Chapter 2

Tracking Devices

Wolfgang Birkfellner, Johann Hummel, Emmanuel Wilson,

and Kevin Cleary

Abstract

Tracking devices are an essential component of an image-guided surgery system.
These devices are used to track the position of instruments relative to the patient
anatomy. Although early tracking systems were essentially mechanical digitizers,
the field quickly adopted optical tracking systems because of their high accuracy
and relatively large workspace. However, optical tracking systems require that a
line-of-sight be maintained between the tracking device and the instrument to be
tracked, which is not always convenient and precludes tracking of flexible instru-
ments inside the body. Therefore, electromagnetic tracking systems were developed
that had no line-of-sight requirement and could track instruments such as catheters
and the tips of needles inside the body. The choice of tracking system is highly
application dependent and requires an understanding of the desired working volume
and accuracy requirements. To meet these needs, a variety of tracking devices and
techniques have been introduced as described in this chapter.

2.1 Introduction

The advent of x-rays as a medical imaging modality at the turn of the
last century brought about clinical interest in the 3D localization of inter-
nal anatomical structures. This was first realized with the invention of the
stereotactic frame in the late 1920s, and its first use in humans for neuro-
surgical applications in the early 1940s. Targets within the cranium are
relatively easy to localize because of visible landmarks such as the exterior
auditory canals and inferior orbital rims, onto which the early stereotactic
frames were fixed. The improved accuracy and benefits of this technique to
existing surgery techniques led to the emergence of framed stereotactic
approaches as standard practice by the early 1960s, with devices such as the
Leksell frame and Mayfield clamp being widely used.

Advances in computed tomography (CT) and magnetic resonance
imaging (MRI) by the mid-1980s led to the development of frameless
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stereotaxy. Neurosurgical applications pioneered the early advances with
this technique, but its use quickly spread to ENT and spine procedures.
Frameless stereotaxy allowed for smaller incisions, less patient discomfort,
shorter patient preparation times, and fewer restrictions on surgical access.
Perhaps the single most crucial benefit was the capability for real-time
overlay of CT and MRI images that facilitated a more exact roadmap of the
patient anatomy and thereby more accurate surgical outcome.

The emergence of frameless stereotaxy was facilitated by position
trackers, which can track surgical tools and enable the physician to register
external landmarks to pre-operative images of the patient anatomy. Over the
past 20 years, frameless stereotaxy has become the predominant influence
on image-guided interventions. Techniques that were pioneered for neuro-
surgical applications have been used in orthopedic, endoscopic, and, more
recently, abdominal surgical procedures. The wide-ranging applications of
image-guided surgery place differing emphasis on requirements. In addition,
novel position tracking techniques and devices have also been introduced.

2.2 Tracking: A Brief History

The introduction and successful outcome of computer-aided surgery (CAS),
or frameless stereotaxy in neurosurgery in the 1980s, relied heavily on posi-
tion tracking devices. A well-established technology at the time that could
provide accurate position information was a mechanical digitizer, consisting
of a robotic arm with rotary encoders at the various linkage nodes. Position
and orientation information of the robotic end effector is resolved using for-
ward kinematics.

The use of mechanical digitizers facilitated frameless stereotaxy by
localizing either an operating microscope’s focus, or a surgical probe inside
the patient’s cranium [Reinhardt and Landolt 1989; Watanabe et al. 1987].
Early CAS systems used mechanical digitizers to replace the need for the
Mayfield clamp, a staple of framed stereotaxy procedures. Due to the cum-
bersome nature of mechanical digitizers of the time, interest in alternative
tracking methods led to the introduction of ultrasonic transducers for
localization [Hata et al. 1997; Reinhardt and Zweifel 1990; Roberts et al.
1986]. However, ultrasonic solutions rely on the speed of sound, which is
dependent on relative air moisture and surrounding temperature and is prone
to obstruction; thereby lacking the robustness of mechanical digitizers.

The reliability of mechanical digitizers, such as the Faro arm [Zamorano
et al. 1994], helped spearhead the development of a commercial product, the
ISG Viewing Wand [Doshi et al. 1995; Sandeman et al. 1994]. The ISG
Viewing Wand was used for a number of non-neurosurgical interventions in
cranio- and maxillofacial surgery [Dyer et al. 1995; Hassfeld et al. 1995]
and in ENT surgery [Carney et al. 1996; Freysinger et al. 1997; Nishizaki
et al. 1996]. During early trials, a localization accuracy of approximately
2-3 mm [Sipos et al. 1996] was reported. Although the system served the
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purpose of localizing a probe relative to the fixed coordinate system of the
Mayfield clamp, this approach posed several limitations in a clinical setting.
A primary limitation of this approach was the inability to track multiple
devices. In addition, sterilization issues and relatively cumbersome handling
in the operating theater led researchers to move toward alternate tracking
techniques.

Optical trackers proved to be an early answer to clinically feasible
tracking systems. Systems such as the Optotrak 3020 (Northern Digital Inc.,
Waterloo, Ontario, Canada) [Nolte et al. 1995; Rohling et al. 1995], the
Flashpoint 5000 (Boulder Innovation Group Inc., Boulder, Colorado, USA)
[Anon 1998; Eljamel 1997; Li et al. 1999; Smith et al. 1994; Watzinger
et al. 1999], and the Polaris (Northern Digital) [Khadem et al. 2000;
Schmerber and Chassat 2001] were adopted. Figure 2.1 shows some of the
commonly used optical tracking systems (OTS). Optical trackers evolved
into the most reliable and accurate tracking solution. The early systems
usually consisted of charge-coupled device (CCD) cameras and sequentially
illuminated infrared (IR) light-emitting diodes (LED), and were integrated
into image-guided systems such as the Neurostation, which finally evolved
into the well-known StealthStation (Medtronic, Minneapolis, Minnesota,
USA).

Fig. 2.1. Examples of optical trackers: (a) Optotrak 3020 camera, control unit, and
active markers (courtesy of Northern Digital), (b) Flashpoint active optical camera
from Boulder Innovation Group used in the CyberKnife suite (courtesy of Accuray),
(¢) Polaris camera shown with passive marker tool and use in surgery (courtesy
of Northern Digital)

Most OTS in use are wired devices that lead to increased clutter in the
OR. A few wireless systems have been developed. VISLAN, an experi-
mental system for neurosurgery [Colchester et al. 1996] shown in Fig. 2.2a,
was one of the earliest efforts to use a videometric system to estimate
patient pose and instrument orientation by identification of passive markers
in video-image sequences. Another early effort was the use of the Qualisys
tracking system [Gumprecht et al. 1999; Josefsson et al. 1996] in the
VectorVision system by BrainLAB (Heimstetten, Germany) shown in Fig.
2.2b, now distributed by Advanced Realtime Tracking GmbH, Munich,
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Germany. The de-facto standard at the time of writing is the Polaris tracking
system with its variants, which provides both the option of wireless and wired
tracking.

Fig. 2.2. Examples of IGS systems: (a) VISLAN system with pattern marked tool
and image overlay (reprinted from Colchester 1996 with permission from Elsevier),
(b) Brainlab VectorVision system (reprinted from Gumprecht 1999 with permission
from the Congress of Neurological Surgeons)

The key limitation with the use of an OTS in a crowded operating
theater is the line-of-sight requirement between the optical markers and
the tracker camera, which led to the development of alternative tracking
methods that avoided line-of-sight limitations. In particular, electromagnetic
tracking systems (EMTS),' a technology well known from motion analysis
[Meskers et al. 1999; Milne et al. 1996; van Ruijven et al. 2000; Wagner
et al. 1996], helmet-mounted displays, and the animation industry, was
proposed as a possible alternative. EMTS incorporating small coils or similar
electromagnetic field sensors and multiple position measurement devices
can easily be used in a clinical setting. Therefore, electromagnetic trackers

'The term “electromagnetic” tracking has historically been used to describe systems
that are based on magnetic fields. Some researchers may argue that these systems
should be called “magnetic” spatial measurement systems since they do not depend
on the electric field component of the electromagnetic wave. However, we will use
the term electromagnetic here to reflect common usage and the fact that a varying
magnetic field has an associated electric component.
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that were developed for military applications as well as motion capture
solutions in general, were employed within CAS [Bottlang et al. 1998; Fried
et al. 1997; Goerss et al. 1994, Javer et al. 2000; Reittner et al. 2002; Sagi
et al. 2003; Suess et al. 2001; Wagner et al. 1995] motion detection in
radiation oncology [Kirsch et al. 1997; Litzenberg et al. 2006; Seiler et al.
2000; Watanabe and Anderson 1997], image-guided radiological interven-
tions [Wood et al. 2005; Khan et al. 2005; Zhang et al. 2006], endoscopic
procedures [Deguchi et al. 2006; Hautmann et al. 2005; Solomon et al.
2000], and 3D B-mode ultrasound imaging [Barratt et al. 2001; Fristrup
et al. 2004; Sumiyama et al. 2002].

2.3  Principles of Optical Tracking Systems

The broad use of OTS in industry has introduced many manufacturers and
system variants with wide-ranging specifications. Clinical systems are a niche
sector and the technology used for their operation has not changed signi-
ficantly in recent years. Optical systems can be characterized as follows:

1. Videometric tracking systems. These systems identify marker patterns
on video image sequences, usually taken using one or more calibrated
video cameras. The well-known marker patterns on crash-test dummies
as well as the videometric solutions implemented in the VISLAN
system and the freely available AR Toolkit [Kato and Billinghurst
1999] fall into this category. Systems commercially available today,
such as the Claron tracker (Claron Technology Inc., Toronto, Ontario,
Canada), are provided in small form factors.

2. IR-based tracking systems. An optical band-pass filter eliminates all
ambient light of other wavelengths, making the identification of opti-
cal markers a comparatively simple and reliable task. Two types of IR
trackers exist, both used widely in clinical applications:

1. Active optical trackers. Sterilizable LEDs operating in the near-
IR range (approximately 900 nm wavelength) are used as markers,
tracked by either two planar or three linear CCD units that form
the camera module. The LEDs are fired sequentially and detected
by each CCD unit. The central unit uses a process of triangulation
based on the known geometric configuration and firing sequence
of each LED and the known, fixed distance between the CCD
elements. A minimum of three non-collinear LEDs are necessary
for determining six degrees-of-freedom (DOF) pose information.
Since the LEDs must be powered, traditionally active systems
were also wired systems.
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2. Passive optical trackers. These systems work in the near IR range.
Instead of active markers, retroreflective spheres are illuminated
by the camera in the near-IR spectrum. The pattern of the reflec-
tive markers, which has to be unique for each tracking probe so that
unambiguous assignment of each probe is feasible, is identified on
a 2D image. For this reason, these systems are always equipped
with 2D CCD cameras. One big advantage of these systems is that
no wires are needed between the tracking system and the tracked
probes.

3. Laser tracking systems. Rather than localizing a set of LEDs, an
array of photosensors is mounted to a rigid carrier. Two or three
fans of coherent laser light emitted by conventional semiconductor
lasers are reflected by rotating mirrors. The fan-shaped laser beam
sweeps the digitizer volume. The position of the rigid body is esti-
mated by simultaneously sampling the position of the sweep fan
and the signal from the photosensor [Cash et al. 2007]. An exam-
ple of such a tracker is the laserBIRD2 by Ascension Technology
(Burlington, Vermont, USA). However, these systems have not found
widespread use in medical applications.

A key reason for the success of optical tracking technology in the
clinical environment has been its high accuracy and reliability. There have
been a few scattered instances in clinical practice where the use of high-
intensity IR from the emitter LEDs of passive IR trackers interferes with
other IR devices in the operating room, but this is a rare occurrence. Despite
their line-of-sight limitation, OTS are the standard in clinical applications at
this time. Other examples of applications include high-precision radiation
therapy of retinal diseases, where the beam is controlled by detection of eye
motion [Petersch et al. 2004], or for motion correction in tomographic
reconstruction [Buhler et al. 2004; Feng et al. 2006].

2.4 Principles of Electromagnetic Tracking

EMTS are a relatively new tracking technology in medical applications.
Their main advantage is that they have no line-of-sight limitation, but their
disadvantages include susceptibility to distortion from nearby metal sources
and limited accuracy compared to optical tracking. These systems localize
small electromagnetic field sensors in an electromagnetic field of known
geometry. The EMTS used in medical imaging can be divided into three
categories as described below. Figure 2.3 shows an example system from
each category.
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Fig. 2.3. @) Aurora AC-based system (courtesy of Northern Digital), (b) 3D
Guidance pulsed-DC system (courtesy of Ascension), (¢) transponder-based system
(courtesy of Calypso Medical Systems)

1.

AC-driven tracking. The earliest developed ‘“classical” EMTS are
driven by alternating current (AC). One of the earliest systems is from
Polhemus Inc. (Colchester, Vermont, USA). This system consists of
three coils arranged in a Cartesian coordinate system that emits an
electromagnetic field composed of three dipole fields. Typical operat-
ing frequencies for the AC-driven magnetic trackers lie in the range of
8—14 kHz. Small search coils measure the induced voltage, which is
proportional to the flux of the magnetic field. A thorough description
of the principles of operation of AC-driven tracking systems can be
found in Kuipers [1980]. As systems have evolved, manufacturers have
employed different approaches to generate the electromagnetic field
[Raab 1979]. An early iteration of the Northern Digital Aurora system
used six coils in a tetrahedral arrangement [Seiler et al. 2000, 2007].
DC-driven tracking. As the name would suggest, rather than using an
AC-driven magnetic field, these systems are driven by quasistatic direct
current (DC). DC trackers are available from Ascension Technology.
The magnetic induction within miniature active (fluxgate) sensors was
originally measured after establishment of a stationary magnetic field,
but current models employ passive microminiaturized sensors [Blood
1989].

Passive or transponder systems. These systems track position by
localization of permanent magnets or implanted transponders. One such
system in use for medical application is to assess the placement of
nasogastric feeding tubes [Bercik et al. 2005]). Another system intro-
duced recently for tumor position tracking during radiation therapy
is the Calypso 4D system (Calypso Inc., Seattle, Washington, USA)
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[Willoughby et al. 2006]. Since these systems are relatively new, they
have not been widely used yet in image-guided interventions.

The main difference between AC and DC systems lies in their be-
havior when metallic objects are in close proximity to either the field emitter
or the sensor. With an AC-based system, eddy currents are induced in con-
ductive materials, which can then interfere with the continuously generated
(i.e., never turned off) magnetic fields and distort the sensor readings. DC-
based tracking systems can circumvent this problem by using static mag-
netic field measurements. With a DC-based system, the magnetic field is
turned on and off at a certain frequency, allowing eddy currents to decay
sufficiently to mitigate distortions caused by common conductive metals
such as stainless steel (300 series), titanium, and aluminium.

A second issue is that ferromagnetic materials such as iron, nickel,
cobalt, and some steels become strongly magnetic in the presence of an
electromagnetic field. This phenomenon can also distort the reference ma-
gnetic field and thereby affect the measurement accuracy of the EMTS
[Birkfellner et al. 1998a; Hastenteufel et al. 2006; King 2002; LaScalza et al.
2003; Milne et al. 1999; Poulin and Amiot 2002]. Another source of refer-
ence field distortion is magnetic stray fields from drives or other computer
equipment and peripheral devices. Therefore, EMTS can be susceptible to
measurement errors. To mitigate ferromagnetic errors, Ascension has recently
introduced a planar (flat) transmitter with a built-in shield that negates metal
distortions emanating from OR and procedural tables [Ashe 2003]. Both
radio-translucent and radio-opaque models are available.

From the early days of application of EMTS in the virtual reality/
augmented reality (AR) community to more recent applications in the medical
field, methods to differentiate the systematic error or compensate for it have
been studied extensively. For medical applications, methods to calibrate the
work environment for changes in the magnetic field by interpolation or
lookup table-based approaches have been proposed for EMTS [Birkfellner
et al. 1998b; Meskers et al. 1999]. A more promising approach might lie in
systems that can inherently detect field distortions.

The adoption of this technology for biomechanical applications has
been slow, in part due to the aforementioned distortion factors. In fact, it
was not until the introduction of miniature electromagnetic tracking sensors
(small enough to embed in surgical instruments such as needles or catheters,
as shown in Fig. 2.4) by companies such as Northern Digital in the last 5
years, and more recently by Ascension, that the use of EMTS provided a
clear advantage not offered by any other existing tracking technology; the
ability to track flexible instruments and to track instruments inside the body.
Thus applications aimed at tracking inner organs using flexible instruments
such as catheters and endoscopes were made possible, and more sophisticated
algorithms capable of error detection have been developed recently [Ellsmere
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Fig. 2.4 With growing interest in clinical applications of electromagnetic tracking,
more companies have begun to produce miniaturized sensors: (a) 0.5 mm and 0.8
mm five DOF sensors and 1.8 mm six DOF sensor (courtesy of Northern Digital),
(b) 0.37 mm five DOF sensor (courtesy of Ascension)

et al. 2004; Gepstein et al. 1997; Seiler et al. 2000; Solomon et al. 2000,
2003; Zaaroor et al. 2001].

Despite recent improvements in the technology, it should be noted that
EMTS do not, in the general sense, compete with OTS in terms of tracking
accuracy. From the application accuracy point of view, the difference
between EMTS and OTS becomes smaller, since EMTS sensors tend to be
closer to the point of interest. Therefore, extrapolation errors are less im-
portant. The lack of any line-of-sight limitation and the ability to track
flexible endoscopes and catheters are the main advantage of EMTS. Several
studies on the robustness and accuracy of the newer medical EMTS have
been performed [Hummel et al. 2002, 2005, 2006; Schicho et al. 2005;
Wagner et al. 2002] with reported accuracy in the range of a millimeter for a
0.5 m x 0.5 m x 0.5 m volume workspace. Due to the dependence of device
accuracy on environment, which makes comparison of distortion effects a
delicate matter, several groups have proposed standardized assessment pro-
tocols [Frantz et al. 2003; Hummel et al. 2005, 2006; Wilson et al. 2007].

2.5 Other Technologies

While this chapter has covered the most commonly used tracking systems in
medical applications, other technologies exist that either have great potential
for IGI applications in their current state, or which could be used for specific
clinical procedures more efficiently than the present systems. An example
of such a device is the “ShapeTape” (Measurand Inc, Fredericton, New
Brunswick, Canada) [Koizumi et al. 2003] shown in Fig. 2.5. ShapeTape
uses optical sensor linkages to measure torsion and flexion of fiber optic
cables to determine position and pose along the entire length of the device.
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Fig. 2.5 Although the ShapeTape device shows potential, it has not yet seen any
application in IGI systems (courtesy of Measurand)

This device has been used predominantly for reverse engineering and
animation in the entertainment industry.

Another potential technology is the use of accelerometers and gyros-
copes to measure acceleration and angular velocity, respectively, to determine
tool pose. A sensor assembly with a pair of three such sensors aligned in the
main coordinate axes is usually referred to as an inertial tracking system.
Since acceleration is the second derivative of position with respect to time,
and angular velocity is the first derivative, angular changes integrated over
time from a known starting position yield translation and rotation. Inevitably,
small measurement errors, either systematic or statistical (those caused by
jitter), lead to increased error over time. Since error of this type is intrinsic,
it cannot be tolerated for medical interventions. Despite these limitations,
inertial sensors have found application in some biomechanical setups for
measurement of joint motion [Zhou et al. 2006; Zhu and Zhou 2004] and as
auxiliary sensing devices in hybrid motion tracking systems.

In both instances, the setup can be realized by a Kalman filtering
algorithm [Kalman 1960] that uses a predictor-corrector structure to estimate
the state of a dynamic system characterized by noisy or incomplete mea-
surements. The expected position in the near future is predicted using the
measurements from the inertial system. Such solutions were first presented
in the AR community [Azuma and Bishop 1994], but they may not be
applicable to image-guided surgery, as high update rates are not a necessity
at present. The continuing efforts of the community of researchers to bring
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AR to the operating theater [Birkfellner et al. 2002; Das et al. 2006; Edwards
et al. 2000; Shahidi et al. 2002; Wacker et al. 2006] might render these
approaches an important technology in the near future, especially since
some of these visualization devices feature considerable optical magnifi-
cation that complicates latency issues even further [Figl et al. 2005].

Another approach is to use hybrid navigation systems that combine
two or more tracking technologies, such as EMTS and OTS, to provide con-
tinuous position data in case of obstruction or failure of any one tracking
system. Hybrid systems of this nature have been proposed by several authors
[Birkfellner et al. 1998b, Khan et al. 2006; Muench et al. 2004], sometimes
in combination with calibration efforts for compensation of distortion in the
EMTS. Since tracking systems are moderately expensive (in the $10,000 to
$25,000 price range at the time of writing), using two tracking systems in-
creases the cost of the image-guided system, while adding more equipment
to an already congested clinical environment. For these reasons, interest in
such systems to date has been largely academic.

Finally, medical imaging modalities can be used for tracking instru-
ments during procedures. A simple example is tumor motion detection by
identification of marker motion in electronic portal images (EPI) acquired
during radiation therapy. In this case, the treatment beam is used as an imag-
ing modality where the resulting absorption images resemble conventional
x-ray imaging. One drawback of this technique is that the high-energy
photons emitted by the accelerator provide rather poor image contrast. How-
ever, external or internal markers are easily detected in those perspective
images [Aubin et al. 2003; Harada et al. 2002; Nederveen et al. 2001; Pang
et al. 2002; Shimizu et al. 2000; Vetterli et al. 2006]. Another closely related
technique is the tracking of guidewires or similar structures in fluoroscopic
x-ray images during radiological interventions [Baert et al. 2003; van Walsum
et al. 2005], and the localization of bronchoscopes from a comparison of
virtual endoscopy images and actual bronchoscopy images [Mori et al.
2002], or angiography images and 3D rotational angiography data [van de
Kraats et al. 2006]. A key methodology for these three examples is the use
of 2D/3D registration techniques [Birkfellner et al. 2003; Hipwell et al.
2003; Lemieux et al. 1994; Livyatan et al. 2003; Penney et al. 1998; Skerl
et al. 2006; Turgeon et al. 2005]. As these registration applications become
faster with the advent of more rapid rendering techniques and computing
capabilities [Birkfellner et al. 2005; Russakoff et al. 2005], improved image-
based tracking may become the technology of choice for a variety of appli-
cations in interventional radiology and image-guided radiation therapy.
Related work in this direction has been proposed that retrieves a starting
point for an iterative registration process [Deguchi et al. 2006; Krueger et al.
2005].



34 W. Birkfellner et al.

2.6 Data Transmission and Representation

The protocol and interface used to transfer data from the tracker to the
control computer and the representation of the transmitted data are impor-
tant practical concerns for any researcher wishing to develop an IGS system.
Historically, the most commonly used interface for tracking systems was the
serial RS 232 interface and this is still the standard for many current systems.
However, newer systems are transitioning to a USB interface as this is more
standard with modern computers and can provide faster data rates. This
interface is available for the newer Northern Digital systems such as the
Polaris Spectra and Polaris Vicra as well as the 3D Guidance system from
Ascension.

Equally relevant is the parameterization and representation of the data
to be transmitted. It should be noted that some EMTS are ambiguous on
data representation, as their digitizer volume is only defined as a hemisphere
around the field emitter. The data representation is particularly confusing for
rotations and orientation measures. From a mathematical perspective the
rotation transformation forms a group named SO(3). These rotations are given
as 3 x 3 matrices with two special properties:

1. the determinant of a rotation matrix is 1.
2. the inverse is formed by transposition of the matrix.

Providing a full rotation matrix would give an unambiguous represen-
tation of rigid body rotation, but suffers two drawbacks. First, transmission
of nine matrix components requires bandwidth and takes time, especially
when using slow serial communication lines. Second, interpolation and other
non-trivial computations such as filtering algorithms are not easily accom-
plished using matrices.

The most straightforward parameterization of the rotation group is the
use of three rotation angles around a Cartesian coordinate system, which are
sometimes denoted as roll, pitch, and yaw. Unfortunately, this parameteri-
zation suffers from the non-commutativity of rotations given as rotation
matrices. Providing three rotation angles, therefore, also requires directions
on how to combine them to obtain a single rotation. As a result, the quaternion
representation has become the generally accepted standard for parameteri-
zation of the rotation group. Quaternions are a quadruple of numbers con-
sisting of a scalar component ¢, and a vector component (¢1,92,¢3)" associated
to three complex units i, j, and k. They were first introduced to theoretical
mechanics by Hamilton in the nineteenth century. Quaternions, while not com-
mutative, provide a non-singular representation of the rotation group (thereby
avoiding the so-called gimbal lock problem). Most modern tracking systems
like the Northern Digital products and several trackers from Ascension use
this representation. A compact description of quaternion kinematics can be
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found in Chou [1992]. The derivation of the quaternion representation from
a conventional rotation matrix representation is given in Shepperd [1978].

2.7 Accuracy

Accuracy in image-guided surgery is a critical issue, and the aspect of
validation in image-guided surgery systems is discussed in Chapter 18.
There have been many papers describing accuracy evaluations of the tracker
component on the overall outcome of image-guided surgery procedures. We
can make the following general statements concerning accuracy:

1. Tracker accuracy is a crucial component of the overall target regist-
ration error (TRE) in image-guided surgery systems [Fitzpatrick et al.
1998].

2. Evaluation of image-guided surgery systems, including tracker perfor-
mance, should take place with the specific intended clinical application
in mind. The crucial questions are

a. Can therapeutic outcome be improved by deploying an image-
guided surgery system?

b. Can this improvement be optimized by applying other (more ac-
curate or more convenient) tracking technologies?

If trackers of different technologies or from different vendors are to
be compared, one should aim at providing an experimental framework that
makes comparison of measurements feasible for other groups. The principle
of experiment repeatability is important and should be taken into account.

2.8 Conclusions

Position tracking is an essential component in image-guided surgery. Many
different types and styles of tracking devices have been introduced and per-
haps the ideal solution does not exist yet. The best choice of tracking device
is highly application dependent.

Although the first image-guided system incorporated mechanical
digitizers, these were replaced as more compact and less intrusive optical
tracking devices emerged. In some sense, it would be appropriate to say that
optical tracking is the standard benchmark with sufficient accuracy in appli-
cations where it is viable.

Over the last decade, companies have taken note of the growing
prominence of image-guided interventions and developed systems targeted
toward medical applications. This has resulted in EMTS with smaller pro-
file sensors that facilitate the tracking of flexible instruments. Continual re-
finement and sophistication in measurement error detection and distortion
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correction could in time replace the use of optical trackers altogether in
general surgery, interventional radiology, and image-guided radiation therapy.
We also could expect to see optimized solutions for application groups (like
miniature EMTS for endoscopy and catheterization and OTS for high-
precision localization of rigid bodies). Simple-to-use interfaces and suffici-
ent data update rates would greatly stimulate uptake of new devices for
the development of image-guided intervention systems.

As intra-operative imaging becomes a more integral part of surgical
and interventional routine, we assume that some applications for external
tracking might be replaced by image processing methods rather than ex-
ternal position sensing. In addition, tracking does not need to be confined to
instrument localization alone. Examples mentioned in this chapter on the
use of tracking within biomechanics, radiation therapy, motion correction,
and instrument position surveillance illustrate the myriad avenues in which
tracking exhibits clear potential. To facilitate the research and development
of interventional systems that serve the vast patient community is indeed
a noble goal for researchers in the fields of clinical research, biomedical
engineering, and medical physics.
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