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Statistical Models

In this chapter, we describe probability distributions, which provide funda-
mental tools for statistical models, and show that conditional distributions are
used to acquire various types of information in the model-building process. By
using regression and time series models as specific examples, we also discuss
why evaluation of statistical models is necessary.

2.1 Modeling of Probabilistic Events and Statistical
Models

Before considering statistical models, let us first discuss how to represent
events that we know occur in a deterministic way. In the simple case in which
an event is fixed and invariable, the state of the event can be expressed in the
form = = a. In general, however, = varies depending on some factor. If = is
dependent on an external factor u, then it can be expressed as a function of
u, e.g., x = h(u). In some cases, z is determined according to past events or
based on the present state, in which case x can be expressed as some function
of the factor.

Most real-life events, however, contain uncertainty, and in many cases our
information about external factors is incomplete. In such cases, the value of
x cannot be specified as a fixed value or a deterministic function of factors,
and in such cases we use a probability distribution.

Given a random variable X defined on the sample space 2, for any real
value z(€ R), the probability Pr({w € 2; X (w) < 2}) of an event such that
X (w) <z can be determined. If we regard such a probability as a function of
r and express it as

Gz)=Pr({w e 2; X (w) < z})
=Pr(X <a), (2.1)
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then the function G(z) is referred to as the distribution function of X. By
determining the distribution function G(z), we can characterize the random
variable X. In particular, if there exists a nonnegative function g(t) > 0 that
satisfies "

G(x) :/ g(t)dt, (2.2)

— 00

then X is said to be continuous, and the function g(t) is called a probabil-
ity density function. A continuous probability distribution can be defined by
determining the density function g(t).

On the other hand, if the random variable X takes either a finite or a
countably infinite number of discrete values z1,zo, ..., then the variable X
is said to be discrete. The probability of taking a discrete point X = z; is
determined by

gi=9g(x;) =Pr({w e 2; X (w) = 2;})
=Pr(X = x,), i=1,2,..., (2.3)

where g(z) is called a probability function, for which the distribution function
is given by G(z) = > ;.. <,y 9(x;), where >, , represents the sum of
the discrete values such that x; < x.

If we assume that the observations x,, = {x1,29,...,2,} are generated
from the distribution function G(x), then G(x) is referred to as the true dis-
tribution, or the true model. On the other hand, the distribution function
F(x) used to approximate the true distribution is referred to as a model and
is assumed to have either a density function or a probability function f(z). If
a model is specified by p-dimensional parameters 8 = (01, 0, ...,HP)T, then
the model can be written as f(x|@). If the parameters are represented as a
point in the set @ C RP, then {f(x]0);0 € O} is called a parametric family
of probability distributions or models.

An estimated model f(x]@) obtained by replacing an unknown parameter
6 with an estimator 8 is referred to as a statistical model. The process of con-
structing a model that appropriately represents some phenomenon is referred
to as modeling. In statistical modeling, it is necessary to estimate unknown
parameters. However, settng up an appropriate family of probability models
prior to estimating the parameters is of greater importance.

We first describe some probability distributions as fundamental models.
After that, we will show that the mechanism of incorporating information from
other variables can be represented in the form of a conditional distribution
model.

2.2 Probability Distribution Models

The most fundamental form of a model is the probability distribution model
or the probability model. More sophisticated models, such as conditional
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distribution models described in the next section, are also constructed using
the probability distribution model.

Example 1 (Normal distribution model) The most widely used con-
tinuous probability distribution model is the normal distribution model, or
Gaussian distribution model. The probability density function for the normal
distribution is given by

falp,0%) =

exp{—W}, —00 < T < 00. (2.4)

1
V2mo?

This distribution is completely specified by the two parameters p and o?,
which are the mean and the variance, respectively. A probability distribution
model, such as the normal distribution model, that can be expressed in a
specific functional form containing a finite number of parameters @ = (u, 0)7
is called a parametric probability distribution model.

In addition to the normal distribution model, the following parametric
probability distribution models are well known:

Example 2 (Cauchy distribution model) If the probability density func-
tion is given by
1 T

flalp, ) = =

ﬂ_m, —xo<r<oo, (25)

then the distribution is called a Cauchy distribution. The parameters p and
72 define the center of the distribution and the spread of the distribution,
respectively. While the Cauchy distribution is symmetric with respect to the
mode at p, its mean and variance are not well-defined.

Example 3 (Laplace distribution model) A random variable X is said
to have a Laplace distribution if its probability density function is

1 [z — p
s = — -, — <r < , 2.6
flan) = gow (<21 cwcacon 20)
where —oo < p < oo and 7 > 0. The mean and variance are respectively
given by E[X] = p and V(X) = 272. The distribution function of the Laplace
random variable is

1exp x—u) z < i
2 T )’ -
F(alp, ) = 1 b (2.7)
1—eXp(— ), T > L.
2 T

Example 4 (Pearson’s family of distributions model) If the probability
density function is given by
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r(b)r2-1 1

f($|/,L,T2,b) = F(b— %)F(%) {(m_N)Q +T2}b’

—o <z <oo, (2.8)

then the distribution is known as a Pearson’s family of distributions, in which
the quantities ; and 72 are referred to as the center and dispersion parameters,
as in the case of the Cauchy distribution. The quantity b is a parameter
that specifies the shape of the distribution. By varying the value of b, it is
possible to represent a variety of distributions. When b = 1, the distribution
is Cauchy, and when b = (k + 1)/2 where k is an integer, the distribution is
a t-distribution with k degrees of freedom. Also, the distribution becomes a
normal distribution when b — oco.

Example 5 (Mixture of normal distributions model) If the density
function can be represented by

f(x|m,9):Zozjexp{—ml2L]}, —oo <z <oo, (29)
j=1 27T0'J2- 2Uj

then the distribution is called a mixture of normal distributions, where 6
= (1 ey P, 0% 02,00, Q1) T and Z;”:l a; = 1. A mixture of
normal distributions is constructed by combining m normal distributions with
weights o, in which case m is referred to as the number of components. A
wide range of probability distribution models can be expressed by appropriate
selection of the parameters m, o, pj, and 0]2.

Figure 2.1 shows various examples of probability distribution models. The
model in the upper left panel is the standard normal distribution model with
mean 0 and variance 1. The model in the upper right panel is a Cauchy distri-
bution model with ;= 0 and 72 = 1. One feature of this model is that it has
fatter left and right tails. By using a Cauchy distribution rather than a nor-
mal distribution, it is possible to model a phenomenon in which large absolute
values have small but nonnegligible probabilities. This property can be used
to detect outliers, perform a robust estimation, or detect jumps in a trend.
The lower left panel shows Pearson distributions with b = 0.6,0.75, 1, 1.5, and
3. By varying the value of b, it is possible to continuously represent various
distributions, ranging from distributions that have even fatter tails than the
Cauchy distribution to the normal distribution. The lower right panel shows
an example of a mixture of normal distributions, which is capable of repre-
senting complex distributions even in the simplest case when m = 2.

Example 6 (Binomial distribution model) Let X be a binary random
variable taking the values of either 0 or 1, and let the probability of an event’s
occurring be given by

Pr(X=1)=p, Pr(X=0)=1-p, 0<p<l. (2.10)
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Fig. 2.1. Various examples of probability distributions: standard normal distribu-
tion (upper left); Cauchy distribution with m = 0 and 72 = 1 (upper right); Pearson
distributions with b = 0.6,0.75,1,1.5, and 3 (lower left); and a mixture of normal
distributions (lower right).

This probability distribution is referred to as a Bernoulli distribution, and its
probability function is given by

flzlp) =p*(1 —p)' 77, z=0,1. (2.11)

We further assume that the sequence of random variables X1, Xo, ..., X,
is independently distributed having the same Bernoulli distribution. Then the
random variable X = X7 +X9 +--- +X,, denotes the number of occurrences
of an event in n trials, and its probability function is given by

flzlp) = Cop®™(1—p)"", x=0,1,2,...,n. (2.12)

Such a probability distribution is called a binomial distribution with parame-
ters n and p. The mean and variance are E[X]| = np and V(X) = np(1 — p),
respectively.

Example 7 (Poisson distribution model) When very rare events are
observed in short intervals, the distribution of the number of events is given
by

T

A
f(x\)\):—'e_’\, x=0,1,2,... (0<A<o0). (2.13)
x!

This distribution is called a Poisson distribution. The mean and variance are
E[X] = X and V(X) = A. The Poisson distribution is derived as an approx-
imation to the binomial distribution by writing np = A for the probability
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Fig. 2.2. Poisson distributions: left: A = 1; right: A = 2.

Fig. 2.3. A continuous distribution model and its approximation by a histogram.

function of the binomial distribution, while keeping A constant. In fact, if n
tends to infinity and p approaches 0, then for a fixed integer =z,

| T n —T T
WCop™(1—p) " = —— A (1 - )‘) (1 - )‘) o M

(n—a)! ! n n z!
(2.14)

Figure 2.2 shows Poisson distributions for the cases when the parame-
ter A is 1 and 2. Discrete distributions of various shapes can be represented
depending on the value of \.

Example 8 (Histogram model) A histogram can be obtained by dividing
the domain zn;, < X < Zmax of the random variable into appropriate in-
tervals By, ..., Bg, determining the frequencies ny, ..., n; of the observations
that fall in the intervals B; = {z;2,_1 < x < z,}, and graphing the results.
If we set n = nq + -+ + ng, and define the relative frequency as f; = n;/n,
a histogram can be thought of as defining the discrete distribution model
f=Af1,.-., fx} that is obtained by converting a continuous variable into a
discrete variable. On the other hand, if the histogram is thought of as approx-
imating a density function with a stepwise function, the histogram itself can
be regarded as a type of continuous distribution model (Figure 2.3).

Example 9 (Probability model) A wide variety of phenomena can be
expressed in terms of probability distributions according to the underlying
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Fig. 2.4. The distribution of the velocities of 82 galaxies [Roeder (1990)]. Data
(top left), the histogram (top right), and a mixture of normal distributions model
(bottom left: m = 2; bottom right: m = 3).

problem. The problem is how to construct a probability model based on ob-
served data.

Figure 2.4 shows the observed velocities, x, of 82 galaxies [Roeder (1990)].
Let us approximate the distribution of galaxy velocities using the mixture of
normal distributions model in (2.9). If we estimate the parameters for the
mixture of normal distributions based on observed data and replace the un-
known parameters with estimated values, then the resulting density function
f(x|m, 8) is a statistical model. A critical issue in fitting the mixture of nor-
mal distributions model is the selection of the number of components, m. A
two-component model has five parameters, while a three-component model
has eight parameters. We must determine which model among the various
candidate models best describes the probabilistic structure of the random
variable X . Essential to answering this question is the criteria for evaluating
the goodness of a statistical model.

Thus far, we have considered univariate random variables. There are many
real-world situations, however, in which several variables must be consid-
ered simultaneously, for example, temperature and pressure in meteorological
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data, or interest rate and GDP in economic data. In such cases, X =
(X1,...,X,)T becomes a multivariate random vector, for which the distri-
bution function is defined as a function of p variables that are given in terms
of z = (z1,...,2,)T €RP,

G(z1,...,2p) =Pr(fw e 2: Xj(w) < 21,..., X, (w) < zp})
=Pr(Xs <m,....X, <x,). (2.15)
In parallel with the univariate case, a density function for the multivariate dis-

tribution can be defined. For a continuous distribution, a nonnegative function
f(z1,...,2p) > 0 that satisfies

(o] (o]
/ / flx1,. ., xp)day - - -dxy = 1,
— 0o —0o0

G(m1,~--,xp):/ / Ftr o )ty - dty (2.16)

is called the probability density function of the multivariate random vector X.

Consider a discrete case, in which a p-dimensional random vector X =
(X1,+++,X,)T assumes either a finite or a countably infinite number of dis-
crete values @1, s, ..., where ; = (@;1,...,2)7, i = 1,2,.... Then the
probability function of the random vector X is defined by

g(iﬂl) :Pr(Xl :l'il,...,Xp:.’ﬂip), Z:1,27 (217)

The probability function satisfies
glxi) >0, i=12..., and > g(z;) =1, (2.18)
i=1

and the distribution function can be expressed as

Gz, xp) = Z Z 9(Tit, -, Tip)- (2.19)

{21 <x1 } {i;2ip<zp}

Example 10 (Multivariate normal distribution) A p-dimensional ran-
dom vector X = (X1, ..., X,)7 is said to have a p-variate normal distribution
with mean vector p and variance covariance matrix X if its probability density
function is given by

alp ) = Gz o {icc )T - m} . (220

where p = (u1,. .. ,Mp)T and X is a p X p symmetric positive definite matrix

whose (4, j)'" component is given by o;;. We write X ~ N,(p, X).
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Example 11 (Multinomial distribution) Suppose that there exist k + 1
possible outcomes FE, ..., Fxy1 in a trial. Let P(E;) = p;, where Zf;l pi =1,
and let X; (i =1, ..., k+1) denote the number of times outcome E; occurs in
n trials, where Zfill X; = n. If the trials are repeated independently, then a
multinomial distribution with parameters n, p1, ..., px is defined as a discrete
distribution having the probability function

k+1
n! .
Pr(Xy = a1, ., Xy = ap) = 5 | [l (2.21)

| =1
[+
=1

where 2; = 0,1,...,n (note that x54; =n — Zle x;). The mean, variance,
and covariance are respectively given by E[X;] =np;, i =1,...,k, V(X;) =
np;(1 —p;), and Cov(X;, X;) = —npip; (i # j).

2.3 Conditional Distribution Models

From the viewpoint of statistical modeling, the probability distribution is
the most fundamental model in the situation in which the distribution of
the random variable X is independent of various other factors. In practice,
however, information associated with these variables can be used in various
ways. The essence of statistical modeling lies in finding such information and
incorporating it into a model in an appropriate form. In the following, we
consider cases in which a random variable depends on other variables, on past
history, on a spatial pattern, or on prior information. The important thing
is that such modeling approaches can be considered as essentially estimating
conditional distributions. Thus, the essence of statistical modeling can be
thought of as obtaining an appropriate conditional distribution.

In general, if the distribution of the random variable Y is determined in a
manner that depends on a p-dimensional variable = (z1, o, . .. ,a:p)T, then
the distribution of Y is expressed as F'(y|x) or f(y|x), and this is called a
conditional distribution model. There are several ways in which the random
variable depends on the other variables x. In the following, we consider typical
conditional distribution models.

2.3.1 Regression Models

The regression model is used to model the relationship between a response
variable y and several explanatory variables * = (21,22, ...,2,)7. This is
equivalent to assuming that the probability distribution of the response vari-
able y varies depending on the explanatory variables  and that a conditional
distribution is given in the form of f(y|x).
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Fig. 2.5. Regression model (left) and conditional distribution model (right) in which
the mean of the response variable varies as a function of the explanatory variable z.

Let {(Yas®a); = 1,2, ...,n} be n sets of data obtained in terms of the
response variable y and p explanatory variables . Then the model

Yo = u(To) + Eas a=1,2,...,n, (2.22)

of the observed data is called a regression model, where u(x) is a function of
the explanatory variables @, and the error terms or noise €, are assumed to
be independently distributed with mean E[e,] = 0 and variance V (g,) = o2.
We often assume that the noise &, follows the normal distribution N (0, 0?).
In such a case, y, has the normal distribution N (u(z),o?) with mean u(z,)

and variance o2, and its density function is given by

(ya - U,(:L’a))2

1
V2mo? P { - 202

This distribution is a type of conditional distribution model in which the mean
varies according to E[Y |x] = u(x) in a manner that depends on the values of
the explanatory variables .

The left panel in Figure 2.5 shows 11 observations and the mean function
u(x) of the one-dimensional explanatory variable x and the response variable
y. The data y,, at a given point z, are observed as

fWalza) = } a=12...,n. (223

Ya = Pao + Ea, a=1,2,...,11, (2.24)

with true mean value E[Y,|z,] = o and noise €,. The quantity u(x) rep-
resents the mean structure of the event, and e, is the noise that induces
probabilistic fluctuations in the data y,. The right panel in Figure 2.5 shows
a conditional distribution determined using a regression model. Fixing the
value of the explanatory variable x gives the probability distribution f(y|z),
for which the mean is u(z). Therefore, the regression model in (2.23) deter-
mines a class of distributions that move in parallel with the value of x.
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Example 12 (Linear regression model) If the regression function or the
mean function u(x) can be approximated by a linear function of x, then the
model in (2.22) can be expressed as

ya:60+ﬁlxal+"'+ﬁpma1)+€a
=28 +cq, a=1,2,...,n, (2.25)

with 8 = (Bo, B1, s Bp)T, To = (1,Za1, Tazs -, Tap)! and is referred to
as a linear regression model. A linear regression model with Gaussian noise
can be expressed by the density function

— / 2
exp{—(y“%ﬁ)}, a=1,2,...,n, (2.26)

x,;0) =
f(yoé| e/ ) 27T(72 20_2
where the unknown parameters in the model are @ = (87,¢%)7. In the linear
regression model, the critical issue is to determine a set of explanatory vari-
ables that appropriately describes changes in the distribution of the response

variable y; this problem is referred to as the variable selection problem.

Example 13 (Polynomial regression model) A polynomial regression
model with Gaussian noise,

Yo = Bo+ Bi%a + + BT + €0, £a ~ N(0,0%), (2.27)

assumes that the regression function w(z) can be approximated by Gy + Sz
+Bo22 4+ -+ Bpx™ with respect to the one-dimensional explanatory variable
x. For each order m, the parameters of the polynomial regression model are
B = (Bo, B1, .-, Bm)T and the error variance is o2. In a polynomial regression
model, the crucial task is determining the order m, which is referred to as
the order selection problem. As shown in Example 16, a model having an
order that is too low cannot adequately represent the data structure. On
the other hand, a model with an order that is too high causes the model
to react excessively to random variations in the data, masking the essential
relationship.

Various functions in addition to polynomials are used to represent a
regression function. Trigonometric function models are expressed as

m
Yo = ag + Z{aj cos(jwzy) + by sin(jwza)} +€q - (2.28)
j=1
In addition, various forms of other orthogonal functions can be used to

approximate the regression function.

Example 14 (Nonlinear regression models) Thus far, given a regression
function E[Y|x] = u(x), we have constructed models by assuming functional
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Fig. 2.6. Motorcycle impact data.

forms such as polynomials. The analysis of complex and diverse phenomena,
however, requires developing more flexible models. Figure 2.6, for example,
plots the measured acceleration Y (g ; gravity) of the crash dummy’s head at a
time X (ms, millisecond) from the moment of collision in repeated motorcycle
collision experiments [Hérdle (1990)]. Neither polynomial models nor models
using specific nonlinear functions are adequate for describing the structure of
phenomena characterized by data that exhibit this type of complex nonlinear
structure.

It is assumed that at each point z,, y, is observed as y, = o + €a,
a = 1,2, ...,n, with noise ¢,. In order to approximate p,, @« = 1,2, ..., n,
in a way that reflects the structure of the phenomenon, we use a regression
model

Yo = u(T0;0) + €q, a=1,2,...,n. (2.29)

For wu(z; @), various models are used depending on the analysis objective,
including (1) splines [Green and Silverman (1994)], (2) B-splines [de Boor
(1978), Imoto (2001)], (3) kernel functions [Simonoff (1996)], and (4) multi-
layer neural network models [Bishop (1995), Ripley (1996)]. Our purpose here
is to identify the mean structure of a phenomenon from data based on these
flexible models.

Example 15 (Changing variance model) Whereas in the regression mod-
els described above, only the mean structure changes as a function of the ex-
planatory variables x, in changing variance models the variance of the response
variable y also changes as a function of @, and such a change is expressed in
the form o?(x). In this case, the conditional distribution of y is given by
N(u(zx),o?(x)). Figure 2.7 shows an example of a conditional distribution de-
termined by a changing variance model in which it has a constant mean. It
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Fig. 2.7. Conditional distributions of changing variance models.

shows that the variance of the distribution changes depending on the value
of x. These types of changing variance models are important for analyzing
earthquake data and financial data.

Generally, a regression model is composed of a model that approximates
the mean function E[Y|x| representing the structure of phenomenon and a
probability distribution model that describes the probabilistic fluctuation of
the data. Since models that approximate the mean function depend on several
parameters, we write u(x;3). Observed data with Gaussian noise are then
given as

Ya :u(wa§:6)+€om a=12...,n, (230)
and are represented by the density function

oxp { - = i B

202

fWalza; 0) =

}, a=1,2...,n,
2

(2.31)

2mo

where 8 = (87, 02)7.
In the case of a regression model expressed by a density function, we
estimate the parameter vector 6 of the model by using the maximum likelihood

P AT

method, and we denote it as @ = (3 ,6%)7. Then the density function in
which the unknown parameters in (2.31) are replaced with their corresponding
estimators,

fWalza; 0) =

262

1 (Yo — u(wa; B))?
TT&QeXp{ }, a=1,2...,n,
(2.32)
is called a statistical model.
Although the main focus in regression models tends to be modeling for
expected values, the distributions of error terms are also important. For a
given regression function, different models can be obtained by changing the

value of the variance. In addition, models that assume distributions other than
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Fig. 2.8. Fitting polynomial regression models of order 3 (solid), 8 (broken), and
12 (dotted).

the normal distribution for the error terms (e.g., Cauchy distribution) are also
conceivable.

Example 16 (Fitting a polynomial regression model) Figure 2.8 shows
a plot of 15 observations obtained with respect to the explanatory variable
2 and the response variable y. By ordering the data as {(z4,¥a); @ = 1,2,
..., 15}, we fit the polynomial regression model in (2.27).

For each order m, we estimate the parameters B = (8o, 81, - .., Bm)T of
the polynomial regression model by using either the least square method or
the maximum likelihood method that maximizes the log-likelihood function

> 108 f(yalta; B,0°) (2.33)

a=1
n

=3 log(2ro?) — %‘2 az::l {Ya — (Bo + Brza + -+ + Bz}

and denote the results as B = (ﬂAo,Bl, e Bm)T. The figure shows the esti-
mated polynomial regression curves for orders 3, 8, and 12; it shows that esti-
mated polynomials can vary greatly depending on the assumed order. Thus,
the problem is deciding the order of the polynomial that should be adopted
in the model.

If we consider the problem of order selection from the viewpoint of the
goodness of fit of data in an estimated model, that is, from the standpoint of
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minimizing the squared sum of residuals

n n R R . 2
> Wa—52)" = {va = (Bo+ Brza+ -+ Buall) ), (239)
a=1 a=1

then the higher the order of the model, the smaller the value will be. As a
result, we select the highest order [i.e., the (n — 1)*" order] polynomial that
passes through all data points. If the data are free of errors, the error term e,
in (2.27) will be superfluous, in which case it is sufficient to select the most
complex model out of the class of models expressed by a large number of
parameters. However, for data that contain intrinsic or observational errors,
models that overfit the observed data tend to model the errors excessively
and do not adequately approximate the true structure of the phenomenon.
Consequently, such models do not predict future events well.

In general, a model that is too complex overadjusts for the random fluc-
tuation in the data, while, on the other hand, overly simplistic models fail to
adequately describe the structure of the phenomenon being modeled. There-
fore, the key to evaluating a model is to strike a balance between, badness of
fit of the data and the model complexity.

Example 17 (Spline functions) Assume that in the data {(ya,2a);a =
1,2,...,n} observed with respect to a response variable y and an explanatory
variable x, n observations, 1,2, ...,%,, are ordered in ascending order in
the interval [a, b] as follows:

a< T <x9 <0<y < b (2.35)

The essential idea in spline function fitting is to divide the interval containing
the data {x1, ..., 2, } into several subintervals and to fit a polynomial model in
a segment-by-segment manner, rather than fitting a single polynomial model
to n sets of observed data.

Let & < & < --+ < &, denote the m points that divide (x1,,). These
points are referred to as knots. A commonly used spline function in practical
applications is the cubic spline, in which a third-order polynomial is fitted
segment by segment over the subintervals [a, 1], [€1,82],- .., [Em, ], and the
polynomials are smoothly connected at the knots. In other words, the model is
fitted under the restriction that at each knot, the first and second derivatives
of the third-order polynomial are continuous. As a result, the cubic spline
function having the knots £ < & < --+ < &, is given by

’LL(QL‘7 0) = ﬂo —+ ﬂlx —+ 621‘2 + ﬂ3x3 + Z@,(x — fz)i_ s (236)

=1

where 0 = (01>923 R 9m7 607 ﬂla /627 53)T and (’JI - gl)-l— = max{(),x - fz}
It is commonly known, however, that it is not appropriate to fit a cubic
polynomial near a boundary since the estimated curve will vary excessively. In
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order to address this difficulty, the natural cubic spline specifies that the cubic
spline be a linear function at the two ends of the interval (—oo, £1], [&m, +00),
so that the natural cubic spline is given by

m—2

u(w;0) = o+ i+ Y 0i{di(z) — dm-1(2)} (2.37)

i=1
where 0 = (61,02, ...,0p—2,00,31)" and

(x B gz)i — (m B gm)i
gm - gz .

When applying a spline in practical situations, we still need to determine
the number of knots and their positions. From a computational standpoint, it
is difficult to estimate the positions of knots as parameters. For this reason,
we estimate the parameters 8 of the model by using the maximum penalized
likelihood method described in Subsection 5.2.4 or the penalized least squares
method discussed in Section 6.5. These topics are covered in Chapters 5 and 6.
In the B-spline, a basis function is constructed by connecting the segment-
wise polynomials, and it can substantially reduce the number of parameters
in a model. This topic will be discussed in Section 6.2.

dl(l‘) =

2.3.2 Time Series Model

Observed data, x1,...,xN, for events that vary with time are referred to as
a time series. The vast majority of real-world data, including meteorological
data, environmental data, financial or economic data, and time-dependent ex-
perimental data, constitutes time series. The main aim of time series analysis
is to identify the structure of the phenomenon represented by a sequence of
measurements and to predict future observations. To analyze such time series
data, we consider the conditional distribution

f(@plTn_1,Tn_2,-..), (2.38)

given observations up to the time n — 1.

Example 18 (AR model and ARMA model) In particular, by assuming
a linear structure in finite dimensions, we obtain an autoregressive (AR) model
[Akaike (1969, 1970), Brockwell and Davis (1991)];

P
Ty = Zajxn,j + en, £, ~ N(0,0?), (2.39)
j=1

where p denotes the order and indicates which information, obtained up to
what time in the past, must be used in order to determine a future predictive
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Fig. 2.9. Predictive distribution of time series.

Table 2.1. Residual variances and prediction error variances of AR models with a
variety of orders.

p 62 PEV, | p &2 PEV, | p 62 PEV,
0 6.3626 8.0359 | 7 0.3477 0.3956 | 14 0.3206  0.3802
1 1.1386  1.3867 | 8 0.3397 0.3835 | 15 0.3204  0.3808
2 03673 04311 | 9 0.3313 0.3817 | 16 0.3202  0.3808
303633 04171 | 10 0.3312  0.3812 | 17 0.3188  0.3823
4 0.3620 04167 | 11 0.3250 0.3808 | 18 0.3187  0.3822
5 0.3547 04030 | 12 0.3218 0.3797 | 19 0.3187  0.3822
6 0.3546 0.4027 | 13 0.3218 0.3801 | 20 0.3186  0.3831

distribution. A particular case is that of p = 0, which is called white noise

if , is uncorrelated with its own past history. An AR model means that

a conditional distribution (also referred to as a predictive distribution) of

T, can be given by the normal distribution having mean E§:1 ajTy_; and
2

variance o~.
Similar to the polynomial models, the selection of an appropriate order is
an important problem in AR models. When time series data x1,...,x, are

given, the coefficients a; and the prediction error variance o2 are estimated

using the least squares method or the maximum likelihood method. However,
the estimated prediction error variance, 612,, of the AR model of order p is a
monotonically decreasing function of p. Therefore, if the AR order is deter-
mined by this criterion, the maximum order will always be selected, which

corresponds to the order selection for the polynomial model in Example 16.
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The second column in Table 2.1 indicates the change in 612, when AR
models up to order 20 are fitted to the observations of the rolling angle of a
ship [n = 500, Kitagawa and Gersch (1996)]. Here, 67 decreases rapidly up
to p = 2 and diminishes gradually thereafter. The third column in the table
gives the prediction error variance

1 1000
- C_ AP\2

PEV, = = 42 (z; —aP)?, (2.40)

1=501

when the subsequent data 501, ..., 21000 are predicted by
p
&= aPr;_;  (i=501,...,1000), (2.41)
j=1

based on the estimated model of order p, where d? is an estimate of the j-th
coefficient a; for the AR model of order p. The value of PEV,, is smallest at
p = 12, and for higher orders, rather than decreasing, the prediction error
variance increases.

Even when the time series has a complex structure and the AR model
requires a high order p, in some cases an appropriate model can be obtained
with fewer parameters by using past values of &,, together with past values of
the time series. The following model is referred to as an autoregressive moving
average (ARMA) model:

P q
Ty = Zajmn,j +e, — ijan,j. (2.42)
j=1 j=1

In general, if the conditional distribution of a time series z,, is represented
by nonlinear functions of the series x,,_1,Z,_2, ... and noise (also called “in-
novation”), €,,&,—-1, ..., then the corresponding model is called a nonlinear
time series model. If the time series x,, is a vector and the components are
interrelated, a multivariate time series model is used for forecasting.

Example 19 (State-space models) A wide variety of time series models
such as the ARMA model, trend model, seasonal adjustment model, and time-
varying model can be represented using a state-space model. In a state-space
model, the time series is expressed by using an unknown m-dimensional state
vector a, as follows:

oy = Fnan—l + Gnvna
xn, = Hyou, + wy, (2.43)
where v,, and w,, are white noises that have the normal distributions N, (0, Q)

and N(0,02), respectively. Concerning the state-space model, the Kalman fil-
ter algorithm is known to efficiently calculate the conditional distributions
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flan|tn-1,2n—2,...) and f(cn|Tn,Zp—_1,...) of the unknown state a, from
observed time series; these conditional distributions are referred to as a state
prediction distribution and a filter distribution, respectively. Many important
problems in time series analysis, such as prediction and control, computation
of likelihood, and decomposition into several components, can be solved by
using the estimated state vector.

The generalized state-space model is a generalization of the state-space
model [Kitagawa (1987)]. It represents the time series as follows:

Oy F(anlanfl)a
Ty ~ H(z,|ay), (2.44)

where F' and H denote appropriately specified conditional probability distrib-
utions. In other words, generalized state-space models directly model the two
conditional distributions that are essential in time series modeling. This con-
ditional distribution model can also be applied when observed data or states
are discrete variables. It can be shown that the hidden Markov model is actu-
ally a special case of the generalized state-space model. Recently, a sequential
Monte Carlo method for recursive estimation of unknown parameters of the
generalized state-space models has been developed [see for example, Durbin
and Koopman (2001), Harvey (1989), and Kitagawa and Gersch (1996)].

This method can thus be used to estimate the unknown state vector if the
(general) state-space model is specified. Since the log-likelihood of the state-
space model can be computed by using the predictive distribution of the state,
unknown parameters of the model can be estimated using the maximum like-
lihood method. However, the state-space model is a very flexible model that
is capable of expressing a very wide range of time series models. Therefore, in
actual time series modeling, we have to compare a large variety of time series
models and select an appropriate one.

2.3.3 Spatial Models

The spatial model represents the distribution of data by associating a spatial
arrangement with it. For the case when data are arranged in a regular lattice,
as depicted in the left plot of Figure 2.10, a model such as

P(Tij|2i 51, Ti 1, Tio1,, Tiv1,) (2.45)

that represents the data x;; at point (, j), for example, can be constructed as
a conditional distribution of the surrounding four points. As a simple example,
a model

ij = 3 (@ij-1 + Tiger + Timrg + Tiag) + i (2.46)

is conceivable in which &;; is a normal distribution with mean 0 and

variance o2.
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Fig. 2.10. An example of a prediction model for lattice data and spatial data.

On the other hand, in the general case in which the pointwise arrangement
of data is not necessarily a lattice pattern, as illustrated in the right plot of
Figure 2.10, a model that describes an equilibrium state can be obtained by
modeling the local interaction of the points called particles.

Let us assume that the pointwise arrangement @ = {21, x9,...,2,} of n
particles is given. If we define a potential function ¢(z,y) that models the
force acting between two points, the sum of the potential energy at the point
arrangement @ can be given by

Hx)= Y ¢ z)). (2.47)

1<i<j<n
Then the Gibbs distribution is defined by
f(x) =Cexp{—H(x)}, (2.48)

where C'is a normalization constant defined such that the integration over the
entire space is 1. In this method, models on spatial data can be obtained by
establishing concrete forms of the potential function ¢(z,y). For the analysis
of spatial data, see Cressie (1991).



2 Springer
http://www.springer.com/978-0-387-71886-6

Information Criteria and Statistical Modeling
Konishi, 5.; Kitagawa, G.

2008, Xll, 276 p., Hardcover

ISBN: @78-0-387-71B86-6





