N;=10/09=11.11 m2

R= [ 0025XI0 hs o
/0.0005x11.11
P=11.01m

Solve for ‘y’ now :
A=(By+y)y =11.11
P=By+2\2y =11.01

=>  By=11.01-2\2y
A=(11.01-2\2 y+y)y =11.11

or  1.828y°-11.01y+11.11 =0
Solving for ‘y’, we get.

Y =1.282m

Therefore, By = 7.38 m.

The other root of the quadratic equation is real, but less than zero.

impossible.

The freeboard could be : F, =4/0.8x1.28 =1.01m

or 0.75 m, depending on the criterion followed.

Using 0.75 (Table 9.1), the cross-section depth is
D=1287+075=2.03m
Choosed=2.0m

CHANNEL SKETCH.
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9.3
Given:
Runoff Area = 200 km?

Flow = 0.5 m¥/s/m?
Material size =2 mm.
So =0.00002

Design the channel by using :
Q) Permissible velocity method,
(i) Tractive Force method and (iii) Regime Theory.

1. Permissible Velocity Method:
For fine sand (loose sandy soil) we have
Side slope = 2:1 (Trapezoidal Channel)
Manning’s n = 0.020
Permissible Velocity = 0.57 m/s.

Then A=Q/V =100/0.57 =175.439 m’

R=[ nQ o= [ 0.02x100 15
AS 3 175.439x+/0.00002
0
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R =4.0699 m
P=AR= 175.439 =43.106 m
4.0699

P=Bg+2+1+5%> =43.106

or
Bo=43.106 - 2V5 y

Also A= (Bo +5y)y =175.439
Substituting By in the expression for the area, we get,

(43.106 - 2\5 y + 2y)y = 175.439
or
-2.472 y* +43.106 y— 175.439 = 0

The solutions for “y’ are :
Yo =6.472m, y* = 10.966 m

The first root (y1) gives Bo = 14.16 m, while the second gives By <1 which is not possible.
Add 0.78 m of freeboard to have a total height of 7.25 m and use By = 14m.

CHANNEL DIMENSIONS USING PREMISSIBLE VELOCITY METHOD.
2. TRACTIVE FORCE METHOD.
This is a fine method (<5 mm), therefore, the effect of angle of repose is negligible.

The permissible shoes stress is Jeir = 0.06 Ib/ft? or 2.872 M/m? (From Figure 9.4 assuming clew
water).
The unit tractive force on the side is 0.76 @ SOy

=> Jy=0.76 x 999 x 9.81x 0.00002 x y

Equating ‘J;’ to “Jeit’, we get, y = 19.28 m.
This method predicts a very high value of ‘y’. The reason is that the channel slope is extremely
small. This results in a very small coefficient of tractive force (0.76&S,) and, therefore, a very
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high flow depth. Actually, Manning’s equation predicts a negative value of the bottom width,
which is totally unrealistic.
3. REGIME THEORY

From table 9.4, the silt factor can be taken as low as 1.44. The higher the value of silt
factor, the wider the channel is, then we look for a better proportionate channel.

f;=1.44

P=475VQ=4.75x10=47.5m

R =0.47 (Q/f)* =1.932 m

A =PR=91.76 n’.
Also

A= (By+2y)y=91.76

P=Bg+2V(1+4) y=47.5

Eliminating B, from these two equations, we get,
2472y +475y-91.76 =0

The roots are : y1=2.18mandy, =17.04 m

Fory =y1, Bg=37.76m. The other root gives B, <0

Then, use y = 2.18, Bp = 37 m and 0.82 m of freeboard. However, the channel is very wide and
shallow. This is not a good option. The permissible velocity method gave a better proportionate

channel.

9.4
Design a storm sewer,
Area =4 km?
Runoff = 0.15 m%/s/km?
SO =1/2000

Try using a concrete pipe : n =0.013
Discharge  Q =0.15x4 =06m*
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Slope So =0.0005

nQ _ (0.013)(0.6)
JS,  +/0.0005

2/3
Then, ARM = 0.35 =0.16
D D2.667

The valve 0.16 was taken using Figure 4.5. The value yn/D0 was used approximately as 0.5 to

AR2/3 . ) . . o .
get W:O.lﬁ This ensures that the final cross-section is close to the most efficient hydraulic

=0.35

section.
Then D = 1.34m, use D = 1.37m (54 inches pipe). Then 6 = 3.11 rad and the flow depth isy =
0.67m.
Also : A =0.72m°
\Y = Q/A =0.6/0.72 =0.83m
V > Vnin. Ok.
Use a circular concrete pipe with D =1.37 m

9.5
Design an irrigation channel.
Q  =1100fts
SO =2 ft/Imile  =2/5280 =0.00038
Soil is clay.
Solution:

Tractive Force Method.
€)] For clay we select a trapezoidal channel with s=1 (Table 9.2) and n = 0.024.

For fairly compact clay and a voids ratio of 0.8, the critical shear stress is (Fig. 9.5)

Jc =0.17 Ib/ft?

(b) Determine the flow depth.
Jc =0.17 =0.76 HyS,
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0.17

= = 9.43 ft.
(0.76)(62.4)(0.00038)

(c) Compute By : For clay use n = 0.024, then

[(B, + y)y]g _(0.024)(1100)

=
(B, + 202y 1.44x+/0.00038

=908.92

For y = 9.43 ft, the solution for By is By = 19.95ft.
Use By = 20 ft (Try solving this problem by the permissible velocity method!).

Use a freeboard of 2.57 ft. to have a total channel depth of :

d=9.43+257 =12 ft.
9.6
Design a flood control channel for
Q  =500ft%s
So =0.003

Channel paved with bricks (n = 0.013)
This is a non-erodible channel which could be designed using the criterion of the most efficient

hydraulic section. A trapezoidal section is selected.

The most efficient trapezoidal section is half of a hexagon for which

A =\3y2
P =23y
R =thy
Section Factor : AR2/3 = (OL)(SOOB =79.65
1.49(0.003)2
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Then 3 y2(%)2/3 = 79.65

1.091y2.667 =79.65

Finally y = bft.
From here, we get,
A =43.3 ft2
A :(BO+§y)y =43.3 ft2

3
Finally BO = 5.77 ft.
Flow Velocity = Q/A =500/43.3  =11.55 ft/s.
This velocity is acceptable for a paved channel.
Add 2.5 ft. of freeboard.
Channel Sketch.
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9.7
Given

2 km long tunnel with horseshoe section (standard).
Material : sound rock
Inlet bottom level : 100 m
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Exit bottom level : 98.5m
Q = 100 m%'s (design flow)
Free flow in the tunnel
Downstream water level 102 m
@ Plot the water surface profile for the design flow.
(b) Plot the water surface profile for Q = 150 m®/s and downstream elevation = 105 m.
Solution:
@ First select the tunnel dimensions. Use
n = 0.035 (rock)

S0 = M =0.00075
2000
Section Factor: AR?? = (0.035)(100) =127.80

(0.00075)"

A DIAMETER FOR THE HORSE-SHOE SECTION HAS TO BE ASSUMED HERE. A
TABLE CONTAINING THE PROPERTIES OF A STANDARD HORSE-SHOE SECTION
MAY ALSO BE NEEDED.

For a horse-shoe section at full capacity

A _08203andR/ID  =0.2538

D2

where D is the diameter of a standard horse-shoe section.

Then AR?® = (0.8293 D?) (0.2538D)*® =127.80
Therefore, the minimum diameter should be D = 9.32 m.
Try D = 15 m and compute the normal depth.
By using a table of Standard horse-shoe section, we get:

y A R AR??
(m) (m?) (m) (m®®)
5 60.37 2.971 124.78 Low !
5.1 62.55 3.03 131.10 High'!

The normal depth is 5.05 m (approximated from the values in the previous table)
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For uniform conditions, the flow velocity is V = 100
61.46
V = 1.63 m/s, The Frovde number is :
V. 1.62 =0.136<1
JogD, +/9.81x14.6
Then, the flow is sub critical.
The critical depth is computed next:
3/2
Section factor : % = _IA_‘UZ
g
where -2 = 1009.81 =31.93
Vo
Also:
y A T 321112
AT Remarks

(m) (m?) (m)

3.0 32.78 13.62 50.85 high

1.95 18.88 12.87 22.87 low

2.55 26.73 8.83 46.49 high

2.25 22.77 13.10 30.01 low

2.40 24.75 13.21 33.87 high

From the last two lines we know that yp = 2.3 m. This confirms that y, < yn and the channel is

MILD.

The downstream depth is 102-98.5=3.5 m<y,.

Therefore, the profile is M2 type.

Table 9.7 shows the computations of the water surface profile for Q = 100 m**.

(b)  Flow profile for Q = 150 m**® and downstream depth of 105-98.5 = 6.5 m.

Section Factor : AR*® =191.70
Normal depth computation:
y A R AR
m | () | m | (m* |Remars
6.0 75.83 3.738 170.72 low
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6.3
6.45

80.28
82.51

3.483
3.534

184.45
191.4

high
Ok

From the table we get y, = 6.45 m. In this case the normal depth is equal to the downstream
water depth; therefore, the flow in the tunnel is uniform at y, = 6.5m.
The possibility of a smaller horse-shoe section should be considered for this problem. In this

case, a new diameter (between 15m and 10 m) should be assumed and the computations repeated

again.
Table 8-7
Direct Step Method
Q= 100 ma/s
So = 0.0008 n= 0.035
Ty A R v st Sfave  So-Sfave E E2-E1 x2-x1 x2
m m2 m my/s m m m m
3.50 38.99 2.262 2.565 0.002714 3.83527 o
3.60 41.08 2.340 2435 0.002332 0.002526 -0.00178 3.902317 0.067048 -a7.74 -37.74
3.75 43.18 2.417 2316 0.002026 0.002183 -0.00143 402336 0.121043 -84.50 -122.24
3.90 4529 2493 2208 0001767 0.001896 -0.00115 4.148483 0.125122 -109.14  -231.38
4.20 49,55 2.637 2.018 0.00137 0.001568 -0.00082 4.407593 0.259111 -316.70 -548.07
4.50 53.84 2775 1.857 0.001084 0.001227 -0.00048 4 675829 0.268236 -562.75 -1110.82
4.65 56.00 2.843 1.786 0.00097 0.001027 -0.00028 4.812527 0.136698 -493.79 -1604.62
4.73 57.09 2.875 1.752 0.000919 0.000945 -0.00019 4.8B8638 0.073853 -379.37 -1983.98
Prob. 9.7 Water Surface Profile
Q = 100 m3/s
7 - .
|
E
£
o)
o
3
=
i
]
| P S S
0 T 1 i 1 1
-2000 -1800 -1600 -1400 -1200 -1000 -800 -600 -400 -200 0
Distance (m)
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Design a grass-lined channel for Q = 100 ft*/s, Sp = 0.03
Solution : Use Permissible Velocity Method.

For Bermuda grass and sandy silt the

permissible velocity is V — 1.8 m/s = 5.9 ft/s (from Table 9.3)
Use n = 0.030 (Manning’s n is grossed channels varies depending on the depth of flow, the shape
and slope of the channel and the grass growth conditions. A more detail analysis is
recommended for any particular case and circumstances).

Lateral slope : use 2 : 1 (Tropezoidal cross-section)

Then: A= Q_100_ 16.95ft?
V 59

0.03x100

1.49x+/0.03

Also R =0.57 ft and P = 29.84 ft.

Section Factor : AR?® = =11.62

Then: (Bo+Yy)y=16.95 => B;=29.84-2\5y

Substituting By in the section factor formula and solving for y, we get,
347y -2984y+16.95 =0

From here : y = 0.61ft. Therefore, By = 27.11 ft.

The channel is very wide compared to the water depth. In order to have better proportional

dimensions, we can try s=6. In this case, we have,

P=Bo +2+1+36y =29.84

Then, By = 29.84-2\37 y

and (29.84 y — 11.165 y?) = 16.95

Finally we get, y1 =0.82 ft. and By = 19.87 ft.
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Y, =1.85 ft. and By =7.29 ft.

We have two options for the channel. The top width in both cases will be similar. Take the
second choice as our option:
y=1.851t.

Bo =7.29 ft.

The freeboard given by the US Bureau of Reclamation formula is

Fr = +/0.8x1.85 = 1.2 ft.
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SPECIAL TOPICS

10.1  Given : Rectangular channel connecting lakes B & C

Bo =10m
L =1000m
So =0.0002
n =0.013

Channel bottom at Lake B entrance = 94 m.

(1 Plot the delivery curve if the water level in Lake B is of constant elevation El = 100 m

and the water level in Lack C is variable.

Solution:

Use the computer program given in Appendix D4 for simultaneous solution of the energy
equations for the channel reaches.

The input variable are :

NCHAN =1
MAXI =25

G =9.81m/s?
TOL =0.0001
TOP =6.0m
Ys =6.0m
CHELEV =9

SO =0.0002

CHL =1000

CMAN =0.013
BOT =10

20 =0.0

NR =20
ALPHA=1

Q® is VARIED from 20 m*/s to 251 m®/s to get the delivery curve.
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For every discharge, compute the critical depth and check that yo < yq where yq4 =
downstream depth (given by the depth at section 2.1 in the program output) and y, = critical
depth.

The critical depth is obtained from

2 2
y0:3§2 :3Q_
1B%g  Vos1

The discharge corresponding to uniform flow conditions in this channel is
Qn=127.41 m%/s

However, the channel is short ; therefore, the discharge increases to a maximum of

approximately 252 m*/s. These conditions can be verified with the computer program.
Table 10.1a shows the results. The delivery curve is obtained by plotting Q vs yq from this table.
(i) Plot the channel discharge for different upstream lake levels (Lake B) if the water level in
Lake C is El =98 m.
The maximum discharge is obtained when the downstream depth is critical, this is

Qmax = JY,%Y By

Or

Qumax= /[98 — (94 —1000x0.0002)]* x9.81x10

Qumax = 269m°*"°

The normal discharge is given by

4.2x10,, 4.2x10 -
= J/0.0002
Q ( 0.013 )(4.2x2+10)
Qn =79.21m%s

Other points for the discharge curve can be obtained by using the Standard Step method program

given in appendix D2. The input data for this program is
B¢ =10m ZD =938
S =0.0 G =9.81 m/s2
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So =0.0002 ALPHA=1.0

) =42m

x(I) - use N Values between 0 and -1000 m

Q -> Variable

The upstream depth for every flow corresponds to the valve of y at station 1000.

Table 10-1b shows the Q and Y, Valves.

(iii)  Plot a diagram between the water levels in both lakes and the channel discharge if the
water levels in both lakes are variable.

Take for example Q=200M?%/s. Use the Standard Step method program given in Appendix D2.

For the same discharge input different Valves of downstream depth, yq, and determine the

upstream depth, y,p. Table 10-1c shows the results.

Repeat the same process with different discharge and plot yq vs yy, for each flow.
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Q
m3/s
20.0
40.0
60.0
80.0
100.0
120.0
127.4
140.0
160.0
180.0
200.0
220.0
250.0
251.8

Table 10-1a
Delivery Curve
yc yd
m m
0.74 6.20
1.18 6.18
1.54 6.16
1.87 6.13
2107 6.08
245 6.03
2.55 6.00
2.71 5.95
2.97 5.86
3.21 5.73
3.44 5.57
3.67 5.33
3.99 4.42
4.013 4.123

Constant Discharge Curve

yd

m
3.45
4.50
5.50
6.50
7.50
8.55
9.50

12.00

15.00

18.00

Curve Type

M1
M1
M1
M1
M1
M1
Uniform
M2
M2
M2
M2
M2
M2
M2

Table 10-1¢

Q = 200 m3/s

yu

m
5.21
5.41
5.95
6.71
7.58
8.55
9.45

11.89

14.85

17.83
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Table 10-1b

Lake B Level Curve

Q
m3/s

269.0
250.0
200.0
150.0
100.0
80.0
75.0
50.0
25.0
10.0
5.0

161
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m
6.250
5.980
5.310
4.740
4.320
4.200
4179
4.079
4.020
4.003
4.001



Downstream Depth, m

Upstream Depth, m
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Delivery Curve
Lake B at Constant Elevation

6.5

o
o

(¢
g

\

45 t et
4 T T T T T
0 50 100 150 200 250 300
Discharge, m3/s
Delivery Curve
Lake C at Constant Elevation
8.5
6 Bover
4 l-*’f/ T T T T
0 50 100 150 200 250 300

Discharge, m3/s

102



Chapter 10

Constant Discharge Curve

Q =200 m3/s
L] —— — —_—
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10.2

For a concrete spillway with & =30° and H, = 8m, determine the development of the boundary
layer thickness along the spillway length.

Solution:

For a concrete spillway take ks=0.5mm and n=0.013.

(ks=equivalent sand-roughness, n=Manning’s coefficient).

The boundary layer development can be computed using equation 10-5.

a X 0.11 K 0.10
—— = 0.021(—=)"(—==)"
X I h, ) (Xs)
For our spillway hy/xs = c0s30 =0.866
Or
8 =0.0213 (0.0005)°* X"
5 =0.010 X5
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Table 10.2 shows the boundary layer development Note that X, is measured from the water

Chapter 10

surface over the spillway crest. The distance along the Spillway length is denoted by x.

TABLE 10.2 Boundary Layer Growth

Xs(m) X(m) & (cm) Xs(m) X(m) 6 (cm)
6.93 0.0 8.4 12 5.07 15.3
8.00 1.07 9.8 15 8.07 19.6

10 3.07 12.5
10.3

Given: Same spillway as problem 10.2

Determine: c, Yoo, fe, ye.

Solution:

The average air concentration depends upon the angle 6 ; then, for 6 =30° :

C =0.75(sin6)*"® (Eq.10.6)

C=0.446 or 446%

To estimate the uniform water depth at 99 % air concentration (y99) we need to computed the

water depth corresponding to pure water. This is

—, NQg 35
Yw=(—
1/SO)

Where q = 0/L = C4 H¢!°, He = total energy head on the crest. Neglecting the velocity

(wide rectangular channel)

head and assuming H, = Hg a typical valve for Cq is 4.0 (When Hy is in feet). Then:

q = (8x3.28)"°x0.4 =53.76 ft*/ft
q =5.0 m*/s-m
Then yy = (M)O'6 =0.23m

Jtan30?

From EQ.10.7 we get:
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sin®
ygg = yw+1.35yw[—— % WW 7%
or, substituting the numbers : Y 95=0.43m
Given fy = 0.015 we get “fe’ from Eq.10.8
as: fe = fu —
1+10c
or
fe=0.0107
Finally the bulk flow depth is given by Eq.10.12
f
e ( eq )
89S,
ye=0.18m
10.4
Given: A box culvert 2m wide by 4m high
S0=0.005
n=0.013

Downstream end un-submerged

Compute the rating curve

Solution:
Assuming inlet control we compute the culvert discharge using the weir and orifice
equations.

For un-submerged entrance (H<1.2D)

2 2
= ZCBH,|=gh
Q 3 39

Use B = 2m, C = 0.9and g = 9.81 m/s’ to get

3.07H%?  ifH < 4.8m

O
I
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For submerged entrance (H > 1.2D)

Q = CBD CBD,/2g(H -CD)
UseC = 0.6toget Q =21.26 vH-2.4, IfH > 4.8m

Also the critical and normal depth are given by

Yczi/% = SVQ%g.sz

3
And L)Z = 0.184 Q (use Sp = 0.005)
(2y +B)?
Table 10.4 shows the results : head, H, discharge critical and normal depths.
For flow between 0.5m*/5 and 43m3/5 the control is at the inlet (supercritical flow).

Therefore in this range of flows, the weir and orifice equations give the correct discharge.

Table 10.4
Rating Curve

H(m) Q(m*) Yc(m) Yn(m)
0.5 1.08 0.38 0.27
1.0 3.07 0.78 0.56
1.5 5.64 1.17 0.86
2.0 8.68 1.57 1.20
2.5 12.14 1.96 1.55
3.0 15.95 2.35 1.93
3.5 20.10 2.74 2.34
4.0 24.56 3.13 2.77
45 29.31 3.52 3.22
5.0 34.28 3.91 3.69
5.5 37.43 4.15 3.99
6.0 40.34 4.36 4.27
6.5 43.05 4.55 4.52
7.0 45.60 4.73 4.76
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10.5
Given:
Box culvert of problem 10A with
So =0.001
L =100m
Tail water level remains below the culvert top at the outlet.

Compute : The rating curve.
Solution:
Determine of the control is at the inlet or not .Table 10-5a show the normal and critical depths

for several discharge (these are the Q values computed in problem 10.4)

Table 10-5a

Q Yc Yn
(m*) (m) (m)
1.08 0.38 0.473
3.07 0.78 1.00
5.64 1.17 1.60
8.68 1.57 2.27
12.14 1.96 3.03
15.95 2.35 3.93
20.10 2.74 4.70
24.56 3.13 5.63
29.31 3.52 6.62

From Table 10-5a we conclude that the flow is sub-critical and the control is at the outlet. For
outlet control the discharge and the water profile depends on the culvert length and the tail water

level at the down streams end. It also depends on the head water level.
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We compute the rating curve for the maximum flow in the culvert for a given tail water level.
Recall that for a tail water level below the top of the culvert, the maximum flow in the culvert
occurs when the tail water level is less or equal to the critical depth.

This is Qmax = CImaxBO

Qmax = \/yosg = \/yTAILsg

Using these equations, the following rating curve for maximum flow as a function of the tail

water level is obtained.

Table 10-5b
Rating Curve
YralL max Qmax
(m) (m*/sm) (m°/s)
0.5 111 2.22
1.0 3.13 6.26
15 5.75 11.5
2.0 8.86 17.72
2.5 12.38 24.76
3.0 16.27 32.54
3.5 20.51 41.02
4.0 25.06 50.12
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10.6
Given: Culvert of prob.10-5
L=100m
The tail water level is 4.5m above the culvert invert at the outlet.
Compute and plot the water surface profile.
Solution:

The culvert of prob. 10-5 is 4m high; therefore , the outlet for the conditions given here is
going to be submerged. Also the flow in the culvert is SUBSRITICAL (See Table 10-5a).

Under these conditions the control is at the outlet and culvert flow full or pressurized..

10.7
Given :Logarithmic Velocity Distribution.
Prove that the flow velocity at 0.368d is the depth-averaged flow velocity.
Solution:
Assume velocity distribution of the form
v =aIn (by)

where y is the flow depth and ‘a’ and ‘b’ are constants.

Integrating ‘v’ across the flow depth, we have,
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v =a[lIn (bd) -1]
Then,
Inc =1=>v =af[ln (bd)-In €]
or v =aln (E)
e

Bute=2.718 =>1/e = 0.368,

Finally v =a In (0.368db)

Then y = 0.368d corresponds to the depth at which the flow velocity is the depth averaged flow
velocity.

10.8

Given:

Flow velocity at 0.2 d and 0.8 d
Logarithmic velocity distribution.
Show that the average
_ Vo0 +Vi,ed
2
gives the depth-averaged flow velocity with an error of 2 %.
Recall that v =aIn (by)

Vav

Then V, = Vood +Vo,d
2
v _ aln(b0.2d) +aln(b0.8d)
av -
2

Vo = % In(04bd)?

Vaw =aln (0.4 bd)
The relative error is expressed as

v-Vav _aln(0.368db)-aln(0.4bd)
v a[ln(bd)-1]

(C;:
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where v was taken from Prob. 10.7

0.084

e=——1
In(bd) -1

Typically b = 30/k (sec. Prob. 1.4) and 30d/k > 200 => ¢~ 2% or less!

10.9
The water level in the upstream lake of the channel system shown in Fig. 10.10 remains constant
at El. 108 m; the water level in the downstream lake may vary between EI.98 and 108 m.

() Compute the rates of discharge on the channel for different downstream lake levels and

plot the delivery curve.

A computer program similar to the one presented in Appendix .... for the computation of
backwater flow profiles using simultaneous solution approach was used to solve this problem.
The computation of the delivery curve only requires to specify the discharge and the program

solves for the water depth.

Table 10.9 presents relevant water depth for selected discharges.

Table 10.9
Normal, Critical and Downstream Depth at Channel 2
100 4.148 2.140 8.721
150 5.172 2.738 8.620
200 6.028 3.252 8.461
250 6.772 3.708 8.230
300 7.439 4.122 7.880
350 8.387 4.504 7.290
400 8.606 4.859 5.248
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Figure 10.9 shows the delivery curve for the system. A maximum depth of 8.8 m at the
downstream end of channel 2 corresponds to zero flow conditions. As the water level decreases
the flow increases very rapidly, for high water level in the downstream reservoir. An increase in
discharge from 0 to 200 m®/s corresponds to only 0.30 m variation in the reservoir level. At this
condition the channel is carrying approximately a half of the maximum flow for the system.
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10.10

Given
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Branch channel system consisting of the two channels of Prob. 10.9 and a branch channel
(channel 3) this takes off from the junction of channels 1 and 2.

Channel 3 is, L3 = 1000m

Same cross section as Ch. 2
n=0.015

water level at downstream end = 105

() Compute and plot the delivery curves for channels 2 and 3 for the different downstream
lake levels downstream of channel 2.

Solution:

A computer program for the solution of this problem using simultaneous solution procedure can
be written following the explanations of Section 6.8. In this case, the solution will be easily
obtained in a straight forward manner from the computer program. However, other procedure
that uses the ‘traditional’ integration techniques (like Euler or Runge Kutta) to solve the
gradually varied flow differential equation will be discussed here. In this case, the computations
are more tedious because a trial and error procedure must be applied.

The first step is to determine the maximum discharge in channel 3. Theoretically, this
corresponds to the valve for which the reservoir level is the critical depth. However, in this case
the flow is restricted by the capacity of channel 1. After a trial and error process, trying to match
the water elevation coming from reservoir 1 towards the junction with the constant elevation at
reservoir 3, the maximum flow in channel 3 is estimated as 478 m®/s, corresponding to a water
elevation of 7.0 m at the junction. An elevation of 5.2 m at the junction represents zero flow in
channel 3. So we look for water elevation at the junction between 7 and 5.2 m.

Now, by trial and error we find several combinations of flow and head that satisfy the continuity
and the energy equations at the junction and, at the same time satisfy the boundary conditions of

173



Chapter 10

each channel. Table 10.10 shows the discharges head of the junction and depth at reservoir 2

that occur simultaneously.

Table 10.10
Discharge and water depth for the channel system.
Q o Qgh:s Qghz Ynor Yo Yiunc Yd H
m°/s m°/s m°/s m m m m m
500 448 52 2.94 1.46 6.76 7.34 106.54
520 393 127 4.73 2.48 6.43 6.88 106.08
530 355 175 5.62 3.00 6.19 6.41 105.61
535 320 215 6.26 3.39 6.02 5.87 105.07
537 308 229 6.47 3.52 5.93 5.50 104.70
538 298 240 6.63 3.62 5.88 5.13 104.33

Differences in velocity head at the junction were neglected in the computations. During the trial
and error process a maximum difference of £5 cm between the reservoir elevation of channel 2

(105 m) and the valve computed with the program was allowed.

As mentioned before, the maximum flow in channel 3 is approximately 478 m®/s corresponding
to a water elevation of 7.0 m at the junction. Elevations greater than 7.0 m correspond to flows
less than 475 m*/s in channel 1, causing a situation where the continuity equation is not satisfied.

Water elevations less than 7m at the junction correspond to flows greater than 478 m%s in
channel 1. In these cases there is flow going from the junction towards reservoir 2 and 3.

The steps followed to obtain the values in table 10.10 are :

Q) Assume a discharge in channel 1 and compute the backwater profile up to the junction.

We know that this flow must be greater than 478 m*/s.

(i)  With the water depth at the junction obtained in Step 1, assume a discharge for channel 3

and use trial and error to match the end of the flow profile with the reservoir elevation.
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(i) Once step 2 is satisfied, apply the continuity equation at the junction to find the discharge
in channel 2.

(iv)  Knowing the discharge in channel 2 and the water depth at the junction, compute the
backwater profile for channel 2 and obtain the reservoir elevation.

Repeat the same procedure for different discharges to get the delivery curve. Figure 10.10 shows

the results for channel 2.
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Chapter 11
UNSTEADY FLOW

111
Vw = absolute velocity. Assume rectangular channel.

Continuity egn :
(Vo+rAV-Vy)(Yo+Ay) = (Vo-Vw)Yo
VoYotYoAy-VuwYotVeAy+AyAv-VyAy= VoYo-ViYo

(Vo-Vw) Ay = -YoAv
(Vw-Vo) Ay = VoAV
AV
Vuw-Vo = yOE
AV
C = e 1
Yo Ay (1)

Momentum equation:
VG0 09" =0y, = VY[V, -V, -V + AV -, )

%[yoz FAYZ 2y A~y 2= (v, .VW)%O[V0 v, —V, —AV +V,]

YoAYy = Vo-Vw y—°(-Av)
g
Ay
Vo-Vw = -g—
’ Iav
Ay
C = e 2
9 )
Y _ Yo
From (1): —= =
(1) C
From(2): C = gﬁ
C
C2 = gYo
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Note that C is relative to flow velocity Vo.

11.2
v |
v,
e Wy Y |
V1 -0 = 75 =1m/sec.
By, 5x1.5
viv2e = gl Yry?oy?)
2y.1Y,
(1-0)2 - 28ULS-Y) h 9502
2x1.5y,
03058=  E27¥2) o5y
2
Use trial & error,
y2 = 1.914 m
Vi, _ VoY, —ViY, . 0-Ix1.5
y,-y, 1.914-15
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11.3
V,? v’ V.2 b b *
AE =y +-L1 _y "2 = 1 11-22%4+2Fr> 2 (b, b
Y1 29 Y, Zg 29 [( bz) 1 b23 ( 2 1)
2 2 2 3

2x9.81 2x9.81 2x9.81 5 2x9.81 5
— 0.17292 15_0.05097 _ 0.17292 0.04+ 0.07239]

Y. Y1 V2
y1°-1.55097y°-0.172y*-0.01315 =0

Y, = 1.474 m

Y, = (1.914-1.5)5/4+1.474 = 1.9915 m
11.4

,(7.5/7.5y,) P (7.5/7.5y,)* - 7.5)2 +2(7-5/7-53/1)2 7.5° (~2.5)

k08l T 2x981  2x9.81 5 9.81xy, 5°
y1+;2_ P L 2[0.25+_0'?;44]
2x9.81xy, 2x9.81  2x9.8xy, A

y1° -1.55097y°+0.0382y*+0.01753 =0
trial and error

yl  =1533m
yl>  =(1.914-15)5/7.5+1.533  =1.809 m.
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115
W
\\-\:—....._.-_. __.‘f 2 .b,___,____l__,_,__| ..:- r'l
.'al _rII .I . _ S I - 1'\ % .';
/ 2] e i v'.l ool r . f-".
_ N | .\.__/;l}
Q:1=Q>
Al(Vl-VW) = Az(Vz-VW) Eqn. 11.8

§Q[(v1-vw)-(vz-vw)] =7y, A~ ¥, A

Ar(Vi-Vw) [V1-Vu- % (Vi-vw)] = g(yz A; - §1A1)

2

A (vl-vw)z(l-%] =

% (V)2 (A-Ar) =gy, Az - Y, A)

2

2 Azg N
V-V = —== (A - A
( 1 ) Al(Az _Al) [( 2y2 1y1)
A.Q — —
C=vy-V = — 22 (A - A eqn. 11.17
1 \/Al(Az _Al)[( 2 Y2 Y1) q
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11.6

i a

G o . - = o C S :I, .:"" }
S -
™ —
-\\
¥ SR
: S ()
This is a positive wave
C= 4y

Infig. a: The depth at 1 is less than the depth at 2, the wave celerity c2 > c1. As the wave

travel it tends to over take the front edge. Therefore, the wave tent becomes
steeper until a bare form (figure b).
- a similar argument can be done for the negative wave front and it will flatten as

it travel in the channel.

11.7
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2 (Ya+Y,)9

()
2y1Y,

(Vi-Vo)’= (Y1-y2)
To the left side new singe
Vo=-vy, =y V1=-Vi

2 (Y. +Y)g

(2
2y,y @

(V1-v)° = (Y1-y)
To the right side new singe

Vo=v Vi=Vq Y=y Yi=y1

2 (Y, +Y)g

¢
2y,y

(V1 +v)? = (y1'-y)
Solving egn (2) and (3), Find vand y

Vi, —VyY,
y1 _yz

Vw =

Left side Vi =

Right side vw =

11.8
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2 (Ya+Y,)9

()
2y1Y,

(V1-V2)*= (Y1-Y2)

Applying eqgn (1) to left side new singe

2 (Y11+Y2)9

(Vi-Vp)’= (Y1-y2)
2y.Y,

- (2)

Applying eqgn.(1) to right side new singe

Ve = () Y )9
2y,Y,

By geometric continuity
y2+F =Y, e (4)
By hydraulic continuity

Vay, =Vovy

Solving 2,3,4,5 we get Vo, Y2, Vo, Y2
11.9

Stationary wave.

Au (vu-vw) = Ad (vd-vw)

Au (vw-vu) = Ad (vw-vd)

Auvw-Advw = Auvu — Advd

ww (Au — Ad) = Qu-Qd

- . Qu-Qd

Au - Ad
\ % e 5
2 “-““‘— i S ——
- v
b'-
i ;‘
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GOVERNING EQUATIONS FOR ONE-DIMENSIONAL FLOW

12.1- Derive the continuity equation for the one-dimensional unsteady flow using infinitesimal
length of channel show in the figure.

.'.J_r'hl’ i //
I J’ / [ \
G A , .
f | | 4 f
A S o ' 4 5 dj(
i f
] 1 e e
b e J‘}“*I e .
3 ,‘1 ’ r-.'{,’.‘-o ESTE T
FAS ¢ .
TR LodymE

The law of conservation of mass can be expressed as : “The time rate of increase of the mass
inside the control volume must be equal to the net rate of mass inflow into the control volume “.
From the figure we have the rate of mass in flow

as P1Q1:HV1 A Where H=specific weigh of water.
g

The rate of outflow is:

P.Q: = —(A"'—A X)V + —Ax)

Then the net rate of flow is :

Am = P2Qz - P1Q1
or
H OA oV

Am —AV ——(A —AX)(V + —AX)
g OX OX
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Neglecting second-order terms and simplifying we get :

Am = —V—AX - —A—AX (@8]

The time rate of increase of mass inside the control volume is given by :

am _HoA
ot g ot

(2)

According to the law of conservation of mass, Eq.1 is equal to Eq.2, therefore

8_A+V8_A+A8_V =0 3
ot OX OX

Recalling that Q=VA and Q = AAV) = Va—A+AaV

ox oX ox X
We get the law of conversion of mass, Eq.3 as:
oA R _
ot 0oX

This is the continuity equation in conservative form without lateral flow (Eq. 12.4).

12.2

Derivation of the momentum equation.

The law of conservation of momentum can be expressed as:

“The time rate of increase of momentum is equal to the net rate of momentum influx plus the
summation of the forces acting inside the control volume *.

First we obtain an expression for the forces acting in the control volume shown in

Problem 12.1
F1 =HAy Pressure forces
F, =HAY+ HAY ax
OX
Fs = HAS;Ax Force due to friction
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St = slope of the energy grade line.

Fs =W =HASAx  Gravity Force

So = channel bottom slope

Adding the forces in the x-direction we get the resultant force:

Fr = -HA %Ax - HAS; Ax+ HAS, Ax
X

The momentum influx is
H H
p1QiV1 = E AV,% = E AV®

The momentum influx:

A(AV ?)

H H 2
P2QaVo = — AV, = — [AV + Ax ]
g g oX
The net change in momentum:
-H 0
pQ2V2 - PQ1Vi= o (AV )Ax
Then, the time rate of momentum is given by :
oamv) = 9 (H avax)
ot o g
Finally, the conservation of momentum is
Q(HAVAx) =. Ho (AVY)Ax - HA 99 Ax +HAS, Ax - HASE Ax
ot g g ox OX
Time rate of change of momentum Net rate of momentum influx Summation of forcer acting on the control volume
Simplifying this equation we get:
@+ 2 Aav) +A2 = gA (5rS) (1)

Recalling that

v2 9A OA

Nl
X

0 2
—(AV
OX ( ) = OX
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=2 A L oa NV
OX 8x
vV soa MY @)
OX oX
and AAV) =v Aa N 3)
ot ot ot
Substituting Eq.2 and Eq.3 in Eq.1 result in
V(— v A LA _) + gA8y AV AN = gAGS, SE)
OX OX oX ot

Dividing by A and noting that the first term in the left hand side is equal to zero (se
prob.12.1,Eq.3), the find expression is:

This is the momentum equation or dynamic equation.

Y vV 4N g5 S
gax ox ot = 9050 5¢)

12.3
Derive Eq.5.5 from EQ.12.17
Equation 5.5 is:

ay _ (So'sf))
2
dx 1- BQ
gA3
2
Equation 12.17 is: al+g i( v +y) =0 (So-Sy)

We know that Eq. 5.5 apply to STE ADy , gradually varied flow, then:

Then, Eq. 12-17 becomes

gaix(\;—g+ y) = 0(50-S1) (1)
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Recalling that: Q=VA then:

JV129) _  aQ7 120A7)

OX oX
By 2
g A® ox
Using the fact that B= oA
oy
Substituting Eq.2 into Eqg.1 we get
BQ? dy , dy
-—— 2 +g—=—=0(Se-S 3
A3 dx Jax 9SS )

Note that the partial derivatives are not needed in equation 3.
Rearranging Eq.3, we get:

d_y =V (So 'Sf))

dx 2
1- BQ

gA3

This is Eq.5-5 (Gradually varied flow equation).

12.4

If we use stage (the equation of water surface above a specified datum), Z instead of flow depth
,0, show that the continuity momentum equations for a prismatic channel become:

oz +Vaz +i ov +VS, = 0
ot ox B ox

oV +V oV +g oz +9S; =0
ot OX OX

Solution:
The relation between Z and y is

Y = Z-Zo Where Z, is the elevation of the channel bottom.
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Then oy :VGZ _820 _ oz +S,
OX OX  OX OX

Where Sy is the channel bottom slope.

Also al = ai
ot ot
Substituting %and ¥y in terms of oz and %z we get:
OX ot OX ot

continuity Equation:
N ANy

=0 N
ot B ox ox
ai+iﬁ+vai+vsozo
ot B 0x ot

Momentum Equation : (Eg. 12-16)

0z

V[IBZ +A & 4By
a Y a

+BVSoT+A [ 24V Y 198, +gS - gSo] = 0
ot OX

The first term in brockets is identically zero because of the continuity equation, Therefore
oV oV 0z
A[—+V—+g— +05¢] =0
[ it X g o 051]

Or
ai+vﬂ+gai +gsf =0
ot OX OX

12.5

The momentum equation is

% 1 2 (QV+gAY ) = GASS)
ot 0oX

8QO

If the flow is steady we have F:
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For uniform flow we have: %(QV+ gAY )=0
X
Then, the momentum equation becomes
9A (So-Sp) =0

Or So = Sf.

12.6
If the wind stress on the flow surface is included, prove that the continuity and momentum

equations becomes:

ot ox |

BY 9Q a._

Q QgAY _gA(S,-S) = L u— Kw BVy? coso= 0
8tA8xQ()g g(Of)IUWWCOS

In which u=Velocity component of the latest flow in the positive x-direction, V,= wind velocity
and Ky=dimensionless wind stress coefficient.
The addition of wind stress on the surface flow does not modify the continuity therefore , is

remains the same as Eq.12.5, this is

B Q.9 _
ot ox |

The wind force can be expressed empirically as :
Fu = KuV?

Where K, was defined as a dimensionless wind-stress coefficient.
If O is the angle between the wind direction and the x-direction, the component of the wind force
is the x-direction is:

Fu = KV 2cosOAX
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Adding this terms to the summation of forces in the momentum equation (problem 12.2) we get

q

H— QAX =- H— m Ax - HAAX zy—+HASoAX - HASAX - KWVW2C059 +a |
X

g ot g oX
Expending the partial derivative and simplifying we get:

Q +V RQ Q v +gA ¥y . gA(So— Sp) - Ky V,2coso + ad =0
ot oX oX oX I

Or

£+9 £+ 0.(Q +A6L+ A(So—S -q—a-szcose+:O
ot (A) ox an(A) g ox g(O f) | w V' w
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NUMERICAL METHODS

131

Flow depth (m)

Fig

6.5

A computer program is developed for the transient by using the Method of
Characteristics. The channel length is divided into 50 reaches (51 nodes). Other input

values are as per the problem statement.

Results of surface profile due to sudden closure of the downstream gate at different time
levels are presented in Fig. 1(a). Reflection of the wave is observed. Variation of flow
depth with time at different locations in the reservoir is shown is Fig. 1 (b).

t=0  ------- t=500 s ————t=1000 s —-o--t=1500 s e 122000 s
rF—————— T o ——
I ......
- -’- - .-
--------- !
I
/
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!
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I ] <!
°] : vvv&@&*yvv* ¥
; = ‘
A e ’
e e ETEEX ‘
| | &0
N | soveeees ey e XX
; x*xxxxx*kxx*x%xx**xxx
Xy X KRN
5 : ‘ | | |
5000

500 1000 1500 2000 2500 3000 3500 4000 4500

o

Distance (m)

.1 (a) Surface profile at different times
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1.5km ------- 25km ——--3.0km —--—5.0km
ey
a
)
°
B
o
L 61
5 T T T ]
0 500 1000 1500 2000

Time (s)
Fig. 1 (b) Variation of the flow depth with time at different locations.

13.2

The results are obtained by using different dt/dx. Result indicates diffusion errors in the wave
shape as dt/dx becomes smaller.

6

5.8 - (
— | dt/dx=0.20
E . dt/dx=0.10
= 5.6 |
= .| ———-dt/dx=0.05
3 :
= 54 '
(@) .
o

5.2

5 I I I \
0 500 1000 1500 2000

Distance (m)

Fig. 13.2 Effect of dt/dx on the wave propagfvation
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FINITE-DIFFERENCE METHOD

14.3

Use Von Newman analysis to show that the following scheme is unstable.
of - fi+1k — fi—lk

oX 2AX

of g

F = T where f refers to both ‘y” and “v’ variables.

Solution
The linearized Saint-Venant equation (eq. 14.64 and 14.65) are

aL+D08_V+ Voﬁ =
OX

OX

Van newman assumed that the error has the form of a fourier series, this is

g(x,t) = ZX(t) @™ where j=V-1

The finite difference approximation of the linearized equations using the given scheme is

Vo At K Ky O ﬁ K (/K
2 (E) (Vi+1_Vi—1) 2 (AX)(Yi+1 Yi—l)

V.K+1: V-K _

ORI e VA R E el

The exact solution to these equation are:

Yexact = Ycomp +e
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Vexact = Vcomp +e

Where Vcomp IS the approximation given by a real computer with limited accuracy. Since the
exact solution, Vexact and Yexact Most satisfy the difference equation too we conclude that the

same must be true for the error as long as the system is linear, therefore we have:

Vo At g , At
K+1 K K K K K
=V - —_— . .—\/ . S \— i1 i
V| i 2 (AX)(VH_]_ V|_1) 2 (AX)(WH—l Wl—l)
D, , At Vo , At
K+1 K K K K K
TT=wW - — Vi) — = v VV
W =W - 2 (E (VL) - 5 () (WEAW )
Where v and w represent the round of error introduced by the real-computer computations and
given by
Vi = A
W, =Bt

Since the system is linear, we can consider only one term in the error series; therefore, the
error Equations becomes:

For v
. . Vo . . . .
A(t+At @™ = Ay e ™ - = TIA e M) U A(f) @ MOy %r [B(t) @ M) B(t) @ M4

Where rzﬂ, Calling n:M the amplification factor we have :
AX A(t)

nA@Me™ = ADe™- or [ADe™ e+ Yor AG e e

-%r [B(t) g™ glmax +%r B(t) e/™ g im

Cancelling e™ and simplifying the equation we obtain:
jmAX _e-ijx jmAX _e-ijx

[n-14Var ()] Avgr(C—=—)B =0
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il _qdl

Defining | =mAx and recalling that sin | = © we obtain:

[n-1+Vor sinfjJA+gr sin/B = 0

A similar procedure for the \\\/ :<+1equation gives:

[n-1+Vor sinfj]B+Dqr sinfA=0

In this derivation it was assumed that

_ A(t+At)  B(t+At)
AL B(Y)

To obtain a non-trivial solution for the amplitude (A and B) the following condition must be

satisfied :
N -1+Vorsingj grsingj
=0
Dorsingj } -1+Vorsingj
Or
(n-1+Vor sin 8j)? + Dogr’Sing =0
Nn-1+Vor sin dj = +] 4/D,g +sind
Finally n =1- (Vo £ 4/D,g )+ singj

In order to have the error bounded the condition must be | 7 | <1

Where | 7 | is the module of n
Or
(1+ (Vo £ D,g )?t?sin®8)” < 1
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This reduces to the impossible condition
(Vo £ /D,g ) t?sin®) <0
Therefore the error cannot be bounded and the scheme is UNSTABLE .

14-6
The linearized Saint-Venant equations are:

NN N O
ot OX OX

8_Y+D08_V+V06_Y =0 cemmmeemeeeee- 2
ot OX OX

Predictor part of Mac Cormack Scheme applied to equation 1:

X X

ViV, +V0Vi Vi, +gYi Y, S J— (3)
At AX AX

¥ Vlk_vo(ﬁj&/f—vf_l)— g(f—i]ﬁ(f—Yﬁ) """ (4)

AX

Similarly:

R A VRV B E SR I

The corrector part for the same equation is:

XX k X X X X
Vi _Vi +VOVi+1_Vi +gYi+1_Yi =0 (6)
At AX AX

or
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Vo= v-V[ﬁij&/.ﬂ ‘)- ( J(\MY) (7)

The predictor part for equation Z is:

Y _Y. + Dy ((\/ _V|1 +V0 Yi_Yi—l =0

At AX
* i At VLR VEA P VLIVL
Y = Do AX (Vi-Vi.)-Vo AX V-V

U,k At k k At k k
Yii=Yia DOE( ViV, ) _VOE (Yi+1_Yi )
The corrector part for equation Z is :

Y! tY. D, (v.ﬂ v.)+V YooYl

A AX

or
*x k At k k At * *
=Y -D0—(V..-VV. )V0O—VY  -Y.
YI YI AX(V|+1 VI) AXYI+1 YI
The flow velocity in the next time step is given by

VA
VisTg

(8)

(9)

(10)

(11)

(12)

(13)

Substituting Eqns. 4 and 7 into Eq.13 and defining At/Ax=r we obtain:

e, VITYTVIV -0 =Y D) V-, -V -arY LY
2

Vit ;

Using Eq.4 and Eq.5 we can express \/ | -\/ as:

(14)

ViV, V-V Vel-0 L+ -2 )-or(Y L, +Y L -2Y))  (25)

Similarly by using Eq. 9 and Eqg.10 we get:
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Y oY =Y LY DR - LV -2V D Ver (Y 1+ Y L -2Y D) (19)
Substituting Eq.15 and Eq.16 into Eqg. 14 we have:

k+1 k VOt[  «

Vi =V, _7 i+1_Vik71_V0t&/:(+1+V:(71_2Vik)_gt&:<+1+Y:(71_2Y:()]_
Iy o vy vedy eyl -2yl an

The error must also obey equation 17 then:

k+1

K
Ui ~ L —Vor

k K K K k K _5 K
Via Via Ui+1+Ui71_ZUi WiaT W1 “Q; \
(T)—Vor( 5 ) —ar( > )

(18)

2 2 2

a)k a)k K N K 5 K k + k 2 k ]
T (D . 1T 2D, Wia™ Wia~ “Wi
gr! (e By _p r Qa0 p S Do T8

Where ¢, = A(t)e™ and \y=B(t)@"".and j =v-1
Defining the amplification factor as

_ Alt+AY)

’ At)

and substituting the expression for Vik and W:( into Eqg.18, we have :

MAXj —MAXj MAXj —MAXj
xmj Xmj Xmj e _e e _e
HAe™=Ae" -V re 'A<f>Avor<fl>}

mMAX] —MAXj

sgr&——-€ ze ~D-gr@"

MAX]j _ —MAXj MAXj _ —MAX] MAXj n —MAX]
B(%)— DOrA(%_D VorB(%D] (19)
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MAX] —MAXj MAXj —MAXj

Introducing & =mAx, cosI:%, sin | = % into eq. 19 and simplifying,

we get.

A[3-14 1 sinfj —r(eos[-Dy/ 2D g) |*Blartin-2varteos-n] =0 (20)

Similarly to equation B, we have

e Yo 21)

After substituting Eqgns. 4,5,9, and 10 into eq. 21 and simplifying, we obtain

K+l k ol & Sk K 0 k k k
Yi =Yi_D2 I-\/i+l_Vi—l_V r(\/i+l+Vi—l_2Vi)

SgrY [+ Y e 2Y DY LY DoV 2 V(Y Y m2Y

22)

Writing Eqgn. 22 in terms of the expression for the error, using the trigonometric

equalities for cosd and sindand simplifying, we arrive to :
A [Dor(sindj-2rvo(cosd-1)] + B[ } -1-r*(Deg+Vo?)]

For a non-trivial solution of A and B, the following condition must be satisfied.
. . 2 2 - i _
[} ~1+\/rsinfj-r (cosf—l)(v g Dog) }gr(smh 2Vor(cos/-1)

DOr(sinfj-2V0(cos(-1)) }—1-r?(Dyg +\/ z)(cos_[— 1) +V,rsin]j

Must be equal to zero. Expanding the determinant and simplifying, we get.
For a decay in the error the modulus of 3 must be less than 1.0. If we define,
Cn= as the Courant Number, the modulus of 3 is :
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A plot of the amplification factor, 3, versus the frequency parameter, 3, for different Courant
Number shows that the scheme is STABLE if Cn<l. If Cn > 1 the amplification factor grows
larger than 1 and the scheme becomes unstable.

For Gabutti scheme follows the same procedure presented for MaiCormack .

14.7

The stability analysis for Preissman scheme is discussed in the following references:
€)] Lyn, DA and Goodwin P “Stability of a General Preissman Scheme”, Journal of
Hydraulic Engineering, ASCE, Vol. 113, F=1, 1987
(b) Samuels, P.G and Skeels, CP “Stability limits for Preissman Scheme”, Journal of
Hydraulic Engineering, ASCE, Vol. 116, N28, 1990
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SEDIMENT TRANSPORT

16.1

Table 16.1: Fraction of individual size classes in the sample
i D fi ¥ fi F_fi D i Y fi
1 0.125 -3 0 0.1767767 -2.5 0.01
2 0.25 -2 0.01 0.35355339 -15 0.05
3 0.5 -1 0.06 0.70710678 -0.5 0.12
4 1 0 0.18 1.41421356 0.5 0.07
5 2 1 0.25 2.82842712 1.5 0.01
6 4 2 0.26 5.65685425 2.5 0.02
7 8 3 0.28 11.3137085 35 0.04
8 16 4 0.32 22.627417 4.5 0.18
9 32 5 0.5 45.254834 55 0.2
10 64 6 0.7 90.509668 6.5 0.22
11 128 7 0.92 181.019336 7.5 0.08
100 —

90 1

80 1 /
70 A

60 /

50 1

40 ~ /

% finer

30 1 » —
20 - —
10 7 /
0 L / T 1
0.1 1 10 100 1000
Size (mm)

Figure 16.1: Grain size distribution

Dso =32 mm

Dgg =126 mm

Y =4.02

Dy = 2( ¥m) = 16.223 mm
c°=8.19
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16.2

Chapter 16

Eq. 16-30 is used. The solution is shown is Table 16.2. Columns 1 and 2 are from the problem
statement. Column 3 is obtained by R ep = (D/v)N (R.g.D). Column 4 is obtained by using Eq.

16-30.

Table 16.2: Non-dimensial critical shear stress by Brownlie equation
Sediment size, D

16.3

(mm)
0.25
0.5
2
16

R

1.65
1.65
1.65
1.65

Rep Z*C
15.90327 0.1144
44.98125 0.088855

359.85 0.06822
8142.475 0.061262

Egs. 16-44, 16-45 and 16-48 are used to calculate the non-dimensional bed load for different
values of non-dimensional shear stress. The range of values for the non-dimensional shear stress
is from 0.05 to 1.0 with an incremental value of 0.05. Computations for the three methods are
shown in Table 16.3. The plots are presented in Fig. 16.3.

Table 16.3: Computation of bed load by different formulas

g*
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
1

(i)
0.001315
0.097612
0.264451

0.47877
0.731702
1.018054
1.334301
1.677846
2.046669
2.439143
2.853921
3.289862
3.745984
4.221432
4.715448

5.22736
5.756564

6.30251
6.864701

7.44268

(ii)
0.000453
0.044842
0.129833
0.244542
0.384451
0.546814
0.729718
0.931722
1.151688
1.388686
1.641934
1.910764
2.194596
2.492918
2.805275
3.131258
3.470498
3.822657
4.187428
4.564525

(iii)
0

0.078728
0.278276
0.570197
0.939737
1.377492
1.876806
2.43265
3.041052
3.698775
4.403111
5.151755
5.942714
6.774238
7.644781
8.55296
9.497528
10.47736
11.49141
12.53875
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15 ~

12 ~

Non-dimensional bed load

0 0.2 0.4 0.6 0.8 1

Non-dimensional shear stress

Fig. 16.3 Variation of the non-dimensional bed load with non-dimensional shear stress

16.4
Eq. 16-83 is valid for uniform (normal) flow condition:
U :ar \/E H2/381/2

1/6
f

Discharge per unit width = g,=U.H
Thus,

'\/E 5/3¢g1l/2
Qy =&, =7 H”S
CJf./G

Or,
b [ G0
algs
16.5
Considering sand to be between 0.65 mm and 2 mm, Fs = 0.19, from Table 16.1.

Wilcok-Crowe model:
S=0.012; qw =4 m%/s
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Eqg. 16-80 is used. o = 8.32 and ks = 3Dy is used. The computations are presented in Table 16.6.
A plot between the depth and discharge is shown in Fig. 16.6.

Table 16.6: Computation of discharge

H
0.9
1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2
2.1
2.2
2.3
24
2.5

Flow depth (m)

Fig. 16.6: Depth-discharge relationship

S
0.00005
0.00005
0.00005
0.00005
0.00005
0.00005
0.00005
0.00005
0.00005
0.00005
0.00005
0.00005
0.00005
0.00005
0.00005
0.00005
0.00005

2.5~

N
I

=
(6]
I

AN
!

D_90
0.000425
0.000425
0.000425
0.000425
0.000425
0.000425
0.000425
0.000425
0.000425
0.000425
0.000425
0.000425
0.000425
0.000425
0.000425
0.000425
0.000425

K_s

0.001275
0.001275
0.001275
0.001275
0.001275
0.001275
0.001275
0.001275
0.001275
0.001275
0.001275
0.001275
0.001275
0.001275
0.001275
0.001275
0.001275

C_f
0.002
0.002
0.002
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001

0.5

1

2

Discharge per unit width (cumec/m)
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0.501
0.541
0.579
0.617
0.654
0.689
0.725
0.759
0.793
0.827
0.860
0.892
0.924
0.956
0.987
1.018
1.048

UH
0.451
0.541
0.637
0.740
0.850
0.965
1.087
1.215
1.348
1.488
1.633
1.784
1.940
2.102
2.270
2.442
2.620
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SPECIAL TOPICS

17.1
Given: Reservoir with the following data:
(i)  Spillway outflow = 50 H**, where H = head above the spillway crest in feet.
(i) Reservoir with vertical sides and surface area of 300000ft?
(iiiy  The inflow increases linearly from zero at t = 0 to 500 ft*/s at t = 15 min. Then
linearly decreases to 100 ft*/s in 10 min. to remain constant afterwards.
(iv)  Reservoir at spillway crest elevation at t=0

Solution:
To solve this problem, follow the procedure described in Section 17.4
For a given outflow, the spillway head can be obtained as :

H = (O/H)O.667
Then, the corresponding storage is S = 300000 Hm®. If a Dt of 5 minutes is selected, then the
relation 0 vs 0+25/Dt is easily obtained. Table 17.1a presents the computations. Figure 17.1a
shows this relation.

With the inflow hydrograph and Fig. 17.1a the routing is done by following the steps of the
procedure given in section 17.4

205



Chapter 17

Table171a
Relationship O vs 25/Dt +0
Dt = b5min
0 H 5 25Dt  0+25/Dt
cfs ft ft3 ft3 3

0 0 0 -0 0
1 0074 221039 1474 146.4
2 0117 350878 233.9 2359
3 01583 459781 206.5 2095
4 0186 55698.6 371.3 3753
5 0215 646325 430.9 35.9
0 0.242 102598.0 584.0 694.0
20 0543 1628646 10858 110b8
g 0711 2134132 14228 14528
40 0862 2586320 17235 17635
50 1.000 3000000 20000 20500
60 1129 3387732 22585 3185
70 1.251 3754299 25029 25729
75 1.310 3931117 26207 26957
80 268 4103949 27360 28160
85 1.424 4273214 28488 293338
90 1.480 4429190 20595 30495
85 1534 4602120 20681 21631
100 1.587 4762214 31748 32748
105 1.640 4919661 32798 33848
110 1.692 5074628 33831 34931
115 1.742 5227263 34848 359938
120 1.793 5377701 35851 370541



Time
min
0
5
10
15

60
69
70
5
80
8b

95
100
105
110
115

Chapter 17

Table 17.1b
Computation of Reservoir Routing
Dt= 5Smin
Inflow — H+12  25Dt-0 25Dt + 0 Outflow
cfs cfs cfs cfs cfs

00 1667 00 1667 0.0
1667 5000 1643 6643 (¥
Jadd. 8333 6455 14788 94
5000 7800 14174 21674 20.7
2500 3500 20590 24000 54.2
1000 2000 22818 24818 63.6
1000 2000 23482 25482 66.8
1000 2000 24102 26102 63.0
1000 2000 24672 28672 15
1000 2000 25196 27196 /3.8
1000 2000 25676 27676 76.0
1000 2000 26116 28116 78.0
1000 2000 26520 28520 798
1000 2000 26890  2889.0 81.5
1000 2000 27228 20228 83.1
1000 2000 27536 29536 54.6
1000 2000 27818 29818 85.9
1000 2000 28076 20076 87.1
1000 2000 28312 20312 88.2
1000 2000 28528 30k28 89.2
1000 2000 28724 30724 90.2
1000 2000 28304 30904 91.0
1000 2000 269068 21068 9.8
1000 2000 28218 228 92.5
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3500 I
3000+
2500
2000+
1500
1000-

500

10 20 30 40 50 860 70 80 90 100

Fig.17.1b Routing Through Reservoir
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350+
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200+
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100+
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20 40 60 80 100
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Table 17.1b shows the computations. The inflow and outflow hydrographs are presented in Fig.
17.1b

17.3

Given,
Detention pond with the following characteristics:

() Spillway crest level = 10 ft.

(i)  Spillway discharge equation, Q = 100(E-10)**, E in ft.

(iii)  Pond surface area at El. 0 ft = 200000 ft? and it increases linearly to 300000 ft* at EI.40
ft.

(iv)  Inflow for t <10 min. is 5t (t in seconds). After 10 min. the inflow remains constant at
3000 fs.

(v) Pond level att = 0 at El. 8 ft.

Compute : Outflow hydrograph from the pond until t = 20 min.

Solution :

() Express the pond surface area and the storage volumen as a function of the spillway head
elevation E, this is :
A = 225000 + (e-10)2500

S= joz Adz = 200000 z + 125022

Therefore, for any value of E the previous relations give the area and the storage volume.
The spillway discharge equation gives the outflow corresponding to the given E. These three
variables, A, S and Q are computed in the first columns (columns 2 to 4 in Table 17.3a). The last
column is the at flow-storage relation 2S/Dt + 0 where an interval of one minute was chosen for
the routing. Figure 17.3 a shows the relation 0 Vs 2S/Dt + 0
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Following the procedure outlined in section 17.4, Tble 17.3 is obtained. The last column

in this table is the water elevation over the spillway corresponding to the particular time

of the routing.

Figure 17.3b shows a plot of the inflow and outflow hydrographs.

spillway head during the routing time.

ft2
220000
222500
225000
226450
228050
229800
231525
233125
234625
236000
237275
238425
239475
240450
241325
242100
226450

Table 17.3

a

Reservoir Characteristics
Area Outflow 0 Volume,S 25/60+0

cfs
0.00
0.00
0.00
4417
134.75
266.04
421 66
585.90
/55.42
922 95
1087.98
124440
139321
1536.22
1668.67
1788.89
4417

ft3
1680000
1901250
2125000
2255921
2401361
2561608
2720765
2869453
3009778
3139200
3259885
336929
2469655
3563241
3647551
3722482
2255921

210

cfs
56000.0
63375.0
70833.2
752415
801801
85653.0
911138
96234.3
101081 4
1056563.0
1097508
113554.3
1170484
120311.0
123253.7
125871.6
75241 5

It also shows the



Time
min

n & WM —

o ~ O

11
12
13
14
15
16
17
18
19
20

Computation of Reservoir Routing
251 /dt-01 252/dt+0

H+12

2700

6000
3000
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Table 17.2b

ft3
56000.0
56300.0
57200.0
58700.0
60800.0
63500.0
66800.0
70700.0
1.7
79942 2
8561101
90266.8
95095.0
99584.1
103738.2
107562.3
1110735
114287.0
1172144
1198771
1222901

ft3
56300.0
57200.0
58700.0
60800.0
63500.0
66800.0
70700.0
75200.0
80211.7
856422
911101
96266.8
101095.0
1056584.1
109738.2
113562.3
1170735
120287.0
123214.4
1258771
1252991
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ftd
0.0
0.0
0.0
0.0
00
0.0
00
0.0
44.2
124.8
266.0
4217
585.9
755.4
923.0
1088.0
1244.4
13083.2
1526.3
1668.7
1789.0

Elev, z

it

8.00
8.06
816
8.37
8.66
9.02
946
998
10.58
11.22
11.92
1261
13.25
13.85
14.40
1491
15.37
16.79
16.18
16.53
16.84
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Fig. 17.3a O vs 2S/dt + O
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17.4 Given

X=05anda i—t: 1, in the Muskingum-Cunge model.
X

Show that the wave does not attenuate as if is routed through a channel reach.

Solution :
Compute the constants for the Muskingum-Cunge model
co = _05At-aAx/a _0-5At—0-5A%
_o\Ax/ AX
0.5At +(1- ) A 0.5At+0.5 A
_ aAt—-Ax
aAt +Ax
(aﬁ—l) At
Co :i+ =0  because a— =1
(@~ 41 Ax
AX
o1 = 05At+(ax/a) _0-5At+0-5A% 4
—_o\AX/ AX B
0.5At +(1- ) A 0.5At+0.5 A
And
oy = —05At+(1-a)Ax/a _—0-5At—0-5A%
_ o) AX Bl AX
0.5At +(1- ) A 0.5At+0.5 A

—At+A%

At +A%

AX = =
But /a At, therefore, Cz =c
Subsequently, in the routing expression (eq. 17.12) the values of C0O, C1 and Cz, we get,

Ol =Colk+1+C I+ C, 0"

Ok+1 = Ik
From this equality we conclude that the inflow at time “t’ is exactly the outflow at time t +At and
the wave is not attenuated.
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