
2

Grammars as a Generating Device

2.1 Languages as Infinite Sets

In computer science as in everyday parlance, a “grammar” serves to “describe” a
“language”. If taken at face value, this correspondence, however, is misleading, since
the computer scientist and the naive speaker mean slightly different things by the
three terms. To establish our terminology and to demarcate the universe of discourse,
we shall examine the above terms, starting with the last one.

2.1.1 Language

To the larger part of mankind, language is first and foremost a means of communi-
cation, to be used almost unconsciously, certainly so in the heat of a debate. Com-
munication is brought about by sending messages, through air vibrations or through
written symbols. Upon a closer look the language messages (“utterances”) fall apart
into sentences, which are composed of words, which in turn consist of symbol se-
quences when written. Languages can differ on all three levels of composition. The
script can be slightly different, as between English and Irish, or very different, as
between English and Chinese. Words tend to differ greatly, and even in closely re-
lated languages people call un cheval or ein Pferd, that which is known to others as
a horse. Differences in sentence structure are often underestimated; even the closely
related Dutch often has an almost Shakespearean word order: “Ik geloof je niet”, “I
believe you not”, and more distantly related languages readily come up with con-
structions like the Hungarian “Pénzem van”, “Money-my is”, where the English say
“I have money”.

The computer scientist takes a very abstracted view of all this. Yes, a language
has sentences, and these sentences possess structure; whether they communicate
something or not is not his concern, but information may possibly be derived from
their structure and then it is quite all right to call that information the “meaning”
of the sentence. And yes, sentences consist of words, which he calls “tokens”, each
possibly carrying a piece of information, which is its contribution to the meaning of

6 2 Grammars as a Generating Device

the whole sentence. But no, words cannot be broken down any further. This does not
worry the computer scientist. With his love of telescoping solutions and multi-level
techniques, he blithely claims that if words turn out to have structure after all, they
are sentences in a different language, of which the letters are the tokens.

The practitioner of formal linguistics, henceforth called the formal-linguist (to
distinguish him from the “formal linguist”, the specification of whom is left to the
imagination of the reader) again takes an abstracted view of this. A language is a
“set” of sentences, and each sentence is a “sequence” of “symbols”; that is all there
is: no meaning, no structure, either a sentence belongs to the language or it does not.
The only property of a symbol is that it has an identity; in any language there are a
certain number of different symbols, the alphabet, and that number must be finite.
Just for convenience we write these symbols as a, b, c, . . . , but ✆, ✈, ❐, . . . would
do equally well, as long as there are enough symbols. The word sequence means that
the symbols in each sentence are in a fixed order and we should not shuffle them.
The word set means an unordered collection with all the duplicates removed. A set
can be written down by writing the objects in it, surrounded by curly brackets. All
this means that to the formal-linguist the following is a language: a, b, ab, ba, and
so is {a, aa, aaa, aaaa, . . . } although the latter has notational problems that will
be solved later. In accordance with the correspondence that the computer scientist
sees between sentence/word and word/letter, the formal-linguist also calls a sentence
a word and he says that “the word ab is in the language {a, b, ab, ba}”.

Now let us consider the implications of these compact but powerful ideas.
To the computer scientist, a language is a probably infinitely large set of sen-

tences, each composed of tokens in such a way that it has structure; the tokens and
the structure cooperate to describe the semantics of the sentence, its “meaning” if
you will. Both the structure and the semantics are new, that is, were not present in
the formal model, and it is his responsibility to provide and manipulate them both. To
a computer scientist 3+4×5 is a sentence in the language of “arithmetics on single
digits” (“single digits” to avoid having an infinite number of symbols); its structure
can be shown by inserting parentheses: (3 +(4× 5)); and its semantics is probably
23.

To the linguist, whose view of languages, it has to be conceded, is much more
normal than that of either of the above, a language is an infinite set of possibly in-
terrelated sentences. Each sentence consists, in a structured fashion, of words which
have a meaning in the real world. Structure and words together give the sentence a
meaning, which it communicates. Words, again, possess structure and are composed
of letters; the letters cooperate with some of the structure to give a meaning to the
word. The heavy emphasis on semantics, the relation with the real world and the
integration of the two levels sentence/word and word/letters are the domain of the
linguist. “The circle spins furiously” is a sentence, “The circle sleeps red” is non-
sense.

The formal-linguist holds his views of language because he wants to study the
fundamental properties of languages in their naked beauty; the computer scientist
holds his because he wants a clear, well-understood and unambiguous means of de-
scribing objects in the computer and of communication with the computer, a most

2.1 Languages as Infinite Sets 7

exacting communication partner, quite unlike a human; and the linguist holds his
view of language because it gives him a formal tight grip on a seemingly chaotic and
perhaps infinitely complex object: natural language.

2.1.2 Grammars

Everyone who has studied a foreign language knows that a grammar is a book of
rules and examples which describes and teaches the language. Good grammars make
a careful distinction between the sentence/word level, which they often call syntax or
syntaxis and the word/letter level, which they call morphology. Syntax contains rules
like “pour que is followed by the subjunctive, but parce que is not”. Morphology
contains rules like “the plural of an English noun is formed by appending an -s,
except when the word ends in -s, -sh, -o, -ch or -x, in which case -es is appended, or
when the word has an irregular plural.”

We skip the computer scientist’s view of a grammar for the moment and proceed
immediately to that of the formal-linguist. His view is at the same time very ab-
stract and quite similar to the layman’s: a grammar is any exact, finite-size, complete
description of the language, i.e., of the set of sentences. This is in fact the school
grammar, with the fuzziness removed. Although it will be clear that this definition
has full generality, it turns out that it is too general, and therefore relatively power-
less. It includes descriptions like “the set of sentences that could have been written
by Chaucer”; platonically speaking this defines a set, but we have no way of creating
this set or testing whether a given sentence belongs to this language. This particular
example, with its “could have been” does not worry the formal-linguist, but there
are examples closer to his home that do. “The longest block of consecutive sevens
in the decimal expansion of π” describes a language that has at most one word in
it (and then that word will consist of sevens only), and as a definition it is exact, of
finite-size and complete. One bad thing with it, however, is that one cannot find this
word: suppose one finds a block of one hundred sevens after billions and billions of
digits, there is always a chance that further on there is an even longer block. And
another bad thing is that one cannot even know if this longest block exists at all. It
is quite possible that, as one proceeds further and further up the decimal expansion
of π, one would find longer and longer stretches of sevens, probably separated by
ever-increasing gaps. A comprehensive theory of the decimal expansion of π might
answer these questions, but no such theory exists.

For these and other reasons, the formal-linguists have abandoned their static, pla-
tonic view of a grammar for a more constructive one, that of the generative grammar:
a generative grammar is an exact, fixed-size recipe for constructing the sentences in
the language. This means that, following the recipe, it must be possible to construct
each sentence of the language (in a finite number of actions) and no others. This does
not mean that, given a sentence, the recipe tells us how to construct that particular
sentence, only that it is possible to do so. Such recipes can have several forms, of
which some are more convenient than others.

The computer scientist essentially subscribes to the same view, often with the ad-
ditional requirement that the recipe should imply how a sentence can be constructed.

8 2 Grammars as a Generating Device

2.1.3 Problems with Infinite Sets

The above definition of a language as a possibly infinite set of sequences of symbols
and of a grammar as a finite recipe to generate these sentences immediately gives
rise to two embarrassing questions:

1. How can finite recipes generate enough infinite sets of sentences?
2. If a sentence is just a sequence and has no structure and if the meaning of a

sentence derives, among other things, from its structure, how can we assess the
meaning of a sentence?

These questions have long and complicated answers, but they do have answers. We
shall first pay some attention to the first question and then devote the main body of
this book to the second.

2.1.3.1 Infinite Sets from Finite Descriptions

In fact there is nothing wrong with getting a single infinite set from a single finite
description: “the set of all positive integers” is a very finite-size description of a
definitely infinite-size set. Still, there is something disquieting about the idea, so we
shall rephrase our question: “Can all languages be described by finite descriptions?”
As the lead-up already suggests, the answer is “No”, but the proof is far from trivial.
It is, however, very interesting and famous, and it would be a shame not to present at
least an outline of it here.

2.1.3.2 Descriptions can be Enumerated

The proof is based on two observations and a trick. The first observation is that de-
scriptions can be listed and given a number. This is done as follows. First, take all
descriptions of size one, that is, those of only one letter long, and sort them alpha-
betically. This is the beginning of our list. Depending on what, exactly, we accept as
a description, there may be zero descriptions of size one, or 27 (all letters + space),
or 95 (all printable ASCII characters) or something similar; this is immaterial to the
discussion which follows.

Second, we take all descriptions of size two, sort them alphabetically to give
the second chunk on the list, and so on for lengths 3, 4 and further. This assigns
a position on the list to each and every description. Our description “the set of all
positive integers”, for example, is of size 32, not counting the quotation marks. To
find its position on the list, we have to calculate how many descriptions there are
with less than 32 characters, say L. We then have to generate all descriptions of size
32, sort them and determine the position of our description in it, say P, and add the
two numbers L and P. This will, of course, give a huge number1 but it does ensure
that the description is on the list, in a well-defined position; see Figure 2.1.

1 Some calculations tell us that, under the ASCII-128 assumption, the number is 248 17168
89636 37891 49073 14874 06454 89259 38844 52556 26245 57755 89193 30291, or
roughly 2.5×1067.

2.1 Languages as Infinite Sets 9

{ descriptions of size 1

{ descriptions of size 2

{ descriptions of size 3

.

{ descriptions of size 31

L

. .

{ descriptions of size 32
“the set of all positive integers”

P

Fig. 2.1. List of all descriptions of length 32 or less

Two things should be pointed out here. The first is that just listing all descriptions
alphabetically, without reference to their lengths, would not do: there are already
infinitely many descriptions starting with an “a” and no description starting with a
higher letter could get a number on the list. The second is that there is no need to
actually do all this. It is just a thought experiment that allows us to examine and draw
conclusions about the behavior of a system in a situation which we cannot possibly
examine physically.

Also, there will be many nonsensical descriptions on the list; it will turn out
that this is immaterial to the argument. The important thing is that all meaningful
descriptions are on the list, and the above argument ensures that.

2.1.3.3 Languages are Infinite Bit-Strings

We know that words (sentences) in a language are composed of a finite set of sym-
bols; this set is called quite reasonably the “alphabet”. We will assume that the sym-
bols in the alphabet are ordered. Then the words in the language can be ordered too.
We shall indicate the alphabet by Σ.

Now the simplest language that uses alphabet Σ is that which consists of all words
that can be made by combining letters from the alphabet. For the alphabet Σ ={a, b}
we get the language { , a, b, aa, ab, ba, bb, aaa, . . . }. We shall call this language Σ∗,
for reasons to be explained later; for the moment it is just a name.

The set notation Σ∗ above started with “ { , a,”, a remarkable construction; the
first word in the language is the empty word, the word consisting of zero as and zero
bs. There is no reason to exclude it, but, if written down, it may easily be overlooked,
so we shall write it as ε (epsilon), regardless of the alphabet. So, Σ∗ = { ε, a, b, aa, ab,
ba, bb, aaa, . . . }. In some natural languages, forms of the present tense of the verb
“to be” are empty words, giving rise to sentences of the form “I student”, meaning
“I am a student.” Russian and Hebrew are examples of this.

Since the symbols in the alphabet Σ are ordered, we can list the words in the
language Σ∗, using the same technique as in the previous section: First, all words of
size zero, sorted; then all words of size one, sorted; and so on. This is actually the
order already used in our set notation for Σ∗.

10 2 Grammars as a Generating Device

The language Σ∗ has the interesting property that all languages using alphabet Σ
are subsets of it. That means that, given another possibly less trivial language over
Σ, called L, we can go through the list of words in Σ∗ and put ticks on all words that
are in L. This will cover all words in L, since Σ∗ contains any possible word over Σ.

Suppose our language L is “the set of all words that contain more as than bs”. L
is the set {a, aa, aab, aba, baa, . . . }. The beginning of our list, with ticks, will look
as follows:

ε
✔ a

b
✔ aa

ab
ba
bb

✔ aaa
✔ aab
✔ aba

abb
✔ baa

bab
bba
bbb

✔ aaaa
.

Given the alphabet with its ordering, the list of blanks and ticks alone is entirely
sufficient to identify and describe the language. For convenience we write the blank
as a 0 and the tick as a 1 as if they were bits in a computer, and we can now write
L = 0101000111010001 · · · (and Σ∗ = 1111111111111111 · · ·). It should be noted
that this is true for any language, be it a formal language like L, a programming
language like Java or a natural language like English. In English, the 1s in the bit-
string will be very scarce, since hardly any arbitrary sequence of words is a good
English sentence (and hardly any arbitrary sequence of letters is a good English
word, depending on whether we address the sentence/word level or the word/letter
level).

2.1.3.4 Diagonalization

The previous section attaches the infinite bit-string 0101000111010001· · · to the de-
scription “the set of all the words that contain more as than bs”. In the same vein
we can attach such bit-strings to all descriptions. Some descriptions may not yield a
language, in which case we can attach an arbitrary infinite bit-string to it. Since all
descriptions can be put on a single numbered list, we get, for example, the following
picture:

2.1 Languages as Infinite Sets 11

Description Language

Description #1 000000100 · · ·
Description #2 110010001 · · ·
Description #3 011011010 · · ·
Description #4 110011010 · · ·
Description #5 100000011 · · ·
Description #6 111011011 · · ·

.

At the left we have all descriptions, at the right all languages they describe. We now
claim that many languages exist that are not on the list of languages above: the above
list is far from complete, although the list of descriptions is complete. We shall prove
this by using the diagonalization process (“Diagonalverfahren”) of Cantor.

Consider the language C = 100110 · · · , which has the property that its n-th bit is
unequal to the n-th bit of the language described by Description #n. The first bit of
C is a 1, because the first bit for Description #1 is a 0; the second bit of C is a 0,
because the second bit for Description #2 is a 1, and so on. C is made by walking the
NW to SE diagonal of the language field and copying the opposites of the bits we
meet. This is the diagonal in Figure 2.2(a). The language C cannot be on the list! It

(a)

free

(b) (c)

Fig. 2.2. “Diagonal” languages along n (a), n+10 (b), and 2n (c)

cannot be on line 1, since its first bit differs (is made to differ, one should say) from
that on line 1, and in general it cannot be on line n, since its n-th bit will differ from
that on line n, by definition.

So, in spite of the fact that we have exhaustively listed all possible finite descrip-
tions, we have at least one language that has no description on the list. But there exist
more languages that are not on the list. Construct, for example, the language whose
n+10-th bit differs from the n+10-th bit in Description #n. Again it cannot be on the
list since for every n > 0 it differs from line n in the n+10-th bit. But that means that
bits 1. . . 9 play no role, and can be chosen arbitrarily, as shown in Figure 2.2(b); this
yields another 29 = 512 languages that are not on the list. And we can do even much
better than that! Suppose we construct a language whose 2n-th bit differs from the
2n-th bit in Description #n (c). Again it is clear that it cannot be on the list, but now
every odd bit is left unspecified and can be chosen freely! This allows us to create

12 2 Grammars as a Generating Device

freely an infinite number of languages none of which allows a finite description; see
the slanting diagonal in Figure 2.2. In short, for every language that can be described
there are infinitely many that cannot.

The diagonalization technique is described more formally in most books on the-
oretical computer science; see e.g., Rayward-Smith [393, pp. 5-6], or Sudkamp [397,
Section 1.4].

2.1.3.5 Discussion

The above demonstration shows us several things. First, it shows the power of treat-
ing languages as formal objects. Although the above outline clearly needs consider-
able amplification and substantiation to qualify as a proof (for one thing it still has to
be clarified why the above explanation, which defines the language C, is not itself on
the list of descriptions; see Problem 2.1, it allows us to obtain insight into properties
not otherwise assessable.

Secondly, it shows that we can only describe a tiny subset (not even a fraction)
of all possible languages: there is an infinity of languages out there, forever beyond
our reach.

Thirdly, we have proved that, although there are infinitely many descriptions and
infinitely many languages, these infinities are not equal to each other, and the latter
is larger than the former. These infinities are called ℵ0 and ℵ1 by Cantor, and the
above is just a special case of his proof that ℵ0 < ℵ1.

2.1.4 Describing a Language through a Finite Recipe

A good way to build a set of objects is to start with a small object and to give rules
for how to add to it and construct new objects from it. “Two is an even number and
the sum of two even numbers is again an even number” effectively generates the set
of all even numbers. Formalists will add “and no other numbers are even”, but we
will take that as understood.

Suppose we want to generate the set of all enumerations of names, of the type
“Tom, Dick and Harry”, in which all names but the last two are separated by commas.
We will not accept “Tom, Dick, Harry” nor “Tom and Dick and Harry”, but we shall
not object to duplicates: “Grubb, Grubb and Burrowes”2 is all right. Although these
are not complete sentences in normal English, we shall still call them “sentences”
since that is what they are in our midget language of name enumerations. A simple-
minded recipe would be:

0. Tom is a name, Dick is a name, Harry is a name;
1. a name is a sentence;
2. a sentence followed by a comma and a name is again a sentence;
3. before finishing, if the sentence ends in “, name”, replace it by “and name”.

2 The Hobbit, by J.R.R. Tolkien, Allen and Unwin, 1961, p. 311.

2.1 Languages as Infinite Sets 13

Although this will work for a cooperative reader, there are several things wrong
with it. Clause 3 is especially wrought with trouble. For example, the sentence does
not really end in “, name”, it ends in “, Dick” or such, and “name” is just a symbol
that stands for a real name; such symbols cannot occur in a real sentence and must
in the end be replaced by a real name as given in clause 0. Likewise, the word “sen-
tence” in the recipe is a symbol that stands for all the actual sentences. So there are
two kinds of symbols involved here: real symbols, which occur in finished sentences,
like “Tom”, “Dick”, a comma and the word “and”; and there are intermediate sym-
bols, like “sentence” and “name” that cannot occur in a finished sentence. The first
kind corresponds to the words or tokens explained above; the technical term for them
is terminal symbols (or terminals for short). The intermediate symbols are called non-
terminals, a singularly uninspired term. To distinguish them, we write terminals in
lower case letters and start non-terminals with an upper case letter. Non-terminals
are called (grammar) variables or syntactic categories in linguistic contexts.

To stress the generative character of the recipe, we shall replace “X is a Y” by
“Y may be replaced by X”: if “tom” is an instance of a Name, then everywhere we
have a Name we may narrow it down to “tom”. This gives us:

0. Name may be replaced by “tom”
Name may be replaced by “dick”
Name may be replaced by “harry”

1. Sentence may be replaced by Name
2. Sentence may be replaced by Sentence, Name
3. “, Name” at the end of a Sentence must be replaced by “and Name” before Name

is replaced by any of its replacements
4. a sentence is finished only when it no longer contains non-terminals
5. we start our replacement procedure with Sentence

Clause 0 through 3 describe replacements, but 4 and 5 are different. Clause 4 is not
specific to this grammar. It is valid generally and is one of the rules of the game.
Clause 5 tells us where to start generating. This name is quite naturally called the
start symbol, and it is required for every grammar.

Clause 3 still looks worrisome; most rules have “may be replaced”, but this one
has “must be replaced”, and it refers to the “end of a Sentence”. The rest of the rules
work through replacement, but the problem remains how we can use replacement
to test for the end of a Sentence. This can be solved by adding an end marker after
it. And if we make the end marker a non-terminal which cannot be used anywhere
except in the required replacement from “, Name” to “and Name”, we automatically
enforce the restriction that no sentence is finished unless the replacement test has
taken place. For brevity we write ---> instead of “may be replaced by”; since terminal
and non-terminal symbols are now identified as technical objects we shall write them
in a typewriter-like typeface. The part before the ---> is called the left-hand side, the
part after it the right-hand side. This results in the recipe in Figure 2.3.

This is a simple and relatively precise form for a recipe, and the rules are equally
straightforward: start with the start symbol, and keep replacing until there are no
non-terminals left.

14 2 Grammars as a Generating Device

0. Name ---> tom
Name ---> dick
Name ---> harry

1. Sentence ---> Name
Sentence ---> List End

2. List ---> Name
List ---> List , Name

3. , Name End ---> and Name
4. the start symbol is Sentence

Fig. 2.3. A finite recipe for generating strings in the t, d & h language

2.2 Formal Grammars

The above recipe form, based on replacement according to rules, is strong enough
to serve as a basis for formal grammars. Similar forms, often called “rewriting sys-
tems”, have a long history among mathematicians, and were already in use several
centuries B.C. in India (see, for example, Bhate and Kak [411]). The specific form
of Figure 2.3 was first studied extensively by Chomsky [385]. His analysis has been
the foundation for almost all research and progress in formal languages, parsers and
a considerable part of compiler construction and linguistics.

2.2.1 The Formalism of Formal Grammars

Since formal languages are a branch of mathematics, work in this field is done in a
special notation. To show some of its flavor, we shall give the formal definition of
a grammar and then explain why it describes a grammar like the one in Figure 2.3.
The formalism used is indispensable for correctness proofs, etc., but not for under-
standing the principles; it is shown here only to give an impression and, perhaps, to
bridge a gap.

Definition 2.1: A generative grammar is a 4-tuple (VN ,VT ,R,S) such that

(1) VN and VT are finite sets of symbols,
(2) VN ∩VT = /0,
(3) R is a set of pairs (P,Q) such that

(3a) P ∈ (VN ∪VT)+ and
(3b) Q ∈ (VN ∪VT)∗,

(4) S ∈VN

A 4-tuple is just an object consisting of 4 identifiable parts; they are the non-
terminals, the terminals, the rules and the start symbol, in that order. The above
definition does not tell this, so this is for the teacher to explain. The set of non-
terminals is named VN and the set of terminals VT . For our grammar we have:

VN = {Name, Sentence, List, End}
VT = {tom, dick, harry, ,, and}

2.2 Formal Grammars 15

(note the , in the set of terminal symbols).
The intersection of VN and VT (2) must be empty, indicated by the symbol for

the empty set, /0. So the non-terminals and the terminals may not have a symbol in
common, which is understandable.

R is the set of all rules (3), and P and Q are the left-hand sides and right-hand
sides, respectively. Each P must consist of sequences of one or more non-terminals
and terminals and each Q must consist of sequences of zero or more non-terminals
and terminals. For our grammar we have:

R = {(Name, tom), (Name, dick), (Name, harry),
(Sentence, Name), (Sentence, List End), (List, Name),
(List, List , Name), (, Name End, and Name)}

Note again the two different commas.
The start symbol S must be an element of VN , that is, it must be a non-terminal:

S = Sentence

This concludes our field trip into formal linguistics. In short, the mathematics of
formal languages is a language, a language that has to be learned; it allows very con-
cise expression of what and how but gives very little information on why. Consider
this book a translation and an exegesis.

2.2.2 Generating Sentences from a Formal Grammar

The grammar in Figure 2.3 is what is known as a phrase structure grammar for
our t,d&h language (often abbreviated to PS grammar). There is a more compact
notation, in which several right-hand sides for one and the same left-hand side are
grouped together and then separated by vertical bars, |. This bar belongs to the
formalism, just as the arrow --->, and can be read “or else”. The right-hand sides
separated by vertical bars are also called alternatives. In this more concise form our
grammar becomes

0. Name ---> tom | dick | harry
1. Sentences ---> Name | List End
2. List ---> Name | Name , List
3. , Name End ---> and Name

where the non-terminal with the subscript s is the start symbol. (The subscript iden-
tifies the symbol, not the rule.)

Now let us generate our initial example from this grammar, using replacement
according to the above rules only. We obtain the following successive forms for
Sentence:

16 2 Grammars as a Generating Device

Intermediate form Rule used Explanation

Sentence the start symbol
List End Sentence ---> List End rule 1
Name , List End List ---> Name , List rule 2
Name , Name , List End List ---> Name , List rule 2
Name , Name , Name End List ---> Name rule 2
Name , Name and Name , Name End ---> and Name rule 3
tom , dick and harry rule 0, three times

The intermediate forms are called sentential forms. If a sentential form contains no
non-terminals it is called a sentence and belongs to the generated language. The
transitions from one line to the next are called production steps and the rules are
called production rules, for obvious reasons.

The production process can be made more visual by drawing connective lines be-
tween corresponding symbols, using a “graph”. A graph is a set of nodes connected
by a set of edges. A node can be thought of as a point on paper, and an edge as a
line, where each line connects two points; one point may be the end point of more
than one line. The nodes in a graph are usually “labeled”, which means that they
have been given names, and it is convenient to draw the nodes on paper as bubbles
with their names in them, rather than as points. If the edges are arrows, the graph is
a directed graph; if they are lines, the graph is undirected. Almost all graphs used in
parsing techniques are directed.

The graph corresponding to the above production process is shown in Figure
2.4. Such a picture is called a production graph or syntactic graph and depicts the
syntactic structure (with regard to the given grammar) of the final sentence. We see
that the production graph normally fans out downwards, but occasionally we may
see starlike constructions, which result from rewriting a group of symbols.

A cycle in a graph is a path from a node N following the arrows, leading back to
N. A production graph cannot contain cycles; we can see that as follows. To get a cy-
cle we would need a non-terminal node N in the production graph that has produced
children that are directly or indirectly N again. But since the production process
always makes new copies for the nodes it produces, it cannot produce an already
existing node. So a production graph is always “acyclic”; directed acyclic graphs are
called dags.

It is patently impossible to have the grammar generate tom, dick, harry,
since any attempt to produce more than one name will drag in an End and the only
way to get rid of it again (and get rid of it we must, since it is a non-terminal) is
to have it absorbed by rule 3, which will produce the and. Amazingly, we have
succeeded in implementing the notion “must replace” in a system that only uses
“may replace”; looking more closely, we see that we have split “must replace” into
“may replace” and “must not be a non-terminal”.

Apart from our standard example, the grammar will of course also produce many
other sentences; examples are

harry and tom
harry
tom, tom, tom and tom

2.2 Formal Grammars 17

Sentence

List End

Name , List

Name , List

, Name End

and Name

tom , dick and harry

Fig. 2.4. Production graph for a sentence

and an infinity of others. A determined and foolhardy attempt to generate the incor-
rect form without the and will lead us to sentential forms like

tom, dick, harry End

which are not sentences and to which no production rule applies. Such forms are
called blind alleys. As the right arrow in a production rule already suggests, the rule
may not be applied in the reverse direction.

2.2.3 The Expressive Power of Formal Grammars

The main property of a formal grammar is that it has production rules, which may
be used for rewriting part of the sentential form (= sentence under construction) and
a starting symbol which is the mother of all sentential forms. In the production rules
we find non-terminals and terminals; finished sentences contain terminals only. That
is about it: the rest is up to the creativity of the grammar writer and the sentence
producer.

This is a framework of impressive frugality and the question immediately rises:
Is it sufficient? That is hard to say, but if it is not, we do not have anything more
expressive. Strange as it may sound, all other methods known to mankind for gen-
erating sets have been proved to be equivalent to or less powerful than a phrase
structure grammar. One obvious method for generating a set is, of course, to write
a program generating it, but it has been proved that any set that can be generated

18 2 Grammars as a Generating Device

by a program can be generated by a phrase structure grammar. There are even more
arcane methods, but all of them have been proved not to be more expressive. On the
other hand there is no proof that no such stronger method can exist. But in view of
the fact that many quite different methods all turn out to halt at the same barrier, it is
highly unlikely3 that a stronger method will ever be found. See, e.g. Révész [394, pp
100-102].

As a further example of the expressive power we shall give a grammar for the
movements of a Manhattan turtle. A Manhattan turtle moves in a plane and can only
move north, east, south or west in distances of one block. The grammar of Figure 2.5
produces all paths that return to their own starting point. As to rule 2, it should be

1. Moves ---> north Move south | east Move west | ε
2. north east ---> east north

north south ---> south north
north west ---> west north
east north ---> north east
east south ---> south east
east west ---> west east

south north ---> north south
south east ---> east south
south west ---> west south
west north ---> north west
west east ---> east west
west south ---> south west

Fig. 2.5. Grammar for the movements of a Manhattan turtle

noted that many authors require at least one of the symbols in the left-hand side to be
a non-terminal. This restriction can always be enforced by adding new non-terminals.

The simple round trip north east south west is produced as shown in
Figure 2.6 (names abbreviated to their first letter). Note the empty alternative in rule

M

n M s

e M w s

n e s w

Fig. 2.6. How the grammar of Figure 2.5 produces a round trip

1 (the ε), which results in the dying out of the third M in the above production graph.

3 Paul Vitány has pointed out that if scientists call something “highly unlikely” they are still
generally not willing to bet a year’s salary on it, double or quit.

2.3 The Chomsky Hierarchy of Grammars and Languages 19

2.3 The Chomsky Hierarchy of Grammars and Languages

The grammars from Figures 2.3 and 2.5 are easy to understand and indeed some
simple phrase structure grammars generate very complicated sets. The grammar for
any given set is, however, usually far from simple. (We say “The grammar for a
given set” although there can be, of course, infinitely many grammars for a set. By
the grammar for a set, we mean any grammar that does the job and is not obviously
overly complicated.) Theory says that if a set can be generated at all (for example,
by a program) it can be generated by a phrase structure grammar, but theory does not
say that it will be easy to do so, or that the grammar will be understandable. In this
context it is illustrative to try to write a grammar for those Manhattan turtle paths in
which the turtle is never allowed to the west of its starting point (Problem 2.3).

Apart from the intellectual problems phrase structure grammars pose, they also
exhibit fundamental and practical problems. We shall see that no general parsing
algorithm for them can exist, and all known special parsing algorithms are either
very inefficient or very complex; see Section 3.4.2.

The desire to restrict the unmanageability of phrase structure grammars, while
keeping as much of their generative powers as possible, has led to the Chomsky hier-
archy of grammars. This hierarchy distinguishes four types of grammars, numbered
from 0 to 3; it is useful to include a fifth type, called Type 4 here. Type 0 grammars
are the (unrestricted) phrase structure grammars of which we have already seen ex-
amples. The other types originate from applying more and more restrictions to the
allowed form of the rules in the grammar. Each of these restrictions has far-reaching
consequences; the resulting grammars are gradually easier to understand and to ma-
nipulate, but are also gradually less powerful. Fortunately, these less powerful types
are still very useful, actually more useful even than Type 0.

We shall now consider each of the three remaining types in turn, followed by a
trivial but useful fourth type.

For an example of a completely different method of generating Type 0 languages
see Geffert [395].

2.3.1 Type 1 Grammars

The characteristic property of a Type 0 grammar is that it may contain rules that
transform an arbitrary (non-zero) number of symbols into an arbitrary (possibly zero)
number of symbols. Example:

, N E ---> and N

in which three symbols are replaced by two. By restricting this freedom, we obtain
Type 1 grammars. Strangely enough there are two, intuitively completely different
definitions of Type 1 grammars, which can be easily proved to be equivalent.

20 2 Grammars as a Generating Device

2.3.1.1 Two Types of Type 1 Grammars

A grammar is Type 1 monotonic if it contains no rules in which the left-hand side
consists of more symbols than the right-hand side. This forbids, for example, the
rule , N E ---> and N.

A grammar is Type 1 context-sensitive if all of its rules are context-sensitive. A
rule is context-sensitive if actually only one (non-terminal) symbol in its left-hand
side gets replaced by other symbols, while we find the others back, undamaged and
in the same order, in the right-hand side. Example:

Name Comma Name End ---> Name and Name End

which tells that the rule

Comma ---> and

may be applied if the left context is Name and the right context is Name End. The
contexts themselves are not affected. The replacement must be at least one symbol
long. This means that context-sensitive grammars are always monotonic; see Section
2.5.

Here is a monotonic grammar for our t,d&h example. In writing monotonic
grammars one has to be careful never to produce more symbols than will eventually
be produced. We avoid the need to delete the end marker by incorporating it into the
rightmost name:

Name ---> tom | dick | harry
Sentences ---> Name | List

List ---> EndName | Name , List
, EndName ---> and Name

where EndName is a single symbol.
And here is a context-sensitive grammar for it.

Name ---> tom | dick | harry
Sentences ---> Name | List

List ---> EndName
| Name Comma List

Comma EndName ---> and EndName context is ... EndName
and EndName ---> and Name context is and ...

Comma ---> ,

Note that we need an extra non-terminal Comma to produce the terminal and in the
correct context.

Monotonic and context-sensitive grammars are equally powerful: for each lan-
guage that can be generated by a monotonic grammar a context-sensitive grammar
exists that generates the same language, and vice versa. They are less powerful than
the Type 0 grammars, that is, there are languages that can be generated by a Type
0 grammar but not by any Type 1. Strangely enough no simple examples of such
languages are known. Although the difference between Type 0 and Type 1 is funda-
mental and is not just a whim of Mr. Chomsky, grammars for which the difference

2.3 The Chomsky Hierarchy of Grammars and Languages 21

matters are too complicated to write down; only their existence can be proved (see
e.g., Hopcroft and Ullman [391, pp. 183-184], or Révész [394, p. 98]).

Of course any Type 1 grammar is also a Type 0 grammar, since the class of Type
1 grammars is obtained from the class of Type 0 grammars by applying restrictions.
But it would be confusing to call a Type 1 grammar a Type 0 grammar; it would be
like calling a cat a mammal: correct but imprecise. A grammar is named after the
smallest class (that is, the highest type number) in which it will still fit.

We saw that our t,d&h language, which was first generated by a Type 0 gram-
mar, could also be generated by a Type 1 grammar. We shall see that there is also
a Type 2 and a Type 3 grammar for it, but no Type 4 grammar. We therefore say
that the t,d&h language is a Type 3 language, after the most restricted (and simple
and amenable) grammar for it. Some corollaries of this are: A Type n language can
be generated by a Type n grammar or anything stronger, but not by a weaker Type
n + 1 grammar; and: If a language is generated by a Type n grammar, that does not
necessarily mean that there is no (weaker) Type n + 1 grammar for it. The use of
a Type 0 grammar for our t,d&h language was a serious case of overkill, just for
demonstration purposes.

2.3.1.2 Constructing a Type 1 Grammar

The standard example of a Type 1 language is the set of words that consist of equal
numbers of as, bs and cs, in that order:

a a a

n of them

b b b

n of them

c c c

n of them

For the sake of completeness and to show how one writes a Type 1 grammar if
one is clever enough, we shall now derive a grammar for this toy language. Starting
with the simplest case, we have the rule

0. S ---> abc

Having obtained one instance of S, we may want to prepend more as to the be-
ginning; if we want to remember how many there were, we shall have to append
something to the end as well at the same time, and that cannot be a b or a c. We shall
use a yet unknown symbol Q. The following rule both prepends and appends:

1. S ---> aSQ

If we apply this rule, for example, three times, we get the sentential form

aaabcQQ

Now, to get aaabbbccc from this, each Q must be worth one b and one c, as
expected, but we cannot just write

Q ---> bc

22 2 Grammars as a Generating Device

because that would allow bs after the first c. The above rule would, however, be all
right if it were allowed to do replacement only between a b on the left and a c on the
right. There the newly inserted bc will do no harm:

2. bQc ---> bbcc

Still, we cannot apply this rule since normally the Qs are to the right of the c. This
can be remedied by allowing a Q to hop left over a c:

3. cQ ---> Qc

We can now finish our derivation:

aaabcQQ (3 times rule 1)
aaabQcQ (rule 3)
aaabbccQ (rule 2)
aaabbcQc (rule 3)
aaabbQcc (rule 3)
aaabbbccc (rule 2)

It should be noted that the above derivation only shows that the grammar will produce
the right strings, and the reader will still have to convince himself that it will not
generate other and incorrect strings (Problem 2.4).

The grammar is summarized in Figure 2.7. Since a derivation graph of a3b3c3

1. Ss ---> abc | aSQ
2. bQc ---> bbcc
3. cQ ---> Qc

Fig. 2.7. Monotonic grammar for anbncn

is already rather unwieldy, a derivation graph for a2b2c2 is given in Figure 2.8. The

S

a S Q

a b c Q

b Q c

a a b b c c

Fig. 2.8. Derivation of aabbcc

grammar is monotonic and therefore of Type 1. It can be proved that there is no Type
2 grammar for the language; see Section 2.7.1.

2.3 The Chomsky Hierarchy of Grammars and Languages 23

Although only context-sensitive Type 1 grammars can by rights be called
context-sensitive grammars (CS grammars), that name is often used even if the gram-
mar is actually monotonic Type 1. There are no standard initials for monotonic, but
MT will do.

2.3.2 Type 2 Grammars

Type 2 grammars are called context-free grammars (CF grammars) and their rela-
tion to context-sensitive grammars is as direct as the name suggests. A context-free
grammar is like a context-sensitive grammar, except that both the left and the right
contexts are required to be absent (empty). As a result, the grammar may contain
only rules that have a single non-terminal on their left-hand side. Sample grammar:

0. Name ---> tom | dick | harry
1. Sentences ---> Name | List and Name
2. List ---> Name , List | Name

2.3.2.1 Production Independence

Since there is always only one symbol on the left-hand side, each node in a pro-
duction graph has the property that whatever it produces is independent of what its
neighbors produce: the productive life of a non-terminal is independent of its context.
Starlike forms as we saw in Figures 2.4, 2.6, and 2.8 cannot occur in a context-free
production graph, which consequently has a pure tree-form and is called a production
tree. An example is shown in Figure 2.9.

Sentence

List and Name

Name , List

Name

tom , dick and harry

Fig. 2.9. Production tree for a context-free grammar

Since there is only one symbol on the left-hand side, all right-hand sides for a
given non-terminal can always be collected in one grammar rule (we have already

24 2 Grammars as a Generating Device

done that in the above grammar) and then each grammar rule reads like a definition
of the left-hand side:

• A Sentence is either a Name or a List followed by and followed by a Name.
• A List is either a Name followed by a , followed by a List, or it is a Name.

This shows that context-free grammars build the strings they produce by two pro-
cesses: concatenation (“. . . followed by . . . ”) and choice (“either . . . or . . . ”). In ad-
dition to these processes there is the identification mechanism which links the name
of a non-terminal used in a right-hand side to its defining rule (“. . . is a . . . ”).

At the beginning of this chapter we identified a language as a set of strings, the
set of terminal productions of the start symbol. The independent production property
allows us to extend this definition to any non-terminal in the grammar: each non-
terminal produces a set, a language, independent of the other non-terminals. If we
write the set of strings produced by A as L(A) and A has a production rule with,
say, two alternatives, A → α|β, then L(A) = L(α)∪ L(β), where ∪ is the union
operator on sets. This corresponds to the choice in the previous paragraph. If α then
consists of, say, three members PqR, we have L(α) = L(P) ◦L(q) ◦L(R), where
◦ is the concatenation operator on strings (actually on the strings in the sets). This
corresponds to the concatenation above. And L(a) where a is a terminal is of course
the set {a}. A non-terminal whose language contains ε is called nullable. One also
says that it “produces empty”.

Note that we cannot define a language L(Q) for the Q in Figure 2.7: Q does not
produce anything meaningful by itself. Defining a language for a non-start symbol
is possible only for Type 2 grammars and lower, and so is defining a non-start non-
terminal as nullable.

Related to the independent production property is the notion of recursion. A
non-terminal A is recursive if an A in a sentential form can produce something that
again contains an A. The production of Figure 2.9 starts with the sentential form
Sentence, which uses rule 1.2 to produce List and Name. The next step could
very well be the replacement of the List by Name,List, using rule 2.1. We see
that List produces something that again contains List:

Sentence ---> List and Name ---> Name , List and Name

List is recursive, more in particular, it is directly recursive. The non-terminal A in
A--->Bc, B--->dA is indirectly recursive, but not much significance is to be attached
to the difference.

It is more important that List is right-recursive: a non-terminal A is right-
recursive if it can produce something that has an A at the right end, as List can:

List ---> Name , List

Likewise, a non-terminal A is left-recursive if it can produce something that has an
A at the left end: we could have defined

List ---> List , Name

2.3 The Chomsky Hierarchy of Grammars and Languages 25

A non-terminal A is self-embedding if there is a derivation in which A produces
A with something, say α, before it and something, say β, after it. Self-embedding
describes nesting: α is the part produced when entering another level of nesting; β is
the part produced when leaving that level. The best-known example of nesting is the
use of parentheses in arithmetic expressions:

arith_expressions ---> · · · | simple_expression
simple_expression ---> number | ’(’ arith_expression ’)’

A non-terminal can be left-recursive and right-recursive at the same time; it is then
self-embedding. A--->Ab|cA|d is an example.

If no non-terminal in a grammar is recursive, each production step uses up one
non-terminal, since that non-terminal will never occur again in that segment. So the
production process cannot continue unlimitedly, and a finite language results. Recur-
sion is essential for life in grammars.

2.3.2.2 Some Examples

In the actual world, many things are defined in terms of other things. Context-free
grammars are a very concise way to formulate such interrelationships. An almost
trivial example is the composition of a book, as given in Figure 2.10. Of course this

Books ---> Preface ChapterSequence Conclusion
Preface ---> "PREFACE" ParagraphSequence

ChapterSequence ---> Chapter | Chapter ChapterSequence
Chapter ---> "CHAPTER" Number ParagraphSequence

ParagraphSequence ---> Paragraph | Paragraph ParagraphSequence
Paragraph ---> SentenceSequence

SentenceSequence ---> · · ·
· · ·

Conclusion ---> "CONCLUSION" ParagraphSequence

Fig. 2.10. A simple (and incomplete!) grammar of a book

is a context-free description of a book, so one can expect it to also generate a lot of
good-looking nonsense like

PREFACE
qwertyuiop
CHAPTER V
asdfghjkl
zxcvbnm,.
CHAPTER II
qazwsxedcrfvtgb
yhnujmikolp
CONCLUSION
All cats say blert when walking through walls.

26 2 Grammars as a Generating Device

but at least the result has the right structure. Document preparation and text mark-up
systems like SGML, HTML and XML use this approach to express and control the
basic structure of documents.

A shorter but less trivial example is the language of all elevator motions that
return to the same point (a Manhattan turtle restricted to 5th Avenue would make the
same movements)

ZeroMotions ---> up ZeroMotion down ZeroMotion
| down ZeroMotion up ZeroMotion
| ε

(in which we assume that the elevator shaft is infinitely long; it would be, in Man-
hattan).

If we ignore enough detail we can also recognize an underlying context-free
structure in the sentences of a natural language, for example, English:

Sentences ---> Subject Verb Object
Subject ---> NounPhrase
Object ---> NounPhrase

NounPhrase ---> the QualifiedNoun
QualifiedNoun ---> Noun | Adjective QualifiedNoun

Noun ---> castle | caterpillar | cats
Adjective ---> well-read | white | wistful | · · ·

Verb ---> admires | bark | criticize | · · ·
which produces sentences like:

the well-read cats criticize the wistful caterpillar

Since, however, no context is incorporated, it will equally well produce the incorrect

the cats admires the white well-read castle

For keeping context we could use a phrase structure grammar (for a simpler lan-
guage):

Sentences ---> Noun Number Verb
Number ---> Singular | Plural

Noun Singular ---> castle Singular | caterpillar Singular | · · ·
Singular Verb ---> Singular admires | · · ·

Singular ---> ε
Noun Plural ---> cats Plural | · · ·
Plural Verb ---> Plural bark | Plural criticize | · · ·

Plural ---> ε

where the markers Singular and Plural control the production of actual English
words. Still, this grammar allows the cats to bark. . . . For a better way to handle con-
text, see the various sections in Chapter 15, especially Van Wijngaarden grammars
(Section 15.2) and attribute and affix grammars (Section 15.3).

The bulk of examples of CF grammars originate from programming languages.
Sentences in these languages (that is, programs) have to be processed automatically

2.3 The Chomsky Hierarchy of Grammars and Languages 27

(that is, by a compiler) and it was soon recognized (around 1958) that this is much
easier if the language has a well-defined formal grammar. The syntaxes of all pro-
gramming languages in use today are defined through formal grammars.

Some authors (for example Chomsky) and some parsing algorithms, require a
CF grammar to be monotonic. The only way a CF rule can be non-monotonic is by
having an empty right-hand side. Such a rule is called an ε-rule and a grammar that
contains no such rules is called ε-free.

The requirement of being ε-free is not a real restriction, just a nuisance. Almost
any CF grammar can be made ε-free by systematic substitution of the ε-rules; the
exception is a grammar in which the start symbol already produces ε. The trans-
formation process is explained in detail in Section 4.2.3.1), but it shares with many
other grammar transformations the disadvantage that it usually ruins the structure of
the grammar. The issue will be discussed further in Section 2.5.

2.3.2.3 Notation Styles

There are several different styles of notation for CF grammars for programming lan-
guages, each with endless variants; they are all functionally equivalent. We shall
show two main styles here. The first is the Backus-Naur Form (BNF) which was first
used to define ALGOL 60. Here is a sample:

<name>::= tom | dick | harry
<sentence>s::= <name> | <list> and <name>
<list>::= <name>, <list> | <name>

This form’s main properties are the use of angle brackets to enclose non-terminals
and of ::= for “may produce”. In some variants, the rules are terminated by a semi-
colon.

The second style is that of the CF van Wijngaarden grammars. Again a sample:

name: tom symbol; dick symbol; harry symbol.
sentences: name; list, and symbol, name.
list: name, comma symbol, list; name.

The names of terminal symbols end in ...symbol; their representations are
hardware-dependent and are not defined in the grammar. Rules are properly termi-
nated (with a period). Punctuation is used more or less in the traditional way; for
example, the comma binds tighter than the semicolon. The punctuation can be read
as follows:

: “is defined as a(n)”
; “, or as a(n)”
, “followed by a(n)”
. “, and as nothing else.”

The second rule in the above grammar would then read as: “a sentence is defined as
a name, or as a list followed by an and-symbol followed by a name, and as nothing
else.” Although this notation achieves its full power only when applied in the two-
level Van Wijngaarden grammars, it also has its merits on its own: it is formal and
still quite readable.

28 2 Grammars as a Generating Device

2.3.2.4 Extended CF Grammars

CF grammars are often made both more compact and more readable by introduc-
ing special short-hands for frequently used constructions. If we return to the Book
grammar of Figure 2.10, we see that rules like:

SomethingSequence ---> Something | Something SomethingSequence

occur repeatedly. In an extended context-free grammar we can write Something+

meaning “one or more Somethings” and we do not need to give a rule for
Something+; the rule

Something+ ---> Something | Something Something+

is implicit. Likewise we can use Something* for “zero or more Somethings” and
Something? for “zero or one Something” (that is, “optionally a Something”).
In these examples, the operators +, * and ? work on the preceding symbol. Their
range can be extended by using parentheses: (Something ;)? means “option-
ally a Something-followed-by-a-;”. These facilities are very useful and allow the
Book grammar to be written more efficiently (Figure 2.11). Some styles even al-
low constructions like Something+4, meaning “one or more Somethings with a
maximum of 4”, or Something+, meaning “one or more Somethings separated
by commas”; this seems to be a case of overdoing a good thing. This notation for
grammars is called Extended BNF (EBNF).

Books ---> Preface Chapter+ Conclusion
Preface ---> "PREFACE" Paragraph+

Chapter ---> "CHAPTER" Number Paragraph+

Paragraph ---> Sentence+

Sentence ---> · · ·
· · ·

Conclusion ---> "CONCLUSION" Paragraph+

Fig. 2.11. A grammar of a book in EBFN notation

The extensions of an EBNF grammar do not increase its expressive powers: all
implicit rules can be made explicit and then a normal CF grammar in BNF notation
results. Their strength lies in their user-friendliness. The star in the notation X∗ with
the meaning “a sequence of zero or more Xs” is called the Kleene star. If X is a set,
X∗ should be read as “a sequence of zero or more elements of X”; it is the same star
that we saw in Σ∗ in Section 2.1.3.3. Forms involving the repetition operators *, + or
? and possibly the separators (and) are called regular expressions. EBNFs, which
have regular expressions for their right-hand sides, are for that reason sometimes
called regular right part grammars RRP grammars which is more descriptive than
“extended context free”, but which is perceived to be a tongue twister by some.

There are two different schools of thought about the structural meaning of a reg-
ular right-hand side. One school maintains that a rule like:

2.3 The Chomsky Hierarchy of Grammars and Languages 29

Book ---> Preface Chapter+ Conclusion

is an abbreviation of

Book ---> Preface α Conclusion
α ---> Chapter | Chapter α

as shown above. This is the “(right)recursive” interpretation. It has the advantages
that it is easy to explain and that the transformation to “normal” CF is simple. Disad-
vantages are that the transformation entails anonymous rules (identified by α here)
and that the lopsided production tree for, for example, a book of four chapters does
not correspond to our idea of the structure of the book; see Figure 2.12.

Book

Preface α Con-
clusion

Chapter α

Chapter α

Chapter α

Chapter

Fig. 2.12. Production tree for the (right)recursive interpretation

The second school claims that

Book ---> Preface Chapter+ Conclusion

is an abbreviation of

Book ---> Preface Chapter Conclusion
| Preface Chapter Chapter Conclusion
| Preface Chapter Chapter Chapter Conclusion
| · · ·
· · ·

This is the “iterative” interpretation. It has the advantage that it yields a beautiful
production tree (Figure 2.13), but the disadvantages are that it involves an infinite
number of production rules and that the nodes in the production tree have a varying
fan-out.

Since the implementation of the iterative interpretation is far from trivial, most
practical parser generators use the recursive interpretation in some form or another,
whereas most research has been done on the iterative interpretation.

30 2 Grammars as a Generating Device

Book

Preface Chapter Chapter Chapter Chapter
Con-

clusion

Fig. 2.13. Production tree for the iterative interpretation

2.3.3 Type 3 Grammars

The basic property of CF grammars is that they describe things that nest: an
object may contain other objects in various places, which in turn may contain
. . . etc. When during the production process we have finished producing one of
the objects, the right-hand side still “remembers” what has to come after it: in
the English grammar, after having descended into the depth of the non-terminal
Subject to produce something like the wistful cat, the right-hand side
Subject Verb Object still remembers that a Verb must follow. While we are
working on the Subject, the Verb and Object remain queued at the right in the
sentential form, for example,

the wistful QualifiedNoun Verb Object

In the right-hand side

up ZeroMotion down ZeroMotion

after having performed the up and an arbitrarily complicated ZeroMotion, the
right-hand side still remembers that a down must follow.

The restriction to Type 3 disallows this recollection of things that came before: a
right-hand side may only contain one non-terminal and it must come at the end. This
means that there are only two kinds of rules:4

• a non-terminal produces zero or more terminals, and
• a non-terminal produces zero or more terminals followed by one non-terminal.

The original Chomsky definition of Type 3 restricts the kinds of rules to

• a non-terminal produces one terminal.
• A non-terminal produces one terminal followed by one non-terminal.

Our definition is equivalent and more convenient, although the conversion to Chom-
sky Type 3 is not completely trivial.

Type 3 grammars are also called regular grammars (RE grammars) or finite-state
grammars (FS grammars). More precisely the version defined above is called right-
regular since the only non-terminal in a rule is found at the right end of the right-hand
side. This distinguishes them from the left-regular grammars, which are subject to
the restrictions

4 There is a natural in-between class, Type 2.5 so to speak, in which only a single non-
terminal is allowed in a right-hand side, but where it need not be at the end. This gives us
the so-called linear grammars.

2.3 The Chomsky Hierarchy of Grammars and Languages 31

• a non-terminal produces zero or more terminals
• a non-terminal produces one non-terminal followed by zero or more terminals

where the only non-terminal in a rule is found at the left end of the right-hand side.
Left-regular grammars are less intuitive than right-regular ones, occur less frequently,
and are more difficult to process, but they do occur occasionally (see for example
Section 5.1.1), and need to be considered. They are discussed in Section 5.6.

Given the prevalence of right-regular over left-regular, the term “regular gram-
mar” is usually intended to mean “right-regular grammar”, and left-regularity is men-
tioned explicitly. We will follow this convention in this book.

It is interesting to compare the definition of right-regular to that of right-recursive
(page 24). A non-terminal A is right-recursive if it can produce a sentential form that
has an A at the right end; A is right-regular if, when it produces a sentential form that
contains A, the A is at the right end.

In analogy to context-free grammars, which are called after what they cannot do,
regular grammars could be called “non-nesting grammars”.

Since regular grammars are used very often to describe the structure of text on the
character level, it is customary for the terminal symbols of a regular grammar to be
single characters. We shall therefore write t for Tom, d for Dick, h for Harry and
& for and. Figure 2.14(a) shows a right-regular grammar for our t,d&h language
in this style, 2.14(b) a left-regular one.

Sentences ---> t | d | h | List
List ---> t ListTail | d ListTail | h ListTail

ListTail ---> , List | & t | & d | & h
(a)

Sentences ---> t | d | h | List
List ---> ListHead & t | ListHead & d | ListHead & h

ListHead ---> ListHead , t | ListHead , d | ListHead , h |
t | d | h

(b)

Fig. 2.14. Type 3 grammars for the t, d & h language

The production tree for a sentence from a Type 3 (right-regular) grammar degen-
erates into a “production chain” of non-terminals that drop a sequence of terminals on
their left. Figure 2.15 shows an example. Similar chains are formed by left-regular
grammars, with terminals dropping to the left.

The deadly repetition exhibited by the grammar of Figure 2.14 is typical of reg-
ular grammars and a number of notational devices have been invented to abate this
nuisance. The most common one is the use of square brackets to indicate “one out of
a set of characters”: [tdh] is an abbreviation for t|d|h:

Ss ---> [tdh] | L
L ---> [tdh] T
T ---> , L | & [tdh]

32 2 Grammars as a Generating Device

Sentence

List

t ListTail

, List

d ListTail

& h

Fig. 2.15. Production chain for a right-regular (Type 3) grammar

which may look more cryptic at first but is actually much more convenient and in
fact allows simplification of the grammar to

Ss ---> [tdh] | L
L ---> [tdh] , L | [tdh] & [tdh]

A second way is to allow macros, names for pieces of the grammar that are
substituted properly into the grammar before it is used:

Name ---> t | d | h
Ss ---> $Name | L
L ---> $Name , L | $Name & $Name

The popular parser generator for regular grammars lex (Lesk and Schmidt [360])
features both facilities.

If we adhere to the Chomsky definition of Type 3, our grammar will not get
smaller than:

Ss ---> t | d | h | t M | d M | h M
M ---> , N | & P
N ---> t M | d M | h M
P ---> t | d | h

This form is easier to process but less user-friendly than the lex version. We observe
here that while the formal-linguist is interested in and helped by minimally sufficient
means, the computer scientist values a form in which the concepts underlying the
grammar ($Name, etc.) are easily expressed, at the expense of additional processing.

There are two interesting observations about regular grammars which we want
to make here. First, when we use a regular grammar for generating a sentence, the
sentential forms will only contain one non-terminal and this will always be at the
end; that is where it all happens (using the grammar of Figure 2.14):

2.3 The Chomsky Hierarchy of Grammars and Languages 33

Sentences
List
t ListTail
t , List
t , d ListTail
t , d & h

The second observation is that all regular grammars can be reduced considerably
in size by using the regular expression operators *, + and ? introduced in Section
2.3.2 for “zero or more”, “one or more” and “optionally one”, respectively. Using
these operators and (and) for grouping, we can simplify our grammar to:

Ss ---> (([tdh],)* [tdh]&)? [tdh]

Here the parentheses serve to demarcate the operands of the * and ? operators. Regu-
lar expressions exist for all Type 3 grammars. Note that the * and the + work on what
precedes them. To distinguish them from the normal multiplication and addition op-
erators, they are often printed higher than the level text in print, but in computer input
they are in line with the rest, and other means must be used to distinguish them.

2.3.4 Type 4 Grammars

The last restriction we shall apply to what is allowed in a production rule is a pretty
final one: no non-terminal is allowed in the right-hand side. This removes all the
generative power from the mechanism, except for the choosing of alternatives. The
start symbol has a (finite) list of alternatives from which we are allowed to choose;
this is reflected in the name finite-choice grammar (FC grammar).

There is no FC grammar for our t,d&h language; if, however, we are willing to
restrict ourselves to lists of names of a finite length (say, no more than a hundred),
then there is one, since one could enumerate all combinations. For the obvious limit
of three names, we get:

Ss ---> [tdh] | [tdh] & [tdh] | [tdh] , [tdh] & [tdh]

for a total of 3+3×3+3×3×3 = 39 production rules.
FC grammars are not part of the official Chomsky hierarchy in that they are not

identified by Chomsky. They are nevertheless very useful and are often required as
a tail-piece in some process or reasoning. The set of reserved words (keywords) in
a programming language can be described by an FC grammar. Although not many
grammars are FC in their entirety, some of the rules in many grammars are finite-
choice. For example, the first rule of our first grammar (Figure 2.3) was FC. Another
example of a FC rule was the macro introduced in Section 2.3.3. We do not need the
macro mechanism if we change

zero or more terminals

in the definition of a regular grammar to

zero or more terminals or FC non-terminals

In the end, the FC non-terminals will only introduce a finite number of terminals.

34 2 Grammars as a Generating Device

2.3.5 Conclusion

The table in Figure 2.16 summarizes the most complicated data structures that can
occur in the production of a string, in correlation to the grammar type used. See also
Figure 3.15 for the corresponding data types obtained in parsing.

Chomsky Grammar Most complicated Example
type type data structure figure
0 / 1 PS / CS production dag 2.8

2 CF production tree 2.9
3 FS production list 2.15
4 FC production element —

Fig. 2.16. The most complicated production data structure for the Chomsky grammar types

2.4 Actually Generating Sentences from a Grammar

2.4.1 The Phrase-Structure Case

Until now we have only produced single sentences from our grammars, in an ad hoc
fashion, but the purpose of a grammar is to generate all of its sentences. Fortunately
there is a systematic way to do so. We shall use the anbncn grammar as an example.
We start from the start symbol and systematically make all possible substitutions to
generate all sentential forms; we just wait and see which ones evolve into sentences
and when. Try this by hand for, say, 10 sentential forms. If we are not careful, we are
apt to only generate forms like aSQ, aaSQQ, aaaSQQQ, . . . , and we will never see a
finished sentence. The reason is that we focus too much on a single sentential form:
we have to give equal time to all of them. This can be done through the following
algorithm, which keeps a queue (that is, a list to which we add at the end and remove
from the beginning), of sentential forms.

Start with the start symbol as the only sentential form in the queue. Now continue
doing the following:

• Consider the first sentential form in the queue.
• Scan it from left to right, looking for strings of symbols that match the left-hand

side of a production rule.
• For each such string found, make enough copies of the sentential form, replace in

each one the string that matched a left-hand side of a rule by a different alternative
of that rule, and add them all to the end of the queue.

• If the original sentential form does not contain any non-terminals, write it down
as a sentence in the language.

• Throw away the original sentential form; it has been fully processed.

2.4 Actually Generating Sentences from a Grammar 35

If no rule matched, and the sentential form was not a finished sentence, it was a blind
alley; they are removed automatically by the above process and leave no trace.

Since the above procedure enumerates all strings in a PS language, PS languages
are also called recursively enumerable sets, where “recursively” is to be taken to
mean “by a possibly recursive algorithm”.

The first couple of steps of this process for our anbncn grammar from Figure
2.7 are depicted in Figure 2.17. The queue runs to the right, with the first item on

Step Queue Result
1 S
2 abc aSQ abc
3 aSQ
4 aabcQ aaSQQ
5 aaSQQ aabQc
6 aabQc aaabcQQ aaaSQQQ
7 aaabcQQ aaaSQQQ aabbcc
8 aaaSQQQ aabbcc aaabQcQ
9 aabbcc aaabQcQ aaaabcQQQ aaaaSQQQQ aabbcc

10 aaabQcQ aaaabcQQQ aaaaSQQQQ
11 aaaabcQQQ aaaaSQQQQ aaabbccQ aaabQQc
· · · · · ·

Fig. 2.17. The first couple of steps in producing for anbncn

the left. We see that we do not get a sentence for each time we turn the crank; in
fact, in this case real sentences will get scarcer and scarcer. The reason is of course
that during the process more and more side lines develop, which all require equal
attention. Still, we can be certain that every sentence that can be produced, will in
the end be produced: we leave no stone unturned. This way of doing things is called
breadth-first production; computers are better at it than people.

It is tempting to think that it is unnecessary to replace all left-hand sides that we
found in the top-most sentential form. Why not just replace the first one and wait
for the resulting sentential form to come up again and then do the next one? This is
wrong, however, since doing the first one may ruin the context for doing the second
one. A simple example is the grammar

Ss ---> AC
A ---> b

AC ---> ac

First doing A--->b will lead to a blind alley and the grammar will produce nothing.
Doing both possible substitutions will lead to the same blind alley, but then there will
also be a second sentential form, ac. This is also an example of a grammar for which
the queue will get empty after a (short) while.

If the grammar is context-free (or regular) there is no context to ruin and it is
quite safe to just replace the first (or only) match.

36 2 Grammars as a Generating Device

There are two remarks to be made here. First, it is not at all certain that we
will indeed obtain a sentence for all our effort: it is quite possible that every new
sentential form again contains non-terminals. We should like to know this in advance
by examining the grammar, but it can be proven that it is impossible to do so for
PS grammars. The formal-linguist says “It is undecidable whether a PS grammar
produces the empty set”, which means that there cannot be an algorithm that will
for every PS grammar correctly tell if the grammar produces at least one sentence.
This does not mean that we cannot prove for some given grammar that it generates
nothing, if that is the case. It means that the proof method used will not work for
all grammars: we could have a program that correctly says Yes in finite time if the
answer is Yes but that takes infinite time if the answer is No. In fact, our generating
procedure above is such an algorithm that gives the correct Yes/No answer in infinite
time (although we can have an algorithm that gives a Yes/Don’t know answer in finite
time). Although it is true that because of some deep property of formal languages
we cannot always get exactly the answer we want, this does not prevent us from
obtaining all kinds of useful information that gets close. We shall see that this is a
recurring phenomenon. The computer scientist is aware of but not daunted by the
impossibilities from formal linguistics.

The second remark is that when we do get sentences from the above produc-
tion process, they may be produced in an unexploitable order. For non-monotonic
grammars the sentential forms may grow for a while and then suddenly shrink again,
perhaps even to the empty string. Formal linguistics proves that there cannot be an
algorithm that for all PS grammars produces their sentences in increasing (actually
“non-decreasing”) length. In other words, the parsing problem for PS grammars is
unsolvable. (Although the terms are used interchangeably, it seems reasonable to use
“undecidable” for yes/no questions and “unsolvable” for problems.)

2.4.2 The CS Case

The above language-generating procedure is also applicable to CS grammars, except
for the parts about undecidability. Since the sentential forms under development can
never shrink, the strings are produced in monotonic order of increasing length. This
means that if the empty string is not the first string, it will never appear and the CS
grammar does not produce ε. Also, if we want to know if a given string w is in the
language, we can just wait until we see it come up, in which case the answer is Yes,
or until we see a longer string come up, in which case the answer is No.

Since the strings in a CS language can be recognized by a possibly recursive
algorithm, CS languages are also called recursive sets.

2.4.3 The CF Case

When we generate sentences from a CF grammar, many things are a lot simpler. It
can still happen that our grammar will never produce a sentence, but now we can test
for that beforehand, as follows. First scan the grammar to find all non-terminals that
have a right-hand side that contains terminals only or is empty. These non-terminals

2.4 Actually Generating Sentences from a Grammar 37

are guaranteed to produce something. Now scan again to find non-terminals that have
a right-hand side that consists of only terminals and non-terminals that are guaran-
teed to produce something. This will give us new non-terminals that are guaranteed
to produce something. Repeat this until we find no more new such non-terminals. If
we have not met the start symbol this way, it will not produce anything.

Furthermore we have seen that if the grammar is CF, we can afford to just rewrite
the leftmost non-terminal every time (provided we rewrite it into all its alternatives).
Of course we can also consistently rewrite the rightmost non-terminal. Both ap-
proaches are similar but different. Using the grammar

0. N ---> t | d | h
1. Ss ---> N | L & N
2. L ---> N , L | N

let us follow the adventures of the sentential form that will eventually result in
d,h&h. Although it will go up and down the production queue several times, we
only depict here what changes are made to it. Figure 2.18 shows the sentential forms
for leftmost and rightmost substitution, with the rules and alternatives involved; for
example, (1b) means rule 1 alternative b, the second alternative.

S S
1b 1b

L&N L&N
2a 0c

N,L&N L&h
0b 2a

d,L&N N,L&h
2b 2b

d,N&N N,N&h
0c 0c

d,h&N N,h&h
0c 0b

d,h&h d,h&h

Fig. 2.18. Sentential forms leading to d,h&h, with leftmost and rightmost substitution

The sequences of production rules used are not as similar as we would expect. Of
course in grand total the same rules and alternatives are applied, but the sequences
are neither equal nor each other’s mirror image, nor is there any other obvious re-
lationship. Both sequences define the same production tree (Figure 2.19(a)), but if
we number the non-terminals in it in the order they were rewritten, we get different
numberings, as shown in (b) and (c).

The sequence of production rules used in leftmost rewriting is called the leftmost
derivation of a sentence. We do not have to indicate at what position a rule must
be applied, nor do we need to give its rule number. Just the alternative is sufficient;
the position and the non-terminal are implicit. A rightmost derivation is defined in a
similar way.

38 2 Grammars as a Generating Device

S

L N

N L

N

d , h & h

(a)

S

L N

N L

N

d , h & h

1

2 6

3 4

5

(b)

S

L N

N L

N

d , h & h

1

3 2

6 4

5

(c)

Fig. 2.19. Production tree (a) with leftmost (b) and rightmost (c) derivation order

A leftmost production step can be indicated by using an arrow marked with a
small l: N,L&N l--->d,L&N, and the leftmost production sequence

S l---> L&N l---> N,L&N l---> d,L&N l---> d,N&N l---> d,h&N l---> d,h&h

can be abbreviated to S l
*--->d,h&h. Likewise, the rightmost production sequence

S r---> L&N r---> L&h r---> N,L&h r---> N,N&h r---> N,h&h r---> d,h&h

can be abbreviated to S r
*--->d,h&h. The fact that S produces d,h&h in any way is

written as S *--->d,h&h.
The task of parsing is to reconstruct the derivation tree (or graph) for a given input

string. Some of the most efficient parsing techniques can be understood more easily
if viewed as attempts to reconstruct a left- or rightmost derivation process of the
input string; the derivation tree then follows automatically. This is why the notion
“[left|right]-most derivation” occurs frequently in this book (note the FC grammar
used here).

2.5 To Shrink or Not To Shrink

In the previous paragraphs, we have sometimes been explicit as to the question if a
right-hand side of a rule may be shorter than its left-hand side and sometimes we
have been vague. Type 0 rules may definitely be of the shrinking variety, monotonic
rules definitely may not, and Type 2 and 3 rules can shrink only by producing empty
(ε); that much is sure.

The original Chomsky hierarchy (Chomsky [385]) was very firm on the subject:
only Type 0 rules are allowed to make a sentential form shrink. Type 1, 2 and 3 rules
are all monotonic. Moreover, Type 1 rules have to be of the context-sensitive variety,
which means that only one of the non-terminals in the left-hand side is actually al-
lowed to be replaced (and then not by ε). This makes for a proper hierarchy in which
each next class is a proper subset of its parent and in which all derivation graphs
except for those of Type 0 grammars are actually derivation trees.

2.5 To Shrink or Not To Shrink 39

As an example consider the grammar for the language anbncn given in Figure
2.7:

1. Ss ---> abc | aSQ
2. bQc ---> bbcc
3. cQ ---> Qc

which is monotonic but not context-sensitive in the strict sense. It can be made CS
by expanding the offending rule 3 and introducing a non-terminal for c:

1. Ss ---> abC | aSQ
2. bQC ---> bbCC
3a. CQ ---> CX
3b. CX ---> QX
3c. QX ---> QC
4. C ---> c

Now the production graph of Figure 2.8 turns into a production tree:

S

a S Q

a b C Q

C X

Q X

b Q C

b b C C

a a b b c c

There is an additional reason for shunning ε-rules: they make both proofs and
parsers more complicated, sometimes much more complicated; see, for example,
Section 9.5.4. So the question arises why we should bother with ε-rules at all; the
answer is that they are very convenient for the grammar writer and user.

If we have a language that is described by a CF grammar with ε-rules and we want
to describe it by a grammar without ε-rules, then that grammar will almost always
be more complicated. Suppose we have a system that can be fed bits of information,
like: “Amsterdam is the capital of the Netherlands”, “Truffles are expensive”, and
can then be asked a question. On a very superficial level we can define its input as:

inputs: zero-or-more-bits-of-info question

or, in an extended notation

inputs: bit-of-info* question

40 2 Grammars as a Generating Device

Since zero-or-more-bits-of-info will, among other strings, produce the
empty string, at least one of the rules used in its grammar will be an ε-rule; the *

in the extended notation already implies an ε-rule somewhere. Still, from the user’s
point of view, the above definition of input neatly fits the problem and is exactly what
we want.

Any attempt to write an ε-free grammar for this input will end up defining a no-
tion that comprises some of the later bits-of-info together with the question
(since the question is the only non-empty part, it must occur in all rules involved!)
But such a notion does not fit our problem at all and is an artifact:

inputs: question-preceded-by-info
question-preceded-by-info: question

| bit-of-info
question-preceded-by-info

As a grammar becomes more and more complicated, the requirement that it be ε-free
becomes more and more of a nuisance: the grammar is working against us, not for
us.

This presents no problem from a theoretical point of view: any CF language can
be described by an ε-free CF grammar and ε-rules are never needed. Better still, any
grammar with ε-rules can be mechanically transformed into an ε-free grammar for
the same language. We saw an example of such a transformation above and details of
the algorithm are given in Section 4.2.3.1. But the price we pay is that of any gram-
mar transformation: it is no longer our grammar and it reflects the original structure
less well.

The bottom line is that the practitioner finds the ε-rule to be a useful tool, and it
would be interesting to see if there exists a hierarchy of non-monotonic grammars
alongside the usual Chomsky hierarchy. To a large extend there is: Type 2 and Type
3 grammars need not be monotonic (since they can always be made so if the need
arises); it turns out that context-sensitive grammars with shrinking rules are equiv-
alent to unrestricted Type 0 grammars; and monotonic grammars with ε-rules are
also equivalent to Type 0 grammars. We can now draw the two hierarchies in one
picture; see Figure 2.20. Drawn lines separate grammar types with different power.
Conceptually different grammar types with the same power are separated by blank
space. We see that if we insist on non-monotonicity, the distinction between Type 0
and Type 1 disappears.

A special case arises if the language of a Type 1 to Type 3 grammar itself contains
the empty string. This cannot be incorporated into the grammar in the monotonic
hierarchy since the start symbol already has length 1 and no monotonic rule can
make it shrink. So the empty string has to be attached as a special property to the
grammar. No such problem occurs in the non-monotonic hierarchy.

Many parsing methods will in principle work for ε-free grammars only: if some-
thing does not produce anything, you can’t very well see if it’s there. Often the pars-
ing method can be doctored to handle ε-rules, but that invariably increases the com-
plexity of the method. It is probably fair to say that this book would be at least 30%

2.6 Grammars that Produce the Empty Language 41

Chomsky (monotonic) hierarchy non-monotonic
hierarchy

global
Type 0

unrestricted
phrase structure
grammars

monotonic
grammars
with ε-rules

unrestricted phrase
structure grammars

production
Type 1

context-sensitive
grammars

monotonic
grammars,
no ε-rules

context-sensitive
grammars with
non-monotonic rules

local Type 2 context-free ε-free grammars context-free grammars
production Type 3 regular (ε-free) grammars regular grammars,

regular expressions
no production Type 4 finite-choice

Fig. 2.20. Summary of grammar hierarchies

thinner if ε-rules did not exist — but then grammars would lose much more than
30% of their usefulness!

2.6 Grammars that Produce the Empty Language

Roughly 1500 years after the introduction of zero as a number by mathematicians in
India, the concept is still not well accepted in computer science. Many programming
languages do not support records with zero fields, arrays with zero elements, or vari-
able definitions with zero variables; in some programming languages the syntax for
calling a routine with zero parameters differs from that for a routine with one or more
parameters; many compilers refuse to compile a module that defines zero names; and
this list could easily be extended. More in particular, we do not know of any parser
generator that can produce a parser for the empty language, the language with zero
strings.

All of which brings us to the question of what the grammar for the empty lan-
guage would look like. First note that the empty language differs from the language
that consists of only the empty string, a string with zero characters. This language is
easily generated by the grammar Ss--->ε, and is handled correctly by the usual lex-
yacc pipeline. Note that this grammar has no terminal symbols, which means that VT

in Section 2.2 is the empty set.
For a grammar to produce nothing, the production process cannot be allowed to

terminate. This suggests one way to obtain such a grammar: Ss--->S. This is ugly,
however, for two reasons. From an algorithmic point of view the generation process
now just loops and no information about the emptiness of the language is obtained;
and the use of the symbol S is arbitrary.

Another way is to force the production process to get stuck by not having any
production rules in the grammar. Then R in Section 2.2 is empty too, and the form
of the grammar is ({S}, {}, S, {}). This is not very satisfactory either, since now we
have a non-terminal without a defining rule; and the symbol S is still arbitrary.

42 2 Grammars as a Generating Device

A better way is never to allow the production process to get started: have no start
symbol. This can be accommodated by allowing a set of start symbols in the defini-
tion of a grammar rather than a single start symbol. There are other good reasons for
doing so. An example is the grammar for a large programming language which has
multiple “roots” for module specifications, module definitions, etc. Although these
differ at the top level, they have large segments of the grammar in common. If we
extend the definition of a CF grammar to use a set of start symbols, the grammar for
the empty language obtains the elegant and satisfactory form ({}, {}, {}, {}).

Also on the subject of zero and empty: it might be useful to consider grammar
rules in which the left-hand side is empty. Terminal productions of the right-hand
sides of such rules may appear anywhere in the input, thus modeling noise and other
every-day but extraneous events.

Our preoccupation with empty strings, sets, languages, etc. is not frivolous, since
it is well known that the ease with which a system handles empty cases is a measure
of its cleanliness and robustness.

2.7 The Limitations of CF and FS Grammars

When one has been working for a while with CF grammars, one gradually gets the
feeling that almost anything could be expressed in a CF grammar. That there are,
however, serious limitations to what can be said by a CF grammar is shown by the
famous uvwxy theorem, which is explained below.

2.7.1 The uvwxy Theorem

When we have obtained a sentence from a CF grammar, we may look at each (ter-
minal) symbol in it, and ask: How did it get here? Then, looking at the production
tree, we see that it was produced as, say, the n-th member of the right-hand side of
rule number m. The left-hand side of this rule, the parent of our symbol, was again
produced as the p-th member of rule q, and so on, until we reach the start symbol.
We can, in a sense, trace the lineage of the symbol in this way. If all rule/member
pairs in the lineage of a symbol are different, we call the symbol original, and if all
the symbols in a sentence are original, we call the sentence “original”.

For example, the lineage of the first h in the production tree

1

3 7

6 4

7

d , h & h

2.7 The Limitations of CF and FS Grammars 43

produced by the grammar

1. Ss ---> L & N
2. Ss ---> N
3. L ---> N , L
4. L ---> N
5. N ---> t
6. N ---> d
7. N ---> h

is h of 7,1 of 4,1 of 3,3 of 1,1. Here the first number indicates the rule and the
second number is the member number in that rule. Since all the rule/member pairs
are different the h is original.

Now there is only a finite number of ways for a given symbol to be original.
This is easy to see as follows. All rule/member pairs in the lineage of an original
symbol must be different, so the length of its lineage can never be more than the
total number of different rule/member pairs in the grammar. There are only so many
of these, which yields only a finite number of combinations of rule/member pairs of
this length or shorter. In theory the number of original lineages of a symbol can be
very large, but in practice it is very small: if there are more than, say, ten ways to
produce a given symbol from a grammar by original lineage, your grammar will be
very convoluted indeed!

This puts severe restrictions on original sentences. If a symbol occurs twice in
an original sentence, both its lineages must be different: if they were the same, they
would describe the same symbol in the same place. This means that there is a maxi-
mum length to original sentences: the sum of the numbers of original lineages of all
symbols. For the average grammar of a programming language this length is in the
order of some thousands of symbols, i.e., roughly the size of the grammar. So, since
there is a longest original sentence, there can only be a finite number of original sen-
tences, and we arrive at the surprising conclusion that any CF grammar produces a
finite-size kernel of original sentences and (probably) an infinite number of unorigi-
nal sentences!

What do “unoriginal” sentences look like? This is where we come to the uvwxy
theorem. An unoriginal sentence has the property that it contains at least one sym-
bol in the lineage of which a repetition occurs. Suppose that symbol is a q and the
repeated rule is A. We can then draw a picture similar to Figure 2.21, where w is the
part produced by the most recent application of A, vwx the part produced by the other
application of A and uvwxy is the entire unoriginal sentence. Now we can immedi-
ately find another unoriginal sentence, by removing the smaller triangle headed by A
and replacing it by a copy of the larger triangle headed by A; see Figure 2.22.

This new tree produces the sentence uvvwxxy and it is easy to see that we can, in
this way, construct a complete family of sentences uvnwxny for all n ≥ 0. This form
shows the w nested in a number of v and x brackets, in an indifferent context of u and
y.

The bottom line is that when we examine longer and longer sentences in a
context-free language, the original sentences become exhausted and we meet only
families of closely related sentences telescoping off into infinity. This is summarized

44 2 Grammars as a Generating Device

S

u y

A

v x

A

q
w

Fig. 2.21. An unoriginal sentence: uvwxy

S

u y

A

v x

A

v x

A

q
w

Fig. 2.22. Another unoriginal sentence, uv2wx2y

in the uvwxy theorem: any sentence generated by a CF grammar that is longer than
the longest original sentence from that grammar can be cut into five pieces u, v, w, x
and y, in such a way that uvnwxny is a sentence from that grammar for all n ≥ 0. The
uvwxy theorem is also called the pumping lemma for context-free languages and has
several variants.

Two remarks must be made here. The first is that if a language keeps on providing
longer and longer sentences without reducing to families of nested sentences, there
cannot be a CF grammar for it. We have already encountered the context-sensitive
language anbncn and it is easy to see (but not quite so easy to prove!) that it does not
decay into such nested sentences, as sentences get longer and longer. Consequently,
there is no CF grammar for it. See Billington [396] for a general technique for such
proofs.

The second is that the longest original sentence is a property of the grammar,
not of the language. By making a more complicated grammar for a language we can
increase the set of original sentences and push away the border beyond which we
are forced to resort to nesting. If we make the grammar infinitely complicated, we
can push the border to infinity and obtain a phrase structure language from it. How
we can make a CF grammar infinitely complicated is described in the section on
two-level grammars, 15.2.1.

2.8 CF and FS Grammars as Transition Graphs 45

2.7.2 The uvw Theorem

A simpler form of the uvwxy theorem applies to regular (Type 3) languages. We have
seen that the sentential forms occurring in the production process for a FS grammar
all contain only one non-terminal, which occurs at the end. During the production
of a very long sentence, one or more non-terminals must occur two or more times,
since there are only a finite number of non-terminals. Figure 2.23 shows what we
see when we list the sentential forms one by one. The substring v has been produced

Start_symbol

· · · P

· · · · · · Q

u
A

u
· · · R

u
· · · · · · S

u v
A A appears again

u v
· · · T

u v
· · · · · · U

u v w

Fig. 2.23. Repeated occurrence of A may result in repeated occurrence of v

from one occurrence of A to the next, u is a sequence that allows us to reach A, and w
is a sequence that allows us to terminate the production process. It will be clear that,
starting from the second A, we could have followed the same path as from the first
A, and thus have produced uvvw. This leads us to the uvw theorem, or the pumping
lemma for regular languages: any sufficiently long string from a regular language
can be cut into three pieces u, v and w, so that uvnw is a string in the language for all
n ≥ 0.

2.8 CF and FS Grammars as Transition Graphs

A transition graph is a directed graph in which the arrows are labeled with zero or
more symbols from the grammar. The idea is that as you follow the arrows in the
graph you produce one of the associated symbols, if there is one, and nothing other-
wise. The nodes, often unlabeled, are resting points between producing the symbols.
If there is more than one outgoing arrow from a node you can choose any to fol-
low. So the transition graph in Figure 2.24 produces the same strings as the sample
grammar on page 23.

It is fairly straightforward to turn a grammar into a set of transition graphs, one
for each non-terminal, as Figure 2.25 shows. But it contains arrows marked with non-
terminals, and the meaning of “producing” a non-terminal associated with an arrow
is not directly clear. Suppose we are at node n1, from which a transition (arrow)
labeled with non-terminal N leads to a node n2, and we want to take that transition.

46 2 Grammars as a Generating Device

tom
dick
harry

,

and

tom
dick
harry

Fig. 2.24. A transition graph for the [tdh] language

Name

tom
dick
harry

Sentence

Name

List and Name

List

Name , List

Name

Fig. 2.25. A recursive transition network for the sample grammar on page 23

Rather than producing N by appending it to the output, we push node n2 on a stack,
and continue our walk at the entrance to the transition graph for N. And when we
are leaving the transition graph for N, we pop n2 from the stack and continue at node
n2. This is the recursive transition network interpretation of context-free grammars:
the set of graphs is the transition network, and the stacking mechanism provides the
recursion.

Figure 2.26 shows the right-regular rules of the FS grammar Figure 2.14(a) as
transition graphs. Here we have left out the unmarked arrows at the exits of the
graphs and the corresponding nodes; we could have done the same in Figure 2.25,
but doing so would have complicated the stacking mechanism.

We see that we have to produce a non-terminal only when we are just leaving
another, so we do not need to stack anything, and can interpret an arrow marked
with a non-terminal N as a jump to the transition graph for N. So a regular grammar
corresponds to a (non-recursive) transition network.

If we connect each exit marked N in such a network to the entrance of the graph
for N we can ignore the non-terminals, and obtain a transition graph for the corre-
sponding language. When we apply this short-circuiting to the transition network of
Figure 2.26 and rearrange the nodes a bit, we get the transition graph of Figure 2.24.

2.9 Hygiene in Context-Free Grammars 47

Sentence

[tdh]

List

List
[tdh] ListTail

ListTail

, List

and [tdh]

Fig. 2.26. The FS grammar of Figure 2.14(a) as transition graphs

2.9 Hygiene in Context-Free Grammars

All types of grammars can contain useless rules, rules that cannot play a role in any
successful production process. A production process is successful when it results in a
terminal string. Production attempts can be unsuccessful by getting stuck (no further
substitution possible) or by entering a situation in which no substitution sequence
will ever remove all non-terminals. An example of a Type 0 grammar that can get
stuck is

1. Ss ---> A B
2. S ---> B A
3. S ---> C
4. A B ---> x
5. C ---> C C

When we start with the first rule for S, all goes well and we produce the terminal
string x. But when we start with rule 2 for S we get stuck, and when we start with
rule 3, we get ourselves in an infinite loop, producing more and more Cs. Rules 2, 3
and 5 can never occur in a successful production process: they are useless rules, and
can be removed from the grammar without affecting the language produced.

Useless rules are not a fundamental problem: they do not obstruct the normal
production process. Still, they are dead wood in the grammar, and one would like to
remove them. Also, when they occur in a grammar specified by a programmer, they
probably point at some error, and one would like to detect them and give warning or
error messages.

The problems with the above grammar were easy to understand, but it can be
shown that in general it is undecidable whether a rule in a Type 0 or 1 grammar is
useless: there cannot be an algorithm that does it correctly in all cases. For context-
free grammars the situation is different, however, and the problem is rather easily
solved.

48 2 Grammars as a Generating Device

Rules in a context-free grammar can be useless through three causes: they may
contain undefined non-terminals, they may not be reachable from the start symbol,
and they may fail to produce anything. We will now discuss each of these ailments
in more detail; an algorithm to rid a grammar of them is given in Section 2.9.5.

2.9.1 Undefined Non-Terminals

The right-hand side of some rule may contain a non-terminal for which no production
rule is given. Such a rule will never have issue and can be removed from the grammar.
If we do this, we may of course remove the last definition of another non-terminal,
which will then in turn become undefined, etc.

We will see further on (for example in Section 4.1.3) that it is occasionally useful
to also recognize undefined terminals. Rules featuring them in their right-hand sides
can again be removed.

2.9.2 Unreachable Non-Terminals

If a non-terminal cannot be reached from the start symbol, its defining rules will
never be used, and it cannot contribute to the production of any sentence. Unreach-
able non-terminals are sometimes called “unused non-terminals”. But this term is a
bit misleading, because an unreachable non-terminal A may still occur in some right-
hand side B → ·· ·A · · · , making it look useful, provided B is unreachable; the same
applies of course to B, etc.

2.9.3 Non-Productive Rules and Non-Terminals

Suppose X has as its only rule X → aX and suppose X can be reached from the start
symbol. Now X will still not contribute anything to the sentences of the language
of the grammar, since once X is introduced, there is no way to get rid of it: X is
a non-productive non-terminal. In addition, any rule which has X in its right-hand
side is non-productive. In short, any rule that does not in itself produce a non-empty
sublanguage is non-productive. If all rules for a non-terminal are non-productive, the
non-terminal is non-productive.

In an extreme case all non-terminals in a grammar are non-productive. This hap-
pens when all right-hand sides in the grammar contain at least one non-terminal.
Then there is just no way to get rid of the non-terminals, and the grammar itself is
non-productive.

These three groups together are called useless non-terminals.

2.9.4 Loops

The above definition makes “non-useless” all rules that can be involved in the pro-
duction of a sentence, but there still is a class of rules that are not really useful: rules
of the form A → A. Such rules are called loops. Loops can also be indirect: A → B,

2.9 Hygiene in Context-Free Grammars 49

B → C, C → A; and they can be hidden: A → PAQ, P *→ε, Q *→ε, so a production
sequence A → PAQ → . . .A . . . → A is possible.

A loop can legitimately occur in the production of a sentence, and if it does,
there is also a production of that sentence without the loop. Loops do not contribute
to the language and any sentence the production of which involves a loop is infinitely
ambiguous, meaning that there are infinitely many production trees for it. Algorithms
for loop detection are given in Section 4.1.2.

Different parsers react differently to grammars with loops. Some (most of the
general parsers) faithfully attempt to construct an infinite number of derivation trees,
some (for example, the CYK parser) collapse the loop as described above and some
(most deterministic parsers) reject the grammar. The problem is aggravated by the
fact that loops can be concealed by ε-rules: a loop may only become visible when
certain non-terminals produce ε.

A grammar without useless non-terminals and loops is called a proper grammar.

2.9.5 Cleaning up a Context-Free Grammar

Normally, grammars supplied by people do not contain undefined, unreachable or
non-productive non-terminals. If they do, it is almost certainly a mistake (or a test!),
and we would like to detect and report them. Such anomalies can, however, occur
normally in generated grammars or be introduced by some grammar transforma-
tions, in which case we wish to detect them to “clean up” the grammar. Cleaning the
grammar is also very important when we obtain the result of parsing as a parse-forest
grammar (Section 3.7.4, Chapter 13, and many other places).

The algorithm to detect and remove useless non-terminals and rules from a
context-free grammar consists of two steps: remove the non-productive rules and
remove the unreachable non-terminals. Surprisingly it is not necessary to remove the
useless rules due to undefined non-terminals: the first step does this for us automati-
cally.

Ss ---> A B | D E
A ---> a
B ---> b C
C ---> c
D ---> d F
E ---> e
F ---> f D

Fig. 2.27. A demo grammar for grammar cleaning

We will use the grammar of Figure 2.27 for our demonstration. It looks fairly
innocent: all its non-terminals are defined and it does not exhibit any suspicious
constructions.

50 2 Grammars as a Generating Device

2.9.5.1 Removing Non-Productive Rules

We find the non-productive rules by finding the productive ones. Our algorithm
hinges on the observation that a rule is productive if its right-hand side consists of
symbols all of which are productive. Terminal symbols are productive since they
produce terminals and empty is productive since it produces the empty string. A
non-terminal is productive if there is a productive rule for it, but the problem is that
initially we do not know which rules are productive, since that is exactly the thing
we are trying to find out.

We solve this dilemma by first marking all rules and non-terminals as “Don’t
know”. We now go through the grammar of Figure 2.27 and for each rule for which
we do know that all its right-hand side members are productive, we mark the rule
and the non-terminal it defines as “Productive”. This yields markings for the rules
A--->a, C--->c, and E--->e, and for the non-terminals A, C and E.

Now we know more and apply this knowledge in a second round through the
grammar. This allows us to mark the rule B--->bC and the non-terminal B, since now
C is known to be productive. A third round gives us S--->AB and S. A fourth round
yields nothing new, so there is no point in a fifth round.

We now know that S, A, B, C, and E are productive, but D and F and the rule
S--->DE are still marked “Don’t know”. However, now we know more: we know
that we have pursued all possible avenues for productivity, and have not found any
possibilities for D, F and the second rule for S. That means that we can now upgrade
our knowledge “Don’t know” to “Non-productive”. The rules for D, F and the second
rule for S can be removed from the grammar; the result is shown in Figure 2.28. This
makes D and F undefined, but S stays in the grammar since it is productive, in spite
of having a non-productive rule.

Ss ---> A B
A ---> a
B ---> b C
C ---> c
E ---> e

Fig. 2.28. The demo grammar after removing non-productive rules

It is interesting to see what happens when the grammar contains an undefined
non-terminal, say U . U will first be marked “Don’t know”, and since there is no
rule defining it, it will stay “Don’t know”. As a result, any rule R featuring U in
its right-hand side will also stay “Don’t know”. Eventually both will be recognized
as “Non-productive”, and all rules R will be removed. We see that an “undefined
non-terminal” is just a special case of a “non-productive” non-terminal: it is non-
productive because there is no rule for it.

The above knowledge-improving algorithm is our first example of a closure al-
gorithm. Closure algorithms are characterized by two components: an initialization,
which is an assessment of what we know initially, partly derived from the situation

2.9 Hygiene in Context-Free Grammars 51

and partly “Don’t know”; and an inference rule, which is a rule telling how knowl-
edge from several places is to be combined. The inference rule for our problem was:

For each rule for which we do know that all its right-hand side members are
productive, mark the rule and the non-terminal it defines as “Productive’.’

It is implicit in a closure algorithm that the inference rule(s) are repeated until nothing
changes any more. Then the preliminary “Don’t know” can be changed into a more
definitive “Not X”, where “X” was the property the algorithm was designed to detect.

Since it is known beforehand that in the end all remaining “Don’t know” indica-
tions are going to be changed into “Not X”, many descriptions and implementations
of closure algorithms skip the whole “Don’t know” stage and initialize everything to
“Not X”. In an implementation this does not make much difference, since the mean-
ing of the bits in computer memory is not in the computer but in the mind of the
programmer, but especially in text-book descriptions this practice is unelegant and
can be confusing, since it just is not true that initially all the non-terminals in our
grammar are “Non-productive”.

We will see many examples of closure algorithms in this book; they are discussed
in more detail in Section 3.9.

2.9.5.2 Removing Unreachable Non-Terminals

A non-terminal is called reachable or accessible if there exists at least one sentential
form, derivable from the start symbol, in which it occurs. So a non-terminal A is
reachable if S *→αAβ for some α and β.

We found the non-productive rules and non-terminals by finding the “productive”
ones. Likewise, we find the unreachable non-terminals by finding the reachable ones.
For this, we can use the following closure algorithm. First, the start symbol is marked
“reachable”; this is the initialization. Then, for each rule in the grammar of the form
A → α with A marked, all non-terminals in α are marked; this is the inference rule.
We continue applying the inference rule until nothing changes any more. Now the
unmarked non-terminals are not reachable and their rules can be removed.

The first round marks A and B; the second marks C, and the third produces no
change. The result — a clean grammar — is in Figure 2.29. We see that rule E--->e,
which was reachable and productive in Figure 2.27 became isolated by removing
the non-productive rules, and is then removed by the second step of the cleaning
algorithm.

Ss ---> A B
A ---> a
B ---> b C
C ---> c

Fig. 2.29. The demo grammar after removing all useless rules and non-terminals

52 2 Grammars as a Generating Device

Removing the unreachable rules cannot cause a non-terminal N used in a reach-
able rule to become undefined, since N can only become undefined by removing all
its defining rules but since N is reachable, the above process will not remove any
rule for it. A slight modification of the same argument shows that removing the un-
reachable rules cannot cause a non-terminal N used in a reachable rule to become
non-productive: N, which was productive or it would not have survived the previous
clean-up step, can only become non-productive by removing some of its defining
rules but since N is reachable, the above process will not remove any rule for it.
This shows conclusively that after removing non-productive non-terminals and then
removing unreachable non-terminals we do not need to run the step for removing
non-productive non-terminals again.

It is interesting to note, however, that first removing unreachable non-terminals
and then removing non-productive rules may produce a grammar which again con-
tains unreachable non-terminals. The grammar of Figure 2.27 is an example in point.

Furthermore it should be noted that cleaning a grammar may remove all rules,
including those for the start symbol, in which case the grammar describes the empty
language; see Section 2.6.

Removing the non-productive rules is a bottom-up process: only the bottom level,
where the terminal symbols live, can know what is productive. Removing unreach-
able non-terminals is a top-down process: only the top level, where the start sym-
bol(s) live(s), can know what is reachable.

2.10 Set Properties of Context-Free and Regular Languages

Since languages are sets, it is natural to ask if the standard operations on sets —
union, intersection, and negation (complement) — can be performed on them, and if
so, how.

The union of two sets S1 and S2 contains the elements that are in either set;
it is written S1 ∪ S2.. The intersection contains the elements that are in both sets;
it is written S1 ∩ S2. And the negation of a set S contains those in Σ∗ but not in
S; it is written ¬S. In the context of formal languages the sets are defined through
grammars, so actually we want to do the operations on the grammars rather than on
the languages.

Constructing the grammar for the union of two languages is trivial for context-
free and regular languages (and in fact for all Chomsky types): just construct a new
start symbol S′ → S1|S2, where S1 and S2 are the start symbols of the two grammars
that describe the two languages. (Of course, if we want to combine the two grammars
into one we must make sure that the names in them differ, but that is easy to do.)

Intersection is a different matter, though, since the intersection of two context-
free languages need not be context-free, as the following example shows. Consider
the two CF languages L1 = anbncm and L2 = ambncn described by the CF grammars

L1s ---> A P
A ---> a A b | ε
P ---> c P | ε

and
L2s ---> Q C
Q ---> a Q | ε
C ---> b C c | ε

2.10 Set Properties of Context-Free and Regular Languages 53

When we take a string that occurs in both languages and thus in their intersection, it
will have the form apbqcr where p = q because of L1 and q = r because of L2. So
the intersection language consists of strings of the form anbncn and we know that
that language is not context-free (Section 2.7.1).

The intersection of CF languages has weird properties. First, the intersection of
two CF languages always has a Type 1 grammar — but this grammar is not easy to
construct. More remarkably, the intersection of three CF languages is more powerful
than the intersection of two of them: Liu and Weiner [390] show that there are lan-
guages that can be obtained as the intersection of k CF languages, but not of k−1. In
spite of that, any Type 1 language, and even any Type 0 language, can be constructed
by intersecting just two CF languages, provided we are allowed to erase all symbols
in the resulting strings that belong to a set of erasable symbols.

The CS language we will use to demonstrate this remarkable phenomenon is the
set of all strings that consist of two identical parts: ww, where w is any string over
the given alphabet; examples are aa and abbababbab. The two languages to be
intersected are defined by

L3s ---> A P
A ---> a A x | b A y | ε
P ---> a P | b P | ε

and
L4s ---> Q C
Q ---> a Q | b Q | ε
C ---> x C a | y C b | ε

where x and y are the erasable symbols. The first grammar produces strings consist-
ing of three parts, a sequence A1 of as and bs, followed by its “dark mirror” image
M1, in which a corresponds to x and b to y, followed by an arbitrary sequence G1 of
as and bs. The second grammar produces strings consisting of an arbitrary sequence
G2 of as and bs, a “dark” sequence M2, and its mirror image A2, in which again a
corresponds to x and b to y. The intersection forces A1 = G2, M1 = M2, and G1 = A2.
This makes A2 the mirror image of the mirror image of A1, in other words equal to
A1. An example of a string in the intersection is abbabyxyyxabbab, where we
see the mirror images abbab and yxyyx. We now erase the erasable symbols x and
y and obtain our result abbababbab.

Using a massive application of the above mirror-mirror trick, one can relatively
easily prove that any Type 0 language can be constructed as the intersection of two
CF languages, plus a set of erasable symbols. For details see, for example, Révész
[394].

Remarkably the intersection of a context-free and a regular language is always
a context-free language, and, what’s more, there is a relatively simple algorithm to
construct a grammar for that intersection language. This gives rise to a set of unusual
parsing algorithms, which are discussed in Chapter 13.

If we cannot have intersection of two CF languages and stay inside the CF lan-
guages, we certainly cannot have negation of a CF language and stay inside the CF
languages. If we could, we could negate two languages, take their union, negate the
result, and so obtain their intersection. In a formula: L1 ∩ L2 = ¬((¬L1)∪ (¬L2));
this formula is known as De Morgan’s Law.

In Section 5.4 we shall see that union, intersection and negation of regular (Type
3) languages yield regular languages.

54 2 Grammars as a Generating Device

It is interesting to speculate what would have happened if formal languages had
been based on set theory with all the set operations right from the start, rather than
on the Chomsky hierarchy. Would context-free languages still have been invented?

2.11 The Semantic Connection

Sometimes parsing serves only to check the correctness of a string; that the string
conforms to a given grammar may be all we want to know, for example because it
confirms our hypothesis that certain observed patterns are indeed correctly described
by the grammar we have designed for it. Often, however, we want to go further: we
know that the string conveys a meaning, its semantics, and this semantics is directly
related to the structure of the production tree of the string. (If it is not, we have the
wrong grammar!)

Attaching semantics to a grammar is done in a very simple and effective way: to
each rule in the grammar, a semantic clause is attached which relates the semantics of
the members of the right-hand side of the rule to the semantics of the left-hand side,
in which case the semantic information flows from the leaves of the tree upwards to
the start symbol; or the other way around, in which case the semantic information
flows downwards from the start symbol to the leaves; or both ways, in which case
the semantic information may have to flow up and down for a while until a stable
situation is reached. Semantic information flowing down is called inherited: each
rule inherits it from its parent in the tree. Semantic information flowing up is called
derived: each rule derives it from its children.

There are many ways to express semantic clauses. Since our subject is parsing
and syntax rather than semantics, we will briefly describe only two often-used and
well-studied techniques: attribute grammars and transduction grammars. We shall
explain both using the same simple example, the language of sums of one-digit
numbers; the semantics of a sentence in this language is the value of the sum. The
language is generated by the grammar of Figure 2.30. One of its sentences is, for

1. Sums ---> Digit
2. Sum ---> Sum + Digit
3. Digit ---> 0 | 1 | · · · | 9

Fig. 2.30. A grammar for sums of one-digit numbers

example, 3+5+1; its semantics is 9.

2.11.1 Attribute Grammars

The semantic clauses in an attribute grammar assume that each node in the produc-
tion tree has room for one or more attributes, which are just values (numbers, strings
or anything else) sitting in nodes in production trees. For simplicity we restrict our-
selves to attribute grammars with only one attribute per node. The semantic clause

2.11 The Semantic Connection 55

of a rule in such a grammar contains some formulas which compute the attributes of
some of the non-terminals in that rule (represented by nodes in the production tree)
from those of other non-terminals in that same rule. These semantic actions connect
only attributes that are local to the rule: the overall semantics is composed as the
result of all the local computations.

If the semantic action of a rule R computes the attribute of the left-hand side of R,
that attribute is derived. If it computes an attribute of one of the non-terminals in the
right-hand side of R, say A, then that attribute is inherited by A. Derived attributes
are also called “synthesized attributes”. The attribute grammar for our example is:

1. Sums ---> Digit {A0 := A1}
2. Sum ---> Sum + Digit {A0 := A1 +A3}
3a. Digit ---> 0 {A0 := 0}

· · · · · ·
3j. Digit ---> 9 {A0 := 9}

The semantic clauses are given between curly brackets. A0 is the (derived) attribute of
the left-hand side; A1, . . . , An are the attributes of the members of the right-hand side.
Traditionally, terminal symbols in a right-hand side are also counted in determining
the index of A, although they do not (normally) carry attributes; the Digit in rule 2
is in position 3 and its attribute is A3. Most systems for handling attribute grammars
have less repetitive ways to express rule 3a through 3j.

The initial production tree for 3+5+1 is given in Figure 2.31. First only the at-

+

+ 1

3 5

A0 = 1

A0 = 3 A0 = 5

Fig. 2.31. Initial stage of the attributed production tree for 3+5+1

tributes for the leaves are known, but as soon as all attributes in a right-hand side of
a production rule are known, we can use its semantic clause to compute the attribute
of its left-hand side. This way the attribute values (semantics) percolate up the tree,
finally reach the start symbol and provide us with the semantics of the whole sen-
tence, as shown in Figure 2.32. Attribute grammars are a very powerful method of
handling the semantics of a language. They are discussed in more detail in Section
15.3.1.

2.11.2 Transduction Grammars

Transduction grammars define the semantics of a string (the “input string”) as an-
other string, the “output string” or “translation”, rather than as the final attribute of

56 2 Grammars as a Generating Device

+

+ 1

3 5

A0 = 9

A0 = 8 A0 = 1

A0 = 3 A0 = 5

Fig. 2.32. Fully attributed production tree for 3+5+1

the start symbol. This method is less powerful but much simpler than using attributes
and often sufficient. The semantic clause in a production rule is just the string that
should be output for the corresponding node. We assume that the string for a node is
output just after the strings for all its children. Other variants are possible and in fact
usual. We can now write a transduction grammar which translates a sum of digits
into instructions to compute the value of the sum.

1. Sums ---> Digit "make it the result"
2. Sum ---> Sum + Digit "add it to the previous result"
3a. Digit ---> 0 "take a 0"

· · · · · ·
3j. Digit ---> 9 "take a 9"

This transduction grammar translates 3+5+1 into:

take a 3
make it the result
take a 5
add it to the previous result
take a 1
add it to the previous result

which is indeed what 3+5+1 “means”.

2.11.3 Augmented Transition Networks

Semantics can be introduced in a recursive transition network (Section 2.8) by attach-
ing actions to the transitions in the graphs. These actions can set variables, construct
data structures, etc. A thus augmented recursive transition network is known as an
Augmented Transition Network (or ATN) (Woods [378]).

2.12 A Metaphorical Comparison of Grammar Types

Text books claim that “Type n grammars are more powerful than Type n + 1 gram-
mars, for n = 0,1,2”, and one often reads statements like “A regular (Type 3) gram-
mar is not powerful enough to match parentheses”. It is interesting to see what kind
of power is meant. Naively, one might think that it is the power to generate larger

2.12 A Metaphorical Comparison of Grammar Types 57

and larger sets, but this is clearly incorrect: the largest possible set of strings, Σ∗, is
easily generated by the Type 3 grammar

Ss ---> [Σ] S | ε

where [Σ] is an abbreviation for the symbols in the language. It is just when we want
to restrict this set, that we need more powerful grammars. More powerful grammars
can define more complicated boundaries between correct and incorrect sentences.
Some boundaries are so fine that they cannot be described by any grammar (that is,
by any generative process).

This idea has been depicted metaphorically in Figure 2.33, in which a rose is
approximated by increasingly finer outlines. In this metaphor, the rose corresponds
to the language (imagine the sentences of the language as molecules in the rose); the
grammar serves to delineate its silhouette. A regular grammar only allows us straight
horizontal and vertical line segments to describe the flower; ruler and T-square suf-
fice, but the result is a coarse and mechanical-looking picture. A CF grammar would
approximate the outline by straight lines at any angle and by circle segments; the
drawing could still be made using the classical tools of compasses and ruler. The
result is stilted but recognizable. A CS grammar would present us with a smooth
curve tightly enveloping the flower, but the curve is too smooth: it cannot follow all
the sharp turns, and it deviates slightly at complicated points; still, a very realistic
picture results. An unrestricted phrase structure grammar can represent the outline
perfectly. The rose itself cannot be caught in a finite description; its essence remains
forever out of our reach.

A more prosaic and practical example can be found in the successive sets of Java5

programs that can be generated by the various grammar types.

• The set of all lexically correct Java programs can be generated by a regular gram-
mar. A Java program is lexically correct if there are no newlines inside strings,
comments are terminated before end-of-file, all numerical constants have the
right form, etc.

• The set of all syntactically correct Java programs can be generated by a context-
free grammar. These programs conform to the (CF) grammar in the manual.

• The set of all semantically correct Java programs can be generated by a CS gram-
mar. These are the programs that pass through a Java compiler without drawing
error messages.

• The set of all Java programs that would terminate in finite time when run with a
given input can be generated by an unrestricted phrase structure grammar. Such
a grammar would, however, be very complicated, since it would incorporate de-
tailed descriptions of the Java library routines and the Java run-time system.

• The set of all Java programs that solve a given problem (for example, play chess)
cannot be generated by a grammar (although the description of the set is finite).

Note that each of the above sets is a subset of the previous set.

5 We use the programming language Java here because we expect that most of our readers
will be more or less familiar with it. Any programming language for which the manual
gives a CF grammar will do.

58 2 Grammars as a Generating Device

Fig. 2.33. The silhouette of a rose, approximated by Type 3 to Type 0 grammars

2.13 Conclusion 59

2.13 Conclusion

A Chomsky grammar is a finite mechanism that produces a usually infinite set of
strings, a “language.” Unlike many other set generation mechanisms, this production
process assigns a structure to the produced string, which can be utilized to attach
semantics to it. For context-free (Type 2) grammars, this structure is a tree, which
allows the semantics to be composed from the semantics of the branches. This is the
basis of the importance of context-free grammars.

Problems

Problem 2.1: The diagonalization procedure on page 11 seems to be a finite
description of a language not on the list. Why is the description not on the list, which
contains all finite descriptions after all?

Problem 2.2: In Section 2.1.3.4 we considered the functions n, n + 10, and 2n
to find the positions of the bits that should differ from those in line n. What is the
general form of these functions, i.e., what set of functions will generate languages
that do not have finite descriptions?

Problem 2.3: Write a grammar for Manhattan turtle paths in which the turtle is
never allowed to the west of its starting point.

Problem 2.4: Show that the monotonic Type 1 grammar of Figure 2.7 produces
all strings of the form anbncn for n ≥ 1, and no others. Why is n = 0 excluded?

Problem 2.5: Write a Type 1 grammar that produces the language of all strings
that consists of two identical parts: ww, where w is any string over the given alphabet
(see Section 2.10).

Problem 2.6: On page 34 we have the sentence production mechanism add the
newly created sentential forms to the end of the queue, claiming that this realizes
breadth-first production. When we put them at the start of the queue, the mechanism
uses depth-first production. Show that this does not work.

Problem 2.7: The last paragraph of Section 2.4.1 contains the words “in increas-
ing (actually ‘non-decreasing’) length”. Explain why “non-decreasing” is enough.

Problem 2.8: Relate the number of strings in the finite language produced by a
grammar without recursion (page 25) to the structure of that grammar.

Problem 2.9: Refer to Section 2.6. Find more examples in your computing en-
vironment where zero as a number gets a second-class treatment.

Problem 2.10: In your favorite parser generator system, write a parser for the
language {ε}. Same question for the language {}.

Problem 2.11: Use the uvw theorem (Section 2.7.2) to show that there is no Type
3 grammar for the language aibi.

Problem 2.12: In Section 2.9 we write that useless rules can be removed from
the grammar without affecting the language produced. This seems to suggest that
“not affecting the language by its removal” is the actual property we are after, rather
than just uselessness. Comment.

60 2 Grammars as a Generating Device

Problem 2.13: Write the Chomsky production process of Section 2.2.2 as a
closure algorithm.

http://www.springer.com/978-0-387-20248-8

