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7.1 Introduction

Longitudinal data, often called repeated measurements in medicine and panel
data in the social sciences, arise when units provide responses on multiple
occasions. Such data can be thought of as clustered or two-level data with
occasions i at level 1 and units j at level 2.

One feature distinguishing longitudinal data from other types of clustered
data is the chronological ordering of the responses, implying that level-1 units
cannot be viewed as exchangeable. Another feature of longitudinal data is
that they often consist of a large number of small clusters.

A typical aim in longitudinal analysis is to investigate the effects of co-
variates both on the overall level of the responses and on changes of the
responses over time. An important merit of longitudinal designs is that they
allow the separation of cross-sectional and longitudinal effects. They also allow
the investigation of heterogeneity across units both in the overall level of the
response and in the development over time. Heterogeneity not captured by
observed covariates produces dependence among responses even after control-
ling for those covariates. This violates the typical assumptions of ordinary
regression models and must be accommodated to avoid invalid inference.

It is useful to distinguish between longitudinal data with balanced and
unbalanced occasions. The occasions are balanced if all units are measured at
the same time points ti, i = 1, . . . , n, and unbalanced if units are measured
at different time points, tij , i = 1, . . . , nj . In the case of balanced occasions,
the data can also be viewed as single-level multivariate data where responses
at different occasions are treated as different variables. One advantage of the
univariate multilevel approach taken here is that unbalanced occasions and
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missing data are accommodated without resorting to complete case analysis
(sometimes called listwise deletion). We will use maximum likelihood estima-
tion, which produces consistent estimates if responses are missing at random
(MAR) as defined by Rubin [59]; see Chapter 10 [40] for other approaches
in the case of MAR and Verbeke and Molenberghs [65] for approaches in the
case of responses not missing at random (NMAR).

In this chapter we will consider both linear mixed models and generalized
linear mixed models. A linear mixed model is written in Chapter 1, equa-
tion (1.4), as

y
j

= Xjβ +Zjδj + εj , (7.1)

where y
j

is the vector of continuous responses for unit j. In this book the
covariate matrices Xj and Zj are treated as fixed. Extra assumptions are
required when these matrices are treated as random; see, for instance, Rabe-
Hesketh and Skrondal [54].

A generalized linear mixed model also accommodates non-continuous re-
sponses and can be written as

g(E (y
j
| δj)) = Xjβ +Zjδj

∆=η
j
, (7.2)

where g(·) is a link function and ηj is a vector of linear predictors. Conditional
on the random effects δj , the elements yij of y

j
have a distribution from

the exponential family and are mutually independent. See Rabe-Hesketh and
Skrondal [54] and Chapter 9 [58] for treatments of generalized linear mixed
models.

For dichotomous and ordinal responses, generalized linear mixed models
with logit and probit links can also be defined using a latent response formula-
tion. A linear mixed model is in this case specified for an imagined continuous
latent response y∗ij . The observed dichotomous or ordinal response yij with
S > 1 categories results from partitioning y∗ij into S segments using S − 1
cut-points or thresholds; see Chapter 6 [31] for details.

We will use an example dataset to illustrate some of the ideas discussed
in this chapter. The dataset comes from an American panel survey of 545
young males taken from the National Longitudinal Survey (Youth Sample)
for the period 1980–1987. The data were previously analyzed by Vella and
Verbeek [64] and can be downloaded from the web pages of Wooldridge [70]
and Rabe-Hesketh and Skrondal [53]. The response variable is the natural
logarithm of the hourly wage in US dollars and the following covariates will
be used:

• educ: Years of schooling (x1j)
• black: Dummy variable for being black (x2j)
• hisp: Dummy variable for being Hispanic (x3j)
• labex: Labor market experience (in 2-year periods) (x4ij)
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• labexsq: Labor market experience squared (x5ij)
• married: Dummy variable for being married (x6ij)
• union: Dummy variable for being a member of a union (x7ij)

The first three covariates are time-constant, whereas the next four are time-
varying.

7.2 Models with Unit-Specific Intercepts

In longitudinal data it is usually impossible to capture all between-unit vari-
ability using observed covariates. If the remaining “unobserved heterogeneity”
is ignored, it induces longitudinal dependence among the responses for the
same unit (after controlling for the included covariates). A simple way of rep-
resenting “unobserved heterogeneity” is by including unit-specific intercepts,
which could be either random or fixed.

7.2.1 Random Intercept Models

Consider the response yij of unit j on occasion i (i = 1, . . . , nj). In a linear
random intercept model, sometimes referred to as a one-way error component
model, it is assumed that the unit-specific effects are realizations of a random
variable δj ,

yij = x′ijβ + δj + εij ,

where δj and εij are independently distributed δj ∼ N (0, ω2) and εij ∼
N (0, σ2). The random intercept or “permanent component” δj allows the level
of the response to vary across units, whereas the “transitory component” εij
varies over occasions within units. The model is a special case of a linear
mixed model (7.1) with Zj = 1nj .

The variance-covariance matrix of the responses y
j
, after controlling for

Xj , is given by

Cov(y
j
) = Cov(1nj

δj + εj) = ω21nj
1′nj

+ σ2Inj
,

with diagonal elements ω2 + σ2 and off-diagonal elements ω2. The residual
intraclass correlation becomes

Corr(yij , yi′j) =
ω2

ω2 + σ2
. (7.3)

This covariance structure is also shown in panel A of Table 7.1. It is sometimes
referred to as exchangeable since the joint distribution of the residuals for a
given unit remains unchanged if the residuals are exchanged across occasions.
The covariance structure also satisfies the sphericity property that the condi-
tional variances Var( yij − yi′j ) of all pairwise differences are equal. Note that
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Table 7.1 Common dependence structures for longitudinal data (Ψj
∆
= Cov(y

j
)).

A. Random intercept structure:

Ψj = ω21nj
1′

nj
+ σ2Inj =


ω2 + σ2

ω2 ω2 + σ2

...
...

. . .

ω2 ω2 · · · ω2 + σ2


B. Random coefficient structure:

Ψj = ZjΩZ′
j + σ2Inj

C. Autoregressive residual structure AR(1):

Ψj =
σ2

u

1− α2


1

α 1
...

...
. . .

αnj−1 αnj−2 · · · 1


D. Moving average residual structure MA(1):

Ψj = σ2
u


1 + a2

a 1 + a2

0 a 1 + a2

...
...

...
. . .

0 0 0 · · · 1 + a2


E. Autoregressive response structure AR(1):

Ψj =
σ2

ε

1− γ2


1

γ 1
...

...
. . .

γnj−1 γnj−2 · · · 1



the covariances ω2 are restricted to be nonnegative in the random intercept
model. If this restriction is relaxed, the above covariance structure is often
called compound symmetric. In the case of balanced occasions, we could also
allow the variance of εij to take on a different value Σii for each occasion.

Typically, the random intercept model is estimated by either maximum
likelihood or restricted maximum likelihood [42]. The likelihood has a closed
form, but iterative methods such as the EM algorithm, Newton-Raphson,
Fisher scoring, or iterated generalized least squares (IGLS) must be used to
estimate the parameters; see Chapter 1 [15].
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Maximum likelihood estimates of the random intercept model for the wage
panel data, obtained using Stata’s [63] xtmixed command, are given in the
first column of Table 7.2. As might be expected, more years of schooling,
more labor market experience, being married, and being a union member are
all associated with higher hourly wages, whereas being black decreases the
wage compared with being white, and Hispanics’ wages are similar to those of
whites (controlling for the other covariates). The residual intraclass correlation
is estimated as 0.47; 47% of the variance not explained by the covariates is
therefore between individuals and 53% within individuals.

For generalized linear mixed models, the dependence among observed
responses is generally difficult to express because the model-implied corre-
lations and variances depend on the covariates. However, for a generalized
linear random intercept model, obtained by substituting Zj = 1nj in (7.2),
with dichotomous or ordinal responses, the intraclass correlation of the latent
responses is constant and given by (7.3) with σ2 replaced by π2/3 for logit
models and 1 for probit models. An important interpretational issue in gener-
alized linear mixed models concerns the distinction between conditional and
marginal effects, which correspond to unit-specific and population-averaged
effects in the longitudinal setting. We return to this in Section 7.6.

Generally, the marginal likelihood does not have a closed form for gen-
eralized linear mixed models, making estimation more difficult. Common
approaches include penalized quasilikelihood [23], maximum likelihood us-
ing adaptive quadrature [56] and Markov Chain Monte Carlo (MCMC) [10];
see also Chapter 9 [58]. For dichotomous responses and counts, closed-form
likelihoods can be achieved by specifying a conjugate distribution for the
random intercepts, giving the beta-binomial and negative-binomial models,
respectively [38].

Simulation studies [5, 26, 48, 69] suggest that inference for the ran-
dom intercept model and similar models is relatively robust to violation
of the normality assumption for the random intercept. However, to safe-
guard against distributional misspecification, the random intercept distribu-
tion can be left unspecified by using nonparametric maximum likelihood esti-
mation [30, 34, 37]. The nonparametric maximum likelihood estimator of the
random intercept distribution is discrete with estimated locations and masses,
their number being determined to reach the largest maximized likelihood.

For the wage panel data, gllamm [53, 55] in Stata was used to estimate
models with a discrete random effects distribution. The directional deriva-
tive [37] was used to determine whether the nonparametric maximum likeli-
hood estimator (NPMLE) was achieved as described in Rabe-Hesketh et al.
[52]. In the example, the NPMLE appears to have eight mass points whose
estimated locations and masses are shown in Fig. 7.1. This estimated discrete
distribution is quite symmetric apart from a tiny mass at 1.77, which appears
to accommodate one outlying individual whose log wage exceeded the 99th
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Fig. 7.1 Estimated discrete random intercept distribution from NPMLE.

percentile (across individuals and time) in 1981–1987. The standard deviation
of the discrete distribution is very close to ω̂0 for the conventional random
intercept model, as are the estimates of the regression parameters β and
variance parameter σ2 given in the second column of Table 7.2.

As discussed for linear models in Chapter 3 [61], violation of the as-
sumption that δj has zero expectation can invalidate inference. Specifically,
if E (δj) = z′jγ, where 1nj

zj and Xj are nonorthogonal, the estimates of
the regression coefficients β will be inconsistent. When the covariates Xj are
treated as random variables Xj , this problem is referred to as endogeneity in
econometrics because the covariates are correlated with the random effects.

The standard approach to handling endogeneity in econometrics is instru-
mental variables estimation [70]. In the present context, a simpler solution is
to estimate the within-unit effects of Xj , which can be achieved by also con-
trolling for the cluster mean covariates X̄·j . An alternative for linear models
is to use a fixed effects approach, which will be discussed next. Unfortunately,
there are no easy fixes for violation of the assumption that E (εij) = 0.

7.2.2 Fixed Intercept Models

A simple linear fixed intercept model or fixed effects model has the form

yij = x′ijβ + δj + εij , (7.4)

where δj are unit-specific intercepts or “fixed effects” and εij are identically
and independently normally distributed residuals with E (εij) = 0. Due to the



7 Multilevel and Related Models for Longitudinal Data 281

T
a
b
le

7
.2

E
st

im
a
te

s
fo

r
w

a
g
e

p
a
n
el

d
a
ta

.

In
te

rc
ep

t
In

te
rc

ep
t

a
n
d

S
lo

p
e

A
u
to

re
g
re

ss
iv

e
(1

)

R
a
n
d
o
m

N
P

M
L

F
ix

ed
B

o
th

ra
n
d
o
m

R
a
n
d
o
m

sl
o
p
e

B
o
th

fi
x
ed

A
R

R
es

id
u
a
l

A
R

R
es

p
o
n
se

E
st

(S
E

)
E

st
(S

E
)

E
st

(S
E

)
E

st
(S

E
)

E
st

(S
E

)
E

st
(S

E
)

E
st

(S
E

)
E

st
(S

E
)

F
ix

ed
p
a
rt

β
0

[c
o
n
s
]

−
0
.1

1
(0

.1
1
)
−

0
.1

7
(0

.1
0
)

−
0
.1

6
(0

.1
2
)

−
0
.1

1
(0

.1
1
)

0
.1

1
(0

.0
6
)

β
1

[e
d
u
c
]

0
.1

0
(0

.0
1
)

0
.1

1
(0

.0
1
)

0
.1

1
(0

.0
1
)

0
.1

0
(0

.0
1
)

0
.0

5
(0

.0
0
)

β
2

[b
l
a
c
k
]

−
0
.1

4
(0

.0
5
)
−

0
.1

4
(0

.0
5
)

−
0
.1

5
(0

.0
4
)

−
0
.1

4
(0

.0
5
)
−

0
.0

8
(0

.0
2
)

β
3

[h
i
s
p
]

0
.0

2
(0

.0
4
)

0
.0

1
(0

.0
3
)

0
.0

1
(0

.0
4
)

0
.0

2
(0

.0
4
)

0
.0

1
(0

.0
2
)

β
4

[l
a
b
e
x
]

0
.2

2
(0

.0
2
)

0
.2

2
(0

.0
2
)

0
.2

3
(0

.0
2
)

0
.2

1
(0

.0
2
)

0
.2

2
(0

.0
2
)

0
.2

3
(0

.0
2
)

0
.0

3
(0

.0
2
)

β
5

[l
a
b
e
x
s
q
]

−
0
.0

1
(0

.0
0
)
−

0
.0

2
(0

.0
0
)
−

0
.0

2
(0

.0
0
)

−
0
.0

1
(0

.0
0
)
−

0
.0

1
(0

.0
1
)
−

0
.0

1
(0

.0
1
)

−
0
.0

2
(0

.0
0
)

0
.0

0
(0

.0
0
)

β
6

[m
a
r
r
i
e
d
]

0
.0

6
(0

.0
2
)

0
.0

7
(0

.0
2
)

0
.0

5
(0

.0
2
)

0
.0

7
(0

.0
2
)

0
.0

5
(0

.0
2
)

0
.0

4
(0

.0
3
)

0
.0

6
(0

.0
2
)

0
.0

5
(0

.0
1
)

β
7

[u
n
i
o
n
]

0
.1

1
(0

.0
2
)

0
.1

0
(0

.0
2
)

0
.0

8
(0

.0
2
)

0
.1

1
(0

.0
2
)

0
.0

8
(0

.0
2
)

0
.0

4
(0

.0
2
)

0
.0

9
(0

.0
2
)

0
.0

7
(0

.0
1
)

γ
[l
a
g
]

0
.5

6
(0

.0
1
)

R
a
n
d
o
m

p
a
rt

ω
0

0
.3

3
(0

.0
1
)

0
.3

3
(–

)
0
.4

4
(0

.0
2
)

0
.3

1
(0

.0
1
)

ω
1

0
.1

0
(0

.0
1
)

0
.1

1
(0

.0
1
)

ρ
1
0

−
0
.6

6
(0

.0
4
)

σ
0
.3

5
(0

.0
0
)

0
.3

5
(0

.0
0
)

0
.3

5
(0

.0
0
)

0
.3

3
(0

.0
0
)

0
.3

3
(0

.0
0
)

0
.3

7
(0

.0
0
)

0
.3

9
(0

.0
0
)

α
0
.2

7
(0

.0
1
)

L
o
g
-l
ik

el
ih

o
o
d

a
−

2
1
9
3
.3

−
2
1
7
6
.1

−
2
1
1
8
.9

−
2
1
0
9
.0

a
N

o
lo

g
-l
ik

el
ih

o
o
d

g
iv

en
w

h
en

es
ti

m
a
te

s
a
re

b
a
se

d
o
n

tr
a
n
sf

o
rm

ed
d
a
ta

o
r

su
b
se

t
o
f
d
a
ta

.



282 A. Skrondal, S. Rabe-Hesketh

inclusion of fixed effects δj for each unit j, the mean structure of y
j

is satu-
rated so that the regression coefficients β represent within-unit or longitudinal
effects only. Unlike the random intercept model, the fixed intercept model no
longer makes any assumptions regarding the cross-sectional component of the
model, so that endogeneity bias can be avoided. The cost of this robustness
is that regression parameters for time-constant covariates such as gender or
treatment group cannot be estimated and all covariates must therefore be
time-varying.

The fixed intercepts are rarely of interest in themselves and estimation can
be involved when there are many units. An attractive alternative to estimating
all parameters is to eliminate the fixed intercepts. This can be accomplished
by transforming both the responses and covariates and then using ordinary
least squares (OLS). In econometrics, two popular transformations are first-
differencing: yij − yi−1,j , xij − xi−1,j , and cluster-mean centering: yij − ȳ·j ,
xij − x̄·j . Both approaches yield consistent estimates of the remaining regres-
sion coefficients, but the latter, known as the fixed effects estimator, is more
efficient if the residuals εij are mutually independent as assumed above [70].
Verbeke et al. [66] propose eliminating the intercepts by conditioning on the
cluster mean responses and maximizing the resulting conditional likelihood.
This can be implemented by premultiplying y

j
and Xj by a nj × (nj − 1)

orthonormal contrast matrix. This approach yields identical estimates as the
fixed effects estimator based on cluster mean centering, but has the advantage
that the OLS standard error estimates need not be corrected for the loss of
degrees of freedom.

Some insight can be gained [41] regarding the difference between fixed
effects and random effects estimators of the regression coefficients by consid-
ering the generalized least squares (GLS) estimator for the latter. The GLS
estimator is asymptotically equivalent to the maximum likelihood estimator
but has a closed form. It can be shown that the GLS estimator is a ma-
trix weighted average of the fixed effects (or within-unit) estimator and the
between-unit estimator obtained by OLS estimation for the regression of the
cluster-mean response on the cluster-mean covariates. If the random intercept
model is correctly specified, the GLS estimator is more efficient since it uses
cross-sectional information in addition to longitudinal information. However, if
the cross-sectional component of the model is misspecified, the GLS estimator
becomes inconsistent for the longitudinal effects in contrast to the fixed effects
estimator. Thus, a difference between fixed effects and GLS estimates for β
suggests that the random effects model is misspecified and is the basis for the
popular Durbin-Wu-Hausman specification test [25] in this context.

Returning to the wage panel data, the fixed effects estimates of the co-
efficients of the time-varying covariates, obtained using Stata’s xtreg com-
mand, are given in the third column of Table 7.2. The estimates are quite
similar to the estimates for the random intercept model, suggesting that
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the cross-sectional component of the random intercept model is not severely
misspecified.

In generalized linear models, except for linear Gaussian or log-linear Pois-
son models, inclusion of a fixed intercept for each unit leads to inconsistent
estimates of the regression parameters β, which is known as the incidental
parameter problem [49]. For binary logistic models, the problem can be over-
come by conditioning on the sum of the responses for each unit to eliminate the
unit-specific intercepts, as mentioned above for linear models. In epidemiology,
such a conditional maximum likelihood approach is used for matched case-
control studies [7], in psychometrics for the Rasch measurement model [57],
and in econometrics for panel data [8, 9]. In addition to the limitation of not
permitting time-constant covariates, this approach also discards units with
all responses equal to 0 or all equal to 1. Furthermore, conditional maximum
likelihood estimation is impossible for some model types such as probit models.

7.3 Models with Unit-Specific Intercepts and Slopes

Sometimes units vary not just in the overall level of the response (controlling
for covariates) but also in the effects of time-varying covariates on the re-
sponse. A typical example is where the effect of time, i.e., the rate of change,
varies between units. Such heterogeneity in the effects of covariates can be
viewed as interactions between the included covariates and a categorical vari-
able representing the units.

7.3.1 Continuous Random Coefficients

The random coefficient model [35] can be written as

yij = x′ijβ + z′ijδj + εij ,

where xij denotes both time-varying and time-constant covariates with fixed
coefficients β and zij denotes time-varying covariates with random coeffi-
cients δj ∼ N (∅,Ω). Since the random coefficients have zero means, xij will
typically contain all elements in zij , with the corresponding fixed effects in-
terpretable as the mean effects. The first element of these vectors is invariably
equal to 1, corresponding to a fixed and random intercept, respectively. The
random intercept model is thus the special case where zij = 1. The random
coefficient covariance structure of the vector y

j
is presented in panel B of

Table 7.1.
A useful version of the random coefficient model for longitudinal data is a

growth curve model where individuals are assumed to differ not only in their
intercepts but also in other aspects of their trajectory over time, for example
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in the linear growth (or decline) of the response. These models include random
coefficients for (functions of) time. For example, a linear growth curve model
can be written as

yij = x′ijβ + δ0j + δ1jtij + εij , (7.5)

where tij , the time at the i-th occasion for individual j, is one of the covariates
in xij . The random intercept δ0j and random slope δ1j represent unit-specific
deviations from the mean intercept and slope, respectively. The random in-
tercept and slope should not be specified as uncorrelated, because translation
of the time scale tij changes the magnitude of the correlation [18, 39, 62].

In a linear growth curve model, the variance of the responses (controlling
for the covariates) varies over occasions tij ,

Var( yij) = ω2
0 + 2ω10tij + ω2

1t
2
ij + σ2.

Note that the variance increases as a quadratic function of time if tij ≥ 0
and ω10 ≥ 0. The covariance between two responses yij and yi′j for a unit at
different occasions i and i′ becomes

Cov( yij , yi′j) = ω2
0 + ω10(tij + ti′j) + ω2

1tijti′j ,

which depends on the time associated with the occasions.
For the wage panel data, we would expect wages to increase more rapidly

for some individuals as they gain more labor market experience than for oth-
ers. We therefore estimated a model with a random slope for labex in addition
to the random intercept. Maximum likelihood estimates using xtmixed are
given in the fourth column of Table 7.2. The fixed part estimates remain
practically the same as for the random intercept model. There is a negative
estimated correlation between the random intercept and random slope. To
visualize the model, the bottom panel of Fig. 7.2 shows the fitted trajectories
(obtained by plugging in empirical Bayes predictions of the random intercepts
and slopes and setting married and union to zero) for the first 40 individuals.
For comparison, the corresponding trajectories for the random intercept model
are given in the top panel of the figure. These trajectories are nonlinear due
to the quadratic term labexsq in the fixed part of the model.

For balanced occasions with associated times tij = ti, the linear growth
curve model can also be formulated as a two-factor model with fixed factor
loadings,

yij = λ0i β0j + λ1i β1j + εij , λ0i = 1, λ1i = ti ,

where
β0j = β0 + δ0j , β1j = β1 + δ1j .

Note that the means of the factors cannot be set to zero here as is usually done
in factor models. A path diagram of this model is shown in Fig. 7.3, where
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Fig. 7.2 Fitted trajectories for linear random intercept model (top) and random

coefficient model (bottom). Empirical Bayes predictions are substituted for the ran-

dom effects and married and union set to zero.

there are three occasions with times t1 = 0, t2 = 1, and t3 = 2. Following the
usual conventions, latent variables or random effects are represented by circles
and observed variables by rectangles. Long arrows represent regressions and
short arrows residual errors.

Meredith and Tisak [43] suggest using a two-factor model with free factor
loadings λ1i for β1j (subject to identification restrictions, such as λ11 =0 and
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Fig. 7.3 Path diagram for growth curve model with balanced occasions.

λ12 =1) to model nonlinear growth. Estimation of this factor model requires
balanced occasions, but modern software can handle missing data.

Generalized linear random coefficient models are defined analogously to
the linear case. Maximum likelihood estimation using numerical integration
becomes computationally more demanding as the number of random effects
increases. Unfortunately, we can no longer exploit conjugacy to obtain closed-
form likelihoods for counts and dichotomous responses.

7.3.2 Fixed Coefficients

Instead of considering the unit-specific intercepts and slopes as random, we
can specify a model with fixed intercepts and slopes,

yij = x′ijβ + δ0j + δ1jzij + εij .

If the data are balanced, zij = zi, and the differences zi − zi−1 are constant,
then the δ0j and δ1j can be eliminated by double-differencing [70]. Alterna-
tively, first-differencing can be used to turn the model into a fixed-intercepts
model, which can subsequently be estimated by any of the methods discussed
in Section 7.2.2. This approach was used to obtain the estimates for the wage
panel data given in the sixth column of Table 7.2. The estimated regression
coefficients for married and union are considerably closer to zero than in the
random coefficient model. Wooldridge [70] also describes an approach for elim-
inating the intercepts and slopes in more general models with unbalanced zij .

Verbeke et al. [66] suggest a hybrid approach, treating the intercepts as
fixed but the slope(s) as random,
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yij = x′ijβ + δ0j + δ1jzij + εij .

The fixed intercepts are eliminated by forming contrasts using an orthonormal
coefficient matrix as described in Section 7.2.2, corresponding to conditional
maximum likelihood estimation. Estimates for the wage panel data using this
approach are given in the fifth column of Table 7.2 and are quite similar to
the estimates for the random coefficient model.

7.3.3 Discrete Random Coefficients

It is sometimes believed that the population consists of different subpop-
ulations or classes of units characterized by different unknown patterns of
development over time. Since class membership is not known, the parameters
characterizing the development trajectory can be treated as discrete latent
variables or random effects.

In a linear latent trajectory model or latent profile model [22] analogous
to (7.5), the model for a unit in latent class c (c = 1, . . . , C) is given by

yijc = e0c + e1ctij + εijc.

Each latent class is characterized by a pair of coefficients e0c and e1c, repre-
senting the intercept and slope of the latent trajectory. Other covariates can
be included in the regression model above, so that the e0c and e1c describe the
distinct patterns of deviations from the mean trajectory given the covariates.
Alternatively, other covariates could be included in a multinomial logit model
for the latent class membership probabilities, as is often done in conventional
latent class models [14].

Interestingly, the number of classes cannot be increased indefinitely. If
it is attempted to exceed the maximum possible number of classes, then
estimated locations of some classes will either coincide or the probabilities of
some classes tend to zero. The solution with the maximum number of classes
then corresponds to the nonparametric maximum likelihood estimator [1]. An
extension of the model would be to allow the variance of residuals εijc to differ
between classes.

For balanced occasions, we do not have to assume that the latent trajec-
tories are linear or have another particular shape but can, instead, specify an
unstructured model with latent trajectory

yijc = eic + εijc, i = 1, . . . , n,

for class c.
In the case of categorical responses, latent trajectory models are typically

referred to as latent class growth models [47] and represent an application of
mixture regression models [51, 68] to longitudinal data.
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All these models assume that the responses on a unit are conditionally
independent given latent class membership. Muthén and Shedden [46] relax
this assumption for continuous responses in their growth mixture models by
allowing the residuals εijc to be correlated conditional on latent class mem-
bership with covariance matrices differing between classes.

7.4 Models with Correlated Residual Errors

In the models considered so far, the residuals εij have been assumed to be
mutually independent and the longitudinal dependence among the responses
(given the covariates) has been accommodated by including either fixed or
random unit-specific effects. In the case of random effects, the responses are
conditionally independent given the random effects but marginally dependent
with covariance structures for linear models given in Table 7.1.

These covariance structures may be overly restrictive, particularly for a
random intercept model when there are a large number of occasions. For
instance, the correlations between pairs of responses often decrease as the
time lag increases, which is at odds with the constant correlations induced by
the random intercept model. For such reasons, the residuals εij are sometimes
allowed to be correlated. Caution should be exercised when combining a com-
plex unit-level random part with a covariance structure for the residuals, as
the resulting model may not be identified.

Allowing for dependence among the residuals can also be motivated as
follows. Unit-specific intercepts and slopes accommodate the effects of only
time-constant influences (not represented by the covariates). The indepen-
dence assumption for the residuals then implies that time-varying random
influences are immediate and do not persist over more than a single occasion.
There is often no compelling reason to exclude a third type of random influence
that is neither everlasting nor fleeting, but persists for an intermediate length
of time, leading to serially correlated residual errors.

In the following subsections, we follow the treatment in Skrondal and
Rabe-Hesketh [60]. We discuss the case of continuous responses, sometimes
indicating how the models are modified for other response types. The models
to be described can be generalized to dichotomous and ordinal responses using
the latent response formulation.

7.4.1 Autoregressive Residuals

When occasions are equally spaced in time, a first-order autoregressive model
AR(1) can be expressed as

εij = αεi−1,j + uij , (7.6)
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Fig. 7.4 Path diagrams for autoregressive responses and autoregressive and mov-

ing average residuals. Covariates and paths from covariates to responses omitted

(Source: Skrondal and Rabe-Hesketh [60]).

where εi−1,j is independently distributed from the “innovation errors” uij ,
uij ∼ N (0, σ2

u). This is illustrated in path diagram form in the first panel of
Fig. 7.4. A “random walk” is obtained if the restriction α = 1 is imposed.

Assuming that the process is weakly stationary, |α| < 1, the covariance
structure is as shown in panel C of Table 7.1. The correlations between re-
sponses at different occasions become

Corr(εij , εi+k,j) = αk.

For non-equally spaced occasions, the correlation structure is often specified
as

Corr( yij , yi+k,j) = α|ti+k−ti|,

where the correlation structure for unbalanced occasions is simply obtained
by replacing ti by tij [16]. In the case of balanced occasions, we can also
specify a different parameter αi for each occasion, giving an antedependence
structure [21] for the residuals.

For the wage panel data, we estimated a random intercept model with
AR(1) residuals by maximum likelihood using the lme() function in S-PLUS
giving the estimates in column 7 of Table 7.2 (Stata’s xtregar command can
be used to estimate the model using the generalized least squares estimator
proposed by Baltagi and Wu [4]). The autoregressive coefficient is estimated
as α̂ = 0.27 and the estimates of the regression parameters β are very similar
to those given for the random intercept model in the first column. The random
intercept model with AR(1) residuals has a considerably larger log-likelihood
than the random intercept model with uncorrelated residuals. Introducing a
random slope increases the log-likelihood to −2095.7 and reduces the esti-
mated autoregressive coefficient to α̂ = 0.17 (estimates not shown).

First-order autoregressive covariance structures are often as unrealistic as
the random intercept structure since the correlations fall off too rapidly with
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increasing time lags. One possibility is to specify a higher-order autoregressive
process of order k, AR(k),

εij = α1εi−1,j + α2εi−2,j + · · ·+ αkεi−k,j + uij .

7.4.2 Moving Average Residuals

Random shocks disturb the response variable for some fixed number of periods
before disappearing and can be modeled by moving averages [6]. A first-order
moving average process MA(1) for the residuals can be specified as

εij = uij + a ui−1,j .

A path diagram for this model is given in the second panel of Fig. 7.4 and the
covariance structure is presented in panel D of Table 7.1. The MA(1) process
“forgets” what happened more than one period in the past, in contrast to the
autoregressive processes.

The moving average model of order k, MA(k), is given as

εij = uij + a1ui−1,j + a2ui−2,j + · · ·+ akui−k,j ,

with “memory” extending k periods in the past.

7.5 Models with Lagged Responses

Lags of the response yij can be included as covariates in addition to xij .
Such models are usually called autoregressive models but are sometimes also
referred to as transition models [17], Markov models [17], or conditional mod-
els [11].

When occasions are equally spaced in time, a first-order autoregressive
model for the responses yij can be written as

yij = x′ijβ + γyi−1,j + εij .

A path diagram for this model is shown under “AR(1) responses” in the third
panel of Fig. 7.4. Assuming that the process is weakly stationary, |γ| < 1,
the covariance structure is shown in panel E of Table 7.1. An extension of the
autoregressive model is the antedependence model, which specifies a different
parameter γi for each occasion.

A first-order autoregressive model for the responses was estimated for the
wage panel data giving the estimates shown in the last column of Table 7.2.
The regression coefficient of the lagged response is estimated as γ̂ = 0.56. As
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would be expected, many of the other regression coefficients change consider-
ably due to controlling for the lagged response.

As for the residual autoregressive structure, the first-order autoregressive
structure for responses is often deemed unrealistic, since the correlations fall
off too rapidly with increasing time lags. Once again, this may be rectified by
specifying a higher-order autoregressive process AR(k),

yij = x′ijβ + γ1yi−1,j + γ2yi−2,j + · · ·+ γkyi−k,j + εij .

Apart from being of interest in its own right, the lagged response model
is useful for distinguishing between different longitudinal models. Consider
two simple models; a model with a lagged response and lagged covariate but
independent residuals εij

yij = γ yi−1,j + β1xij + β2xi−1,j + εij , (7.7)

and an autocorrelation model without lagged response or lagged covariate

yij = β xij + εij ,

but residuals εij having an AR(1) structure. Substituting first for εij =
αεi−1,j + uij from (7.6), then for εi−1,j = yi−1,j − β xi−1,j , and reexpressing,
the autocorrelation model can alternatively be written as

yij = α yi−1,j + β xij − αβ xi−1,j + uij .

This model is equivalent to model (7.7) with the restriction β2 = −γβ1. This
means that we can use (7.7) to discriminate between autocorrelated residuals
and lagged responses.

Use of lagged response models should be conducted with caution. First,
lags should be avoided if the lagged effects do not have a “causal” interpre-
tation since the interpretation of β changes when yi−1,j is included as an
additional covariate. Second, the models require balanced data in the sense
that all units are measured on the same occasions. It is problematic if the
response for a unit is missing at an occasion. In practice, the entire unit is often
discarded in this case. Third, lagged response models reduce the sample size.
This is because the yij on the first occasions can only serve as covariates and
cannot be regressed on lagged responses (which are missing). Alternatively, if
the lagged responses are treated as endogenous, the sample size is not reduced,
but an initial condition problem arises for the common situation where the
process is ongoing when we start observing it [28]. Finally, if random effects
are also included in the model, even the initial response (at the start of the
process) becomes endogenous [28].

An advantage of lagged response models as compared to models with
autoregressive residuals is that they can easily be used for response types
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other than the continuous. Heckman [29] discusses a very general framework
for longitudinal modeling of dichotomous responses, for instance combining
lagged responses with random effects.

7.6 Marginal Approaches

As is clear from the general form of generalized linear mixed models (includ-
ing linear mixed models) in (7.2), the model linking the expectation to the
covariates is specified conditional on the unit-specific random effects δj . The
regression coefficients β therefore have a conditional or unit-specific interpre-
tation.

The marginal or population averaged expectations of the responses can be
obtained by integrating the inverse link function of the linear predictor over
the random effects distribution

E (yij) =
∫
g−1(x′ijβ + z′ijδj) φ(δj ;∅,Ω) dδj , (7.8)

where φ(δj ;∅,Ω) is the multivariate normal density of the random effects.
For linear mixed models, the link function g(·) is the identity and the

population averaged expectation is simply the fixed part x′ijβ of the model.
Therefore, the regression coefficients β also have a population averaged in-
terpretation in this case. In the linear case, it could therefore be argued
that it does not matter whether the model is interpreted conditionally or
marginally. However, in the marginal interpretation of the random part, only
the covariance matrix Ψj of the total random part (as shown in Table 7.1)
is interpreted, not the individual covariance matrices Ω and Σj

∆=Cov(εj).
Thus, Verbeke and Molenberghs [65] argue that the covariance matrices Ω
and Σj need not be positive semi-definite in this case as long as Ψj is positive
semi-definite.

For link functions other than the identity, the expectation in (7.8) differs
from the fixed part of the model. For generalized linear mixed models with
probit links, we can derive a simple form for the population averaged ex-
pectation using the latent response formulation. The model can be specified
as

y∗ij = x′ijβ + z′ijδj + εij , δj ∼ N (∅,Ω), εij ∼ N (0, 1),

with yij = 1 if y∗ij > 0 and yij = 0 otherwise. The unit-specific model then
becomes

E (yij | δj) = Pr(yij = 1 | δj) = Φ(x′ijβ + z′ijδj),

where Φ(·) is the standard normal cumulative distribution function, the inverse
probit link. The corresponding marginal model is given by
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E (yij) = Pr(yij = 1)

= Pr(y∗ij > 0)

= Pr(x′ijβ + z′ijδj + εij > 0)

= Pr
(
−(z′ijδj + εij) ≤ x′ijβ

)
= Pr

(
z′ijδj + εij√
z′ijΩzij + 1

≤
x′ijβ√

z′ijΩzij + 1

)

= Φ

(
x′ijβ√

z′ijΩzij + 1

)
, (7.9)

where the denominator is greater than 1 if Ω 6= ∅. For a random intercept
probit model, the denominator is a constant

√
ω2 + 1 and the population

averaged model has the same functional form as the unit-specific model but
with attenuated regression coefficients β/

√
ω2 + 1. This attenuation is shown

graphically in Fig. 7.5, where the dashed curves represent unit-specific rela-
tionships for a random intercept probit model with a single covariate, whereas
the flatter solid curve represents the population averaged relationship.

It can be seen from (7.9) that if any aspect of the random part of the
model is altered, the regression coefficients must also be altered to obtain a
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good fit to the empirical (marginal) relationship between the response and
covariates. Therefore, estimates of the unit-specific regression parameters be-
come inconsistent under misspecification of the random part except for linear
mixed models.

Whether unit-specific or population averaged effects are of interest will
depend on the context. For example, in public health, population averaged
effects may be of interest, whereas unit-specific effects are important for the
patient and clinician. An advantage of unit-specific effects is that they are
more likely to be stable across populations, whereas marginal effects depend
greatly on the between-unit heterogeneity, which will generally differ between
populations.

If interest is focused on marginal effects and between-unit heterogeneity
or longitudinal dependence are regarded as a nuisance, generalized estimating
equations (GEE) [36, 71] can be used. The simplest version is to estimate the
mean structure as if the responses were independent and then adjust stan-
dard errors for the dependence using the so-called sandwich estimator. The
estimates of the population averaged regression parameters can be shown to
be consistent, but if the responses are correlated, they are not efficient. To in-
crease efficiency a “working correlation matrix” is therefore specified within a
multivariate extension of the iteratively reweighted least squares algorithm for
generalized linear models. Typically, one of the structures listed in Table 7.1
is used for the working correlation matrix of the residuals yij − g−1(x′ijβ),
as well as unrestricted and independence correlation structures. The working
correlation matrix is combined with the variance function of an appropriate
generalized linear model, typically allowing for overdispersion if the responses
are counts. It is important to note that, apart from continuous responses, the
specified correlation structures generally cannot be derived from a statistical
model. Thus, GEE is a multivariate quasi-likelihood approach with no proper
likelihood.

There are also “proper” marginal statistical models with corresponding
likelihoods. Examples include the Bahadur [2] and Dale [13] models, which
parameterize dependence via marginal correlations and marginal bivariate
odds ratios, respectively [19, 44]. See Molenberghs and Verbeke [45] for an
overview of these models.

Heagerty and Zeger [27] introduce random effects models where the
marginal mean is regressed on covariates as in GEE. In these models, the
relationship between the conditional mean (given the random effects) and
the covariates is found by solving the integral equation (7.8) linking the
conditional and marginal means. Interestingly, the integral involved can be
written as a unidimensional integral over the distribution of the sum of the
terms in the random part of the model.
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7.7 Concluding Remarks

It is straightforward to extend the longitudinal models discussed here to
situations where units are clustered by including random effects varying at
higher levels.

We have focused on linear and quadratic growth models, but nonlinear
growth models can also be specified via linear mixed models using higher-
order polynomials of time or splines [62]. Nonlinear mixed models [50] can be
preferable if specific functional forms are suggested by substantive theory as
in pharmacokinetics.

Useful books on modeling longitudinal data include Skrondal and Rabe-
Hesketh [60], Hand and Crowder [24], Crowder and Hand [12], Vonesh and
Chinchilli [67], Jones [33], Hsiao [32], Baltagi [3], Wooldridge [70], Lindsey
[38], Verbeke and Molenberghs [65], Diggle et al. [17], and Fitzmaurice et al.
[20].
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