
2

A Main Goal

Given a sparse matrix, for example, symmetric positive definite (or s.p.d. for short)
A = (ai,j )

n
i,j=1, our main goal is to devise efficient algorithms for solving the system

of linear equations,

Ax = b.

In practice, n can be very large (e.g., in the range of millions). A first comment then
is that in a massively parallel environment direct solvers are out of the question due
to their prohibitive memory requirements.

The fact that A is sparse means that an inexpensive operation is “matrix times
vector.” Therefore, iterative methods for solving Ax = b are appealing because they
involve computing at every iteration the residual

r = b − Ax,

corresponding to a current iterate x. The next iterate is obtained by computing a
correction based on r. A stationary iterative method exploits a mapping (sometimes
explicitly represented by a matrix) B, which has an easily computable inverse action
B−1 (in some cases implicitly represented only by a procedure). Then, the new iterate
xnew equals,

xnew = x + B−1r.

The corresponding new residual rnew = b − Axnew equals

rnew = (I − B−1A)r.

By making the successive residuals r �→ 0 (in some norm), we get more accurate
approximations x to the exact solution A−1b.

If B is s.p.d. (symmetric positive definite), the method of choice is the (precondi-
tioned) CG, which initially computes p = B−1r and at every successive step updates
it based on the preconditioned residual r = B−1r as p := B−1r + β p for a proper
scalar β. At any rate, major operations here are again (as in a stationary iteration) the

P.S. Vassilevski, Multilevel Block Factorization Preconditioners, 49
doi: 10.1007/978-0-387-71564-3_2,
© Springer Science+Business Media, LLC 2008



50 2 Main Goal

actions of B−1 and matrix vector products with A in addition to some vector inner
products. The actual preconditioned CG iteration takes the form:

(0) Initiate: Given a tolerance ε and an integer nmax
iter that gives the maximal number

of iterations allowed, for an initial iterate x, which we choose x = B−1b, we
1. Compute δ0 = xT b.
2. Compute r = b − Ax,
3. Compute r = B−1r,
4. Let p = r.
5. Compute δ = rT r.
6. Test for convergence, if δ ≤ ε2 δ0 stop.
7. Set niter = 0;

(i) Loop: until convergence or max number of iterations reached
1. Compute h = Ap.
2. Compute α = δ/pT h.
3. Compute x := x + αp.
4. Compute r := r − αh.
5. Compute r = B−1r.
6. Set δold = δ,
7. Compute δ = rT r.
8. Set niter := niter + 1;
9. Check for convergence: if either δ ≤ ε2 δold or niter > nmax

iter , stop.
10. Compute β = δ/δold.
11. Compute p := r + β p and go to (i).

We have the following popular convergence rate result after niter steps,

δ ≤ κ

(
2qniter

1 + q2niter

)2

δ0 ≤ 4κ q2niter δ0,

where q = √
κ − 1/

√
κ + 1 and κ = Cond(B−1A).

In practice, we typically prove (spectral equivalence) estimates

c1 vT Av ≤ vT Bv ≤ c2 vT Av for all v.

Then, because the eigenvalues of B−1A are in [1/c2, 1/c1], we clearly have κ ≤
c2/c1.

A simple candidate for an iteration matrixB is based on the diagonalD ofA. For
example, we can use the diagonal matrix χD, where χ is either a diagonal matrix
with entries χi = ∑

j : ai,j 
=0 1 or just the scalar maxi χi . We have

c1 vT Av ≤ vT Bv ≤ c2 vT Av

with c1 = 1. Unfortunately, for f.e. matrices A, such as the discretized Poisson
equation, the estimate from below is mesh-dependent; that is, we typically have

c−1
2 = min

v

vT Av
vT χDv

� h2 �→ 0.

Hence, Cond (B−1A) ≤ c2/c1 � h−2 �→ ∞ with h �→ 0.



2 Main Goal 51

The goal then is to construct a B such that:

(i) The action of B−1 costs as little as possible, the best being O(n) flops.
(ii) The constants c1 and c2 in the spectral equivalence estimate are such that c2/c1

is as close as possible to one, for example, being independent of various problem
parameters, in particular being independent of n.

(iii)∗ In a massively parallel computer environment, we also want B−1 to be com-
posed of local actions, essentially based on a “hierarchy” of sparse matrix vector
products. The latter is achieved by the multilevel preconditioners that are a main
topic of the present book.

Based on the convergence estimate, it is clear then that to get an approximate solution
toAx = b within tolerance ε, it is sufficient to perform as many as niter iterations such
that qniter < 1

2κ
−1 ε or niter = O(log 1/ε). The constant in the O symbol is reasonable

as long as κ is kept under control (not too far away from one).
For large sparse matricesA that come from finite element discretization of elliptic

PDEs (partial differential equations), like the Poisson equation, we can achieve both
(i) and (ii) (and to a certain extent (iii)∗) based on the multilevel preconditioning
methods that are the main topic of the present book. Such methods are often referred
to as scalable iterative methods.



http://www.springer.com/978-0-387-71563-6


