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Primes in Arithmetic Progressions

In 1837 Dirichlet proved by an ingenious analytic method that there
are infinitely many primes in the arithmetic progression

a, a+q, a+2q, a+3q, ...

in which a and ¢ have no common factor and ¢ is prime. The general
case, for arbitrary g, was completed only later by him, in 1840, when
he had finished proving his celebrated class number formula. In
fact, many are of the view that the subject of analytic number theory
begins with these two papers. It is also accurate to say that character
theory of finite abelian groups begins here.

In this chapter we will derive Dirichlet’s theorem, not exactly fol-
lowing his approach, but at least initially tracing his inspiration.

2.1 Summation Techniques

A very useful result is the following.

Theorem 2.1.1 Suppose {a,,}5°; is a sequence of complex numbers and
f(t) is a continuously differentiable function on [1, z|. Set

A) =) an.

n<t
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Then

> auf(n) = Ale) ) [ Al 0y

n<x

Proof. First, suppose z is a natural number. We write the left-hand
side as

Sanf(n) = Y{AMm) ~ Al - 1)} f(n)

n<x n<z
= Y Am)f(n)— > A(n)f(n+1)
n<x n<lx—1
n+1
= - ) An / f(t)dt
n<z—1
_ Z/ ‘)
n<ae—17"

since A(t) is a step function. Also,

S / at= [ awr

n<x—1

and we have proved the result if z is an integer. If = is not an integer,
write [z] for the greatest integer less than or equal to x, and observe
that

T

A(e){f(2) = f([=])} — . A(t)f'(t)dt = 0,

which completes the proof.

Remark. Theorem 2.1.1 is often referred to as “partial summation.”

Exercise 2.1.2 Show that
Z logn = xlogx — z + O(log x).
n<x

Exercise 2.1.3 Show that

Z 1 logz + O(1).
n

n<x
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In fact, show that

i (327 - toxe)

n<x

exists. (The limit is denoted by ~ and called Euler’s constant.)

Exercise 2.1.4 Let d(n) denote the number of divisors of a natural num-
ber n. Show that

Z d(n) =zlogz + O(x).

n<x

Exercise 2.1.5 Suppose A(z) = O(z°). Show that for s > 6,

> ay o A(t)
;n:/l W

Hence the Dirichlet series converges for s > 6.

Exercise 2.1.6 Show that for s > 1,

)= s [ gy

s—1 1 astl
where {x} = x — [z]. Deduce that lim,_,;+(s — 1)((s) = 1.

Consider the sequence {b,(z)}22, of polynomials defined recur-
sively as follows:

bo(:ﬂ) = 1,
b.(r) = rb_i(x) (r>1),

/1b7«(az)d:v =0 (r>1).
0

Thus, from the penultimate equation, b,(x) is obtained by integrat-
ing rb,_1(x), and the constant of integration is determined from the
last condition.

Exercise 2.1.7 Prove that

te.’zt
et —1°

Flat) = Zbr(x)i—: -
r=0
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It is easy to see that

bo(z) = 2% —z — 3,

b3(z) = 2% — 322 + La,

_ 4 3,,2_ 1
by(z) = 2% — 20° + 2° — 55,

_ .5 _ 54,53 1
bs(z) = 2° — 52* + 52° — g

These are called the Bernoulli polynomials. One defines the
rth Bernoulli function B, (z) as the periodic function that coin-
cides with b,(z) on [0,1). The number B, := B,(0) is called the
rth Bernoulli number. Note that if we denote by {z} the quantity
z — [z, B(2) = b-({z}).

Exercise 2.1.8 Show that By,q1 = 0 forr > 1.

The Bernoulli polynomials are useful in deriving the Euler -
Maclaurin summation formula (Theorem 2.1.9 below).

Let a,b € Z. We will use the Stieltjes integral with respect to the
measure d[t|. Then

b
fn)= [ f(t)d[t].
aggb /a

Notice that the interval of summation is a < n < b, so that

b b
> s = [ e~ [ roaso
a<n<b a a
because d[t] = dt — d{t} and B;(t) = {t} — 3, by the theory of the
Stieltjes integral. We can evaluate the last integral by parts:

b b ,
/NW&®=U@—ﬂW&—/BNV®%
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since B; (b) = Bi(a) = B1(0). From Bj(t) = 2B (t), we can write

/ FNBL(1) = (F(b) ~ f(@)Br — o / F (t)dBst

provided that f is differentiable on [a, b]. We can iterate this proce-
dure to deduce he following theorem:

Theorem 2.1.9 (Euler-Maclaurin summation formula) Let k be a
nonnegative integer and f be (k + 1) times differentiable on [a, b] with
a,b e Z. Then

k r+1

/fdtz

=0

b) - f(r) (a))Bri1

a<n<b

_1\k b
+(/(f+1)1>'/ B () f*D (1) dt.

Example 2.1.10 For integers x > 1,

1 1 1 1
S = of=).
Z n 20 1222 T (3:3)

n<lz

Solution. Put f(¢t) = 1/t in Theorem 2.1.9,a = 1,b = z, and k = 2.
Then

1 1/1 33
Z —:logzr+—<——1>+f ——1
n 2\zx

2<n<zx

so that

1 1 1 [*Byt), 1 1
- =1 S dt+ — — ——.
D, =lgrt g -5 /1 o T o

Since

we must have

Also,

[ 20 =o)

so that the result is now immediate.
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Exercise 2.1.11 Show that for some constant B,

Z\}H:Q\/EJFBJFO(\}E).

n<x

Exercise 2.1.12 For z € C,and | arg z| < m — 6, where § > 0, show that

= 1
Zlog(z—I—j) = (z—i—n—i— 5) log(z +n)
§=0

1 "B d
_n_(z_)logz+/ Bi(z)dx
2 0o Z+=x

2.2 Characters mod ¢

Consider the group (Z/qZ)* of coprime residue classes mod ¢. A
homomorphism

X:(Z/q2)" — C*

into the multiplicative group of complex numbers is called a charac-
ter (mod ¢). Since (Z/qZ)* has order ¢(q), then by Euler’s theorem
we have

a?® =1 (mod q),

and so we must have x¥(@(a) = 1 for all a € (Z/qZ)*. Thus x(a)
must be a ¢(q)th root of unity.
We extend the definition of x to all natural numbers by setting

_ J x(n(modg)) if (n,q) =1,
x(n) = { 0 otherwise.

Exercise 2.2.1 Prove that x is a completely multiplicative function.

We now define the L-series,

Lisy =Y X
n=1

Since |x(n)| < 1, the series is absolutely convergent for Re(s) > 1.
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Exercise 2.2.2 Prove that for Re(s) > 1,

L0 =] (1 B x(p)>_1’

s
» p

where the product is over prime numbers p.

The character
xo: (Z/qZ)" — C*

satisfying xo(a) = 1 for all (a,q) = 1 is called the trivial character.
Moreover, if x and v are characters, so is xv, as well as ¥ defined by

which is clearly a homomorphism of (Z/¢Z)*. Thus, the set of char-
acters forms a group. This is a finite group, as the value of x(a) is a
¢(q)th root of unity for (a,q) = 1.
But more can be said. If we write
qg=py---ppt

as the unique factorization of ¢ as a product of prime powers, then
by the Chinese remainder theorem,

Z/qZ ~ &L /p}" T
is an isomorphism of rings. Thus,
(Z)qZ)* ~ &i(Z/p} L)".

Exercise 2.2.3 Show that (Z/pZ)* is cyclic if p is a prime.

An element g that generates (Z/pZ)* is called a primitive root
(mod p).

Exercise 2.2.4 Let p be an odd prime. Show that (Z/p®Z)* is cyclic for
any a > 1.

In the previous exercise it is crucial that p is odd. For instance,
(Z/8Z)* is not cyclic but rather isomorphic to the Klein four-group
727 x 7./27. However, one can show that (Z/2°Z)* is isomorphic
to a direct product of a cyclic group and a group of order 2 for o > 3.
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Exercise 2.2.5 Let a > 3. Show that 5 (mod 2%) has order 202,

Exercise 2.2.6 Show that (Z/2°Z)* is isomorphic to (Z/2Z) X
(Z)2°72Z), for a > 3.

Exercise 2.2.7 Show that the group of characters (mod q) has order p(q).

Exercise 2.2.8 If x # xo, show that

Exercise 2.2.9 Show that

[ ¢(q) if n=1 (modg),
Z x(n) = { 0 otherwise.
x(mod q)

2.3 Dirichlet’s Theorem

The central idea of Dirichlet’s argument is to show that

1
lim — =
s—1+ Z pS +OO’
p=a(mod q)

where the summation is over primes p = a (mod q).
If ¢ = 1, this is clear, because

and

upon using the expression

.y
—log(1—xz) = Z?
n=1
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Observing that
lim ((s) = +o0
s—1+ C( )
by virtue of the divergence of the harmonic series, we get

lim log((s) = +oo.

s—1t

Consequently,

SEI{L(Z t22 5

P n>2

) =

In view of the fact for s > 1,

1 1 1
ZZnPnSSZZTPnS oy < 99

P n>2 p n>2 > plp—1)
we deduce 1
lim — =4
s—1t zp: p?

Exercise 2.3.1 Let x = xo be the trivial character (mod q). Show that

lim log L(s, xo0) = +oc.

s—1+

Exercise 2.3.2 Show that for s > 1,

S el =@y S —

npns .
x(mod q) n>1 pr=1(mod q)

Exercise 2.3.3 Show that for s > 1 the Dirichlet series

> % = [ L(s:x)

n=1 X(mod q)

has the property that a; = 1 and a,, > 0 for n > 2.

25

Exercise 2.3.4 For x # xo, a Dirichlet character (mod q), show that

| > n<z X(n)| < gq. Deduce that

_ i x(n)

n=1

converges for s > 0.
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Exercise 2.3.5 If L(1, x) # 0, show that L(1,%X) # 0, for any character
X 7 Xo modg.

Exercise 2.3.6 Show that

lim (s — 1)L(s, x0) = #(q)/q.

s—1+

Exercise 2.3.7 If L(1, x) # 0 for every x # Xo, deduce that

li -1) L(
e [ e 40
x(mod q)

and hence

p=1(mod q)
Conclude that there are infinitely many primes p = 1(mod gq).

This exercise shows that the essential step in establishing the in-
finitude of primes congruent to 1 (mod¢) is the nonvanishing of
L(1, x). The exercise below establishes the same for other progres-
sions (mod g).

Exercise 2.3.8 Fix (a,q) = 1. Show that

Z Y(@)x(n) :{ g(Q) if nE'a (mod q),

otherwise.
x(modq)

Exercise 2.3.9 Fix (a,q) = 1. If L(1, x) # 0, show that
li - 1) L( X @)
sir{l-% s H (s, ) # 0.
x(mod q)
Deduce that
1
> e
p=a(mod q) p

The essential thing now is to show that L(1,x) # 0 for x # xo.
Historically, this was a difficult step to surmount. Now, there are
many ways to establish this. We will take the most expedient route.
We will exploit the fact that

H L(s,x)

x(mod q)
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is a Dirichlet series Y . | a,n~® with a; = 1 and a,, > 0. If for some
x1, L(1, x1) = 0, we want to establish a contradiction.

Exercise 2.3.10 Suppose x1 # X1 (that is, x1 is not real-valued). Show
that L(1, x1) # 0 by considering F(s).

It remains to show that L(1, x) # 0 when y is real and not equal
to xo.

We will establish this in the next section by developing an inter-
esting technique discovered by Dirichlet that was first developed by
him not to tackle this question, but rather another problem, namely
the Dirichlet divisor problem.

2.4 Dirichlet’s Hyperbola Method

Suppose we have an arithmetical function f = g * h. That is,

f(n) =3 g(d)h(n/d)
din

for two arithmetical functions g and h. Define

G(z) =) g(n),
H(z) =) h(n).

Theorem 2.4.1 Foranyy > 0,

> s =3 (@ () + 3 n6() - e (7).
<z

n<zx d<y
Proof. We have

Y ) = ) g(dhle)

n<z de<z
_ Z g(d)h(e) + Z g(d)h(e)
_ f:yg(d)ﬂ() +d>i ne{c(2) -cw)}
d<y e<y
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The method derives its name from the fact that the inequality
de < z is the area underneath a hyperbola. Historically, this method
was first applied to the problem of estimating the error term E(x)
defined as

E(z) =Y oo(n) — {z(logz) + (2y — 1)z},

n<x
where 0(n) is the number of divisors of n and + is Euler’s constant.

Exercise 2.4.2 Prove that

Z oo(n) =xzlogz + (2y — 1)z + O(Vx).

n<x

Exercise 2.4.3 Let x be a real character (mod gq). Define

fn) => " x(d).

dln

Show that f(1) = 1 and f(n) > 0. In addition, show that f(n) > 1
whenever n is a perfect square.

Exercise 2.4.4 Using Dirichlet’s hyperbola method, show that

> 1% —ar0vE +oq),

n<x

where f(n) = 324y, x(d) and x # xo-

Exercise 2.4.5 If x # xo is a real character, deduce from the previous
exercise that L(1, x) # 0.

Exercise 2.4.6 Prove that
1
Z x(n) _ O(f)
n x
n>x

whenever x is a nontrivial character (mod q).
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Exercise 2.4.7 Let

apn = Z X(d)

din
where x is a nonprincipal character (mod q). Show that
Z an = 2L(1,x) + O(Vx).
n<x

Exercise 2.4.8 Deduce from the previous exercise that L(1, x) # 0 for x
real.

Thus, we have proved the following Theorem:

Theorem 2.4.9 (Dirichlet) For any natural number q, and a coprime
residue class a (mod q), there are infinitely many primes p = a (mod q).

2.5 Supplementary Problems

Exercise 2.5.1 Let dy(n) be the number of ways of writing n as a product
of k numbers. Show that

z(log z)F1
Z dip(n) = ((lkg_i)‘ + O(z(log )F72)

n<x
for every natural number k > 2.

Exercise 2.5.2 Show that

Zlog% =2+ O(logx).

n<x

Exercise 2.5.3 Let A(x) =), ., an. Show that for x a positive integer,

n<zx

n 1 t

n<x

Exercise 2.5.4 Let {x} denote the fractional part of x. Show that

S {E ==y +oE,

n<x

where ~y is Euler’s constant.
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Exercise 2.5.5 Prove that

Z logk% = O(x)

n<x
forany k > 0.

Exercise 2.5.6 Show that for x > 3,

1
:loglogm+B+O< )
xlogx

Exercise 2.5.7 Let x be a nonprincipal character (mod q). Show that
>R -o(z)
= v Vil

Exercise 2.5.8 For any integer k > 0, show that

1 k 1 k+1
>R = S o),
n k+1

n<x

Exercise 2.5.9 Let d(n) be the number of divisors of n. Show that for some
constant c,

din) 1

ZT = 210g2$+2vlogw+c+0<\}5)

n<x

forax > 1.

Exercise 2.5.10 Let oo > 0 and suppose a, = O(n®) and

Az) =) an =0(2")

n<x

for some fixed 6 < 1. Define
bn = Z Qgq.

Prove that
Z by, =cxr+ O <$(1—6)(1+a)/(2_5)) ’

n<zx

for some constant c.
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Exercise 2.5.11 Let  be a nontrivial character (mod q) and set

= x(@)

dln

Show that
S" f(n) = 2L(1,X) + O(av/a),

where the constant implied is independent of q.

Exercise 2.5.12 Suppose that a,, > 0 and that for some § > 0, we have

Zan <« — (log 7)7

n<x

Let b, be defined by the formal Dirichlet series

(e

n=1 n=1

Show that
b, < z(log ) 1 2

n<zx

Exercise 2.5.13 Let {a,} be a sequence of nonnegative numbers. Show
that there exists o € R (possibly infinite) such that

converges for Re(s) > o and diverges for Re(s) < og. Moreover, show
that the series converges uniformly in Re(s) > oo + 6 for any 6 > 0 and
that

F®) (s 1k i an, logn
n=1

for Re(s) > oo (o¢ is called the abscissa of convergence of the
Dirichlet series >~ | a, /n°).
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Exercise 2.5.14 (Landau’s theorem) Let a,, > 0 be a sequence of non-
negative numbers. Let o be the abscissa of convergence of

0o a,
f(s) = prl

n=1

Show that s = oq is a singular point of f(s) (that is, f(s) cannot be
extended to define an analytic function at s = s).

Exercise 2.5.15 Let x be a nontrivial character (mod q) and define

Tayx = Z x(d)d®.

dln

If x1, x2 are two characters (mod q), prove that for a,b € C,
o
Z Ta,x1(N)Tbxs (R)°
n=1

C(s)L(s —a,x1)L(s —b,x2)L(s —a—b,x1Xx2)
L(2s —a — b, x1x2)

as formal Dirichlet series.

Exercise 2.5.16 Let y be a nontrivial character (mod q). Set a = b, x1 =
x and xo = X in the previous exercise to deduce that

> o _s _ C(s)L(s —a,x)L(s—a,x)L(s—a—a,xo)
; [9ax(m) '™ = L(2s —a—a,Xo)

Exercise 2.5.17 Using Landau’s theorem and the previous exercise, show
that L(1, x) # O for any non-trivial real character (mod q).

Exercise 2.5.18 Show that ((s) # 0 for Re(s) > 1.

Exercise 2.5.19 (Landau’s theorem for integrals) Let A(x) be right
continuous for x > 1 and of bounded finite variation on each finite in-

terval. Suppose that
)
f(s) = /1 xs_;’_l df];,

with A(xz) > 0. Let o be the infimum of all real s for which the integral
converges. Show that f(s) has a singularity at s = oy.
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Exercise 2.5.20 Let \ denote Liouville’s function and set
=2_Am)
n<x

Show that if S(x) is of constant sign for all x sufficiently large, then
((s) # 0 for Re(s) > 3. (The hypothesis is an old conjecture of
Pélya. It was shown by Haselgrove in 1958 that S(z) changes sign
infinitely often.)

Exercise 2.5.21 Prove that
i n
k=0

where by, (x) is the nth Bernoulli polynomial and B,, denotes the nth
Bernoulli number.

Exercise 2.5.22 Prove that

bn(1 = z) = (=1)"bn(2),
where by, (x) denotes the nth Bernoulli polynomial.

Exercise 2.5.23 Let
spn) =18+ 28 138 4 ... 4 (n — 1)~
Prove that for k > 1,

k
o = 35 (4 1) e

=0
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