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In this chapter we introduce and then discuss the broad and rather complex
area of human-ontology interaction. After reviewing generic tenets of HCI and
their relevance to ontology management, we give an empirical evidence of
some HCI challenges for ontology engineering tools and the shortcomings in
some existing tools from this viewpoint. We highlight several functional
opportunities that seem to be missing in the existing tools, and then look at
three areas that may help rectifying the identified gaps. We relate methods
from user profiling, large data set navigation and ontology customization into
a “triple stack,” which may bring tools for engineering ontologies from the
level of niche products targeting highly trained specialists to the ‘mainstream’
level suitable for practitioners and ordinary users. The work presented in this
chapter is based on the authors’ research together with other colleagues in the
context of the “NeOn: Lifecycle Support for Networked Ontologies™ project.

HCI; human-ontology interaction; NeOn; networked ontologies; ontology
customization; user study of ontology engineering tools

INTRODUCTION

Human-computer interaction (HCI) is a well-established and rich subject
that has an impact not only on those who develop computational systems,
but also on the users of such systems, the vendors, maintainers, and many
more stakeholders who are normally involved in designing and delivering
software and computer-based tools. At the centre of HCI as a science is the
core of its investigation: interactions. Note that this emphasis on an abstract
notion “interaction” does not reduce the importance of the users or push
them into a background.
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On the contrary, the term “interaction” is broader, and in general,
involves three constituting parts: the user, the technology, and the way they
work together. One can then study such phenomena as how the users work
with a particular technology, what the users prefer, how the technology
addresses given issues, etc. The purpose of this chapter is not to delve into
generic HCI issues applicable to any technology. We want to expand the
views of HCI to cover what we label as human-ontology interaction.

Human-ontology interaction can be seen as a subset of HCI issues that
apply to specific tasks and specific technologies. Our aim is to investigate
how users interact with the ontologies, in general, and with networked
ontologies, in particular, and how they do it in a realistic ontology lifecycle
scenario. While HCI is a subject almost as old as the computer science, the
specifics of interacting with ontologies were not considered in much depth.
Tools supporting ontological engineering are considered to be primarily
software tools, and thus, it is presumed that general findings of the HCI
practitioners also apply to ontologies.

To some extent, this is true; however, design, engineering and
subsequently maintenance of ontologies are indeed specific ways to interact
with the technology. In other words, the change in the activity implies a
change in the entire interaction. Thus, an action that may look similarly to
other software systems (e.g. opening a file) may acquire semantically very
specific meaning in the context of a particular activity (in our case, ontology
engineering).

In this chapter, we look at several different aspects of how a user may
interact with ontologies in a varied sort of ways. The first part of the chapter
is concerned with a user study that we carried out in order to improve our
understanding of the level of user support provided by current ontology
engineering tools in the context envisaged by the NeOn project'. That is, in a
scenario when ontology engineers are developing complex ontologies by
reuse, i.e., by integrating existing semantic resources.

While the existing empirical work on exploring HCI aspects of the
ontology engineering tools points to several problems and challenges, we
decided to conduct a new study, because none of the studies reviewed in
section 2.1 provided sufficient data to drive the development of the ontology
engineering tools addressing the NeOn scenario. In particular, the use of
tools by ordinary users, the emphasis on ontology reuse and the embedment
of the study in a real-world engineering task.

A complementary view to this empirical user study is presented in the
latter part of the chapter: exploring the HCI challenge with more analytic

! “NeOn: Lifecycle support for networked ontologies” is a large-scale integrated project co-
funded by the European Commission by grant no. IST-2005-027595; more information on
its focus, outcomes and achievements so far can be found on http://NeOn-project.org.
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lenses, and focusing on a variety of tools that were specifically designed to
support ontological engineering, or could be reused with ontologies in a
serendipitous manner. With this view in mind we consider several
approaches, technologies, and tools to illustrate various aspects of where
user interaction with ontologies becomes somewhat specific and different
from using other software systems and tools.

Before going more in depth, let us introduce the basic terminology first.
In order to work in a structured manner, we separate the terms that
traditionally come from the HCI domain from the terms that are typical for
ontology engineering.

1.1 Terms frequently used in HCI

In this section we present common and established meanings of terms
and issues that are usually mentioned in connection with user interaction in
general. The purpose of this brief glossary is twofold: (i) to introduce terms
that are used in the subsequent sections of this chapter to those practitioners
with less background in traditional HCI, and (ii) to differentiate between
terms that are often used interchangeably by lay persons. We are not
defining here any terms related to ontology engineering in general, as these
have a broader scope of validity than the chapter on HCI challenges, and are
covered elsewhere in the book.

e Accessibility: In general, this term reflects the degree to which a given
system is usable by different users. It can be expressed in terms of ease
with which to access certain features or functions of the system, together
with the possible benefits such access may bring to the user. Often this
term is interpreted in the sense of ‘enabling people who are physically
disabled to interact with the system.” This is a slightly unfortunate
emphasis on one specific motivation for pursuing accessibility. In a non-
disabled sense, accessibility may include aspects like appropriate
language, jargon, level of detail, choice of action, etc.

e Customization: In the computer science this term refers to the capability
of users to modify or otherwise alter the layout, appearance and/or
content of information with which they want to interact. This term is
often used together with personalization (see also explanation of term
‘profile’ below). In this deliverable we shall see customization as an
ability to adapt user interfaces and tools so that they fit a particular
user’s needs and accessibility constraints (see also term ‘accessibility’
above for some objective, explicit criteria that may be customized).

e End user: Popularly used to describe an abstract group of persons who
ultimately operate or otherwise use a system — in computing, where this
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term is most popular, the system corresponds to a piece of software. The
abstraction is expressed in terms of a relevant sub-set of a user’s
characteristics (e.g. his/her technical expertise, prior knowledge, task,
objective, skill, etc.)—Ileading to such user categories as knowledge
engineers, developers, administrators, etc.

Graphical User Interface (GUI): GUI is a type of user interface that
came to prominence in computer science in the 1980s. The hallmark of
this type is the use of graphical images (so called widgets), texts and
their managed appearance on the computer screen to represent the
information and actions available to the user. Another hallmark is that
the user’s actions are performed by directly manipulating the graphical
elements (widgets) on the screen. GUI is often defined in contrast with
command-based, text-only or terminal-based user interfaces.
Localization: In the context of computing and HCI, localization is seen
as the adaptation of an object or a system to a particular locality. A
typical example is where a locality is defined in terms of different
languages (e.g. English, Spanish, etc.), and the system is expected to
translate messages and other aspects of its Ul into the language suitable
for or selected by the user. Thus, localization may be seen as a
customization of a tool for a specific country, region or language group.
In some literature, this term 1is wused jointly with term
‘internationalization.” However, language is only one (albeit most
visible) aspect of the system UI that can be translated to the local
customs. Other aspects that may need amendments include issues like
time and date formatting, decimal number formatting, phone and
postcode formatting, and locally used units of measure (e.g. feet, meters,
etc.) Less common adaptations are in the use of colors, layouts and
imaging appropriate to a particular locality.

Modality (of user interface): A path or communication channel
employed by the user interface to accomplish required inputs, outputs
and other activities. Common modalities include e.g. keyboard, mouse,
monitor, etc.

(User) Preference: This term represents a real or imagined choice
between alternatives and a capability to rank the alternatives according
to some criterion. In computer science, this term is typically used in the
sense that users choose among alternative user interactions, user
interface components and/or paths. In computing, user preferences are
often based on the utility (value) of the available alternatives to the
particular user, in a particular situation or task.

(User) Profile: a term seen in the context of computing as a way to
describe some user properties that are relevant for a particular task and
can help in tailoring information delivery to the specific user. Note that
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‘user’ may mean a concrete individual person as well as an abstract user
(e.g. a group or type).

e Usability: A degree to which the design of a particular user interface
takes into account human needs defined in terms of psychology or
physiology of the users. Usability looks at how effective, efficient and
satisfying the user interface (and the underlying application) is.

e User experience: Broadly, this term describes an overall experience,
satisfaction and/or attitude a user has when using a particular system. In
computing, this term is often used interchangeably with terms like
usability and sometimes accessibility.

1.2 About ontological engineering

In the early 1990’s, a group of Artificial Intelligence (AI) and database
(DB) researchers got together to define a standard architecture stack for
allowing intelligent systems to interoperate over a knowledge channel and
share data, models, and other knowledge without sharing data schema or
formats. This group comprised Tom Gruber —the person who is widely
credited with clarifying a definition of ontology for the Al community and
for promoting the vision of ontologies as enabling technology:

“In the context of knowledge sharing, I use the term ontology to mean a
specification of a conceptualization. That is, an ontology is a description
(like a formal specification of a program) of the concepts and
relationships that can exist for an agent or a community of agents. This
definition is consistent with the usage of ontology as set-of-concept-
definitions, but more general.” (Gruber 1993a; Gruber 1993b)

Ontologies are designed artifacts, similar to cars, desks or computers. As
such, they always have a purpose, they are engineered for something. In the
original vision of Tom Gruber, ontologies were artifacts facilitating sharing
and interchange of knowledge, or making commitments to particular
meanings. While an ontology may be in principle an abstract conceptual
structure, from the practical perspective, it makes sense to express it in some
selected formal language to realize the intended shareable meaning.

Such formal languages then enable the negotiation of formal
vocabularies, which, in turn, may be shared among parties in the knowledge
sharing interaction without being dependent on either the user/agent or its
context. One example of such a vocabulary may be description logic that
allows us to make statements holding for some or all entities in a given
world satisfying a given condition.

From the point of view of this book (and chapter), we often align the
ontology management and engineering with the actual design, creation and
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overall interaction with such formal vocabularies. If we take the Web
Ontology Language (OWL?) as the current preferred formal vocabulary, then
ontology engineering is often seen as a synonym to designing and coding
conceptual commitment about the world or a particular problem in this
language. Thus, for the purpose of this chapter, user challenge in engineering
OWL ontologies is broadly definable as a user interaction with a particular
software product, code, OWL model, OWL-based tool, technique, etc.

2. USERS IN ONTOLOGICAL ENGINEERING

In order to illustrate and ground the issues users are facing during the
process of ontology design, engineering and management, this section
includes extracts from a larger user study that has been conducted in the
context of gathering and analyzing requirements in the NeOn project. The
following sub-sections are based on our earlier workshop publication
(Dzbor, Motta et al. 2006).

The existing empirical work on exploring HCI aspects of the ontology
engineering tools highlights several problems with ontology engineering
tools. However, at the beginning of the NeOn project we felt that there was a
need to conduct a novel study, as none of the studies mentioned in section
2.1 provided the kind of data that can be used as a baseline to inform the
development of the next generation ontology engineering tools.

2.1 Motivation and background

Some work on evaluating tools for ontology engineering has been done
in the past. For example, Duineveld, Stoter et al. (2000) observed that the
tools available in the time of their study (around 1999) were little more than
research prototypes with significant problems in their user interfaces. These
included too many options for visualizing ontologies, which tended to
confuse the user and hinder navigation. Moreover, the systems’ feedback
was found to be poor, which meant a steep learning curve for non-expert
users. Finally, most tools provided little support for raising the level of
abstraction in the modelling process and expected the user to be proficient in
low-level formalisms.

Pinto, Peralta et al. (2002) evaluated Protégé, one of the leading ontology
engineering tools currently in use (Noy, Sintek et al. 2001), in several tasks,
from the perspective of a power user. The authors found the system intuitive
for expert knowledge engineers, as long as the operations were triggered by

% Specification of OWL as a W3C recommendation is on http://w3.org/TR/owl-ref
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them (e.g. knowledge re-arrangement). However, difficulties arose when
assistance from the tool was expected; e.g. in inference or consistency
checks. Weak performance was also noted in language interoperability. In
another survey, Fensel and Gémez-Pérez (2002) also noted issues with tool
support for operations on ontologies beyond mere editing (e.g. integration or
re-use). In particular, the authors emphasized the limited ‘intelligence’ of
current tools—e.g. no possibility to re-use previously used processes in
current design. Tools expected the user to drive the interaction, with the tool
imposing constraints rather than adapting itself to users’ needs.

Yet another study by Storey, Lintern et al. (2004) focused on a fairly
narrow aspect of visualization support in Protégé and its customization
models are too complex and do not reflect users’ models of what they would
normally want to see. Similar observations were made of the users having
difficulties with description logic based formalisms in general (Kalyanpur,
Parsia et al. 2005). Again, tools expected detailed knowledge of intricate
language and logic details, and this often led to modelling errors.

As we mentioned earlier in the introduction, the existing empirical work
on exploring HCI aspects of the ontology engineering tools highlighted
several problems with ontology engineering tools. We conducted a new
study, because none of the studies mentioned above provided the kind of
data that can be used to inform the development of the ontology engineering
tools envisaged by NeOn. Specifically, the studies did not satisfactorily
address the following key concerns:

e “Normal” users vs. “Power” users. As ontologies become an
established technology, it makes less sense to focus only on highly
skilled knowledge engineers. There are so many organizations
developing ontologies that it seems safe to assert that indeed most
ontologies are currently built by people with no formal training in
knowledge representation and ontology engineering. Therefore, it is
essential to conduct studies, which focus on “normal users,” i.e., people
with some knowledge of ontologies, but who are not classified as
“power users.”

e Emphasis on ontology reuse. We adopt the view that ontologies will be
networked, dynamically changing, shared by many applications and
strongly dependent on the context in which they were developed or are
used. In such scenario it would be prohibitively expensive to develop
ontologies from scratch, and the re-use of existing, possibly imperfect,
ontologies becomes the key engineering task. Thus, it makes sense to
study the re-use task for OWL ontologies, rather than focusing only on a
narrow activity (e.g. ontology visualization or consistency checking).

¢ Evaluating formal ontology engineering tasks. Studies reported earlier
focused on generic tool functionalities, rather than specifically assessing
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performance on concrete ontology engineering tasks. This creates two
problems: (i) the results are tool-centric, i.e., it is difficult to go beyond a
specific tool and draw generic lessons in terms of HCI on how people do
ontology engineering tasks; (ii) by assessing the performance of our
users on concrete tasks using OWL ontologies, we acquire robust,
benchmark-like data, which (for example) can be used as a baseline to
assess the support provided by other tools (including those planned in
NeOn).

2.2 Overview of the observational user study

We conducted an observational study rather than an experiment to
capture user needs and gaps in the tool support, rather than merely compare
different tools. As mentioned earlier, NeOn is concerned with several facets
of networked ontologies, and many of these facets are currently supported to
a very limited extent. This lack of tools and techniques makes it difficult to
assess the actual user performance in any of these tasks. However, it enables
us to acquire generic requirements and insights on a broader ontology
engineering task or process.

Ontology is, by definition, a shared artefact integrating views of different
parties (Gruber 1993a). One form of integration used in this study was
temporal, where an agent re-used previously agreed ontologies, perhaps from
different domains. All studied ontologies were public; all were results of
principled engineering processes and knowledge acquisition, and they all
modelled domains comprehensible to a ‘normal user.” The table shows some
statistical information on the OWL ontologies included in the study.

Table 2-1. Descriptive features of the ontologies used in the evaluation study: numbers of
primitives classified as Cl(asses), Pr(operties), and Re(strictions)
Ontology Cl Pr Re Notes
Copyright 85 49 128  Mostly cardinality & value type restrictions, some properties
untyped
[ http://rhizomik.net/2006/01/copyrightontology.owl ]
AKT Support 14 15 nla All properties fully typed, no axioms
[ http://www.aktors.org/ontology/support ]
AKT Portal 162 122 130 10 classes defined by equivalence/enumeration, most
properties untyped
[ http://www.aktors.org/ontology/portal |

Two environments were used — Protégé from Stanford University® and
TopBraid Composer from TopQuandrant'— these satisfied the initial

3 Extensive details on the Protégé project and tool are available to an interested reader on
http://protege.stanford.edu
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requirements from ontologies (e.g. on OWL fragment or visualization
features). We worked with 28 participants from 4 institutions (both academic
and industrial). Participants were mixed in terms of different experience
levels with designing ontologies and with different tools. Each person
worked individually, but was facilitated by a member of the study team.
Participants were expected to have knowledge of basic OWL (e.g. sub-
classing or restrictions), while not necessarily being ‘power users.” They
were recorded with screen capture software Camtasia, and at the end they
filled in a questionnaire about their experiences with ontology integration.

2.2.1 Evaluation methodology

In our investigation of the ontology engineering environments, we opted
for a formative evaluation (Scriven 1991). This choice was made mainly to
inform design of new OWL engineering tools in the context of NeOn. Two
constraints were observed: (i) gathered data shall not be tool-specific (it was
not our objective to prove which one tool was best); and (ii) while generic
tool usability was considered important, measures were expected not to be
solely usability-centric. In terms of what was analyzed, we selected the
following levels of analysis (Kirkpatrick 1994): (i) user’s satisfaction with a
tool, (ii) effectiveness of a tool in achieving goals, and (iii) behavioural
efficiency. In our study, these categories took the form of questions
exploring usability, effectiveness, and efficiency categories, to which we
added a generic functional assessment category.

Our questionnaire reflected situations that typically appear in the
literature correlated with enhancing or reducing effectiveness, efficiency,
usability or user satisfaction (Shneiderman and Plaisant 2004), and covered
these situations by 36 questions. The remaining 17 questions inquired about
various functional aspects considered relevant to the NeOn vision; including
ontology re-use, visualization, contextualization, mapping, reasoning, etc.

The questionnaire included both open and closed (evaluative) questions.
The former asked for opinions; the latter used a Likert scale ranging from
very useful (+1) to very poor (—1). Each question was then expressed
frequencies and counts— largely in the context of open, qualitative items
and observations. Positively and negatively stated questionnaire items were
interspersed to avoid the tendency of people to agree with statements rather
than disagree (Colman 2001). Nevertheless, this tendency towards agreeing
appeared during analysis; as was discussed in our preliminary report (Dzbor,
Motta et al. 2006).

* More about TopBraid Composer can be found on http://www.topbraidcomposer.com/
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2.2.2 User tasks

Participants were given three tasks considering different ways of
integrating ontologies into a network. In Task 1, they were told that the
Copyright ontology did not formalize temporal aspects, and had to be
augmented with the relevant definitions from other ontologies (e.g. AKT
Support). The objective was to review the three given ontologies, locate the
relevant classes (i.e. CreationProcess and Temporal-Thing), import
ontologies as needed, and assert that CreationProcess is a subclass of
Temporal-Thing.

Task 2 was motivated by pointing to a western-centric notion of any right
being associated only with a person, which excluded collective rights.
Participants were asked to review concept copyright:Person, and replace its
use with deeper conceptualizations from the AKT Portal and AKT Support
ontologies. In principle, the task asked people to express two types of
restrictions on property ranges:

e simple: e.g. for concept Economic-Rights introduce statement
rangeOf ( agent , Legal-Agent );

e composite: e.g. state that
rangeOf ( recipient , ( Generic-Agent AND (= Geo-Political ) ) ).

Task 3 asked people to re-define concept copyright:Collective so that
formal statements could match an informal description. Participants were
told to make amendments in the base — Copyright ontology, rather than to
the other two. We expected they would first create new local sub-classes for
the concept copyright:Collective, and then make them equivalent to the
actual AKT classes. Task 3 also comprised a definition of a new property
(e.g. copyright:hasMember) with appropriate domain and range, together
with its restriction for class copyright:Collective, so that a collective is
defined as containing min. 2 persons.

23 Findings from the user study

This section summarizes some findings from our study. For selected
categories of measures we give a general summary of observations across
the whole population, followed by commenting on differences (if any)
between two common denominators of user performance in knowledge-
intensive tasks —the choice of and the expertise with the tool. Particularly
interesting is to look at how efficient people felt in different tasks, how they
were assisted by the help system or tool tips, how the tools helped to
navigate the ontologies or how easy it was to follow the formalisms used in
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definitions. Table 2-2 shows general observations, and Table 2-3 compares
features where differences between tools were observed.

The efficiency of the two tools was approximately the same. When asked
about efficient handling of ontology dependencies and navigating through
them, Protégé users thought they were significantly less efficient. Many
users were not happy with the abstract syntax of the axiom formulae, which
was not helped by the inability to edit more complex restrictions in the same
windows and wizards as the simple ones.

Table 2-2. Selection of a few general observations across population

Measure/question -1 0 +1 Total Mean

providing sufficient information about ontologies 2%  55% 13% 29 -0.172
support provided by documentation, help 60% 40% 0% 16 -0.500
usefulness of the tool tips, hints, ... 50% 46% 4% 27 -0.423
subjective time taken for task 2 25% 55% 20% 31 -0.065
subjective time taken for task 3 6% 56% 38% 31 +0.300

Table 2-3. Comparison of attitudes between tools and expertise groups (TB: TopBraid, Pr:
Protégé, Be: less experienced, Ex: expert); significance threshold: *=5.99 at p=0.05

Measure/question Type Outcome x2 Sign
help with handling ontology dependencies  tools TB (0.0)vs. Pr(-0.37)  7.65 vyes
useful visualization & ontology navigation tools TB (-0.33) vs. Pr(-0.63) 6.00 yes
facilities

handling ontology syntax / abstract syntax ~ tools TB (+0.40) vs. Pr(-0.07) 2.33 no
ease/speed of carrying out integrations experience Le (-0.21) vs. Ex (+0.27) 9.75  yes
level of visualization and navigation support  experience Le (-0.69) vs. Ex (-0.40) 240 no
ontology representation languages, abstract  experience Le (-0.22) vs. Ex (+0.23) 3.64 no

syntax, etc.

One qualitative feature in both tools concerns the depth of an operation in
the user interface. Subjectively, 32% participants felt they had an explicit
problem with finding an operation in a menu or workspace. The main
‘offenders” were the import function (expected to be in File = Import...
menu option) and the in-ontology search (which was different from the
search dialog from Edit = Find... menu option).

Expertise seemed to have minimal effect on the assessment of the
efficiency dimension. Both groups concurred that while a lot of information
was available about concepts, this was not very useful, and the GUI often
seemed cluttered. They missed a clearer access to ‘hidden’ functions such as
defining equivalence or importing ontology. Non-experts saw themselves
inefficient due to lack of visualization and navigation support, and also due
to the notation of abstract DL-like formalism. Experts were at ease with the
formats; non-experts considered support for this aspect not very good.

The overwhelming demand was for complying with common and
established metaphors of user interaction. A quote from one participant sums
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this potential source contributing to inefficiency: “More standard
compliance and consistency. The search works differently ... usual keyboard
commands ... don’t always work...”

In addition to the efficiency of the existing ontology management tools,
two aspects were evaluated with respect to user experiences: (i) usability of
the tool (which included accessibility and usefulness), and (ii) overall user
satisfaction with the tool. The latter included comments regarding user
interface intuitiveness, acceptability, customization, and so on.

As Table 2-4 shows, responses in this category are generally negative;
participants considered the existing support as “very low” or “not very
good.” Almost invariably, they were dissatisfied with the role of
documentation, help system, tool tips, and various other tool-initiated hints.
Support for tool customization—i.e. either its user interface or
functionality — was also inadequate. A common justification of the low
scores was (among others) the lack of opportunity to automate some actions,
lack of support for keyboard-centric interaction, lack of support for more
visual interactions. As can be seen from these examples, the reasons were
quite diverse, and to some extent depended on the user’s preferred style.

Table 2-4. Selection of a few general observations across population

Measure/question -1 0 +1 Total Mean

usability/helpfulness of the tooltips, hints, ... 50% 46% 4% 27 -0.423
usability of tool’'s help system 60% 40% 0% 16 -0.500
support for customization of the tool, its GUI or functionality 48% 44% 8% 25 -0.400
usability of handling ontology dependency support 31% 66% 3% 27 -0.259
visualization of imports, constraints & dependencies 58% 39% 3% 28 -0.536
support for [partial] ontology import 62% 14% 4% 29 -0.739
useful tool interventions in establishing integrations 48% 52% 0% 26 -0.480

One emerging trend on the tools’ usability was that too many actions and
options were available at any given point during the integration tasks. On the
one hand, this refers to the amount of information displayed and the number
of window segments needed to accommodate it. An example of this type of
usability shortcoming is the (permanent) presence of all properties on screen.
On the other hand, while constant presence can be accepted, it was seen as
too rigid—e.g. no filtering of only the properties related to a concept was
possible. In fact 32% claimed that unclear indication of inheritance and
selection was a major issue, and further 14% reported being unable to find
all uses of a term (e.g., property or concept label) in a particular ontology.
Other comments related to usability are summarized below:

e unclear error messages and hints (e.g. red boundary around an incorrect
axiom was mostly missed);
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e proprietary user interface conventions (e.g. icons looked differently,
search icon was not obvious, some menu labels were misleading);

e lack of intuitiveness (e.g. finding an operation, flagging a concept in the
ontology so that it does not disappear, full- vs. random-text search);

e inconsistent editing & amending of terms (e.g. while “subClassOf” was
visible at the top level of the editor, “equivalentTo” was hidden)

Table 2-5. Comparison of attitudes between tools and expertise groups (TB: TopBraid, Pr:
Protégé, Be: less experienced, Ex: expert); significance threshold: *=5.99 at p=0.05

Measure/question Type Outcome X2  Sign.
level of overall satisfaction with the tools tools TB (+0.10) vs. Pr(-0.19) 2.67 no
overall satisfaction with tool's GUI environment  tools TB (+0.10) vs. Pr(-0.24) 3.14 no
satisfaction with handling dependencies in tools TB(0.0)vs. Pr(-0.37)  7.65 yes
ontologies

satisfaction with visualization and navigation tools TB (-0.33) vs. Pr (-0.63) 6.00 yes
support

ease/speed of carrying out integrations tools TB (+0.50) vs. Pr (+0.10) 5.85 no
effort to get acquainted with the tool experience Be (-0.27) vs. Ex (+0.12) 3.02 no
satisfaction with support for interpreting experience Le (0.0) vs. Ex (+0.07) 240 no
inferences

support for multiple ontology representation experience Le (-0.22) vs. Ex (+0.23) 3.64 no
formats

As shown in Table 2-5, a significant difference of opinion was in the
overall satisfaction with the tools, their design and intuitiveness, where it
was more likely that people complained about Protégé than TopBraid. In this
context, people tended to be more positive in the abstract than in the specific.
Responses to specific queries were negative (between —0.500 and —0.100),
yet overall experiences oscillate between —0.111 and +0.100. As we
mentioned, the overall satisfaction with the TopBraid environment was more
positive (some possible reasons were discussed above).

One case where experience weighed strongly on less experienced users is
the tool intuitiveness. Probably the key contributing factors were the
aforementioned non-standard icons, lack of standard keyboard shortcuts,
ambiguous operation labels, and an overall depth of key operations in the
tool. Less experienced users also had issues with basic features—e.g.
namespaces and their acronyms, or ontology definition formalisms. The
issue with formalisms is partly due to the inability of the tools to move from
an OWL- and DL-based syntax to alternative views, which might be easier
in specific circumstances (such as modification of ranges in Task 2).
Experienced users missed functionalities such as version management —
here less experienced users were probably not clear in how versioning might
actually work in this particular case.
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24 Lessons learned from the user study

Technology (such as OWL), no matter how good it is, does not guarantee
that the application for its development would support users in the right tasks
or that the user needs in performing tasks are taken on board. At a certain
stage, each successful tool must balance the technology with user experience
and functional features (Norman 1998). This paper explored some
persevering issues with OWL engineering tools that reduce the appeal and
adoption of otherwise successful (OWL) technology by the practitioners.

Although the tools made a great progress since the evaluations reported
in section 2.1, issues with user interaction remain remarkably resilient. The
effort was spent to make the formalisms more expressive and robust, yet
they are not any easier to use, unless one is proficient in the low-level
languages and frameworks (incl. DL in general and OWL’s DL syntax in
particular). Existing tools provide little help with the user-centric tasks —a
classic example is visualization: There are many visualization techniques;
most of them are variations of the same, low-level metaphor of a graph. And
they are often too generic to be useful in the users’ problems (e.g. seeing
ontology dependencies or term occurrences in an ontology).

Table 2-6 highlights a few gaps between what the current tools provide
and what people see as useful for framing problems in a more user-centric
way. Some ‘wishes’ (white rows) already exist; e.g. Prompt (Noy and Musen
2003) for version comparison, but perhaps our findings may further improve
design of the existing OWL engineering tools.

For instance, identification of frequently used operations and their
correlations with errors and mistakes may provide us with opportunities to
target the support towards most visible sources of user dissatisfaction. The
most frequent steps in OWL development are the actual coding of definitions
and import of ontologies (unsurprisingly), but, surprisingly, also search
(71% users), re-conceptualization of restrictions and editing of logical
expressions (both 54%), and locating terms in ontologies (46%). Compare
these operations with the situations requiring assistance from facilitators (in
Table 2-7).
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Table 2-6. User attitudes to some functional features missing in existing tools (grey rows) and
to some proposed extensions (white rows)

Current presence (grey) vs. wished-for feature User attitude

Existing support for ontology re-use -0.097 (not very good)
Support for partial re-use of ontologies -0.739 (very poor)

-> flag chunks of ontologies or concept worked with +0.519 (would be very useful)
-> hide selected (irrelevant?) parts of ontologies +0.357 (would be useful)
Existing support for mappings, esp. with contextual boundaries —0.065 (not very good)
Management and assistance with any mappings -0.480 (not very good / poor)

-> query ontology for items (instead search/browse) +0.433 (would be useful)

-> compose testing queries to try out consequences of mappings +0.045 (would be possibly useful)
Existing support for versioning, parallel versions/alternatives —0.200 (not very good)
Existing visualizing capabilities & their adaptation —0.536 (very poor)

-> mechanism to propagate changes between alternative versions +0.519 (would be very useful)
-> compare/visualize different interpretations/versions +0.700 (would be very useful)
-> visualize also on the level of ontologies (not just concepts) +0.357 (would be useful)

Table 2-7. Observations of issues with OWL engineering and user interaction
Observation Frequency % affected Examples

Syntactic axiom check - user not alerted  21x 64.3% Buttons/icons after axioms misleading;
or not noticing Single/double clicks to select, edit, etc
Testing & understanding (inference, 26x 64.3% Which inference is the right one?;
meaning) How to check the intended meaning(s)?
Translate/compose logical operation (e.g.  37x 60.7% How to start complex axiom?;
equivalence) Stepwise definition?

Dialogs, buttons,... (confusion, 43x 89.1% Buttons/icons after axioms misleading;
inconsistency.,...) Single/double clicks to select, edit, etc.
Searching for the class (partial text search  25x 64.3% Label starts with X different from label
on labels) contains X; namespaces in search?
Functionality unclear (drag&drop, error 26x 60.7% Am | in the edit mode?;

indication, alphabetic view) Where is it alerting me about error?

One example we identified is the correlation between an incorrect logical
conceptualization and confusion caused by ambiguous labels or dialogs.
Other correlations were between problems with importing an ontology and
absence or semantic ambiguity of appropriate widgets in the workspace, and
between difficulties with definitions and the failure of tools to alert users
about automatic syntactic checks (e.g. on brackets). The translation of a
conceptual model of a restriction into DL-style formalism was a separate
issue: 70% were observed to stumble during such definitions. From our data,
we suggest considering multiple ways for defining and editing axioms (to a
limited extent this partly exists in Protégé). Any way, DL may be good for
reasoning, but it is by no means the preferred “medium for thinking” (even
among ontology designers). This is not a novel finding, similar observations
were made for other formalisms and their relationship to informal thought
generation (Goel 1995).
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Another issue is the gap between the language of users and language of
tools; a high number of users was surprised by syntactically incorrect
statements. In 64.3% sessions at least one issue due to syntax (e.g. of
complex restrictions) was observed. Because of these minor issues they had
to be alerted to by a facilitator, people tended to doubt results of other
operations (e.g. search or classification) if these differed from what they
expected. Lack of trust is problematic because it puts the tool solely in the
role of a plain editor, which further reduces tool’s initiative. In an attempt to
restore ‘user trust,” some tools (e.g. SWOOP) move towards trying to justify
their results (Kalyanpur, Parsia et al. 2005).

The extensive use of features in the tools is also an issue increasing
complexity of user interaction. Both tested tools showed most of possibly
relevant information on screen at all times. There was little possibility to
filter or customize this interaction. The granularity at which tools are
customizable is set fairly high. For instance, one can add new visualization
tabs into Protégé or use a different (DIG-compliant) reasoning tool, but one
cannot modify or filter the components of user interaction.

Clearly, there is some way to go to provide the level of support needed
by ‘normal’ users engineering OWL ontologies. Our analysis highlighted
some shortcomings, especially the flexibility and adaptability of user
interfaces and lifting the formal abstractions. With this study, we obtained a
benchmark, which we plan to use to assess the support provided by our own
future tools in 18-24 months. Obviously, we intend to include other OWL
engineering tools (e.g. SWOOQOP or OntoStudio) to make the study robust.

3. USER INTERACTION WITH ONTOLOGIES

In the previous section we mostly considered one particular category of
the users with respect to ontologies; namely, those users who want to author,
design and amend ontologies as a part of some integrative task. This is an
important group of users; however, these are not necessarily the only users
who may have a need to interact with networked ontologies. The issue of
interacting with ontologies effectively and efficiently is much more pressing
with less experienced users, who carry out an ad-hoc, occasional ontology-
related task — as shown, to some extent by our study reported in section 2.

Therefore, in this section we explore the problem of user interaction with
ontologies more in depth, from several angles.
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3.1 Configurable user interfaces

One of the findings in the user study we briefly described in section 2.3
was pointing to the fact that the ontology engineering environments tend to
be reasonably modular, but they are essentially built alongside “one size fits
all” strategy. In reality, such a strategy is rare among the successful software
products. As users within the corporate intranets or outside of companies
take on different roles, they come across and emphasize different business
needs from, in principle, the same information content. Subsequently, they
typically expect the tools of their trade would somehow reflect those
different business needs.

One of the most often mentioned features of a new software product is an
easy customization of its user-facing components. We explore this theme in
the second half of the chapter on HCI challenges in ontology engineering.
The quote from a software company’s catalogue (anonymized by the
authors) below summarizes the point:

[Our product] provides an easy to configure user interface enabling you
to meet diverse business needs across your enterprise, as well as support
localization. [Among other functionalities, the product supports] menu
localization and support for international languages, enabling and
disabling functions for users based on their permissions, [...]

Users involved in ontology-driven production of information and
knowledge need to be equipped with a range of software configurations and
diverse user interfaces to deliver the outcomes of their work as effectively
and efficiently as possible. There are two broad strategies how one can
match the tools to the needs:

different tools for different users and different purposes;
. different configurations of one tool or toolkit for different users or
purposes.

N —

The two strategies are not mutually exclusive; very often we find that
users rely on a limited range of tools, and then may have different,
specialized configurations for some of those tools. Let us briefly consider the
key advantages and disadvantages of the above approaches: In the former
situation, tools are well defined but apparently independent of each other.
This may lead to a proliferation of a large number of highly specialized
tools, something that is overwhelming and unlikely to alleviate the user’s
confusion. Moreover, with specialized tools, there is an increasing risk of
them being mutually less compatible or compatible on a rather cumbersome
level (e.g. import/export mechanism of various graphical editors is a good
example of this compatibility issue). The main advantage is that the user will
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only get to work with tools and interfaces s/he necessarily needs to carry out
given tasks, and nothing more.

In the latter situation, we tend to see more complex and multi-functional
tools that can exhibit a variety of user interfaces and user interaction
components in different situations. In many tools of this type, we see an
aggregation of functionalities and a fairly seamless switching between many
tasks the user may carry out at some point. This is essentially a “one-stop
shop” approach where the user has (almost) everything they may ever need
already inside the tool, and only needs to activate different configurations. A
typical example of this would be editors like Microsoft Word, and its ‘rich
document editor’ face, as opposed to (say) ‘content revision’ face or ‘mail
merge and distribution’ face.

Formally, these notions were explored by Shneiderman (2000) who
introduced so-called universal usability. While this rather broad issue is
clearly beyond the scope of this chapter, Shneiderman points to several
factors that may affect the tool usability. These are factors that vary from
one user to another, and hence trigger a degree of adaptation to the user
interface. Importantly, Shneiderman highlights many common factors that
are not always recognized as valid reasons for Ul customization. For
example, he talks about technological variety (i.e. the need to support a
range of software and hardware platforms, networks, etc.), about gaps in user
knowledge (what users know, what they should know, etc.), or about
demographic differences (skills, literacy, income) or environmental effects
(light, noise, etc.)

One approach to achieving more universal usability of a tool is to
introduce user interface adaptation into the loop. The rationale is that while a
standard UI may not fit the user completely, it might be tweaked so that it
gets as closely as possible to the user needs. There are two distinct strategies
of how UI adaptation may be accomplished. Since this differentiation may
have impact on what is actually modified in the tool, we decided to include
this brief detour to generic issues of adaptation. The two strategies
distinguish between the following types (Kules 2000):

e adaptive UIL: These are systems and user interfaces that are capable of
monitoring its users, their activity patterns, and automatically adjust the
user interface or content to accommodate these local differences in
activity patterns (which may be due to user’s skill, preference, etc.).

e adaptable UI: These are systems and user interfaces that allow the users
to control and specify adjustments, and often come with the provision of
some guidance or help.

According to the informal definitions, the difference is in the actor; who
performs the adaptation act. In adaptive Ul-s it is the tool, applications or the
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system that takes the active role; whereas in adaptable Ul-s it is the
human — typically the actual user of the system, but possibly another user
(such as system administrator).

Why do we mention user interface adaptation in this context? Ontologies
are highly structured, formalized artefacts that have sufficient expressiveness
to describe the structure of a system, tool, or its user interface. Considering
that such common tools as Web browsers make use of ontological
formalisms to support customization and thus make life easier for the user, it
is rather surprising that very little of a similar approach is used to improve
the tools for interacting with ontologies.

4. USERS AND ONTOLOGY ENGINEERING

In this section we briefly sketch some of the existing approaches that
have been developed mostly in the context of personalization and scalability
(i.e. the capability to work with large data sets). This overview is intended to
be informative rather than exhaustive; it is intentionally compiled on a level
that abstracts from individual tools and method to approaches and strategies.

As ontologies become more and more complex and as they are integrated
into networks of ontologies, it is reasonable to investigate the means, which
would be capable of making a large network of complex ontologies more
manageable. The customization and personalization of ontologies includes,
in principle, two areas relevant to ontologies:

e customization of the view on an ontology, e.g. during exploring a
network of ontologies. This customization is more or less ad-hoc and the
results of the customization may be discarded once the user proceeds
with exploring the ontology. This customization during exploring an
ontology tries to reduce the complexity of an ontology and only shows
parts which are relevant for the current user.

e customization for the purposes of reusing ontologies and integrating
them into a network with other ontologies according to specific needs
(e.g. during the ontology deployment, reasoning or design phases). Here
the results of the customization will often be integrated into the edited
ontology.

As one basis for the customization, we analyze and briefly overview user
profiles and profiling work, followed by techniques for exploring and
navigating in large data sets (including ontologies), and finally we touch on
the role of algebraic operators to manipulate the topology or content of
ontologies.
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4.1 User profiling

User profiles are seen here as a way to describe some user properties or
characteristics and thus as a representation of the context of a user. Such a
profile may for example provide information about the role of a user, the
domain of interest or the current task. This information about the context
helps in a user-tailored information delivery, e.g. by offering personalized
ontology views. When talking about the user, it is important to mention that
we can decide to have an abstract user—this would be, in principle,
corresponding to any member of a group of users in a particular situation.

A user profile can be constructed in different ways depending on the data
it includes and the methods used for its construction, including manual,
semi-automatic and automatic methods. Each of them has some advantages
and disadvantages. For a review of specific user profile acquisition
techniques, consider e.g. sources mentioned in (Dellschaft, Dzbor et al.
2006). Let us focus in this chapter on how such profiles might be deployed
and used in the context of ontology management.

In principle we see the role of user profiles as twofold: (i) as a means
allowing recommendations based on some typicality effects, and (ii) as a
means having a predefined description on the actions to be applied by the
system, depending on some predefined user profile characteristic.

In the former case, it is interesting to acquire information, e.g. about
which ontology views a given category of users prefers, what level of detail
they use in annotating documents using that ontology, or which partition of a
larger ontology they mostly interact with (and for what purpose).

In the latter case, a user profile may act as a kind of task definition for the
activity the user is expected to carry out— an example of such a situation
might be provision of an ontology view that would be less suitable to editors
but much more efficient to validators.

There are many profiling systems in existence; most of them developed
in the context of user interaction with Web documents and Web browsing.
One example is Lifestyle finder (Krulwich 1997)—a collaborative
recommendation system as it groups similar users based on the similarity of
their manually constructed user profiles. It recommends potentially
interesting Web documents to the user based on the ratings of the documents
provided by similar users. A similar example is NewsWeeder (Lang 1995), a
system for electronic Usenet news alerts.

An example of the semi-automatic approach is OntoGen (Fortuna,
Mladenic et al. 2006) that constructs a profile from a set of documents
provided by the user, and then proposes a topic hierarchy (i.e. a simple
ontological model of the user’s interests) that can then be used e.g. to
recommend navigational steps to the user (Fortuna, Mladenic et al. 2006) or
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to visualize a particular collection based on the hierarchy of user interests
(Grcar, Mladenic et al. 2005).

User profiling is one of the important aspects for customizing human-
ontology interaction. User profiles can be used to mesh different data
sources, where the preferences for a data source are based on the user profile
(initially manually, but possibly adjusted based on the user’s activity). User
profiling can also be used for providing a personalized view on an ontology
based on the ontologies previously constructed by the same or a similar user.
Such a personalized view can be seen as putting ontologies in a particular
context, which is familiar to the user (and hence, simplifies his or her
interpretation of the ontology).

4.2 Navigating in complex conceptual structures

Since ontologies are often formal artefacts, the need some transformation
to be comprehensible to the ordinary users. This is rarely straightforward.
First, ontological datasets are relatively large; they contain thousands of
statements the user may need to interact with. For example, a fairly simple
geographic ontology of regions in New York state’ contains as many as
59,000 unique statements just about congressional districts in a single US
state. Second, ontologies could be complex structures representing different
types of relationships. If each of such potential relations is treated as a
dimension in which allowed values could be depicted, then even a
moderately complex ontology leads to a multi-dimensional space, which
poses challenges for navigation and interaction — in particular, when human
cognition naturally prefers (and is able of coping with) two or three
dimensions.

Two strategies that may apply to ontologies are their reduction and
projection. Where reduction is concerned with showing less at a given point
in time (in our case, fewer concepts, entities or relationships), projection
works by showing the same set of concepts, entities and relations differently.
The two strategies are somewhat complementary.

4.2.1 Reducing complexity of navigation

One common reduction strategy has been implemented in a number of
faceted browsers (but not in the context of ontologies). The key principle of
this strategy is that large collections (e.g. libraries or galleries) have many
dimensions according to which they can be viewed, browsed, searched or
navigated. Thus, faceted navigation is an interaction style whereby users

5 A serialization and a downloadable version of this ontology is available from:
http://www.daml.org/2003/02/fips55/NY.owl
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filter an appropriate set of items by progressively, step-by-step selecting
from valid dimensions of a particular classification. That classification can
be created according to many principles (including ontology-derived).

Earlier representatives of this strategy include Flamenco—a portal for
browsing fine arts collections (Hearst 2000; Yee, Swearingen et al. 2003) or
mSpace — an access site to a repository about the computer science in the
UK (Schraefel, Karam er al. 2003). More recent examples include e.g.
Longwell and Fresnel (Pietriga, Bizer et al. 2006) from MIT’s Simile project
as representatives of generic frameworks and vocabularies (respectively) for
faceted navigation through RDF collections and for specifying facets. Other
recent examples include BrowseRDF (Oren, Delbru et al. 2006), a generic
RDF browser, or /facet (Hildebrand, van Ossenbruggen et al. 2006), an
RDF browser used in a manner similar to Flamenco, but in the context of the
Dutch cultural heritage project. Nonetheless, most of the above tools focus
on data rather than triple-level graph structures typical for ontological
concepts and relations.

User interaction in faceted style usually starts with an overview of the
browsed collection, which often yields a large number of possibly relevant
matches. In the subsequent browsing steps, this ‘relevant’ set is structured
according to selected categories (e.g. locations, styles, themes, etc.).
Alternatively, the user may narrow the view down by referring to
hierarchical classification (if available). The navigation may end with
accessing a particular item from the collection. We use term *may’ because
alongside the item the user always sees all other categories and metadata that
provide bridges to alternative collections.

A slightly different view on the principle of faceted navigation is
advocated by the authors of CS AKTive Space and the family of similar
mSpace-based applications (Shadbolt, Gibbins et al. 2004). The faceted
views for browsing the collections are fairly typical, but there is one pane
that also uses a projection strategy — geographic data are shown naturally,
i.e. on a map. A useful side effect of such projections is that they enable the
user to express relations very succinctly (including fuzzy ones such as near
or in the South). Unlike Flamenco, mSpace is more tightly linked to
ontologies — they act as the primary classification of different facets that are
available to the user.

To explore the role of spatial metaphors in navigating complex structures
we point e.g. to work by Mancini (2005), who experimented with ways how
the same content may yield different interpretation if presented (and
navigated) in a spatially different manner. Nevertheless, the use of such
techniques for ontology management needs further research, before we are
able to link them to particular use case scenarios and requirements. More
details on how faceted browsers may assist ontology management has been
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provided in (Dellschaft, Dzbor et al. 2006), which also formed the base for
this section.

In general, what faceted browsers like Flamenco support rather well is
the iterative formulation of the search queries or navigational goals. Key
advantage of this technology is the step away from forcing the user to go
through deep, complex hierarchies in order to find items they are interested
in. Users only navigate to the next slice by following some conceptual clues
(e.g. sub-categories or orthogonal views). Arguably, faceted navigation
seems to be a more natural way of coping with messy, conceptually complex
space, than a rigid, hierarchical tree-like structure.

Thus, the “divide and conquer” strategy also works in the context of
complex conceptual spaces such as ontologies. What is hard to visualize at
once because of variability and differences between different relationships,
can be split into sequences of partial visualizations through which it is easier
to move and which are also more comprehensible to the end user. On the
other hand, faceted browsers suffer from the scaling issue; i.e. they work
reasonably well with a few well-defined facets that can be arbitrarily
combined by the end user. For instance, CS AKTive Space used only three
key (i.e. navigable) dimensions (location, topic and institution). In Longwell,
deployed for MIT OpenCourseWare, there are similarly three dimensions
(level of study, teacher and keywords). An ongoing tension emerges between
offering as many facets to the user as possible while simultaneously helping
to reduce navigational complexity.

4.2.2 Projections for large ontological data sets

In addition to conceptual and relational complexity that has been tackled
by the research into faceted navigation, another similarly hard task is to
navigate through large datasets. A number of projections were proposed to
tackle this. In particular, the fish-eye metaphor enables customizable
navigation; it uses different properties of the objects in a knowledge base to
create clusters of different granularity and of different semantics. For
example, Komzak and Slavik (2003) illustrate this capability to handle large
networks of diverse but conceptually related data in the context of
visualizing the 200k strong student population of The Open University in the
UK, which can be shown on a geographic, per-faculty, per-program or per-
course basis.

The strategy relies on showing the contextual fringe of a part of the
semantic network not corresponding to a particular user’s query or intention
using more coarse-grained clusters than the part that actually corresponds to
the query and is currently in focus. The authors also open up the context-
focus metaphor (Lamping, Rao et al. 1995), so that each particular focus
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(fine-grained view) can be embedded into an arbitrary context (coarse-
grained view).

Another algorithm based on the focus-context metaphor is SpaceTree
(Plaisant, Grosjean et al. 2002). SpaceTree is a tree browser to some extent
similar to hyper trees (Lamping, Rao et al. 1995). It addresses one difficulty
of the hyperbolic geometry; namely constant updating of the visual
representation, which makes it hard for the user to create a mental map of the
ontology, hierarchy or taxonomy. SpaceTree uses dynamic rescaling of tree
branches to fit within a constrained space; miniature tree icons are used to
indicate the depth, breadth and size of the sub-trees hidden behind a given
node.

A different example for projecting ontologies is provided by the “crop
circles” metaphor (Parsia, Wang ef al. 2005). As with the fish-eye, this
metaphor also shows some implicit topography in an overview mode. In
CropCircles classes and partitions are represented as circles. One can hover
over a particular node in the visualization to see the class it actually
represents. By clicking on a class one can quickly highlight its immediate
neighborhood (children, parents). Also, zooming in and out is easily
supported in this view, and as the recent study from Wang and Parsia (2006)
showed, the metaphor in some cases could outperform other visual
techniques (especially in the context of viewing richly interlinked and deep
ontologies).

On a more traditional level, ontologies are often perceived by many
developers, researchers and users as predominantly hierarchies of subsumed
concepts; i.e. structures where one concept is a kind of another concept (as in
“Ford is a Car”). Hence a lot of effort was put into navigating these, so-
called isA structures. Techniques like IsaViz® focus on the structurally
dominant relationship in any ontology (subClassOf). Two key shortcomings
of this approach are: (i) its usefulness rapidly falls with the depth of a
hierarchy, and (ii) very few graphs actually have a neat hierarchical
structure. The isA graphs make visually interesting demonstrations, but by
definition, they do not contain various lateral or horizontal relations
(Brusilovsky and Rizzo 2002).

Some of the more recent developments in the field of ontology
visualization took an approach more centered on the user needs. A good
example of this is Jambalaya (Ernst, Storey et al. 2003), a project that started
with the aim to visualize rich ontology graphs and was initially driven by the
technological needs. However, at the application re-design stage, the needs
of real users were considered for particular audiences comprising the
biologists in a large national research center. These requirements came from
observing the actual users — biologists, and conjecturing potentially useful

® More information available from http://www.w3.0rg/2001/11/IsaViz
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functional requirements from these observations. As a result, Jambalaya is
more balanced in addressing a range of users needs on an ontology
visualization package.

One the level of underlying technology, Jambalaya’s visualization is still
based on the metaphor of a graph, but allows more customization of what
can be visually depicted. Particularly its FilmStrip metaphor (Ernst, Storey e?
al. 2003) suggests an interesting compromise between data overviews and its
specific context. Yet, due to realizing this idea through showing the relevant
information as nodes, the outcome is full of boxes and overlapping edges.
These often achieve the opposite of a positive user experience, as the
overlapping graph sub-structures may easily obscure much of the underlying
semantic structure.

Many practical ontologies use a range of relationship; e.g. UK Ordnance
Survey reports on their use of a range of ontological relationships that may
easily create issues if inappropriately visualized (Dolbear, Hart et al. 2006).
In particular, they highlight issues with fairly common geo-spatial
relationships like contained within, next to or surrounded by. In each of the
cases illustrated, merely showing two nodes from the low-level data
representation linked with a declared or inferred labeled arc is not of much
use. For instance, in some cases objects such as fields may be both
surrounded by and contained within and be inside of a wall. However, if
field F is contained within something else (e.g. wall), by definition it cannot
be next to another field F,” since they would need to share the ‘container.’
However, to anybody visualizing a dataset containing fields F and F’ it
makes perfect sense to ‘ignore’ the dividing walls and talk just about the
fields.

4.2.3 Benefits of navigational and visualization techniques

Cognitive studies, one of the recent examples is a study by Demian and
Fruchter (2004), show that there are several mutually not fully compatible
requirements on interacting through visual user interfaces:

e aneed to find a particular item (e.g. knowing some of its properties),

e aneed to explore the context in which an item is defined (e.g. what does
it mean if we say that “Ford is a Car”), and

e aneed to establish the difference between two or more items, which may
include temporal differences due to evolution or various conceptual
differences (e.g. “Ford Transit is a Ford, but not a Car, and this is
because...”)

The simple IsaViz and related techniques basically address only the
second need identified above, and even that to a very small extent. The
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implications of the discussion in the above paragraphs are that there is
unlikely to be one perfect method or technique for scaling up the navigation
through structured datasets. What is more likely to work is reusing familiar
metaphors, such as the FishEye projections or CropCircles. However, it
seems equally important to use these metaphors at the right point during the
process of navigating ontologies. Crop Circles, for instance, seem to fit best
if one is interested in seeing broad relationships among several ontologies.
Map-like FishEye projections, on the other hand, seem to show a finer level
of granularity—e.g. when one wants to explore the relationship of
networked ontologies to a particular concept in one ontology.

One approach that has not been mentioned so far, but which actually
could combine the need of dealing with large-scale datasets with the need to
simplify the ontological definitions, is inspired by maps and mapping
metaphor. By definition, any map is essentially a projection of a particular
world (most often a landscape) onto a paper (or screen). One can imagine
creating such domain landscapes from several different perspectives. For
instance, a landscape of research topics in Europe is likely to look somewhat
differently from the landscape of UK’s football or the landscape of great
maritime voyages.

Assume we have several pre-computed landscapes available that show
the key terms of a particular domain (an example is shown in Figure 2-1),
their links, relationships, closeness, etc. When we take one or several
ontologies, we can cover these domains with the given ontologies. In some
cases, the coverage would be better and more precise than in others.
Different ontologies would be positioned into different regions of the
landscape — dependent on which landscape the user takes as a foundation
for his or her navigation. Although we have given this example with
ontologies in general, most of the current tools deal only with data (possibly
annotated using ontologies). Hence, adaptations of the familiar techniques
are needed to apply to ontologies as topological structures, not only as data
sets.

Another interesting strategy is motivated by work done by Collins,
Mulholland et al. (2005) on spotlight browsing. The principle of this
navigation strategy is again based on a metaphor — a torch throwing a beam
of light. The user selects a resource or a concept from a particular collection;
then the collection is dynamically restructured so that it conveys interesting
properties, clusters, etc. that may be relevant to the initial ‘spot.” These
additional items and concepts are then structured around the original spot by
calculating their semantic closeness. The navigation is then equivalent to
shedding a light beam (as shown in the mockup in Figure 2-1), which puts
certain concepts into light (i.e. into navigable focus) and certain other items
into shadow (i.e. into non-navigable periphery).
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Figure 2-1. Mock-up of a 2D rendered landscape with two ontologies broadly covering and
mapping different sections of it. Green areas roughly correspond to different ontologies and
red crosses to selected terms whose distance/mutual positions depend on a particular corpus.

4.3 Customizing ontologies

One of the early works toward ontology customization came from Mitra
and Wiederhold (2004), who proposed a modularized approach to creating
ontologies as this would ease ontology reuse and would help breakdown the
required effort into smaller, manageable pieces. To that goal, they describe a
general idea of ontology customization operators that would support such a
modularized approach and help combine the modules to larger ontologies.
Examples of their operations include, e.g.:

selection from an ontology (there are different criteria for this);
intersection of several ontologies (i.e. a common denominator);
union or extension of several ontologies;

differentiation or discrimination between ontologies, etc.

In addition to the binary or n-ary operations, there is an important set of
unary operations, those working on a single ontology. It is this particular set
that is of interest in the context of our objective discussed in this chapter. For
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example, work by Jannink, Mitra et al. (1999) describes four binary and four
unary operators. Among them are some interesting unary operators:

e summarize — centralizes the ontology into groups of similar concepts;

e glossarize —lists terms subordinate to a given concept without any of
the recognition of the sub-structure;

e filter — extracts instances from ontology according to a given predicate;

e extract—reduces concepts and the possibly corresponding instances
from the ontology according to a given predicate/condition.

Particularly useful operations, from the perspective of reducing ontology
complexity, are the first two operations: summarization and glossarization.
Both essentially drawing on the latter two operations, but providing useful
interpretative viewpoints on a complex conceptual structure. In this chapter
we are not going into more depth with regard to customization operations
and how they may be realized, a brief overview of some tools and their
support for this task is discussed, for instance, by Dellschaft, Dzbor et al.
(2006).

Nonetheless, let us at least mention how the operators mentioned above
might be related to section 4.1 (user profiles) and section 4.2 (ontology
navigation). In both previous sections we relied on the fact that a part of the
ontology is known, but we haven’t really said how such parts might be
obtained. For example, for the spotlight or fish-eye facility, we may need a
central, in-focus portion of an ontology together with several summaries of
the surrounding contextual fringes.

These requirements may be directly linked to the aforementioned
operations for ontology customization — extraction (to get a focus area) and
summarization (to obtain meaningful but brief summaries of what lies
around the focal point). Hence, in general, the techniques described in this
section may be seen as data feeds for the purpose of visualization and
navigation methods, which in turn may act as points where the user may
make choices, which could be captured in a specific profile.

Next we shall present how the three apparently independent areas may
relate together in a kind of user support “stack.”

4.4 Ilustrative scenario — putting it all together

Imagine we work with several ontologies, which we want to navigate.
Among others we have FishBase, AgroVoc, FIGIS, and other ontologies
typically used by agricultural experts’. Let us assume our expert wants to
edit parts of the ontology related to Albacore tuna. These need to be located,

" To learn more about these ontologies visit http://www.fao.org/fi
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extracted, and presented appropriately, because the number of related terms
is potentially exponentially large.

First, large ontologies may be reduced so that they contain the minimal
number of concepts surrounding the albacore tuna, which are still
ontologically complete and sound. This may be achieved by applying one of
the ontology reduction/extraction operators mentioned in section 4.3. The
extraction may find overlaps and possibly generalizations of term subsets, so
that the diversity could be expressed using a smaller number of concepts.

Different alternative navigational paths can then be visually summarized
in a manner following Figure 2-1. The initial position of the yellow “light
beam” would reflect that exploratory path through the concept cloud that
seems to be best covered by the existing fishery ontologies. The numbers in
superscript in the figure may e.g. refer directly to the internal formal
resources referring to a particular theme (e.g. FIGIS, AgroVoc, etc.). In
addition, the weight of the terms is given by their ontological reliability and
provenance — where our expert may quickly see that the fish species are
particularly well conceptualized.

West Afica  AL-31

Japan ICCAT CECAF Legend: |
Skipjack!? 1 ... FishBase s include
Pacific Tuna yellow-fin'2 P 2 ... AgroVoc... include O
Albacore'? 3...FIGIS KB ... include &
Tuna fishing? 4 ... Life Sciences library ... include O

Deep water  Purse seining®

Summer

Fishing technique

Sea mounts* >
Benthic ecosystem?

Figure 2-1. Mock-up of an ontology summary view showing concepts related to the focal
term (Albacore) and ontologies covering these terms. Typefaces may reflect e.g.
trustworthiness of terms against ontologies with same italic/bold typeface on the right.

In the shape as shown in Figure 2-1, an expert may easily see different
dimensions corresponding to diverse ontological relationships around the
concept of albacore tuna. Such a conceptual summary space may be easily
reorganized without too much cognitive overhead on the part of our expert.
For instance, re-pointing the beam towards the red section (which may
denote some ontological inconsistency), it is possible to rapidly refine a
particular type of ontological relationship. In our case, assume we target the
locality and fish habitat relations. An outcome of such an action is sketched
in Figure 2-2, where one sees more relevant ontologies, different concepts
emerging in focus, and others fading into the fringe.



54 Chapter 2

Thus, a typical use case applying the three layers of user-centred
ontology management we discussed in this section, presents a mesh of
several familiar techniques. The three areas we mentioned — user profiling,
navigation and visualization techniques, and customization operators — can
be seen as three layers of a stack, which influence each other in a variety of
ways. For example, based on a user profile, one may prefer a particular
navigational technique; such a technique may need to draw upon a specific
customization operation. That, in turn, may help keep the profile up to date,
etc. Hence, the three layers addressing complex user issues in our illustrative
scenario are manifested in the following ways:

NAETA Canada*
Thailand* )
Legend:
Tuna lracers ~ Japant 1... FishBase .. include
CECAF Pacific  Shallow-waler 2.... AgroVoc ... include
. tuna producers®  Tuna yellow-fin'2 3...FIGISKB ... include & (@ )
Wt Africa Albacore'2 4 ... WTO registry ... include O
Atlantic :‘u;?:efn *;j:gw Purse seining® g mgﬁ:nce library ... £
£ Tuna blue-fin'2 Lot
gyt Denmarkt Sea mounts
WWF Mediterranean Deep water

Figure 2-2. Mock-up of the repositioned focus of related terms and ontologies covering these
terms

e User profiling techniques:
o acquiring user and group profiles;
o using machine learning to manage user profiles;
e (Customized, abstract-level interaction with ontologies:
o hiding the low-level aspects of several ontology engineering tasks;
o making sense of links and relations within/between ontologies;
o ontology visualization on the level of domain coverage;
o spotlight browsing and other less common browsing extensions;
e Ontology customization operations:
o reducing ontology complexity;
o modularization and view customization based on user-selected
criteria;
o customization operations such as module reduction, compounding,
differencing, etc.
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S. CONCLUSIONS

In this chapter we briefly covered the broad and rather complex area of
human-ontology interaction. We started with reviewing generic tenets of
HCT and their relevance to ontology management. We then presented some
empirical evidence highlighting the fact that the existing ontology
engineering tools are still at a very early developmental stage (from the
software lifecycle point of view). We concluded this part with highlighting
several functional opportunities that seem to be missing in the existing tools
for ontology management, in particular for ontology engineering.

Then we offered an exploratory survey of some areas that are not
commonly associated with ontological engineering, and considered what
roles these techniques may play in making the human-ontology interaction
more mainstream and more acceptable for so-called ordinary users. In
particular, we started with user profiling, elaborated on the use of data
visualization, navigation and exploration techniques, and briefly touched on
the need to investigate ontology customization operations and methods, as
the foundation of our triple stack of technologies that may make life of the
user easier.
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