2
A Main Goal

Given a sparse matrix, for example, symmetric positive definite (or s.p.d. for short)
A = (ai, )} j=1>o0ur main goal is to devise efficient algorithms for solving the system
of linear equations,

Ax =b.

In practice, n can be very large (e.g., in the range of millions). A first comment then
is that in a massively parallel environment direct solvers are out of the question due
to their prohibitive memory requirements.

The fact that A is sparse means that an inexpensive operation is “matrix times
vector.” Therefore, iterative methods for solving Ax = b are appealing because they
involve computing at every iteration the residual

r=b — Ax,

corresponding to a current iterate X. The next iterate is obtained by computing a
correction based on r. A stationary iterative method exploits a mapping (sometimes
explicitly represented by a matrix) B, which has an easily computable inverse action
B~! (in some cases implicitly represented only by a procedure). Then, the new iterate
Xnew equals,

Xpnew = X + B 'r.
The corresponding new residual rpew = b — AXpew equals
I'new = (I — B_IA)I'.

By making the successive residuals r — 0 (in some norm), we get more accurate
approximations X to the exact solution A~'b.

If B is s.p.d. (symmetric positive definite), the method of choice is the (precondi-
tioned) CG, which initially computes p = B~ 'r and at every successive step updates
it based on the preconditioned residual r = B~ !r as p := B~ !r + g p for a proper
scalar 8. At any rate, major operations here are again (as in a stationary iteration) the
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actions of B~! and matrix vector products with A in addition to some vector inner
products. The actual preconditioned CG iteration takes the form:

(0) Initiate: Given a tolerance € and an integer n"** that gives the maximal number
of iterations allowed, for an initial iterate x, which we choose x = B~ b, we
1. Compute 8y = x”b.

2. Computer = b — Ax,
3. Computer = B~ 'r,
4. Letp =r.
5. Compute § = r’r.
6. Test for convergence, if § < €2 8o stop.
7. Setny,, = 0;
(1) Loop: until convergence or max number of iterations reached
1. Compute h = Ap.
2. Compute @ = §/p’h.
3. Compute x := X + ap.
4. Computer :=r — oh.
5. Computer = B~ 'r.
6. Set 8y =6,
7. Compute § = r’r.
8. Setny, := Ny + 1;

e

Check for convergence: if either § < €2 8, or n,, > nt¥ stop.
10. Compute B = §/8,-
11. Compute p :=r + g p and go to (i).

We have the following popular convergence rate result after n,., steps,
g 2 -
§ <k (1 +q2nim> 80 < 4k g~ By,
where ¢ = \/k — 1//k + 1 and k = Cond(B~'A).
In practice, we typically prove (spectral equivalence) estimates
c1 vl Av < v By < v Av forallv.

Then, because the eigenvalues of B~ A are in [1/c2, 1/c1], we clearly have k <
ca/cy.

A simple candidate for an iteration matrix B is based on the diagonal D of A. For
example, we can use the diagonal matrix x D, where x is either a diagonal matrix
with entries x; = ;. ai;0 1 OF just the scalar max; x;. We have

cl vl Av < vI By < vl Av

with ¢; = 1. Unfortunately, for f.e. matrices A, such as the discretized Poisson
equation, the estimate from below is mesh-dependent; that is, we typically have
T
. V'Av
cz_lzmm T ~ h% 0.
v vixDv

Hence, Cond (B™'A) < ¢2/c1 ~ h™2 + oo with h — 0.
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The goal then is to construct a B such that:

(i) The action of B~! costs as little as possible, the best being O(n) flops.

(i1) The constants ¢ and ¢ in the spectral equivalence estimate are such that ¢2/cy
is as close as possible to one, for example, being independent of various problem
parameters, in particular being independent of n.

(iii)* In a massively parallel computer environment, we also want B~! to be com-
posed of local actions, essentially based on a “hierarchy” of sparse matrix vector
products. The latter is achieved by the multilevel preconditioners that are a main
topic of the present book.

Based on the convergence estimate, it is clear then that to get an approximate solution
to Ax = b within tolerance €, it is sufficient to perform as many as n,, iterations such
that ¢t < %K_l € orn,, = O(log 1/¢). The constant in the O symbol is reasonable
as long as « is kept under control (not too far away from one).

For large sparse matrices A that come from finite element discretization of elliptic
PDE:s (partial differential equations), like the Poisson equation, we can achieve both
(1) and (ii) (and to a certain extent (iii)*) based on the multilevel preconditioning
methods that are the main topic of the present book. Such methods are often referred
to as scalable iterative methods.
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