CHAPTER 2

CURRICULUM DESIGN AND DEVELOPMENT FOR STUDENTS,
TEACHERS, AND RESEARCHERS

OVERVIEW

We first suggest that it is necessary to make the conception of the nature of
mathematics explicit, as it underlies curriculum organization and curriculum
development, and show some of the risks that appear when this is not done.

Section 2 explains what we understand by theoretical model through four
basic characteristics, distinguishing it from other uses of the same term, and
then introducing the methodological concept of the local theoretical model
(LTM) and its four interrelated components. We discuss the contrast between
the local and the general, and of the methodological nature of local modeling,
setting out from the need to design ad hoc observation settings to study
specific phenomena. We also explain the recursive character of the appli-
cation of local models and, in Chapter 3 explain the ephemeral quality of
certain theoretical theses in this application.

The major part of the chapter describes our manner of understanding the
phenomenological analysis of mathematical concepts (or mathematical
structures) that Freudenthal proposed in his book Didactical Phenomenology
of Mathematical Structures (Freudenthal, 1983). For this purpose we outline
the essential characteristics of a conception of the nature of mathematics that
is compatible with our way of understanding Freudenthal’s phenomenology
and that also includes the idea of the generation of concepts from proofs,
which is characteristic of the work of Lakatos. We also discuss Freudenthal’s
distinction between mental objects and concepts, and the consequences for
curriculum development, which derive from the opposition that Freudenthal
proposed between the constitution of mental objects and the acquisition of
concepts. In this discussion, we use our semiotic viewpoint as a basis for
interpreting the distinction established by Freudenthal, using as an example
some considerations for a LTM for studying the uses of natural numbers. In
the context of these considerations, we present the distinction between three
types of sign —icons, indices and symbols— which Peirce himself used to
describe algebraic expressions as iconic, while the letters in them are indices,
and signs such as those of operation or equality are symbols.
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CURRICULUM DESIGN AND DEVELOPMENT

1. INTRODUCTION

Any reflection about the elements with which one tries to structure plans and
syllabuses for the teaching of mathematics entails, consciously or spontane-
ously, a conception of the fundamentals of mathematics. To try to free oneself
from this discussion, which is far removed from the requirements of the usual
practices of drawing up a curriculum, one tends to set out a list with various
ways of analyzing the practices that take place in the teaching of mathematics in
school systems —in other words, mathematics education. Thus one speaks of
mathematics as (see Filloy and Sutherland, 1996):

A corpus of knowledge to be learned.

A set of techniques for solving problems.

The study of certain structures: arithmetic-algebraic, geometric, etc.

A language with a given sign system that intertwines with natural
language.

A formal science with a highly formalized language.

A scientific activity, that of mathematicians, that has existed for
centuries and that, at present, has developed specific practices very
remote from those that can be found in educational systems.

An activity in which phenomena belonging to the natural and social
sciences are modeled.

A collection of procedures for performing practical calculations to
measure, classify, predict, count, etc.

A part of natural language in which judgments are expressed about the
progress of society, the economy, the climate, voting forecasts, etc.

A collection of ways of talking about random or repeated phenomena
with a view to predicting certain future events.

An essential element of the culture of all historical ages.

A symbolic system in which one can formulate expressions that give
an account of general patterns so that one can make generalized
calculations.

A symbolic system in which generalizations and abstractions are
expressed, and that permits representations with operational capability.
A symbolic system in which one can express phenomena of iteration
and recursion for the expression of algorithms.

A system of mental abilities, such as spatial imagination, the ability to
reason hypothetically and deductively, etc.

Certain structures of the intellect, an internalization of the properties of
actions that are performed with real objects.

A list (even longer than the foregoing) of teaching activities such as is
provided in mathematics textbooks.
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1.1. Partial and eclectic points of view

The above list is clearly not exhaustive; but it can easily be multiplied if one
simply thinks of the many different ways of interpreting some of the terms
that we have used, within the various theoretical frameworks of psychology,
for instance.

Of course, from some viewpoints the range of mathematical competences
that one tries to teach to young students in the basic levels of our present
educational systems is all these things and many others. Therefore, if some
viewpoints are favored at the expense of others, this leads to the design of
curricula that leaves much to be desired because of their partiality, limiting
the possibilities of using the curriculum to achieve rich, novel teaching that
contemplates a transformation of the vitiated practices. Such practices occur
in the current educational systems and they are the direct cause of the poor
progress of students and of the rejection of mathematics by the general
population.

As a result of proceeding partially, placing some aspects above others, a
false dilemma appears, in which the relational aspects of mathematical
thinking work to the disadvantage of its instrumental use and viceversa.
Similarly, the adoption of a particular bias makes the dilemma between
understanding and mere mechanization more acute, in relation not only to
mathematical operations but to mathematical thinking in general. As an
example one can think of the risks entailed by an unduly narrow design of the
curriculum for the teaching of mathematics, thinking of it simply as
knowledge about given (ideal) objects the properties and relations of which
must be gradually discovered, or the opposing risks introduced by other
radical tendencies, which maintain the attitude that all mathematical know-
ledge is gradually constructed from the first interactions between individuals
and reality. In both cases there is an exclusion of all the social aspects that
intervene in the processes by which students become competent in the use of
mathematical language and results, both for thinking and for producing
practical knowledge that can be communicated to any other competent
individual.

But perhaps the most common mistake is an extreme eclecticism, by trying
to give the same weight to all of the aspects indicated in the preceding list.
This generally leads to the production of curriculum designs in which the
confusion reaches the most elementary strands in the curriculum. Of course,
plunging spontaneously into the design of a curriculum can have even worse
results, in which the path followed by the curriculum design leads to a tangle
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of contradictions and lines of force that interweave, mingle, or clash without
rhyme or reason.

All this is no more than a preamble to the need to clarify the conception of
the nature of the mathematics that is brought into play in the curriculum.

2. LOCAL THEORETICAL MODELS

2.1. Four characteristics of LTMs

The term model has a wide range of meanings: it can refer to many things,
from a physical scale model to a set of abstract ideas. Here we examine the
use that we make of this term in mathematics education.

We use the term theoretical models, or simply models, without claiming
that everything given the name of model may be a model in this sense. In fact,
in this usage models differ considerably from what is given the same name in
other applications. Our aim in this book is to analyze how the various
examples have certain common characteristics, which is why we call them
models. To begin, we point out four characteristics.

The first characteristic is the fact that a theoretical model consists of a set
of assumptions about some concept or system.

First, it is necessary to distinguish theoretical models from diagrams,
illustrations, or physical models, which, although sometimes useful to represent
the model, must not be identified with the model itself. Second, it is true that at
times, albeit not always, what is called a model is also termed a theory.

This interchangeability of names is possible because, in such cases, the
terms “model” and “theory” refer to the same set of assumptions, although the
same things are not suggested about this set when we call it a model as when
we call it a theory. Some of the differences, and also the reasons why not all
models are called theories, must be analyzed. The second characteristic has
precisely to do with this.

The second characteristic is the fact that a theoretical model describes a
type of object or system by attributing to it what might be called an internal
structure, a composition or mechanism that, when taken as a reference, will
explain various properties of that object or system.

A theoretical model, therefore, analyzes a phenomenon that exhibits
certain known regularities by reducing it to more basic components, and not
simply by expressing those regularities in quantitative terms or by relating the
known properties to those of different objects or systems. Accordingly, the
term “theory” in this sense is broader than “model,” because not all theories
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are formulated with the aim of providing structural analyses, which are typical
of models.

The third characteristic is the fact that a theoretical model is considered an
approximation that is useful for certain purposes.

The value of a particular model can be judged from two different but
related viewpoints: how well it serves the purposes for which it is employed
and the completeness and accuracy of the representation that it provides.

The fact that a theoretical model may be proposed as a way of representing
the structure of an object or system for certain purposes explains why various
models are often used alternately. This represents another difference between
the use of the terms “model” and “theory.” To propose something as a model
of something is equivalent to suggesting it as a representation that provides at
least some approximation to the real situation; further, it means admitting the
possibility of alternative representations that may be useful for different pur-
poses. To propose something as a theory, however, is equivalent to suggesting
that something is governed by certain specified principles, and not just that
it is useful for certain purposes to represent it as being governed by those
principles or that those principles approximate to the principles that actually
apply. Consequently, someone who proposes something as a theory is obliged
to maintain that any alternative theories must be discarded or modified, or that
they will be valid only in special cases.

Finally, the fourth characteristic is the fact that a theoretical model is often
formulated and developed and perhaps even named on the basis of an analogy
between the object or system that it describes and some other object or
different system.

This implies a comparison in which one observes properties and principles
that are similar in certain aspects, which fits in with the previous observation
that theoretical models have the aim of providing a useful representation of a
system. To provide such a representation, it is often helpful to establish an
analogy between the system in question and some known system that is
governed by rules or principles that are understood, and one supposes that
some of those rules, or others like them, also govern the system that one is
trying to describe with the model. Reasoning of this kind, based as it is on
argument by analogy, is never considered sufficient to establish the principles
in question, but only to suggest that they may be considered as first
approximations, subject to proof and subsequent modification. In each case,
however, the model itself can be distinguished from any analogy on the basis
of which it was developed.

Theoretical models can fulfil the same functions as theories: they can be
used for purposes of explanation, prediction, calculation, systematization,
derivation of principles, and so on. The difference between the use of a model
and the use of a theory does not lie in the kind of function for which it can be
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used, but in the way in which it fulfils that function. Theoretical models
provide explanations; but these explanations are based on assumptions that
may be simplified, and this condition must be borne in mind when one com-
pares them with theories. It is often said of explanation and systematization by
means of a theory that they are more profound and penetrating, which reflects
the belief that the principles that constitute a theory are more accurate than
those of a model and take more known magnitudes into account. So why not
always use the theory, which is more complete? In what follows we briefly
discuss why we prefer a local approach and not a general one, but first we
mention some semiotic terms that we use repeatedly throughout the book.

2.2. Semantics and pragmatics

It is not our intention here to develop with any precision the kind of
theoretical model that is presented throughout the book. We content ourselves
with calling on the reader’s intuitive concepts concerning terms such as
semantics, syntax, semantic load, a more concrete or more abstract level of
language, and of the reading level of a text. Even though one consequence of
the interpretations obtained in the corresponding empirical studies —
described later in the book— is precisely the fact that many of the mistakes
that are usually made when using new expressions come from the anticipatory
mechanisms of the individual who is decoding a situation that needs to be
modeled in that mathematical sign system (MSS), where the semantic load —
the custom of certain uses— produced by the individual’s prior experience
plays a decisive part in possible conceptual errors or mistakes in the syntactic
use of the new signs. Nevertheless, we are confident that the approach that we
offer for some of the problems proposed is valid in itself, even if it is read
from the viewpoint of other theoretical frameworks, and that the “facts” that
we describe have an intrinsic interest, even if considered in terms of other
interpretations.

We pay more attention, therefore, to the pragmatic viewpoint, which
consists in pointing out the meaning given by use, instead of placing greater
emphasis on meaning in the abstract. As we have indicated, this approach
diverts observation in mathematics education away from the competence of
users of a MSS and toward performance, and it also has fundamental
implications for the way in which MSSs are studied. Essentially, it is claimed
that grammar (the abstract formal system) and pragmatics (the principles of
the use of MSSs) are complementary domains in the observation of teaching
processes with the various teaching models (innovative and traditional) that
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are used to achieve the aim of guiding students so that they become competent
users of an MSS.

Consequently, this viewpoint not only includes the central role of formal
grammar, but also recognizes that it should be incorporated in a broader
framework that combines formal and functional explanations. In other words,
that in order to interpret the complete meaning of some mathematical
messages during normal teaching/learning processes, alongside the strictly
formal meaning of the mathematical text in question we also have to admit
some other meanings of certain other (logical) messages that are not explicitly
communicated either by the sender or by the receiver. We refer to the so-
called presuppositions (of which there are various kinds) or the immediate
consequences or implications —all this requires the incorporation of some
“natural logic” that takes the relation between these meanings into account.

Also, following the same direction of this idea, we are forced to distinguish
the difference between competence to decode a message and competence
to communicate it (many studies in mathematics education concentrate on
this result). It is necessary that our theoretical approach should take these
two different kinds of activity into account: the production of mathematical
messages and their decoding.

Empirical observations of how a MSS is used during the exchange of
messages within teaching/learning processes and the corresponding situation
when those MSSs are used by an individual who is thinking out the solution of
a problem situation show that the cognitive processes involved interweave the
formal level of competence with the pragmatic level. There is a pragmatic
component, which comes from the teaching environment in which the learning
process takes place. This component is bound up with institutionalized social
contracts, so that it is necessary to take into account not only the traditional,
customary ways in which the messages of an MSS are emitted in the
educational system, but also —and this seems more important— the presence
of the entire historical evolution of such sign systems. Notation is the first
aspect that appears, but it is not the only one of all the particular ways in which
nowadays, after a historical evolution, we tend to use MSSs and their
applications to problems in present-day science, technology, and social
information processes.

Together with these pragmatic tendencies, there is a component that is
due to an individual’s cognitive mechanisms that appear in each stage of
intellectual development, which gives preference to different mechanisms for
proceeding, various ways of coding and decoding the mathematical messages
pertinent for the stage in question, various strategies for solving problems, and
so on. For example, think of all the evidence that has been accumulated about
the tendencies of students to maintain the arithmetic interpretations of many
algebraic situations despite their progression to advanced stages of algebra.
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2.3. The components of LTMs

The stability of these phenomena of mathematics education and the well
established replicability of the experimental designs that have been used to
study them are such that we cannot fail to include these observations among
the components that are important for any theoretical model for observation in
mathematics education. Thus we have a need to propose theoretical com-
ponents that deal with different types of (1) teaching models, together with (2)
models for the cognitive processes, both related to (3) models of formal
competence that simulate the competent performance of an ideal user of an
MSS, and (4) models of communication, to describe the rules of com-
municative competence, formation and decoding of texts, and contextual and
circumstantial disambiguation.

2.4. Local versus general, the reason for the local in our theoretical models

From the point of view maintained by some authors devoted to problem
solving, close to cognitive psychology, one could infer that, to decode a
problem situation, experts proceed according to a synthetic process, that is,
from the data to the unknown. In several of these studies, in general, when
competent users are presented with a problem situation, they recognize “types
of problems,” because they have formed schemes of them. Thus one could say
that, when an expert is presented with a problem situation, in time he would
make an integration of the information, in which he would recognize what the
central relations of the situation are, comparing them with others that are
already in his long-term memory, where there are also specific strategies to be
followed. With all of these he is finally able to go on to represent the problem
by means of mathematical texts and then decode them for the solution of the
problem.

However, from our empirical observations about the decoding of mathe-
matical problem situations it follows that any solution, however fast and
fleeting it may be, necessarily passes through an initial logical analysis or
logico-semiotic outline of the problem situation, conscious or unconscious,
which makes it possible to sketch out the solution. That is, one shows the path
that has to be followed to solve the problem in accordance with some
mathematical text produced with the use of a certain stratum of an MSS, in
which one can establish the direction that the solving process is going to take,
and with which one can give analytic or synthetic reasoning processes. Thus
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an expert or a novice confronted with a problem tends to do work that may
proceed from the unknown to the data or viceversa, but in that work the
competence to decode the problem situation is determined more by the
competence to produce the logico-semiotic outline of the problem situation —
which includes strategies of analysis and synthesis— than by the mere
recognition of some previously learnt scheme.

Thus, when a competent user performs a logico-semiotic outline of a
problem situation, he or she may bring into play cognitive mechanisms that
enable him (a) to anticipate the central relations in the problem and also (b) to
decide in which stratum of an MSS to outline all the steps of the solution, or
decide between one MSS and another more specific MSS, subsequently going
on to a process of analysis and synthesis with which he finally obtains the
decoding of the problem situation.

To the foregoing we could add many other examples of how, with a global
approach, using the results of some general theory of certain branches of
knowledge, the analyses of the phenomena that belong to mathematics
education, performed thus, reduce the field of investigation very substantially,
preventing a clear understanding of the specific phenomenon that one is trying
to observe. For example, consider what we would achieve if we wished to use
only a general linguistic theory to construct a useful semiotics for
mathematics education.

Therefore, instead of arguing in favor of giving preferential consideration
to certain components —‘“grammar,” “logic,” ‘“mathematics,” “teaching
models,” “models of cognition,” “pragmatics,” “communication”— we have
to concentrate on local theoretical models, appropriate only for specific
phenomena but capable of taking into account all four of the components
indicated earlier. The idea is to propose ad hoc experimental designs that cast
light on the interrelations and oppositions that take place during the evolution
of all the relevant processes related to each of the four components.

bE [13
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2.5. The component of formal competence

Earlier, we gave reasons for the need to have models for cognitive processes;
this is reinforced later, when we analyze teaching models (Chapter 5). When
we introduce our framework of (semiotic) interpretation, MSSs, the need to
have models of communication is also underpinned.

As we observe both thinking processes (cognitive component) and the
exchange of messages (communicative component) between individuals with
various degrees of competence in the use of the MSSs employed to create
the mathematical texts (teaching model) relevant for the teaching/learning
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process, the need for these three models would seem obvious: the model of
cognitive processes, the model of communication, and the teaching model.

The need for the model of formal competence comes from the requirement
for a description of the situations observed by means of a more abstract MSS,
to make it possible to decode all the texts produced in an exchange of
messages in which the actors have various degrees of competence in the use
of the MSSs in question. Later we see that we interpret the teaching/learning
process in this way, hence the advisability that the observer should possess
competence in a more abstract MSS that encompasses all the MSSs used in
the process observed. In the most extreme case, we might suppose that the
model of formal competence is the one with which the epistemic individual
would decode the situations observed, that is, the decoding of someone who
has all the competences created during the whole historical process of the
construction of mathematical knowledge. Fortunately, it is sufficient for the
observer to have a model of formal competence described in a more abstract
MSS than the one used by all the individuals observed: the learners, the
teachers, and the observer himself when he is involved in the exchange of
messages (for example, in the clinical interview).

Let us emphasize the importance of the component of formal competence
with a paragraph concerning what is stated about Freudenthal’s didactical
phenomenology presented later in this chapter. The order in which the various
kinds of phenomenological analysis must be developed begins with pure
phenomenology (the component of formal competence), for which what is of
prime importance is knowledge of mathematics and its applications; it is
completed with a historical phenomenology; then there is a didactical
phenomenology (for which what has to be known is the process of teaching
and learning); and in all cases it concludes with a genetic phenomenology. No
phenomenological analysis can be effective when teaching is subsequently
organized on the basis of it if it is not supported by a sound analysis of pure
phenomenology (in other words, the component of formal competence).

3. A GENERAL FRAMEWORK FOR CURRICULUM DEVELOPMENT
FOR THE STUDY OF AN LTM

It is advisable to begin the design of a curriculum of a teaching model with a
general framework that is broad but based on certain clearly established
attitudes, with the intention that various approaches may be obtained from
them. Thus, the emphasis placed on them will come from one or another of
these central theses, with the aim that the tensions between one viewpoint and
another will consequently be diluted by the need to provide a response in each
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case to the demands of the theses selected, converted in this way into lines of
force that promote certain decisions and not others, in making those decisions
meaningful.

It is in this spirit that we put forward the following reflections to regulate
the criteria for the design of the teaching models that it is decided to use. In
the following two sections, we introduce ideas derived from the works of
Freudenthal that are pertinent for curriculum development, and also the
relation of those ideas to the generation of concepts through proving that is
found in the work of Lakatos.

3.1. Concepts

School mathematics is articulated in a series of interrelated conceptual
networks, with the characteristic that, with time, students succeed in becoming
competent in the use of increasingly abstract general networks —competences
that call on many previously mastered competences.

3.2. The relation with reality. Teaching mathematization

The first elementary mathematical concepts are a response to the interaction
that children have with the real world. The first notions about quantity,
magnitudes, classification, distribution, division, etc. are developed directly
from the children’s experiences in the real world, but they are also a response
to the work of getting hold of the socially established codes for the symbolic
manipulation of all these processes, including those inherent in the individual,
such as understanding, analysis, and thought. That is why the first
mathematical texts have the manipulation of objects and reflection on their
interaction as their physical forms of expression. Therefore, a curriculum
design that does not set out from the need to move from the concrete to the
abstract and that does not then complete the inverse action will tend to result
in the students producing MSSs that do not have the sense that one wished to
give them socially.

In modern versions, this to and fro between the concrete and the abstract,
between the real world and its representations in a mathematical sign system
(quantitative modeling, a particular case of mathematization), has played a
decisive part not only in science but also in education. Through quantitative
modeling it is feasible to “interpret the world with numbers” (Boohan, 1994),
using algebraic relations to calculate the numeric value of dependent variables
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and thus be able to make short- and long-term predictions about the behaviour
of phenomena.

One gateway to the learning of algebra is modeling. In this kind of
approach the emphasis is on the role of the sign system of algebra as a means
to express relations between variables that correspond to phenomena or
situations in the physical world, and the corresponding didactic paths
contemplate the complete cycle: (1) translation of “concrete” situations or
situations expressed in natural language (word problems) to algebraic code;
(2) analysis of relations between variables, based on manipulation of the
algebraic expressions produced (syntactic level); and (3) interpretation of the
“concrete” situation in the light of the results of the work with algebraic
syntax. The argument in favor of the virtues of this approach to algebra is that
in step (1) meaning is given to algebraic expressions, and in steps (2) and (3)
the syntactic manipulation of those expressions becomes meaningful.

With the characteristics just described, the teaching of algebra as a means
of modeling tends to promote in students the production of signs in a socially
accepted MSS, that of symbolic algebra. In more recent proposals, in the
framework of teaching by modeling, other MSSs are also brought into play,
such as those of making graphs, numeric tables of variation, spreadsheets, and
mathematical narrative (Nemirovsky, 1996). The last of these has succeeded
in facilitating processes that can present great difficulty in modeling, such as
the translation of relations in a “concrete” situation to algebra.

3.3. Practical knowledge

On the basis of the knowledge obtained from experiences in the real world
and the representation of that relation with a sign system that intertwines with
natural language, mathematical concepts are used to perform measurements,
calculations, and representations. Such concepts are immensely useful and no
member of modern society who wishes to pursue a normal intellectual
development can disregard them. Nowadays, to be able to analyze the events
that take place in the daily lives of individuals and society, one requires
certain competences in the use of the MSSs that are taught in mathematics
classes. One important component of the curriculum must aim at making it
possible for students to use their mathematical knowledge in their daily lives
to solve the problems that are presupposed by modern educational systems
and that refer to those with which society presents them every day (for
example, in the reading of newspapers).
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3.4. The analytic and instrumental function for other areas of knowledge

An important feature of elementary mathematics consists in the fact that many
other areas of knowledge have gradually, but increasingly intensively, been
making use of its symbolic systems to represent the various explanatory
models that are found in those areas. Thus, school mathematics is required to
describe and understand phenomena from a great diversity of sources.
Mastery of the more abstract and general parts of the basic curriculum
provides students with a symbolic system in which analytic capability is
reinforced by language strata in which not only is it possible to model the
phenomena that one is trying to understand and master, but also, precisely
there, in the symbolic, one has the operational capability of advancing in the
prediction of what will happen when the modeled phenomena take place in
time, or when some variable evolves in a particular way. That is why the final
parts of algebra, geometry, probability, and statistics, which are traditionally
taught in the last two years of the secondary school (13-15 years of age), are
of such importance for the future of individuals and for society, which
demands competence in such matters if one is to master understanding of
natural phenomena and progress in one’s societal roles.

4. PHENOMENOLOGICAL ANALYSIS AS A COMPONENT OF DIDACTICAL
ANALYSIS. HANS FREUDENTHAL’S APPROACH TO CURRICULUM DEVELOPMENT

4.1. Phenomenological analysis

The didactical analysis of mathematics, i.e., the analysis of the contents of
mathematics that is performed for the sake of the organization of the teaching
of mathematics in educational systems, has various components, which
organize the various teaching models presented in this book. One of the
components takes its name from Hans Freudenthal’s book Didactical
Phenomenology of Mathematical Structures (Freudenthal, 1983) and is the
subject of this section. We here set out the characteristic features and some of
the consequences of what we understand by phenomenological analysis of
mathematics as a component of its didactical analysis. The exposition
repeatedly refers to Freudenthal’s work, taking some liberties with the
terminology that he uses and introducing other terminology that is not his.

The phenomenological analysis of a concept or a mathematical structure
consists of describing the phenomena for which it is the means of organi-
zation and the relation that the concept or structure has to those phenomena.
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The description of the phenomena for which it is a means of organization
must consider the totality of the phenomena for which this is so at the time,
that is, it must take mathematics in its present state of development and in its
present use; but it is also advisable to indicate the phenomena for the
organization of which it was created and the phenomena to which it has
extended subsequently.

The phenomenological analysis developed by Freudenthal is fashioned to
serve teaching. However, Freudenthal distinguishes various types of phenol-
menology, all important from the viewpoint of teaching, but only one of them
is described as didactical. These types are: phenomenology, didactical phenol-
menology, genetic phenomenology, and historical phenomenology.

The first thing that characterizes each of these phenomenological analyses
is the phenomena that they take into consideration with respect to the concept
that is analyzed. In the first case they are the phenomena that are organized in
mathematics taken in its state at the present moment and assuming its present
use. In the didactical case they are the phenomena present in the world of the
students and the phenomena that are proposed in the teaching sequences. In
the genetic case, the phenomena are considered with respect to the learners’
cognitive development. In the historical case, special attention is paid to the
phenomena for the organization of which the concept in question was created,
and how it has extended to other phenomena.

The description of the relations between the phenomena and the concept
takes into consideration, in the first case, the relations that are established, and
in the other three how those relations were brought about, acquired or formed,
in the educational system, with respect to cognitive development or in history,
respectively.

Moreover, in the case of pure phenomenology the concepts or mathema-
tical structures are treated as cognitive products, whereas in the case of
didactical phenomenology they are treated as cognitive processes, i.e., situated
in the educational system as teaching material and being learned by students.
Freudenthal says that when writing a didactical phenomenology one may
think that it should be based on a genetic phenomenology, but this idea is
mistaken. The order in which the various types of phenomenological analysis
must be used begins with pure phenomenology (for which it is sufficient to
know mathematics and its applications); this is completed with a historical
phenomenology, followed by a didactical phenomenology (for which it is
necessary to know the teaching and learning process), and in all cases genetic
phenomenology comes last. No phenomenological analysis can be effective
when teaching is subsequently organized on the basis of it if it is not
supported by a sound analysis of pure phenomenology.

Freudenthal’s phenomenological analysis aims to serve as a basis for the
organization of the teaching of mathematics and does not set out to elaborate
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an explanation of the nature of mathematics. It might be possible to use it
without adopting any epistemological or ontological commitment about
mathematics, that is, accepting mathematics as a means for the organization of
phenomena, without maintaining that things really are so. However, the ideas
that students form about the nature of mathematics and the ideas that teachers
have exert a very considerable influence on how both students and teachers
conceive the mathematical activity that has to be performed in class, and the
knowledge that students produce and that teachers try to teach. This is
also why we think it necessary to outline a conception of the nature of
mathematics that is compatible with the interpretation that we make of
Freudenthal’s phenomenological analysis.

We set out, therefore, from the statement that mathematical concepts are
means of organization for phenomena of the world. However, this charac-
terization does not tell us much if we do not specify to what we are referring
when we speak of the world, and if we do not establish which phenomena are
organized by mathematical concepts. Nevertheless, one of the tasks of
phenomenology is precisely to investigate which phenomena are organized by
mathematical concepts, by analyzing those concepts, so that one cannot seek
to know in advance which they are. Nor can one seek to characterize in
advance the kind of phenomena organized by mathematics, because to do so
one would need to have linked the phenomenology of mathematics to a
general phenomenology in which one establishes a typology of phenomena —
a task that, in our view, could be approached by means of Peirce’s phenol-
menology. Consequently, we can have an idea of the kind of phenomena
involved only on the basis of the concrete analyses that we perform.

On the other hand, it is possible to interpret that from the foregoing
statement it follows that mathematics lies in a separate world from the world
whose phenomena it organizes, which is the world around us, the real world.
This, however, is not the most appropriate interpretation.

In fact, if we place ourselves at the origin, or at the lowest level, we could
say that the phenomena that are going to be organized by mathematical
concepts are phenomena of this real, physical, everyday world. Our experi-
ences with this physical world have to do with the objects of the world, their
properties, the actions that we perform on them, and the properties that those
actions have. Hence the phenomena that mathematics is to organize are the
objects of the world, their properties, the actions that we perform on them or
the properties of those actions, when objects, properties, actions, or properties
of actions are seen as what is organized by those means of organisation and
are considered in their relation to them.

This first interpretation establishes the idea that mathematical concepts do
not actually reside in an ideal world whose reflection we study, nor do they
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have an existence prior to mathematical activity, nor does that activity consist,
therefore, in the discovery of the geography of the world in which those
objects are. Yet they are also not installed in a world foreign to our
experience, inasmuch as they are created as a means of organization of
phenomena of the world. The previous interpretation is not felicitous in this
respect, because it does not take into account the fact that Freudenthal does
not remain at the lowest level, describing mathematical activity simply as an
interplay between phenomena of the world and means of organization in
mathematics, in which phenomena seek to be organized and means for this are
created in mathematics. On the contrary, Freudenthal accompanies the process
of creation of mathematical objects as means of organization with a process
by which the means of organization become objects that are situated in a field
of phenomena. Consequently, mathematical objects are incorporated into the
world of our experience, which they enter as phenomena in a new relation of
phenomena/means of organization in which new mathematical concepts are
created, and this process is repeated again and again.

Mathematics is therefore in the same world as the phenomena that it
organizes: there are not two worlds but one, which grows with each product of
mathematical activity. The phenomena that mathematical concepts organize are
the phenomena of the world that contains the products of human cognition and,
particularly, the products of mathematical activity itself; the phenomena that are
organized by mathematical concepts are the objects of that world, their
properties, the actions that we perform on them, and the properties of those
actions, inasmuch as they are contained in the first term of a phenomena/means
of organisation pair.

The staggered progression of phenomena/means of organization pairs
entails two processes: the process of creation of mathematical concepts as
means of organization, which is indicated by each pair, and the process by
which a means of organization is objectified in such a way that it can become
part of a new pair, this time in the position of phenomena. The staggered
progression draws a picture of the production of more abstract mathematical
objects on an ever higher level, and it shows that mathematical activity
generates its own content.

4.2. Constitution of mental objects versus acquisition of concepts

We speak of mathematical concepts, of their creation in a relation of
phenomena/means of organization, of the objectification of the means of
organization and their entry into a phenomena/means of organization relation
on a higher level; we speak of transformations of concepts as a consequence
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of the mathematical activities of proving theorems, solving problems,
organizing in a deductive system and the process of defining. All this is
accompanied by the affirmation that mathematical concepts do not have an
existence independent from the mathematical activity that creates them. But
we also bring into the arena a new idea developed by Freudenthal that will
oblige us to rethink the relations that concepts establish in these ladders of
concepts/means of organization: this is the idea of a mental object as opposed
to a concept.

This idea is important primarily because it is on the basis of it that
Freudenthal adopts a didactic attitude: the aim of educational activity in the
school system must basically be the constitution of mental objects, and only
secondarily the acquisition of concepts —which is in second place in terms of
both time and order of importance. This attitude is also particularly important
for the period of compulsory education, because one must consider what part
of mathematics must be offered in it to the population as a whole. But it is
also important for the phenomenological analysis of mathematical concepts,
all the more so if the analysis is a didactical phenomenology and one has in
mind the idea that the analysis is prior to the organization of teaching and is
performed with that purpose. This is the aspect that we deal with here.

In a first approach, the contrast between mental object and concept that
Freudenthal proposes can be seen as the consequence of considering the
people who conceive or use mathematics in contrast to mathematics as a
discipline or set of historically, socially, and culturally established knowledge.
In the foregoing sections, when speaking of mathematical concepts we have
considered them basically within the discipline, and we have hardly intro-
duced the intervention of real people; what has appeared is, at best, a
semblance of them, the ideal subject who performs actions with powers
superior to those that we possess. We can set out, therefore, from an initial
image: the contrast of mental object and concept is a contrast between what is
in people’s heads (mental objects) and what is in mathematics as a discipline
(concepts).

As this is the sense in which Freudenthal uses these terms and in which we
are going to use them here, it is worth pointing out before we go on that the
term “mental object” does not appear in normal usage. The customary
practice is to speak of the concept that someone has —of number or triangle
or anything else, whether it belongs to mathematics or not— or to use the
term “conception” instead of “concept” and speak of the conception that
someone has of circumference, for example; but in this case one generally
wishes to emphasize that what is in the person’s mind is part of a concept or a
way of seeing that concept.
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4.3. Considerations for an LTM for studying the uses of natural numbers

Peirce also speaks of a certain progression in the types of signs we treated
in Chapter 1:

A regular progression of one, two, three may be remarked in the three orders of signs, Icon,
Index, Symbol. The Icon has no dynamical connection with the object it represents; it simply
happens that its qualities resemble those of that object, and excite analogous sensations in the
mind for which it is a likeness. But it really stands unconnected with them. The index is
physically connected with its object; they form an organic pair, but the interpreting mind has
nothing to do with this connection, except remarking it, after it is established. The symbol is
connected with its object by virtue of the idea of symbol-using mind, without which no such
connection would exist. (Peirce, CP, 2.299, pp. 168-169.)

4.3.1. The first arithmetic signs

It seems that the first written signs were arithmetic signs. Let us look at some
of the characteristics of signs that we have just expounded at work in those
primitive signs.

It has actually been determined that the first written signs were arithmetic
signs as a result of a step-by-step reconstruction of the development of two
systems of writing that had their beginning in about 3500 BC and that were
created by Sumerians in the south of Mesopotamia and by Elamites in Susa
(located in what is now Iran).'

These first signs were marked with a stylus on the outside of hollow balls
of soft clay, and they always corresponded both in form and number to
pebbles of various shapes contained inside the balls. These marks were thus
icons that represented the hidden pebbles, and one had only to break the ball if
one wished to confirm that they really did stand for the objects that they
represented. The marks on the balls are icons because they resemble in form
and number the objects they represent, so that they signify even if the balls are
empty. These signs have what we might call a primitive way of working,
because the code that the person who closes up the balls and makes marks on
them has to share with the person into whose hands they come is not very well
established socially, or, at any rate, is subject to doubt.

Interesting as these first written marks are in so patently possessing two of
the natural characteristics of signs, they become even more interesting when
we discover that they have the antecedents and consequents that will now be
explained.

The marked balls that have been found in the excavations are from the
second stage of this temporal series. Before that stage, the remains correspond
to hollow balls containing pebbles but without any external mark. After the
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second stage the pebbles disappear and only the marks remain, and the hollow
balls, which no longer have to contain anything, become flat tablets.

First of all, therefore, there are objects hidden in a hollow ball, then the
first written signs, with the objects that they represent present but hidden, and
finally only the written signs without the objects that they represent.

But these objects, in turn, are signs —although not signs belonging to a
system of writing— because, in each of the three historical stages, the balls or
tablets are records or trading transactions; they are accounts. The objects
represented by the written marks are also arithmetic signs, because, by their
shape and quantity, they represent a certain number of objects. What the
archaeologists have reconstructed tells us that these pebbles were used to
record an account in the course of a commercial transaction, and once the
matter was settled they were placed inside a hollow ball to record the
agreement between the trading parties concerning the quantity involved in the
transaction. These first arithmetic signs stood for other arithmetic signs that
had a different medium of expression and they eventually replaced them in
the records, but only in the records, because if the traders probably continued
using pebbles to do their accounts, they had no operational capability.

These mathematical signs on clay tablets led to the development of
Sumerian cuneiform writing. We know that later, in the palaco-Babylonian
era (2000 to 1600 BC), genuine mathematical texts were written on tablets
similar to these primitive specimens (and not only in Sumerian but also in
Akkadianz, a Semitic language), but that is another story, which we will not go
into here.

4.3.2. The signs used in the Roman number system

Although the arithmetic signs that are at the origin of cuneiform writing fell
into disuse thousands of years ago, the Etruscan herdsmen, far from
commercial transactions and the schools of scribes in the fertile crescent, by
making notches on a stick, one for each head counted, created a number
system that we still use, albeit only marginally: the one known as the Roman
number system.

The signs that we have inherited from them for the representation of
numbers actually seem to have developed as a result of their physical
inscription on a linear record. Thus the primitive repetition of notches, |||||]|...,
became structured by means of special marks every five notches, with a view
to making it easier to count the expression: a slanting mark in the fifth
position, a cross-shaped mark in the tenth position, etc., giving rise to marks
such as ||||/I[IX]III/I11X]I| to record a herd of twenty-three animals. The primary
marks and structural marks eventually became the alphabetical letters I, V,
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and X, becoming integrated into the system of writing and identified with the
letters that they most resembled.

As they were positions in a series, V and X did not signify the cardinal
numbers “five” and “ten,” but the fifth and tenth positions in the series. In
fact, the first written forms for “five” and “ten” were not V and X but IIIIV
and IIVIIIX, which do indeed represent cardinal numbers, and in which
both I and V represent a unit. It was only later that considerations of economy
led to the use of V to represent IIIIV and thus five units. The signs V and X
initially functioned as reference points in the series in yet another sense: IV
came to signify “four,” not as the result of a rule of subtraction between the
cardinal numbers designated by [ and V, but because from the presence of the
sign V one could understand that the mark immediately before V in the series
was being designated. Similarly, VI did not come to signify “six” as the result
of a rule of addition, but because it designated the mark immediately after V.
It was only when the signs V and X acquired a cardinal meaning —standing
for IIIIV and IIIIVIIIIX— that the earlier rules, which had to do with
positions in a series, i.e., with ...IV... or ...VI..., were reinterpreted as rules
of addition and subtraction between cardinals. In this historical account, the
transformations that took place in the expression as a result of the processes of
abbreviation gave new senses both to the elementary signs and to the rules for
the formation of compound signs, senses that correspond to the meanings now
taught in schools.

These marks are indices of the action of counting. Puig (1997) points
out that the phenomena that organize mathematical concepts are objects,
properties, actions, and properties of actions. This is one of the clearest
examples of a mathematical concept that organizes a phenomenon that does
not belong to the domain of objects or properties of objects, but to the domain
of actions and properties of actions (which does not do away with the fact that
in the corresponding triadic relation the action of counting is the object of the
sign for a mind, that is, for an interpretant). As a result of transformations of
the expression, the indices become symbols.

4.3.3. Algebraic expressions

It is common to refer to algebraic expressions as “symbolic language” —for
example, when one speaks of putting a problem into equations, one usually
describes this as a “transition from natural language to symbolic language.”
However, if we use Peirce’s terminology, algebraic expressions are not
symbols but icons, strange as this may seem at first sight. Let us see how
Peirce himself explains it:

[...] thus, an algebraic formula is an icon, rendered such by the rules of commutation,
association, and distribution of the symbols. It may seem at first glance that it is an arbitrary
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classification to call an algebraic expression an icon; that it might as well, or better, be regarded
as a compound conventional sign [symbol]. But it is not so. Because a great distinguishing
property of the icon is that by direct observation of it other truths concerning its object can be
discovered than those which suffice to determine its construction. [...] This capacity of
revealing unexpected truth is precisely that wherein the utility of algebraic formulae consists,
so that the iconic character is the prevailing one. (Peirce, CP, 2.279, p. 158.)

Algebraic expressions are icons, and this is precisely what makes them
powerful, because as signs they have the properties that their objects have.
However, the letters in algebraic expressions, taken in isolation, are not icons
but indices, each letter being an index of a quantity. They are also not
symbols. If the algebraic expression is the result of the translation of the
verbal statement of an arithmetic-algebraic problem, each specific letter
represents a specific quantity as a result of the convention established by the
person who produced the translation, but each letter refers to a quantity even
if there is no interpretant, because any interpretant who is not aware of the
convention established will assign the letters to the right quantities, since the
algebraic expression as a whole will require that the corresponding quantity
be assigned to each letter. So are there no symbols in algebraic expressions?
Yes, there are. The signs +, =, etc. are symbols in Peirce’s sense.

Algebraic expressions are thus an example of the imbrication of three
kinds of signs in mathematical writing: the letters are indices; the signs +, =,
etc. are symbols; and the expression taken as a whole is an icon.

4.3.4. Uses of numbers in different contexts

The students in whom teachers attempted to instil the concept of number in
the years of what was known as “modern mathematics” —in a school version
of Cantor’s construction of cardinals— would have left school without being
able to count if they had not created a mental object of number apart from
what the official syllabuses wished them to be taught. We will use this
complex, multiple concept as an example to show the difference between
mental object and concept, describing it in semiotic terms instead of as
Freudenthal does.

If we consider the ordinary activity of people and not just the mathematical
activities of mathematicians or the scholastic activities of students in
mathematics classes, the use of number, or rather numbers, appears in very
diverse contexts. A list of them might include the contexts of sequence,
counting, cardinal, ordinal, measurement, label, written numeral, magic, and
calculation. A description of the characteristics of each context is not our
purpose here: the list is worth mentioning solely in order to show that it
is possible to distinguish a considerable quantity of contexts. Following
Wittgenstein for a moment, we understand meaning as being constituted by
the use that one makes of a term, that use not being an arbitrary use, the
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product of what someone takes it into his or her head to do with the term in
question, but a practice subject to rules.

The uses of numbers in each of these contexts follow rules. For example,
when one says “My telephone number is three, eight, six, four, five, eight,
six,” the number refers to an object and does not describe any property of it or
its relation to other objects but serves to identify it. This is the context of
label, and in it, when the expression is oral, the digits that make up the
number are generally expressed separately, as in the example given. In an
ordinal context, the number refers to an object that is in an ordered set
of objects, and it describes what place it occupies—he came third” or “he’s
the one that makes three.” In a cardinal context, the number refers to a set of
objects (without order, or whose order is not taken into consideration), and it
describes the numerousness of the set— “there are three.” And so on.

The totality of the uses of numbers in all contexts constitutes the semantic
field of “number,” the encyclopedic meaning of “number.” The identification
of the context in which number is being used enables someone who is reading
a text or receiving a message to abide by the semantic restriction that the
context establishes and thus interpret it appropriately. However, the person
who reads a text or has to interpret a message does not operate in the whole
encyclopedia —i.e., the totality of the uses produced in a culture or an
episteme— but in his personal semantic field, which he has gradually built up
by producing sense —senses that becomes meanings if the interpretation is
felicitous— in situations or contexts that demanded of him new uses for
“number” or numbers.

In this semiotic description, what Freudenthal calls “mental object
‘number’” corresponds to this “personal semantic field.” Freudenthal’s didactic
attitude in favor of the constitution of mental objects means that the aim of
educational systems, expressed in the terms that we are using, should be that the
student’s personal semantic field should be sufficiently rich —should embrace
the encyclopedia sufficiently— to enable him to interpret appropriately all the
situations in which it proves necessary to use “number” or numbers.

The contexts of the ordinary use of numbers are the various places in
which we can experience the phenomena that have been organized by means
of the concept of number, both the phenomena for which it was originally
created and those to which it has now been extended. The idea of mental
object that we have just introduced must also be seen, therefore, as a means of
organisation of phenomena: with the mental object “number” people are able
to count, among other things. Mental objects are constituted in chains of
phenomena/means of organization, in the same way as with concepts, with the
consequent increase in level —in fact, the contexts of the ordinary use of
numbers that we have mentioned are situated on the lowest levels, and to
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realise the phenomenological richness of number in secondary school one
must take other contexts into consideration, including contexts that have
already been mathematized.

4.4. Relation between mental object and concept

This is an initial explanation of what a mental object is and how it is
constituted, but what Freudenthal calls mental object could simply have been
called the concept that a person has of number. To justify the introduction of a
term that distinguishes it, it is necessary to explain for what other thing the
term “concept” has been reserved, and how it differs from what we have just
called “mental object.” We have already said that the first distinction is that
mental objects are in people’s minds and concepts are in mathematics. But
this would hardly be sufficient reason to oppose mental object to concept if
we thought that the mental object is the reflection of the concept in people’s
minds. The relation between mental object and concept, however, is not a
mirror-like relation. Once again we will explain it in semiotic terms.

We have identified the mental object “number” with the personal semantic
field, which comes from all the uses of numbers in all the contexts in which
they are used, from a semantic field consisting of all the culturally established
meanings. The mathematical concepts of natural number —and we use the
plural in order to emphasize the fact that we consider the concepts developed
by Peano, Cantor and Benacerraf, for example, as different— in the form in
which they exist in current mathematics are the product of a long history, with
processes of creation and modification of concepts. In terms of the semiotic
description that we are using now, any mathematical concept of number that
one wishes to examine once it has been created appears as the result of the
process of defining that has incorporated it into a system organized
deductively as a narrowing of the semantic field. Thus, for example, the
concept of natural number developed by Peano —especially in its more
modern versions— can be seen as the breaking down of the meaning that
pertains to the context of sequence and its presentation in the form of a series
of axioms that give an exhaustive account of its components. The concept of
natural number that is derived from Cantor’s construction, on the other hand,
is ascribed, in the very name that Cantor gave in his original intention, to the
cardinal context.

In this explanation, concepts appear to be directly related to a part of the
mental object, given that, in the process of defining, part of the meaning that
the mental object embraces is selected. We will immediately point out that
this is not the only difference, and that we do not wish to give the impression
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that the relation between mental object and concept is a relation between a
part of the content of the mental object and the totality of its content. But we
wish, rather, to indicate that what this explanation establishes provides a
foundation for the attitude taken by Freudenthal that we have mentioned: the
acquisition of the concept is a secondary school objective and can be left until
after mental objects have been soundly constituted, and in any case it does
come afterwards.

The relation between mental object and concept is more complex than is
shown by the explanation that we have just given using the example of
number, because the explanation was limited to comparing the deployment of
the semantic field of number and Peano’s definition, as if there were not
centuries of history that have produced both contexts of use —which we are
now going to find with traces of their organization by concepts of number—
and Peano’s definition. Taking into account the processes of creation and
modification of concepts that are present in that history, the relation between
the mental object that can be constituted from the contexts mentioned and the
content of the concept of number created by Peano’s definition cannot be
reduced to a relation between part and whole.

Constituting a mental object implies being able to give an account with it of
all the uses in all the contexts or being able to organize all the corresponding
phenomena, in which case the mental object is well constituted. The aim of
educational systems that Freudenthal indicates is this constitution of good
mental objects. Acquiring the concept implies examining how it was established
in mathematics organized locally or globally in a deductive system. The
particular relation that each mathematical concept has to the corresponding
mental object determines how the constitution of the mental object relates to the
acquisition of the concept. The constituents of the good mental object are
determined by means of the phenomenological analysis of the corresponding
concept.

4.5. From phenomena to mental objects and concepts through teaching

The relation between mental objects and concepts is varied. Both are con-
stituted as means of organization of phenomena, mental objects precede
concepts, and concepts do not replace mental objects but contribute to the
formation of new mental objects that contain them or with which they are
compatible.

The distance between the mental object, or rather the first mental object,
and the concept can be an abyss: this is the case with the mental object
“curve” and Jordan’s concept of curve, for example. In general, in topology



CHAPTER 2 51

mental objects do not lead very far, and it is necessary to form concepts, by
means of a formation of concepts that involves more than a local organization.
These concepts enter a field of phenomena that are organized on a higher
level by mental objects such as spaces and varieties of arbitrary dimension,
which in turn are converted into concepts by means of new processes of
organization and the creation of more abstract sign systems to describe them.
As this example shows, by introducing the idea of mental object the process
of a progressive rise through the chain of phenomena/means of organization
pairs links up with a process of transformation of mental objects into
concepts.

The analyses of didactical phenomenology must be based on analyses of
pure phenomenology, bearing in mind that, in many more cases than one
might imagine, the distance between the mental object and the concept is so
great that it is not possible to build bridges between them by didactic means in
secondary school.

For the constitution of mental objects through teaching while bearing
concepts in mind, the distance between them and the various forms that this
distance adopts are therefore of importance. It is worth mentioning a few
cases, such as those that are set out in the following paragraphs.

Sometimes there are components that are essential for the formation of the
concept but are not pertinent for the constitution of the mental object. This is
the case with the cardinal number: the comparison of sets without structure is
essential for the concept, but it plays almost no part in the constitution of the
mental object because, in the real situations in which a person experiences the
phenomenon that is organized with the mental object “number” in its cardinal
sense, the sets of objects are rarely without structure, and, moreover, the
structure is a means for making the comparison, rather than something that
must be removed in order to make it.

Sometimes, what a didactical phenomenology shows is that the phenol-
mena organized by the concept are so varied that in fact different mental
objects are constituted, depending on the field of phenomena that is selected
for exploration in teaching, or several mental objects if several kinds of
phenomena are explored. For the acquisition of the concept it is necessary,
therefore, to integrate these different mental objects into a single mental
object. This is the case with the concept of area, for example.

Indeed, lengths, areas, and volumes are the magnitudes that are measured
in elementary geometry. It is therefore necessary that these concepts should
be acquired as part of the learning of measurement and measuring. The
comparison between qualities of objects is the beginning of the activity of
measuring. This becomes measurement through the intermediary of the
establishment of a unit and consideration of objects that are treated as objects
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of which one can predicate that quality —for example, one can predicate that
they have length if it makes sense to say of them that they are “long.”

However, as concepts, length, area, and volume are problematic because of
the variety of approaches for the constitution of the mental object “area” (or
“volume”). Indeed, plane figures can be compared with respect to area
directly, if one is part of the other, or indirectly, after transformation by
cutting and pasting, congruences, and other applications that preserve area; or
else by measuring both of them. The measuring can be done by covering the
figure with units of area, or by means of interior and exterior approximations;
for this one uses the additivity of the area beneath the composition of plane
figures that are mutually disjoint except for their boundaries (of dimension
one), or convergence of the areas by approximation. It is not clear that these
approaches lead to the same result, and in fact the proof that the result of
measuring by following all these procedures is the same is not simple. The
constitution of the mental object “volume” also has the additional complica-
tion of considering phenomena corresponding to capacity, which are usually
measured with different units.

Sometimes it is difficult even to distinguish the mental object from the
concept, at least if one wishes to have a unitary mental object: only by means
of access to the concept is it possible to unify a heterogeneous set of mental
objects. This is the case with the concept of function.

Finally, there are mental objects whose field of phenomena appears only in
a mathematical or mathematized context. An example of this in secondary
school is provided by the concepts of analytical geometry.

Indeed, in history, global location by using coordinates leads to the
algebrization of geometry. Whereas the system of polar coordinates used to
describe the sky and the Earth’s surface has served to systematize location,
the system of Cartesian coordinates is particularly efficacious for describing
geometric figures and mechanical movements and, later, functions in general.
A figure can be translated algebraically into a relation between coordinates, a
movement in a function that depends on time, and a geometric application in a
system of functions of a certain number of variables.

The phenomena that are proper to analytical geometry are thus phenomena
produced by the expression of geometric properties in the complex sign
system in which algebraic expressions and Cartesian representation refer to
one another. They are, therefore, phenomena that can be explored only in
contexts previously mathematized by the use of those sign systems.
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4.6. Concepts generated by proving

We have seen that mathematical concepts are created in the phenomena/-
means of organization process, but this does not mean that once created they
remain immutable. On the contrary, mathematical concepts alter in history as
a result of their use and the new MSSs in which they are described. This does
not imply, however, that alterations in a concept indicate that the original
concept was mistaken and that we have to see the history of mathematical
concepts as an advance toward truth, for we have rejected the view that
mathematical objects have an existence prior to the process that creates them.

A different idea of the evolution of concepts in history was developed by
Lakatos in his book Proofs and Refutations (Lakatos, 1976). What is of
interest for us here is the fact that in this book Lakatos examines how
concepts evolve under the pressure of the proof of theorems in which they are
involved.

Lakatos tells that, after the establishment of the conjecture that for any
polyhedron the relation C+ V=4 +2 is true, and after its proof by Euler,
examples of solids emerged that did not fit in with the proof that had been
performed or, what was more important, with the theorem that had been
proved. In terms of a conception of the nature of mathematical objects
according to which there is a pre-existing ideal object that we call polyhedron
and what mathematical activity does is to discover its properties, the matter is
quite clear: these solids are not true polyhedrons, or else the proof is wrong.
The reconstruction of history that Lakatos makes is not this.

Lakatos separates the two types of counter-examples that I have just
mentioned and calls them local and global counter-examples, respectively. A
local counter-example is one that has characteristics that cause the proof not
to be applicable to it, but that verifies the relation. These counter-examples do
not refute the conjecture: what they do is to indicate that in the proof a
property was used that was assumed to be valid for all polyhedrons, but it is
not so. What is refuted, therefore, is a lemma that has been used implicitly,
and therefore the proof. The presence of these counter-examples introduces a
difference in the concepts that was not present before.

The effects of the appearance of global counter-examples have more
importance for what we are examining. A counter-example is global when it
refutes the conjecture. As first global counter-examples of the theorem
proposed by Euler, Lakatos presents the solid that consists of a cube with a
cube-shaped hollow inside it, and a solid formed by two tetrahedrons joined
by one edge or one corner; later he presents the even more interesting case of
a star-shaped solid, which does or does not verify the relation depending
whether or not one considers that its faces are star-shaped polygons. The
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presence of these solids as counter-examples produces a tension between the
concept, the theorem, and its proof. This tension can be resolved in various
ways, which all affect the concept of polyhedron. The most elementary are:

1) Monster-barring.

The counter-examples presented are considered to be not genuine
examples of the concept of polyhedron but monsters, i.e., beings whose
existence is possible but not desired. The possibility of their existence is
determined by the definition of polyhedron that is being used, whether
explicitly or implicitly, so that, in order to preserve the theorem, a new
definition of the concept of polyhedron that explicitly excludes them is
produced.

2) Exception-barring.

The counter-examples presented are considered to be examples of the
concept whose existence had not been foreseen when the conjecture was
stated. The conjecture is modified with the intention of withdrawing to safe
ground. To do so, a difference that separates these examples is introduced in
the concept.

3) Monster-adjustment.

The objects are looked at in a different way so that they cease to be
counter-examples; this is the case with the two ways of looking at star-shaped
polyhedrons: as being composed of star-shaped polygons or not.

Although these are only the most elementary ways of confronting the
tension created, even with them we can see that the concept of polyhedron is
affected in all cases. Whether the counter-examples are accepted or excluded
as examples of the concept, the semantic field is expanded. In one case,
because the content of the expression increases, or, to put it differently,
because the field of phenomena for which the concept had been created —
which is what constitutes its semantic field— did not contain the phenomena
corresponding to the objects and properties that are now present, and it is
extended to include them. In the other case, because the concept enters into an
interplay of relations to these new objects from which it explicitly
disassociates itself in the new definition, which also form a constitutive part
of its content.

The full story is more complex, and it also features progressively richer
and more abstract mathematical sign systems to which the concepts initially
expressed in other, less rich or less abstract mathematical sign systems are
translated, and it leads Lakatos to state that the concepts generated by the
proof do not improve the original concepts, they are not specifications or
generalisations of them, but they convert them into something totally
different, they create new concepts. This is precisely what we wish to
emphasize: the result of the process that Lakatos presents, a process of tension
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between concepts, theorems, and proofs, is not the delimitation of the true
concept of polyhedron that supposedly corresponds to the pre-existing ideal
object, but the creation of new concepts.

4.7. Problem solving, defining, and other processes
that also generate concepts

From Lakatos we have just extracted the idea that mathematical concepts do
not remain immutable once created. We have also outlined how concepts
change, impelled by the tension produced in them by their application in
proofs and refutations. However, mathematical activity does not consist only
in proving theorems. One of the fundamental driving forces in the develop-
ment of mathematics is problem solving, and this includes the proving of
theorems, but also other activities.

Problem solving includes the proving of theorems in two senses. In the
first sense, problem solving includes the proving of theorems considered
globally, because, if we follow the terminology of Polya (1957) and, instead
of distinguishing between problems and theorems as was first done by
Greek mathematicians, we call them all problems and distinguish between
“problems to find” and “problems to prove,” then the proving of theorems is
simply one kind of problem solving: the solving of problems to prove.

In the second and more important sense, problem solving includes the
proving of theorems in the solving of each problem in particular; indeed, what
characterizes problem solving in mathematics, even with problems to find, is
the fact that the obtaining of the result must be accompanied by an argument
that substantiates the fact that the result obtained verifies the conditions of the
problem, i.e., any problem is a problem to prove or, if it is a problem to find,
it contains a problem to prove —the problem to prove that the result found
verifies the conditions of the statement.

This obliges us to extend the terrain in which concepts are submitted to a
tension that modifies them beyond the proving of theorems to the solving of
problems. But it becomes even more necessary to do so if we take into
consideration other parts of problem solving that do not involve the proving
of theorems —specifically, the proposal of new problems or the study of
families of problems.

Problem solving also does not exhaust the field of mathematical activities
or the field of mathematical activities that generate concepts. Other activities
that are responsible for the creation of many great mathematical concepts in
the form in which we know them now have to do with the organization of sets
of results of varying extent —obtained in the activity of solving problems and
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proving theorems— in a deductive system. This systematic organization has
adopted different forms in the course of history, and it may be more local or
more global, more or less axiomatic or formalized, but in any case it has
constituted an essential component of mathematics since mathematicians
moved from accumulating results and techniques for obtaining them to
writing “elements.” Indeed, although we do not detail that set of activities
here, one essential characteristic of it is that it has transformed the sense in
which definitions are used in mathematics. “In mathematics a definition does
not serve just to explain to people what is meant by a certain word,” as
Freudenthal says, but rather, when we consider the mathematical activities by
means of which deductive systems are organized, “definitions are links in
deductive chains.”

The process of defining is, therefore, a means of deductive organization of
the properties of a mathematical object, which brings into the foreground the
properties that are deemed to make it possible to constitute a mathematical
system, local or global, in which that mathematical object is incorporated.
However, emphasizing certain properties such as those that define a concept
is not an innocent operation, a neutral operation with respect to the concept,
because, on the one hand, it makes the concept appear as originally created to
organize the corresponding phenomena, and, on the other, it makes the
content of the concept be, from then on, what is derived from that definition
in the deductive system in which it has been incorporated. Therefore, this
process of defining also creates new concepts, just as proving theorems do.

SUMMARY

In this chapter we have presented the phenomenological analysis (based on
the work of Hans Freudenthal) as an approach to curricular development for
teachers, students, and researchers. The content is basic for the remainder of
the chapters since it deals essentially with establishing the difference between
acquiring concepts and building mental objects in mathematics, as well as
how one goes from phenomena to mental objects and to concepts through
teaching. The ideas are illustrated through the case of uses of natural numbers.
We also refer to the work of Lakatos “Proofs and Refutations” in order
to make evident that fests, definitions, and problem solving are concept
generators.

We have also dealt with the concepts of mathematical sign systems and
local theoretical model, thus adding further to their introduction in Chapter 1.
Dealing with these concepts has enabled us to refer to the phenomenological
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analysis as a framework for developing teaching models, as components of a
local theoretical model.

In the next chapter, we deal with the methodological aspect of LTMs, and
we present both an historical and phenomenological analysis of school
algebra.



58 CURRICULUM DESIGN AND DEVELOPMENT

ENDNOTES

' This reconstruction is recounted in full detail in Ifrah (1994), vol. I, pp. 233-263. See also
Schmandt-Besserat (1992) and Glassner (2000).

% Although it would be worth doing so. In the texts of problems that appear on tablets written in
Akkadian, the words “long” and “wide” are in Sumerian and are used to designate unknown
quantities, even though the problem is not geometric. One can imagine that the strangeness of
the signs of another language in a text written in Akkadian favored the use of those signs as
what Heyrup (2002a) calls “a functionally abstract representation.” Indeed, although “long”
and “wide” continue to retain the original geometric meaning, the sense that they have is no
more than that of two quantities that can form part of a calculation — that is, these words are
precursors of the objects of algebra.



2 Springer
http://www.springer.com/978-0-387-71253-6

Educational &lgebra

& Theoretical and Empirical Approach
Filloy ¥Yague, E.; Rojano, T.; Puig, L
2008, XV, 294 p., Hardcover

ISBMN: @78-0-387-71253-6



